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Abstract: The combination of the low-pressure environment found in aircraft systems and the gradual
electrification of aircraft increases the risk of electrical discharges occurrence. This is an undesirable
situation that compromises aircraft safety and complicates maintenance operations. Experimental
data are needed to understand this problem. However, most of the published studies are based on
static pressure conditions, but aircraft systems are exposed to dynamic pressure conditions, especially
during the climb and descent phases of flight. This paper analyzes the effect of dynamic pressure
during the climb phase on the corona inception voltage because this phase experiences the worst
pressure drop rate. The experimental evidence presented in this paper shows that within the analyzed
pressure drop rate range, the dynamic pressure conditions do not have a significant effect on the
corona inception value under typical conditions found in aircraft systems during the climb phase.

Keywords: corona discharges; low pressure; pressure change; hybrid aircrafts; electric aircrafts

1. Introduction

It is a recognized fact that aviation is one of the fastest growing sources of greenhouse
gas emissions. According to a recent study published by the Environmental Protection
Agency [1], greenhouse gas (GHG) emissions from transportation accounted for 27.2 per-
cent of U.S. GHG emissions in 2020, while GHG emissions from aviation accounted for
7.5 percent of GHG emissions from transportation. Similar trends are occurring in Europe,
where despite improvements in aircraft fuel efficiency in recent years, in the EU in 2017,
direct emissions from aviation accounted for 3.8 percent of total CO2 emissions, which
represented 13.9 percent of transportation emissions [2]. Stringent international regulations
related to the reduction in GHG emissions are leading to the increasing electrification of
aircraft, resulting in new technologies such as the More Electric Aircraft (MEA) and the
All Electric Aircraft (AEA), where the increased electrical power requirements force the
aircraft to operate at higher voltage levels due to weight constraints [3–5]. While the main
idea of MEA aircraft is to replace pneumatic and hydraulic systems with electromagnetic
actuators [6], AEA aircraft will be electrically propelled.

The combined effect of increased electrical stress due to high-voltage levels, high
compaction factors typical of aircraft systems, and reduced pressure at cruising altitude
greatly increases the risk of electrical discharges in aircraft electrical and electronic systems.
A critical factor to consider is the wide pressure range that aircraft must withstand, and in
particular the low-pressure environment that facilitates the ignition of electrical discharges,
which is consistent with Paschen’s Law [7]. Environmental conditions are known to be
a determining factor in the premature aging of aircraft wiring systems, while discharge
monitoring and health assessment are challenging tasks [8].

The effects of the discharges are a premature degradation of the insulation systems [9],
thus facilitating the occurrence of surface discharges, arc tracking, arcing, and arcs [10].
These types of discharges, in their early stages, often manifest as corona in gaseous insula-
tion systems and partial discharges (PDs) in liquid and solid insulation materials [11].
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The dielectric strength of air decreases gradually with pressure [12,13]. This effect is
very important at flight altitudes characteristic of commercial aircraft. Therefore, lower
voltage levels are required to initiate corona discharges at cruising altitude compared to
sea level. This effect is due to the reduced air density [14,15], since charged particles have
a higher mobility at reduced air density, allowing for more effective collisions. Under
low air pressure, the electrons released by the discharge process ionize neutral molecules
more efficiently because they can accelerate more and gain more kinetic energy due to a
combination of higher mobility and an increased mean free path due to the reduced air
density [16]. The discharge process also releases photons resulting from excited electrons
transitioning from a high-energy to a low-energy state. Since the main constituent of
atmospheric air is nitrogen (78 vol%), the optical radiation spectrum of electrical discharges
in air is governed by the energy level transitions of the nitrogen molecules [17,18]. Since
each transition has a characteristic energy change, the emission spectrum is formed by the
contribution of photons generated in the different transitions, resulting in a continuum
spectrum [19].

Corona discharges are known to produce radiation in the near-UV region and in the
high-energy region of the visible spectrum [17–20]. According to [21], the normalized
emission spectra of corona discharges under AC and positive and negative DC supply
show a great similarity, regardless of the amplitude of the applied voltage.

This paper uses published data from existing aircraft to analyze the effects of dynamic
pressure conditions during the climb phase. The climb phase is analyzed since it represents
the worst situation due to the pressure (and air density) drop with the increase of altitude.
In order to analyze representative conditions, data from commercial and military aircrafts
are needed. Table 1 shows the pressure drop rate (PDR) for different aircraft models at an
altitude of 4000 m (13,123 ft) [22] and a temperature of −10 ◦C, which corresponds to a
pressure of about 62 kPa and an air density of about 0.82 kg/m3 [23].

Table 1. Approximate pressure drop rate during climb at 4000 m altitude for various aircraft models.

Aircraft Model
Pressure Drop
Rate at 4000 m

[kPa·s−1]

Air Density Drop
Rate at 4000 m
[kg·m−3·s−1]

Ceiling
Altitude [ft]

Pressure *
[kPa]

Temperature *
[◦C]

B747-100 −0.061 −0.00066 45,000 14.8 −56.5
A320 −0.081 −0.00087 39,000 19.9 −56.5

B787-8 DL −0.081 −0.00087 43,000 16.3 −56.5
A319 −0.089 −0.00096 39,000 19.9 −56.5

B777-200 −0.101 −0.00109 43,000 16.3 −56.5
CRJ1 (RJ-100) −0.101 −0.00109 41,000 18.1 −56.5

A330-200 −0.101 −0.00109 41,000 18.1 −56.5
A380-800 −0.101 −0.00109 43,000 16.3 −56.5
B737-700 −0.101 −0.00109 41,000 18.1 −56.5

A10 Thunderbolt 2 −0.101 −0.00109 34,000 25.0 −52.0
Ajet (Alpha Jet) −0.162 −0.00175 48,000 12.8 −56.5

Etar (Étendard IV) −0.406 −0.00437 50,000 11.6 −56.5
Eurofighter −1.218 −0.01312 65,000 5.6 −56.5

* At the ceiling altitude according to the ISO 2533 standard atmosphere [24].

The altitude of 4000 m corresponds to the initial climb phase of commercial and
military aircraft, so the data presented in Table 1 cover a wide spectrum of pressure
drop rates of existing aircrafts. The altitude of 4000 m is studied in this paper because
it corresponds to the fastest pressure drop during the climb phase. Therefore, if there is
an effect of the pressure drop rate on the corona inception voltage, this effect should be
detected during this phase. Furthermore, the pressure at 4000 m is high enough to have a
good experimental resolution and also to avoid the occurrence of sudden arcs.

Figure 1a shows the altitude versus time during a typical climb for several aircraft
models using data from [22]. Next, the altitude is transformed into pressure from the ISO
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2533 standard atmosphere [24] to obtain the data presented in Figure 1b, which shows the
evolution of the dynamic pressure versus time during the climb. Finally, the pressure is
converted to air density according to (1), resulting in the data shown in Figure 1c. Figure 1
also shows the dynamic behavior of a low-pressure chamber used in the experiments
to simulate pressure conditions in aircraft systems. Details of this chamber are given
in Section 2.
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The experimental tests carried out in this paper are based on three types of voltages,
i.e., 400 Hz alternating current (AC), positive direct current (DC), and negative direct
current (DC). These three voltage types have been selected because electric circuits of
modern aircrafts use AC (mostly 400 Hz) and DC.

Li et al. [7] investigated the discharge behavior in a sphere-plate electrode configura-
tion with a polymer thin film deposited on the grounded plate electrode and in contact with
the sphere top electrode. The tests were performed under dynamic pressure conditions by
decreasing the pressure from 100 kPa to 20 kPa under constant and positive DC voltage
supply. By analyzing various parameters of the partial discharges, the authors attributed
the increase in the magnitude of the partial discharges to the rate of pressure drop, but not
to the pressure level itself. Similar conclusions were made in [8]. However, to the best of
the authors’ knowledge, there are no studies focusing on the analysis of the role of dynamic
pressure conditions on the initiation of corona discharges. This paper tries to fill this gap by
analyzing the effect of the rate of climb (RoC) on the inception of corona discharges in air
during the climb stage, which is an important stage in the flight of the aircraft [25]. During
the climb phase, the atmospheric pressure decreases due to the increase in height, and the
air density decreases as well. Therefore, the reduced pressure (and air density) favors the
occurrence of electrical discharges. This work tries to find out if there is any influence of the
additional stress due to variable pressure conditions, which could be added to the stress
due to the reduced pressure typical of aircraft flight. This study considers the ascent rather
than the descent phase since the former represents the worst condition due to the effect of
depressurization. The effect of dynamic pressure conditions has hardly been analyzed in
the literature because most of the works focus on either standard or constant atmospheric
pressure conditions. This work tries to clarify the effect of the dynamic pressure conditions,
if any, since in case of noticeable effects due to the rate of climb, they must be considered in
the new designs.

This article is organized as follows. Section 2 describes the experimental setup, while
Section 3 describes the experimental method. Section 4 presents the experimental results
and discusses the results obtained. Finally, Section 5 concludes this work.

2. Experimental Setup

The applied voltage and supply frequency were controlled by a programmable AC
power source SP300VAC600W (600 W, 0–300 V, ±0.1 V, 15–1000 Hz, APM Technologies,
Dongguan, China). A VKPE-36 high-voltage transformer (single-phase, 600 VA, turns ratio
1:100, maximum voltage 36 kV, Laboratorio Electrotécnico, Cornellà de Llobregat, Spain)
was connected to the output terminals of the AC source to step up the voltage and supply
the electrode. During the DC tests, the output terminals of the high-voltage transformer
were connected to a rectifier consisting of two 2CL2FP diodes (30 kV, 100 mA, 100 ns)
connected in series and a high-voltage film capacitor (HVSHP 40 nF, 20 kV) connected in
parallel with the needle-plane gap (load). The high voltage was measured with a CT4028
high-voltage probe (0–39 kV, ≤3%, 1000:1, DC to 220 MHz, Cal Test Electronics, Yorba
Linda, CA, USA) connected to a Fluke 289 true-RMS multimeter (Fluke, 0.025% DC volts,
0.4% AC volts, Everett, Washington, WA, USA).

In order to reduce the pressure and simulate the environmental conditions of the
aircraft during the climb phase, tests were carried out inside a low-pressure chamber. It
consists of a cylindrical tube (aluminum, diameter = 250 mm, height = 500 mm, wall
thickness = 6 mm) sealed with a methacrylate lid. The pressure was manually regulated by
means of a control valve connected to a 90 L steel tank in which a vacuum was constantly
maintained by means of a BA-1 vacuum pump (1/4 HP, 0.085 m3/min, Bacoeng, Suzhou,
China). The pressure level was measured with a PSD-4 digital sensor (−1–0 bar, ±0.5%,
Wika, Sabadell, Barcelona). In order to avoid any influence on the pressure measurements
due to the pressure disturbance caused by the air flow in the pressure sensor, it was placed
far enough away from the outlet hole of the lid. The temperature of the gas inside the
chamber was measured using a very low inertia T-type thermocouple connected to a
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Fluke 289 true-RMS multimeter (Fluke, Everett, Washington, WA, USA) configured in
thermometer mode.

Corona discharges were detected using a head-on UVtron sensor (R9533, Hamamatsu
Photonics, Hamamatsu City, Japan). This sensor was selected because of its proven ability
to detect corona discharges in low-pressure environments [26–28], its high sensitivity, its
wide field of view, and its immunity to electromagnetic noise and to sporadic discharges
since it detects the ultraviolet light emitted by the corona discharges. The UVtron sensor
was driven by a C10807 driver (Hamamatsu Photonics, Hamamatsu City, Japan), which
allows the sensor to operate safely while minimizing the probability of false detections due
to the built-in signal processing circuitry. The sensor was placed inside the low-pressure
chamber facing the electrode and connected to an external computer via a USB-6000 DAQ
device (1 kS/s, 12 bits, ≤±26 mV, National Instruments, Austin, TX, USA). The computer
simultaneously ran a Python script to process the signal and determine if corona activity
was present.

Figure 2 shows the experimental setup and the instrumentation used in the experi-
mental part.
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Figure 2. Sketch of the experimental setup.

Corona discharges were generated using two needle-plane electrode configurations.
Electrode #1 consists of a stainless steel needle 13 cm long, 2.4 mm in diameter, and a
conical tip of 0.2 mm radius and 40◦ angle, as described in Figure 3b. The tip of Electrode
#1 was placed 80 mm above a grounded copper plate. Electrode #2 consists of a stainless
steel needle 13 cm long, 1.3 mm in diameter, and a hollow tip of 0.03 mm radius of 0.03 mm
and 50◦ angle, as described in Figure 3c. The tip of Electrode #2 was placed 40 mm above a
grounded copper plate. The use of these two different electrodes provides two levels of
corona inception voltages, thus allowing a greater generalization of the results.
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3. Experimental Method

This section describes the procedure for experimentally determining the air density at
which the corona is induced at the tip of the needle electrode as the pressure decreases at a
rate that simulates the climb phase of an airplane while a high value of constant voltage is
applied to the electrode.

3.1. Experimental Process

To determine if the pressure drop rate influences the corona inception voltage, two
types of tests were proposed, that is, tests under dynamic and static pressure conditions.

Figure 4 summarizes the process used in the laboratory to determine the pressure at
which the corona is first detected under dynamic pressure conditions.
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Figure 4. Flowchart of the laboratory procedure used to determine the pressure at which corona is
first detected under dynamic pressure conditions.

During the experiments, the needle electrode was connected to the high-voltage
terminal of the power supply. Before starting each experiment, the pressure chamber was
filled with fresh air to avoid contamination from previous experiments. Next, the valve
connecting the chamber to the vacuum tank was manually opened to allow the pressure
in the low-pressure chamber to drop at a selected rate. The rate of air density drop was
determined from the experimental measurements of time, pressure, and temperature using
a Python script. Finally, when the pressure was low enough, corona activity was detected
by the UVtron sensor. The Python code evaluated the possible presence of a corona at
one-second intervals. Each test was repeated ten times to minimize experimental error.



Aerospace 2023, 10, 320 7 of 14

The pressure was changed at four pressure drop rates to simulate the pressure decline
of different aircraft models during the initial climb phase. The results obtained were
compared with tests performed under static pressure conditions to verify whether the
pressure change affected the corona inception voltage. The experiments were repeated for
different high-voltage waveforms, i.e., 400 Hz sinusoidal AC, negative DC and positive DC.

During the dynamic pressure experiments, the amplitude of the applied voltage was
kept constant, and the pressure was reduced at various pressure drop rates until corona
discharges occurred, as shown in Figure 5a.
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pressure drop rates. Voltage, pressure, and temperature were recorded at the inception of corona.
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To determine if the dynamic pressure conditions have a measurable effect on the corona
inception voltage, tests were also performed under constant pressure conditions, applying
an increasing voltage amplitude with time until corona appearance, as shown in Figure 5b.
If pressure drop has no measurable effect on corona inception voltage (CIV) at a given air
density, the CIV value should be the same under static and dynamic pressure conditions.

3.2. Relationship between Pressure and Air Density

As discussed in the Introduction section, air density plays a key role in the inception of
corona discharges. According to the standard atmosphere [24], the air density ρair [kg·m−3]
can be obtained from the ideal gas law in molar form as

ρair =
P

Rspeci f icT
(1)

where p [Pa] is the pressure of air, T [K] is the absolute temperature, Rspecific = R/M =
287.0528 J·(kg·K)−1 is the specific gas constant for dry air, where M = 28.9644 kg·kmol−1 is
the molar mass of air at sea level, and R = 8314.32 J·(kg·kmol)−1 is the universal constant
of gases.

According to (1), the density of air decreases linearly with pressure at constant temper-
ature. Equation (1) also explains that the density of air decreases at elevated temperatures,
thus reducing the inception voltage of electrical discharges [26]. Note that (1) is compatible
with the formula given in various international standards, such as the IEEE Standard for
High-Voltage Testing Techniques [27]:

ρair = ρair,0
P
P0

· T0

T
(2)
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where ρair,0 is the density of air under normal conditions, i.e., P0 = 101.3 kPa and T0 = 293.15 K.
Both Equations (1) and (2) assume that air is as an ideal gas.

4. Experimental Results

This section presents and discusses the experimental results obtained in the low-
pressure chamber at four pressure drop rates covering the pressure drop rates during the
climb phase of a wide range of aircraft models (see Table 1). Tests were also performed at
variable voltage amplitude and constant pressure conditions using Electrode #1 (distance
electrode to ground plane of 80 mm) and Electrode #2 (distance electrode to ground plane
of 40 mm). The tests were performed under three types of voltages, i.e., 400 Hz sinusoidal
AC, negative DC, and positive DC.

4.1. Uncertainty Calculation

As explained, this paper performs tests under dynamic and static pressure conditions
to determine the effect of the pressure drop rate on corona inception voltage. The experi-
mental uncertainties associated with each test are explained in the following subsections.

4.1.1. Dynamic Pressure Tests

Dynamic pressure tests are performed at constant voltage and variable pressure. The
major sources of uncertainty in the determination of air density are due to the propagation
of the instrumental uncertainty ∆ρa,instruments, the time delay during the corona detection
∆ρa,delay, and the standard deviation inherent in the corona inception phenomenon ∆ρa,2σ.

The air density is determined from the measurement of the pressure and temperature
of atmospheric air. This process introduces an experimental uncertainty ∆ρa,instruments that
can be calculated from (1) as

∆ρa,instruments = ±

√√√√( 1
Rspeci f icT

∆P

)2

+

(
P

Rspeci f icT2 ∆T

)2

(3)

where ∆ρ = ±506.5 Pa is the uncertainty of the PSD-4 digital pressure sensor, and ∆T = ±1 ◦C
is the uncertainty of the temperature measurement made with a T-type thermocouple
connected to a Fluke 289 multimeter. Substituting these parameters in (3), at 70 kPa
and 20 ◦C (the experimental conditions at which the measurements are made), it yields
∆ρa,instruments = ±0.0066 kg/m3, which is approximately ±0.8% of the air density at 70 kPa
and 20 ◦C.

The uncertainty due to the time delay during the corona detection ∆ρa,delay, is due to
the response time of the UVtron sensor, which was programmed with a sampling period of
1 s between successive samples. This uncertainty depends directly on the air density drop
rate, so that higher drop rates correspond to higher uncertainties.

∆ρa,delay = ±
∣∣∣ρa(tdetection)− ρa(tdetection − tdelay)

∣∣∣ (4)

where ρa is the density of air, tdetection is the time instant at which corona is detected, and
tdelay = 1 s is the time delay between successive samples. Note that ∆ρa,delay changes with
each test due to the different pressure and air density drop rates.

Corona is a complex phenomenon, in which ionization depends on internal and
external factors, so under the same experimental conditions the inception of corona does not
always occur at the same point. To evaluate this uncertainty, each experimental condition
was repeated 10 times and the standard deviation was obtained. Therefore, the uncertainty
introduced by the corona inception at the 95% confidence level can be calculated as follows,

∆ρa,2σ = ±2σρa,corona (5)

where σρa,corona is the standard deviation of the air density at the corona inception conditions.
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Finally, the combined air density uncertainty can be calculated as

∆ρa = ±
√

∆ρ2
a,instruments + ∆ρ2

a,delay + ∆ρ2
a,2σ (6)

4.1.2. Static Pressure Tests

Static pressure tests are performed at constant pressure and variable voltage.
Voltage is measured with a CT4028 high-voltage probe connected to a Fluke 289 true-

RMS multimeter. This combination has an uncertainty ∆Vinstruments = ±3.02%.
During the static pressure test, the voltage is slowly increased in discrete steps of 20 V,

where the uncertainty of the voltage steps is ∆Vstep = ±10 V.
Finally, each experimental condition was repeated 10 times to obtain the standard de-

viation. Therefore, the uncertainty introduced by the inception of corona can be calculated
at the 95% confidence level as

∆Vcorona,2σ = ±2σVcorona_inception (7)

Finally, the combined uncertainty can be calculated as follows:

∆V = ±
√

∆V2
instruments + ∆V2

step + ∆V2
corona,2σ (8)

4.2. Results

Table 2 shows the average air density at which corona was first detected during the
dynamic pressure experiments performed with the two analyzed electrodes. It also shows
some statistics and the different sources of uncertainties. Note that the amplitude of the
voltage was different in each test (400 Hz AC, negative DC and positive DC) because
negative corona appears at a lower voltage than positive corona, and the corona inception
voltage decreases as the frequency increases [28], which is the case with 400 Hz AC. It
is noted that each experimental condition was repeated 10 times to obtain the mean and
standard deviation and the total uncertainty of the air density at the inception of corona. As
detailed in Section 4.1., the uncertainty due to the instruments is ∆ρa,instruments = ±0.8% at
about 70 kPa and 20 ◦C, the experimental conditions during the tests presented in Table 2.

The use of the two electrode geometries allows tests to be performed at different
voltage levels. As shown in Table 2, due to the sharpness of Electrode #2 and the proximity
of the ground plane, the operating voltages of this electrode are almost half of those of
Electrode #1.

The uncertainty of the air density calculated according to the method detailed in
Section 4.1.1 depends on the specific experiment and is always between 1.1% and 5.5%,
which shows the accuracy of the results presented in Table 2.

Results presented in Table 2 were performed at four different pressure drop rates
(PDRn where n = 1, 2, 3, 4). These four levels of pressure were selected following the
rule PDRn = PDRn−1 + n·0.1 [kPa/s], where PDRn [kPa/s] is the pressure drop rate corre-
sponding to the n-th step which are –0.1 kPa/s, –0.3 kPa/s, –0.6 kPa/s, −1.0 kPa/s. Due
to the manual regulation of the air flow, every test had a slightly different PDR than the
previous one. Therefore, the four pressure levels consist of four PDR ranges, which include
the conditions that different types of aircraft, from commercial jetliners (−0.06 kPa/s) to
military fighters (−1.2 kPa/s), must withstand during the climb stage.

The results presented in Table 2 show that the air density averaged over 10 tests at
which corona occurs remains almost constant regardless of the pressure drop rate at which
the experiments are performed. The same comment applies to both analyzed electrodes.
Note that the voltage amplitude remained a constant value throughout these tests. The
results also show marginal differences in the pressure drop rate at which corona discharges
first appeared between tests under 400 Hz AC, negative DC, and positive DC.
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Table 2. Dynamic pressure tests made with the two electrodes performed at constant voltage and
applying different types of voltage at different pressure drop rates.

Applied
Voltage

Pressure
Drop Rate

[kPa/s]

Mean Air
Density
ρmean

[kg/m3]

Standard
Deviation
σρ [kg/m3]

Instrument
Uncertainty
∆ρa,instruments

[%]

Delay
Uncertainty
∆ρa,delay [%]

Standard
Deviation

Uncertainty
∆ρa,2σ [%]

Total
Uncertainty

∆ρa [%]

Electrode #1
placed 80
mm above

ground

3.07 kVRMS
400 Hz

sinusoidal
AC

−0.10 ± 0.09 0.856 0.006 0.8 0.1 1.4 1.6
−0.30 ± 0.07 0.855 0.003 0.8 0.1 0.7 1.1
−0.60 ± 0.14 0.850 0.008 0.8 0.2 1.9 2.1
−1.00 ± 0.21 0.843 0.016 0.8 0.2 3.8 3.9

4.85 kV
negative

DC

−0.10 ± 0.09 0.825 0.010 0.8 0.2 2.4 2.6
−0.30 ± 0.13 0.825 0.014 0.8 0.2 3.4 3.5
−0.60 ± 0.14 0.822 0.016 0.8 0.2 3.9 4.0
−1.00 ± 0.36 0.810 0.014 0.8 0.3 3.5 3.6

5.74 kV
positive

DC

−0.10 ± 0.04 0.833 0.020 0.8 0.1 4.8 4.9
−0.30 ± 0.08 0.835 0.019 0.8 0.2 4.6 4.6
−0.60 ± 0.15 0.833 0.021 0.8 0.2 5.0 5.1
−1.00 ± 0.30 0.843 0.023 0.8 0.2 5.5 5.5

Electrode #2
placed 40
mm above

ground

1.54 kVRMS
400 Hz

sinusoidal
AC

−0.10 ± 0.04 0.841 0.003 0.8 0.2 0.7 1.1
−0.30 ± 0.09 0.840 0.012 0.8 0.2 2.9 3.0
−0.60 ± 0.29 0.837 0.009 0.8 0.2 2.2 2.3
−1.00 ± 0.24 0.832 0.010 0.8 0.3 2.4 2.5

2.56 kV
negative

DC

−0.10 ± 0.04 0.833 0.007 0.8 0.2 1.7 1.9
−0.30 ± 0.12 0.831 0.016 0.8 0.2 3.9 3.9
−0.60 ± 0.21 0.839 0.011 0.8 0.2 2.6 2.8
−1.00 ± 0.33 0.832 0.017 0.8 0.3 4.1 4.2

3.21 kV
positive

DC

−0.10 ± 0.04 0.845 0.010 0.8 0.2 2.4 2.5
−0.30 ± 0.10 0.842 0.006 0.8 0.2 1.4 1.6
−0.60 ± 0.23 0.844 0.011 0.8 0.2 2.6 2.7
−1.00 ± 0.32 0.850 0.010 0.8 0.3 2.4 2.5

Table 3 shows the average voltage amplitude at which corona was first detected in
the static pressure tests under increasing voltage conditions and some statistical indicators.
The static pressure tests were performed at a constant air density of 0.83 kg/m3, which
roughly corresponds to corresponds 70 kPa at 20 ◦C. This value of the air density is very
similar to the ones shown in Table 2.

Table 3. Static pressure tests. Summary of experimental results at constant pressure when the voltage
was increased at an approximate rate of 20 V/s.

Applied
Voltage

Mean Voltage
Vmean [kV]

Standard
Deviation σV

[V]

Instruments
Uncertainty

∆Va,instruments
[%]

Step
Uncertainty
∆Va,step [%]

Standard
Deviation

Uncertainty
∆Va,2σ [%]

Total
Uncertainty

∆Va [%]

Electrode #1
placed 80 mm
above ground

400 Hz AC 3.09 (RMS) 0.027 3.0 0.3 1.7 3.5
Negative DC 4.73 0.093 3.0 0.2 3.9 5.0
Positive DC 5.63 0.055 3.0 0.2 2.0 3.6

Electrode #2
placed 40 mm
above ground

400 Hz AC 1.58 (RMS) 0.024 3.0 0.6 3.0 4.3
Negative DC 2.55 0.027 3.0 0.4 2.1 3.7
Positive DC 3.11 0.025 3.0 0.3 1.6 3.4

Comparing the results presented in Tables 2 and 3, it can be seen that the corona
inception voltage is almost the same in both tests, i.e., under different pressure drop rates
(dynamic pressure test) and under constant pressure (static pressure tests).

The uncertainty of the air density calculated according to the method detailed in
Section 4.1.2 depends on the specific experiment lies on range from 3.4% to 5.0%, which
shows the accuracy of the results presented in Table 3.

For a better interpretation of the experimental results, the data summarized in Table 2
corresponding to the dynamic pressure tests are plotted in Figure 6. As explained, ten repli-
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cates of each experimental condition were performed. The minimum, mean, and maximum
experimental values obtained in each experimental condition are plotted in Figure 6.
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The results shown in Figure 6 for all the applied voltage types and the two analyzed
electrodes indicate that the air density at which corona inception occurs is almost indepen-
dent of the pressure drop rate. These results are compatible with those obtained in tests
conducted under static pressure conditions. Regarding Electrode #1, the dynamic pressure
results obtained with 400 Hz supply yielded a mean corona inception voltage of 3.08 kVRMS
for air densities in the range from 0.82 to 0.87 kg/m3 (3.09 kVRMS at 0.83 kg/m3 for the static
pressure tests). In the case of negative DC, the dynamic pressure results yielded a mean
corona inception voltage of 4.73 kV for air densities in the range from 0.79 to 0.85 kg/m3

(4.86 kV at 0.83 kg/m3 for the static pressure tests). Finally, for positive DC, the dynamic
pressure results yielded a mean corona inception voltage of 5.74 kV for air densities in the
range from 0.80 to 0.89 kg/m3 (5.63 kV at 0.83 kg/m3 for the static pressure tests). The
comparison between the dynamic tests and the static tests shows that corona inception
occurs under very similar air density and voltage conditions, regardless of whether the
tests are conducted under static or dynamic pressure conditions.

Regarding Electrode #2, the dynamic pressure results obtained with 400 Hz supply
yielded a mean corona inception voltage of 1.54 kVRMS for air densities in the range from
0.80 to 0.85 kg/m3 (1.58 kVRMS at 0.83 kg/m3 for the static pressure tests). In the case of
negative DC, the dynamic pressure results yielded a mean corona inception voltage of
2.56 kV for air densities in the range from 0.80 to 0.86 kg/m3 (2.54 kV at 0.83 kg/m3 for the
static pressure tests). Finally, for positive DC, the dynamic pressure results yielded a mean
corona inception voltage of 3.21 kV for air densities in the range from 0.83 to 0.87 kg/m3

(3.1 kV at 0.83 kg/m3 for the static pressure tests). Similarly, as in the case of Electrode #1,
corona occurs under very similar air density and voltage conditions, regardless of whether
the tests are conducted under static or dynamic pressure conditions.

All of the experimental evidence presented in this section leads to the conclusion that
over the range of pressure drop rates analyzed, the corona inception voltage is almost
invariant to the pressure drop rate. This means that the dynamic pressure conditions
have very little or negligible effect on the corona inception value under typical conditions
found in aircraft systems during the climb phase. Therefore, these results suggest that
no additional measures are required to prevent electrical discharges in aircraft insulation
systems during the climb and descent phases. However, it should be noted that the experi-
mental results presented in this paper were obtained under simulated aircraft conditions
using a low-pressure chamber, so further work performed under different temperature and
humidity conditions could better support the results obtained in this paper.

5. Conclusions

The low-pressure environments characteristic of aeronautical applications trigger the
inception of electrical discharges in electronic and electrical circuits located in unpressurized
areas. The gradual electrification of modern aircraft also increases the risk of electrical
discharges due to the ever-increasing voltage levels required. Due to the complexity of
the phenomenology associated with electrical discharges, it is very difficult and inaccurate
to perform simulation studies, so it is necessary to perform realistic experimental tests.
Although more experimental studies are needed to better understand the effect of low-
pressure conditions, most of them are based on static pressure conditions. However, aircraft
systems are exposed to dynamic pressure conditions, especially during the climb and
descent phases of flight.

The aim of this work was to determine if there is a relationship between the corona
inception voltage and the pressure (air density) drop during the climb stage of aircraft.
To this end, this paper has studied the range of pressure drop rates characteristic of the
climb stage of different types of aircraft (including commercial jetliners and jet fighters,
which have much higher acceleration and climb rates), as it corresponds to the highest
pressure drop rate. Tests under variable and constant pressure conditions were performed
to determine a possible influence of varying pressure conditions on the corona inception
voltage. The experimental results presented in this paper show that within the range of
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pressure drop rates analyzed, which covers the current capabilities of commercial aircraft,
the dynamic pressure conditions have no significant effect on the corona inception voltage
during the climb phase of flight under typical aircraft conditions. Therefore, these results
suggest that no additional measures are required to prevent electrical discharges in aircraft
insulation systems during the climb and descent phases.
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