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Abstract

As the number of cyber-attacks targeting organisations has exponentially grown,
so has the importance of securing computer networks. Network Intrusion
Detection Systems (NIDS) play a crucial role in this critical task, as they monitor
the incoming and outgoing traffic from a network to detect any potential threats.

To make these security systems more robust, a lot of research has been conducted
on using advanced Machine Learning (ML) and Deep Learning (DL) techniques
for network intrusion detection. Despite the publication of many proposals,
commercial systems have failed to implement solutions which are mainly based
on artificial intelligence.

The purpose of this master’s thesis has been to study the potential of Graph
Neural Networks (GNNs) in the detection of network attacks. GNNs are a branch
of Neural Networks (NNs) that operate on graph-structured data, which implies a
paradigm shift with respect to how traditional NNs analyse information.

GNNs have been applied to many domains of knowledge such as chemistry or
physics, however, there is little research on the field of security and networking.
Nevertheless, as network traffic can naturally be modelled as a graph, where
there can be many types of nodes (devices) and edges (links), this novel branch
of DL can bring huge value.

3



Table of Contents

List of Figures 6

List of Tables 8

List of Source Codes 9

1. Introduction 10
1.1 Structure of the memory 10
1.2 Problem to solve 11
1.3 Objectives and goals of the project 11

2. Intrusion Detection Systems (IDS) 12
2.1 Overview 12
2.2 Types of Intrusion Detection Systems (IDS) 12

2.2.1 Host Intrusion Detection System (HIDS) 13
2.2.2 Network Intrusion Detection System (NIDS) 13

2.3 Detection methods 15
2.3.1 Signature-based 15
2.3.2 Anomaly-based 16

3. Graph Neural Networks (GNNs) 17
3.1 Graph-structured data 17
3.2 History and Introduction 18
3.3 Types of Graph Neural Networks (GNNs) 19

3.3.1 Graph Convolutional Network (GCN) 19
3.3.2 Graph Attention Network (GAT) 20
3.3.3 Message Passing Neural Networks (MPNNs) 20

3.4 Development frameworks 23

4. Implementation of a GNN model to detect network attacks 25
4.1 Datasets 25

4.1.1 CIC-IDS 2017 26
4.2 Pre-processing stage 28
4.3 GNN (MPNN) model 28

4.3.1 Graph representations 28
4.3.2 Architecture 35
4.3.3 Hypotheses validations 39
4.3.4 Final Features 44

4.4 Training and Evaluation 45

4



4.4.1 Batching traffic by the number of network flows 46
4.4.2 PortScan attack vs Benign Traffic 47
4.4.3 PortScan attack vs Not-PortScan traffic 53
4.4.4 PortScan, DDoS and Benign traffic 59
4.4.5 Evaluation of a “Reconnaissance” attack 62
4.4.6 An alternative approach: training with individual graphs 67

4.5 Source code 70

5. Conclusions 72

6. Future Work 73

References 74

Glossary 77

5



List of Figures

Figure 2.1: Network Intrusion Detection System (NIDS) deployment.
Figure 2.2: Signature-based detection method flowchart.
Figure 2.3: Anomaly-based detection method flowchart.
Figure 3.1: Types of graph structures.
Figure 3.2: Applying convolution operations in a graph.
Figure 3.3: Undirected graph.
Figure 4.1: Benign profiling design.
Figure 4.2: Flow diagram - Extracting flows from raw traffic.
Figure 4.3: Graph representation with (IP, Port) and Flow nodes.
Figure 4.4: DDoS and Benign traffic graph representation - CIC-IDS 2017.
Figure 4.5: Flooding (DDoS) attack.
Figure 4.6: PortScan (reconnaissance) attack.
Figure 4.7: Graph representation with IP, (IP, Port) and flow nodes.
Figure 4.8: PortScan graph representation.
Figure 4.9: DDoS graph representation.
Figure 4.10: Scatter Function.
Figure 4.11: Classification metrics H1.
Figure 4.12: Confusion matrix - GNN.
Figure 4.13: Confusion matrix - NN.
Figure 4.14: Training results - GNN, NN, RF and SVM.
Figure 4.15: Evaluation results on tampered data.
Figure 4.16: Confusion Matrix - NN.
Figure 4.17: Confusion Matrix - GNN.
Figure 4.18: Network flows representing a PortScan attack.
Figure 4.19: Network flows representing a DoS attack.
Figure 4.20: Training Classification Metrics related to Number of Flows per
Graph.
Figure 4.21: Evaluation Classification Metrics related to Number of Flows per
Graph.
Figure 4.22: F1-Score results - Training and validation (bar chart).
Figure 4.23: F1-Score results - Training and validation (tendency line).
Figure 4.24: Benign traffic graph (raw).
Figure 4.25: Benign traffic graph (classified).
Figure 4.26: PortScan attack graph (raw).
Figure 4.27: PortScan attack graph (classified).
Figure 4.28: Training Classification Metrics related to Number of Flows per
Graph.

6



Figure 4.29: Validation Classification Metrics related to Number of Flows per
Graph.
Figure 4.30: F1-Score results - Training and validation (bar chart).
Figure 4.31: F1-Score results - Training and validation (tendency line).
Figure 4.32: Graph including benign traffic and PortScan attack (raw).
Figure 4.33: Graph including bening traffic and PortScan attack (classified).
Figure 4.34: Graph including DDoS and PortScan samples (raw).
Figure 4.35: Graph including DDoS and PortScan samples (classified).
Figure 4.36: Graph including benign traffic, DDoS and PortScan samples (raw).
Figure 4.37: Graph including benign traffic, DDoS and PortScan samples
(classified).
Figure 4.38: Training Classification Metrics related to Number of Flows per
Graph.
Figure 4.39: Validation Classification Metrics related to Number of Flows per
Graph.
Figure 4.40: F1-Score results - Training and validation (bar chart).
Figure 4.41: F1-Score results - Training and validation (tendency line).
Figure 4.42: Reconnaissance attack graph.
Figure 4.43: Validation Classification Metrics related to Number of Flows per
Graph (on Reconnaissance attack samples).
Figure 4.44: PortScan vs Benign model (2000 flows per graph) confusion matrix.
Figure 4.45: PortScan vs Benign model (2000 flows per graph) graphical
prediction.
Figure 4.46: Validation Classification Metrics related to Number of Flows per
Graph (on Reconnaissance attack samples).
Figure 4.47: PortScan vs Not PortScan model (1000 flows per graph) confusion
matrix.
Figure 4.48: PortScan vs Not PortScan model (1000 flows per graph) graphical
prediction.
Figure 4.49: PortScan vs Benign classification - comparison of training types.
Figure 4.50: PortScan vs Not PortScan classification - comparison of training
types.
Figure 4.51: Benign, PortScan and DDoS classification - comparison of training
types.
Figure 4.52: Evaluating the PortScan vs Benign model on the “Reconnaissance”
attack samples.

7



List of Tables

Table 4.1: Features selected.
Table 4.2: Source code main folders.
Table 4.3: Source code main files.

8



List of Source Codes

Source code 3.1: Creating a Data (graph) object.
Source code 4.1: Adding nodes to an HeteroData object.
Source code 4.2: Adding edges to an HeteroData object.
Source code 4.3: Message function.
Source code 4.4: Update Function.
Source code 4.5: Readout Function.
Source code 4.6: GNN model.

9



1. Introduction

1.1 Structure of the memory

The main purpose of this subchapter is to elaborate on the main blocks that
compose this memory.

In the first chapter, we primarily focus on what problem we were trying to solve
with this master’s thesis, the motivations that lead to the implementation of the
project itself and the main objectives and goals that we aimed to obtain.

The second chapter is dedicated to introducing the domain of Intrusion Detection
Systems (IDS). In particular, we will focus on Network Intrusion Detection
Systems (NIDS), and how these play a key role when it comes to securing
networks. Moreover, we will also talk about some limitations that NIDS currently
present.

In the third chapter, we will introduce the topic of Graph Neural Networks
(GNNs). The purpose of this chapter will be to provide the reader with some
basic knowledge, if unfamiliar with the topic, to properly understand the
following chapter, which will elaborate on the implementation of the actual
project.

As mentioned above, in the fourth chapter, we will present the implementation of
a GNN model for the detection of network attacks. We will talk about the
architecture of the model, the data used for training and evaluation, the different
experiments and hypotheses tested, and finally we will present the results
obtained.

In the fifth chapter, we will present the conclusions of the project, and in the last
chapter, we will elaborate on future research that can be done to continue this line
of work.
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1.2 Problem to solve

NIDS have evolved to play a key role when it comes to securing a network,
despite these systems being generally very robust, they are still vulnerable to the
new variants of malware developed. That is why, in the last few years, there have
been many proposals for using advanced ML and DL techniques to detect
network attacks.

Nevertheless, commercial systems have failed to implement artificial intelligence
as their core detection engine, because most of the proposed implementations do
not have reliable results in production environments. One of the main reasons
behind this problem is that the developed models lack generalisation, meaning
that when tested in unseen scenarios or different network setups, the prediction
capabilities drastically drop. On top of that, current systems face a fundamental
limitation, they analyse flows individually, which implies obviating the existing
inter-dependencies between them.

1.3 Objectives and goals of the project

The main purpose of this project has been to study the potential of GNNs in
network attack detection. GNNs are a novel family of traditional Neural NNs,
which start from a different conceptual basis, they operate over graph-structured
data.

Although GNNs have been researched in topics such as chemistry or physics,
their application in the domain of cyber security is still under observation. That is
why, one of the main contributions of this project has been to shed a light on the
application of GNNs to network attack detection, to increase trust in their
application and incentivise further research.
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2. Intrusion Detection Systems (IDS)

2.1 Overview

When it comes to securing a network, traditionally, we talk about access control1

mechanisms (which can be a policy in a firewall, credentials, authentication and
authorization, or a rule in a router, for instance), however, most of these policies
can not provide full security coverage of an entire computer network. Hence, to
protect the systems of intrusions2, we need more complex setups.

When we talk about an intrusion, we are talking about a set of actions which try
to compromise the integrity, confidentiality and availability of a resource, which
does not have to imply unauthorised access to a machine, but can also be the
denial of a service.

The systems used to detect intrusions are called Intrusion Detection Systems
(IDS) [1], which are either devices or software in charge of analysing multiple
data points from different sources, to detect any malicious activities or threats.
IDSs are not a new concept, as one of the first appearances dates from 1980.

These systems are in charge of monitoring the network traffic, among other
things, to look for malicious or suspicious activities and generate alerts if
necessary. Detected threats can be reported to a network administrator, for
instance, or collected using a Security Information and Event Management
(SIEM) system.

2.2 Types of Intrusion Detection Systems (IDS)

There are different types of IDS systems, which vary according to the setup
where they are deployed. Those deployed in a particular host are known as
host-based, whereas those deployed in a computer network are known as
network-based. Both types have advantages and disadvantages, however, for the
scope of this project, although we will introduce host-based systems, we will
focus on the network-based type.

2 https://www.sunnyvalley.io/docs/network-security-tutorials/what-is-network-intrusion

1 https://www.incibe-cert.es/en/blog/basic-access-control
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2.2.1 Host Intrusion Detection System (HIDS)

Host Intrusion Detection Systems (HIDS) run on hosts, instead of in an entire
network. They inspect incoming and outgoing packets within a host and can
generate alerts and reports if any suspicious or malicious activity is detected.

A HIDS can perform multiple security tasks, such as:
● Monitoring critical files.
● Notifying intrusions.
● Evaluating traffic.
● Threat intelligence (recognizing and eliminating malicious activities

present within the system).

The main limitation concerning these types of systems is that the visibility they
have is limited to a single host, which can be useful to maximise its security, but
lacks a general overview of the entire network and the rest of the devices or
hosts.

Moreover, as they are deployed within a host, they can consume resources from
the machine, potentially impacting performance. On top of that, an attack will
only be detected once it affects the host, jeopardising the security of the entire
network.

2.2.2 Network Intrusion Detection System (NIDS)

NIDS are deployed within a network with the purpose to examine the traffic
generated from all devices and machines in the network. They observe incoming
and outgoing traffic and can use different techniques to find malicious traffic,
such as comparing signatures from known attacks, looking for anomalies in the
data, scanning ports, malformed packets, etc.

13



Figure 2.1: Network Intrusion Detection System (NIDS) deployment.

A NIDS works like a passive network monitoring device, as it does not interfere
with the inspected traffic and does not ingest new packets into the network. As
can be seen in Figure 2.1 above, it is normally deployed within the trusted
network (behind a firewall), and it basically captures the traffic and evaluates it.

The traffic that the NIDS uses as input can vary according to the network size
and system type, however, in a scenario of a considerable network, it can use
sampled NetFlow3 records extracted from a router, for instance.

It is common to wonder what is the difference between a firewall and a NIDS,
and even to question if they are both compatible or if we should choose one or
another. In fact, they work together, and they can be understood as the “security
guard” and “intruder alarm” in a physical security setup.

A firewall is in charge of blocking or restricting certain traffic incoming to the
network, it can be considered a filtering device that often works on a set of
predetermined rules. Whereas a NIDS, as already explained above, monitors the
traffic that has already entered the network and inspects it to look for potential
threats. Hence, these two types of security systems must work together, as they
have different duties.

3 https://es.wikipedia.org/wiki/Netflow
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2.3 Detection methods

An IDS can leverage different detection methods to find threats or policy
violations. There are mainly two types: signature-based, which works on the
basis of looking for patterns of already known attacks, and anomaly-based,
which relies on modelling the normal behaviour of the network and looking for
events which differ from this normality.

2.3.1 Signature-based

As the name suggests, this detection technique is based on signatures4 of known
attacks, which means that the patterns found in the data are cross-checked against
records of already-seen attacks. This method is similar to antivirus software,
which leverages a database or record of past attacks to match any potential
existing threats.

For instance, if certain IP addresses are blacklisted, a signature-based IDS will
detect any traffic from these addresses and raise the corresponding alerts. Or if an
attack matches a well-known pattern, such as a flooding attack, the IDS will
recognize this known pattern and act accordingly.

Figure 2.2: Signature-based detection method flowchart.

4 https://encyclopedia.kaspersky.com/glossary/attack-signature/
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Signature-based IDS have the main advantage that they are robust against known
malware, however, it is clear to see its main limitation, they are vulnerable to
zero-day attacks or any type of malware not recorded or known.

2.3.2 Anomaly-based

The fundamental basis of this detection method is to identify anomalous
behaviours in the inspected traffic, which was introduced as a new detection
method due to the rapid evolution of malware attacks. These systems mainly use
ML techniques to create a trustful behaviour model of the network, and when
something differs from the established model, it can be treated as an anomaly or
a potential threat.

Figure 2.3: Anomaly-based detection method flowchart.

As can be seen in Figure 2.3 above, they work like most ML models. Initially,
the monitored environment is parametrized and data is collected to create training
datasets. Once the ML model is built, it can be used on validation data to test its
performance against unseen scenarios.

This process has to be iteratively repeated, as it is not enough to train a model
once, we have to keep it updated by periodically feeding it with new training
datasets. So, even if we achieve high performance with certain data, our model
may not be as accurate when tested with totally different data, or may also
become obsolete very fast.
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Hence, anomaly-based models may prove to perform well in a test environment,
but face problems when exposed to production data. This could mainly happen
due to three different reasons:

● Lack of generalisation: these models lose prediction capabilities when
exposed to new network scenarios and traffic.

● Overfitting: most proposals present very high classification results, but
this is normally due to overfitting of the training datasets, which makes
the model vulnerable to variations of attacks or new types of malware.

● Features: these models may be based on a certain set of features which
are network dependent and can not be extrapolated to other setups and
conditions.

The main challenge faced is to develop an anomaly-based system capable of
performing well in any type of environment. To achieve this, we need to find a
solution which tackles the three aforementioned limitations.

This means that we need to carefully select a set of features which can be applied
in different network scenarios and build a model that does not create overfitting
with the training data. That is why we proposed the use of GNNs, as these are
based on certain theoretical concepts which could prove to solve these limitations
(more on chapters 3 and 4).

3. Graph Neural Networks (GNNs)

3.1 Graph-structured data

Prior to talking about what are GNNs, it is essential to make a brief introduction
to what are graphs5 and why are these so important to represent many types of
data.

A graph can be mathematically defined as G=(V, E) where V = Vertex (or node)
attributes and E = Edges (or link) attributes and directions. It is basically a
structure that contains nodes and edges which interconnect these. Both nodes and
edges can have features that describe them.

There are three main types of graphs: undirected, directed and weighted.

5 https://en.wikipedia.org/wiki/Graph_(abstract_data_type)
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Figure 3.1: Types of graph structures.

It turns out that most of the data found in nature is better represented as a graph,
rather than as a set of individual vectors containing features. For instance, social
relationships, chemistry molecules, maps, traffic, etc. Hence, analysing certain
types of data with this type of structure can bring immense value.

3.2 History and Introduction

GNNs [2] were introduced back in the year 2005, as a novel branch in the field of
DL and NNs. One of the first appearances of this technology was presented in the
paper A new model for learning in graph domains [3].

GNNs were born as a result of the necessity to apply NNs over graph-structured
data. The prior existing approaches coped with graphical data by applying a
pre-processing phase where they transformed the graphs into sets of flat vectors.

However, this way, the relevant topological information could be lost and the
final results biassed by this preprocessing stage. Despite GNNs being old, they
have started being popular in the past five years due to some advancements that
have increased their capabilities and expressive power.

Recent publications have shown the potential that GNNs can have in certain
domains, such as network optimization [4], network modelling [5] and traffic
forecasting [6].
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We can do multiple types of classifications within a graph:
● Graph-level: we can leverage a GNN to classify an entire graph.
● Node-level: we can leverage a GNN to classify only certain nodes of the

graph.
● Edge-level: we can leverage a GNN to predict new edges within a graph.

3.3 Types of Graph Neural Networks (GNNs)

There are currently many types of GNNs, and despite the fact that they operate
over similar principles, they are all different. Some of the most common types
will be explained in the following subsections. It is important to state that, for the
scope of this project we will especially focus on Message Passing Neural
Networks (MPNNs).

3.3.1 Graph Convolutional Network (GCN)

Graph Convolutional Networks (GCNs) [7] operate under the same principle as
convolution layers in Convolutional Neural Networks (CNNs)6. Convolution
refers to multiplying the input neurons with a set of weights that are typically
known as filters or kernels. These filters act as a sliding window across an entire
image and enable the CNNs to learn some features from the neighbour cells.

GCNs operate similarly, but in this case, the model learns the features by
inspecting the neighbour nodes. GCNs can also be classified into two different
types: spatial and spectral graph convolutional networks.

Figure 3.2: Applying convolution operations in a graph.

6 https://en.wikipedia.org/wiki/Convolutional_neural_network

19

https://en.wikipedia.org/wiki/Convolutional_neural_network


3.3.2 Graph Attention Network (GAT)

Graph Attention Networks (GATs) [8] are a neural network architecture that
leverages masked self-attentional layers to address the drawbacks presented by
graph convolutions or their approximations. A GAT enables specifying different
weights to different nodes in a neighbourhood, by stacking layers in which the
nodes are able to attend over their neighbour's features.

One of the crucial advantages that these present is that they don’t require any
kind of costly matrix operation, such as the inversion operation, or depend on
knowing the structure of the graph upfront.

3.3.3 Message Passing Neural Networks (MPNNs)

We have mainly focused on MPNNs throughout this project, so we will provide a
detailed explanation of how these work, so the reader can better understand the
contents in chapter 4.

MPNNs were first presented in the year 2017, by J. Gilmer in the paper Neural
Message Passing for Quantum Chemistry [9]. This effectively makes them a very
novel technology, however, the last years have seen new domains of application
for this type of GNNs, such as in the field of networks.

Its conceptual basis is simple: we start from a graph where there are relationships
between the nodes (edges), and all of the nodes start with an initial hidden state.
This hidden state is normally a vector of features (which can be padded if
desired) that describes the state of the node.

(1)

Then comes the core of the algorithm, which is known as the message-passing
phase. During this phase, there will be T iterations throughout which the nodes
will exchange messages with their corresponding neighbours. Let us explain
what happens in each of these iterations.

An iteration is composed of three phases: exchanging the messages, aggregating
the messages, and updating the hidden states of the nodes.

20



- Exchanging the messages

Nodes will “send” a message to all of their neighbours. The receivers of these
messages will vary according to the direction of the edges. This means that in an
undirected graph, messages will be exchanged in both directions of an edge, but
in a directed graph, only in the way of the direction.

What is a message? In the simplest case, it can be the current hidden state of the
sender, for instance. However, it can also be the result of applying a
mathematical function to the hidden state of the receiver node, the hidden state of
the sender node, and the features of the edge that connects both nodes.

(2)

After exchanging all of the messages, each node has received as many messages
as neighbours it has. As can be seen in Equation 2 above, each message contains
information related to the one-to-one relationship of the nodes, as it combines
their hidden states and edge features.

- Aggregation phase

Once each node has received all of the neighbour messages, it aggregates them.
This can be done via simple mathematical operations, such as the sum, the mean
or the average.

(3)

- Update phase

Finally, each node updates its hidden state by applying a mathematical function
to the result of aggregating all messages and their current hidden state. This

21



basically results in the new current state for the next iteration phase of the
algorithm.

(4)

So, we can infer that, after one iteration, the hidden state of each node has been
updated as a combination of the hidden states of all of its neighbours, effectively
“accumulating” neighbouring information in each of the nodes. In one iteration,
at most, a node will end up containing information about the nodes that are one
step away (depth = 1). However, if we repeat this process T times, each node will
end up containing information on the neighbours of its direct neighbours.

Why is this so powerful? Because depending on the graph structure, throughout
the iterations, we will end up in a situation where nodes have information about
their neighbours, hence their status will be determined by their position in the
graph.

Finally, once the message-passing phase has finished, we will have to make a
classification with the obtained structure, either classifying the entire graph or the
individual nodes. This will be called the readout phase.

- Readout phase

After the T iterations, all nodes will contain information from their neighbours,
so if we want to classify them, we can simply apply a traditional NN, which will
be known as the readout function. In this phase, we will have the same situation
as with traditional DL, as we will need to define the number of input neurons,
output neurons, hidden states, etc.

(5)

So, as the reader might be able to infer, the previous message-passing phase has
enabled all hidden states of the nodes to contain information about their
neighbours and the neighbours of their neighbours. Effectively conditioning their
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state depending on the states of others. This is very powerful, as the graph
structure will directly affect the status of all nodes.

3.4 Development frameworks

There are a few existing frameworks for the development of GNN models.
Although these could be implemented in C or C++ (as most of the core ML and
DL libraries), the most common language for rapid modelling and design is
Python.

For PyTorch7 implementations, there is a framework known as PyG8 (also known
as torch-geometric) [10], which is very useful for starting to develop GNN
models.

It provides a data structure called Data which enables the definition of a graph
structure using torch tensors. In fact, these models use graphs as input data, but
these graphs are represented as a set of float tensors.

For instance, to define a graph, we need:
● Features tensor: which has N x M dimension. Where N represents the

number of nodes in the graph and M is the size of the tensor that
represents the state of each node.

● Edge index: this is a tensor in the coordinate format (COO), that has
dimension 2 x N. Where N represents the number of edges in the graph.

8 https://github.com/pyg-team/pytorch_geometric

7 https://pytorch.org/

23

https://github.com/pyg-team/pytorch_geometric
https://pytorch.org/


As an illustrative example, the following graph would be represented as:

Figure 3.3: Undirected graph.

import torch
from torch_geometric.data import Data

edge_index = torch.tensor([[0, 1],
[1, 0],
[1, 2],
[2, 1]], dtype=torch.long)

x = torch.tensor([[-1], [0], [1]], dtype=torch.float)

data = Data(x=x, edge_index=edge_index.t().contiguous())
>>> Data(edge_index=[2, 4], x=[3, 1])

Source code 3.1: Creating a Data (graph) object.

When developing this project we found some limitations with the PyG
framework. Mainly due to the fact that for more custom implementations of the
message-passing algorithm, it is limited and presents some errors. This
framework is good for starting to learn how to work with graphs and how to
structure the data to be fed into the model.

Custom implementations (without specific GNN frameworks), can be done both
with PyTorch and Tensorflow9 (as any NN model).

9 https://www.tensorflow.org/?hl=es-419
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4. Implementation of a GNN model to detect network attacks

The previous chapters contained contextual information regarding the two main
topics involved in this project, Network Intrusion Detection Systems (NIDS) and
Graph Neural Networks (GNNs).

Acquiring knowledge on these two topics was necessary for the actual
development and implementation of a GNN model capable of detecting network
attacks. Throughout the next sections, we will elaborate on the different
components involved in the development stage.

This project has been based on the paper Unveiling the potential of Graph Neural
Networks for robust Intrusion Detection [11]. However, our approach has been
different, as we have proposed a new way of modelling the network traffic and
the designing of the model (training, evaluation, features, etc.). This research has
mainly focused on increasing the explainability of the technology, in order to
incentivize further research.

4.1 Datasets

As with any ML or DL implementation, the training and validation datasets play
a crucial role, if not the most important one. A model can only be as good as the
data it trains on, as, even if the model is perfectly optimised if the data is not
realistic or does not prepare the model for generalisation, it becomes useless.

In the field of security, it is particularly challenging to find public datasets which
contain relevant data. Production (or “real” data datasets) can contain sensitive
information, such as IP addresses, hence open-sourcing them can imply privacy
risks. Some of them are transformed to mask some of the data fields, however,
throughout the process, they can lose relevant information.

Moreover, most companies are not willing to share their own data, especially if it
contains attack records that have affected them. For this reason, it becomes
challenging to access production data, hence we need to leverage “lab” data. This
basically relates to synthetic datasets that have been specifically built in
controlled environments.

Although these datasets are a good starting basis, they still can not be compared
to real data which can be way more complex and contain much more data points.
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4.1.1 CIC-IDS 2017

One of the few available security datasets is called CIC-IDS 2017 [12]. As its
name suggests, this dataset was created in the year 2017, by the University of
Brunswick (UNB) and the Canadian Institute of Cybersecurity (CIC). It contains
benign traffic and up-to-date network attacks.

To give some context, in order to generate the benign traffic, they used a
previously proposed B-Profile system (Sharafaldin, et al. 2016)10 which profiles
the abstract behaviour of human interactions and generates naturalistic
background traffic.

Figure 4.1: Benign profiling design.

In this particular case, the behaviour of twenty-five different users was abstracted
based on the use of HTTP, HTTPS, FTP, SSH and email protocols. On the other
hand, the attacks were generated using different tools, which can emulate
PortScan attacks, Denials of Service, Distributed Denials of Service, etc.

In contrast to most datasets used for ML and DL purposes, network traffic needs
to be processed prior to generating a set of CSV files which can be used to train a
model.

Adding a little bit of networking background, we can capture the traffic that
traverses a network and dump it into pcap11 files. These files basically contain
some core information that describes the packet captures (source IP, source Port,
destination IP, destination Port, etc).

11 https://www.reviversoft.com/en/file-extensions/pcap

10 https://www.researchgate.net/figure/Benign-profiling-design_fig2_318286637
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These files can become huge in size, and in their pure raw format are not very
useful for an ML model. So they are processed to create flow records which can
contain features on each flow, such as flow duration, packets sent, inter-arrival
times, etc. A flow can be described as an identifier of the traffic exchanged
between a source and a destination (considering the IP and the Port).

Figure 4.2: Flow diagram - Extracting flows from raw traffic.

For this dataset, the processor they used to extract the flow data is called
CIC-FlowMeter [13] and was developed also by them. Why is it important to
know all this information on how the data was generated? Basically because if
we build a model with certain features and through certain training and validation
datasets, we are going to need the same format always, hence in the case that we
want to test our model with unseen data, it must have been generated through a
processor that extracts the same exact features from the pcap files.

This dataset contains 80 network flow features from the generated network
traffic.
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4.2 Pre-processing stage

As with most ML and DL datasets, we need to apply certain pre-processing
techniques to clean the data. In this particular case, we first removed flows which
had negative or equal to zero flow durations, as these were invalid values, and we
then proceeded to normalise the data.

4.3 GNN (MPNN) model

Our main purpose was to develop a GNN model (MPNN-based) capable of
classifying network flows as benign or malign (or specifying a certain network
attack). We refer to a network flow as a unique identifier of a connection between
two machines and which can be described with the tuple (Source IP, Source Port,
Destination IP, Destination Port).

We could have also decided to classify IP addresses or Ports, but taking into
account that a certain machine might be simultaneously generating malign and
benign traffic via different ports, we decided to take the other approach.

The overall idea was to be able to emulate the behaviour of an anomaly-based
NIDS, i.e, being able to determine which flows are malicious based on certain
network flow graphs.

4.3.1 Graph representations

As it can be inferred, the graph-structured data needs to be representative of the
network events in order to provide value. This means that, even if we have a
dataset, we need to design a graph representation which will be useful when
classifying the network attacks against benign traffic.

The first approach was to build a graph structure with two different types of
nodes:

● (IP, Port) nodes: where each unique tuple represents a node.
● Flow nodes: where each flow identifier between two (IP, Port) nodes

tuples represents a node.
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Figure 4.3: Graph representation with (IP, Port) and Flow nodes.

For instance, we could filter by one type of attack (such as a Distributed Denial
of Service - DDoS), and visualise how this graph representation plays out.

Figure 4.4: DDoS and Benign traffic graph representation - CIC-IDS 2017.

As can be seen from the previous capture, the graph representation of the dataset
provides a more elaborate view of the traffic and the network attacks. We can
clearly see a few clusters in the middle of the plot, which are directly related to
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the DDoS attacks, whereas there is a lot of unconnected traffic related to the
benign behaviours.

In fact, we can actually zoom-in in on one of the clusters to see how this flooding
attack appears to be structured:

Figure 4.5: Flooding (DDoS) attack.

Although difficult to see, the red dot in the middle represents the victim (IP, Port
80), whereas all the other nodes represent (IP, Port) tuples targeting traffic to the
HTTP port of the victim. By creating such a plot, we can already start to see the
benefits of graphically analysing the network traffic, instead of analysing
individually each network flow (as most AI models do).

Despite this illustration being representative, we found some limitations to it. For
instance, we tried analysing the graphical differences between analysing a
PortScan attack and a DDoS attack.
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In theory, a PortScan attack should be represented as a lot of network flows
targeting multiple ports in the same victim, whereas in a DoS or DDoS attack, we
should see many network flows targeting a single port.

Figure 4.6: PortScan (reconnaissance) attack.

What we could see is that, indeed, in a PortScan attack, multiple ports from the
same host were targeted, however, via this representation, there was no
connection between them. Essentially it was like having many unrelated network
flows. This is the opposite of what we are looking to achieve, as we aim to create
representative graphs.

Another approach was to create two different types of nodes:
● IP addresses.
● Flow nodes.

However, the problem with this approach was that ports were not playing any
role, hence representations of different attacks appeared to be the same.

That is why we came up with a novel approach, creating a graph representation
that contained three different types of nodes:

● Ip addresses.
● (Ip, Port) tuples.
● Flow nodes.

This way, not only ports would be included in the graphs, but (IP, Port) nodes
would be connected to the IP addresses nodes. Let us better illustrate how this
looks:
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Figure 4.7: Graph representation with IP, (IP, Port) and flow nodes.

If we take a look at how this graph representation looks for two different attacks
(PortScan and DDoS), we can see how it provides different graph structures that
can be used in the GNN model (message passing implementation).

Figure 4.8: PortScan graph representation.
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Figure 4.9: DDoS graph representation.

Figures 4.8 and 4.9 represent the theoretical structure that our graphs should
have, however, we needed to translate these illustrations into code, so they could
be used as input for training the model. For it, we used the HeteroData12 class
included in the PyG library.

As the reader may notice, the class name contains the “hetero” word. This means
that our graphs are heterogeneous. A heterogeneous graph contains nodes of
different types, whereas a homogenous graph contains nodes of the same type. In
our case, it is clear to see that there are three different types of nodes.

To create the HeteroData object we first need to define the different types of
nodes. In our case, we have:

● host_ip_port: which refers to the (IP, Port) nodes.
● host_ip: which refers to the IP nodes.
● connection: which refers to the network flow nodes.

For each of these node types, we can add the features tensor, which represents the
hidden state of each of the nodes, and we can also add the labels tensor, which
represents the labels that we add to the nodes. We only added labels to the
connection nodes, as these were the ones we intended to classify.

12 https://pytorch-geometric.readthedocs.io/en/latest/modules/data.html#torch_geometric.data.HeteroData
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hetero_data = HeteroData()

# We add three different types of nodes

hetero_data["host_ip_port"].x = x_hosts_ip_port

hetero_data["host_ip"].x = x_hosts_ip

hetero_data["connection"].x = x_flows

hetero_data["connection"].y = y_flows

Source code 4.1: Adding nodes to an HeteroData object.

Once the node types have been defined, we need to specify the different edges
the graph will have. According to the illustration of the graph representations
previously attached, we have four different types of edges:

● IP node to (IP, Port) node.
● (IP, Port) node to connection node.
● Connection node to (IP, Port) node.
● (Ip, Port) node to IP node.

# We add four different types of edges

hetero_data["host_ip", "to",

"host_ip_port"].edge_index = ip_to_port

hetero_data["host_ip_port",

"to", "connection"].edge_index = port_to_flow

hetero_data["connection",

"to", "host_ip_port"].edge_index = flow_to_port

hetero_data["host_ip_port",

"to", "host_ip"].edge_index = port_to_ip

Source code 4.2: Adding edges to an HeteroData object.
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4.3.2 Architecture

Our GNN model is a Message Passing Neural Network (MPNN), which, as
explained before, is divided into two main blocks:

● Iterations phase, which contains in each iteration:
○ Message Function: Dense13 Layer.
○ Aggregation Function: Mean.
○ Update Function: Gate Recurrent Neural Network14.

● Readout phase:
○ Formed by a group of Dense Layers with a final Softmax

activation15.

self.message_func = nn.Sequential(

nn.Dropout(self.dropout),

nn.Linear(hidden_channels * 2, hidden_channels)

)

Source code 4.3: Message function.

self.update = nn.GRU(hidden_channels, hidden_channels)

Source code 4.4: Update Function.

self.readout = nn.Sequential(

nn.Linear(hidden_channels, hidden_channels),

nn.ReLU(),

nn.Dropout(p=0.5),

nn.Linear(hidden_channels, 64),

nn.ReLU(),

nn.Dropout(p=0.5),

15 https://en.wikipedia.org/wiki/Softmax_function

14 https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be

13 https://analyticsindiamag.com/a-complete-understanding-of-dense-layers-in-neural-networks/
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nn.Linear(64, self.output_channels),

nn.Softmax(dim=1)

)

Source code 4.5: Readout Function.

Let us walk through the core of the model, the message-passing phase and the
readout phase. As mentioned before, we have three different types of nodes in
our graph. The connection nodes (network flows) are initialised with a set of
features extracted from the dataset. Whereas the IP and (IP, Port) nodes are
initialised with a tensor of all zeros.

As there are four different types of edges, there are going to be four different
types of messages exchanged. Each of these edges contains a tensor in the COO
format that maps all the neighbourhoods in that particular edge type.

In terms of code implementation, the message passing is implemented as follows:
● We parse the edge_index tensor that describes the edges between two

different nodes.
● Through the dictionaries in the HeteroData object, we use the indexes that

identify the nodes to create a concatenated features tensor.
● We apply the message and aggregation functions mentioned above to the

tensor and leverage the scatter module to perform this process in one go.

The scatter module is a core component of the message-passing and aggregation
steps, as it allows to perform all operations from within the same tensor.

Figure 4.10: Scatter Function.
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This illustration can help the reader better understand what is happening in the
code. Let us say we have an index tensor, which contains the indexes of the
message receiver nodes, and an input tensor which contains all the messages sent.
By applying the scatter function we can effectively compute the aggregations of
all messages targeting each receiver by simply operating through two tensors.

We can take a look at the actual implementation. Essentially we repeat the same
operation as many times as the types of edges we have.

We first extract the indexes of the sender and receiver nodes from a certain edge
type. We convert these two tensors into two tensors that contain the hidden states
of the sender and receiver nodes. We then concatenate the tensors and apply the
message function. Finally, we aggregate all of the messages via the de scatter
module and update the hidden states of all the nodes.

for _ in range(T):

# PART 1

# Ip to Port

ip_gather = h_ip[src_ip_to_port]

port_gather = h_ip_port[dst_ip_to_port]

nn_input = torch.cat((ip_gather,port_gather),dim=1).float()

ip_to_port_message = self.message_func_ip(nn_input)

ip_to_port_mean = scatter(ip_to_port_message,

dst_ip_to_port,dim=0,reduce="mean")

# PART 2

# Port to Ip

port_gather = h_ip_port[src_port_to_ip]

ip_gather = h_ip[dst_port_to_ip]

nn_input = torch.cat((port_gather,ip_gather),dim=1).float()

port_to_ip_message = self.message_func_ip(nn_input)

port_to_ip_mean =scatter(port_to_ip_message,

dst_port_to_ip,dim=0, reduce="mean")

# PART 3

# Port to connection

port_gather = h_ip_port[src_port_to_connection]

connection_gather = h_conn[dst_port_to_connection]

nn_input = torch.cat((port_gather, connection_gather),

dim=1).float()

port_to_connection_message = self.message_func_ip(nn_input)
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port_to_connection_mean = scatter(

port_to_connection_message,

dst_port_to_connection, dim=0,

reduce="mean")

# PART 4

# Connection to port

connection_gather = h_conn[src_connection_to_port]

port_gather = h_ip_port[dst_connection_to_port]

nn_input = torch.cat((connection_gather, port_gather),

dim=1).float()

connection_to_port_message = self.message_func_ip(nn_input)

connection_to_port_mean = scatter(

connection_to_port_message,

dst_connection_to_port, dim=0,

reduce="mean")

# PART 5

# update nodes

_, new_h_ip = self.ip_update(port_to_ip_mean.unsqueeze(

0), h_ip.unsqueeze(0)) # (2, 128), (2, 128)

h_ip = new_h_ip[0]

_, new_h_conn = self.connection_update(

port_to_connection_mean.unsqueeze(0),

h_conn.unsqueeze(0))

h_conn = new_h_conn[0]

_, new_h_ip_port = self.ip_update(

connection_to_port_mean.unsqueeze(0),

h_ip_port.unsqueeze(0))

h_ip_port = new_h_ip_port[0]

_, new_h_ip_port = self.ip_update(

ip_to_port_mean.unsqueeze(0),

h_ip_port.unsqueeze(0))

h_ip_port = new_h_ip_port[0]

return self.readout_nn(h_conn)

Source code 4.6: GNN model.
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4.3.3 Hypotheses validations

Once the model was built, we focused on validating some hypotheses that had
been pre-established:

● (H0) The GNN model can work without features, solely based on the
graph structures.

● (H1) The structure of the graph is relevant for the classification of the
nodes.

● (H2) The GNN model is more resilient to attack variabilities than other
traditional models.

(H0) The GNN model can work without features, solely based on the graph
structures.

We evaluated this hypothesis by initialising all nodes with a one’s tensor and the
model was not able to classify the network events. This basically led to the belief
that graph structure is relevant when there is also features information to
complement it.

(H1) The structure of the graph is relevant for the classification of the nodes.

To check this hypothesis we set up an experiment where we compared the
performance of our MPNN model against a NN with the same structure as our
readout function. Both models were trained with the same set of initial features.

The results of the experiment were:

Figure 4.11: Classification metrics H1.
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Figure 4.12: Confusion matrix - GNN.

Figure 4.13: Confusion matrix - NN.

As can be seen, although using the same initial features, the GNN model, which
takes into account inter-dependencies between flows, yielded better results

40



compared to the NN. This basically means that the structure of the graph and the
message-passing phase affected the classification results. If this were not
relevant, the MPNN and the NN would have obtained similar results.

(H2) The GNN model is more resilient to attack variabilities than other
traditional models.

The purpose of this experiment was to evaluate how resilient our GNN model
was compared to other traditional ML and DL models when the evaluation
datasets were slightly modified. We compared the GNN model with a NN [14], a
Random Forest Classifier (RF) [15] and a Support Vector Machine (SVM) [16].

All models were trained with the same dataset and the evaluation dataset was
synthetically altered to present some variations (trying to resemble some
variations in the attack patterns, as if an attacker was trying to bypass the security
systems).

Some of these variations were adding random overheads to the packet sizes and
altering the flow durations. We initially trained the models with the same set of
features to obtain good classification results in the training datasets:

Figure 4.14: Training results - GNN, NN, RF and SVM.

The GNN, the NN and the RF model, obtained good classification results during
the training phase, specially the RF model, which obtained values close to 0.99 in
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all the classification metrics. On the other hand, the SVM model presented very
low performance.

Figure 4.15: Evaluation results on tampered data.

As can be seen from the evaluation graph, the GNN model was the only one
which maintained good performance after being tested with the tampered dataset.
It is important to mention that the RF model presented a huge drop, as the
evaluation metrics dropped to values around 0.74.

We can actually take a look at some of the confusion matrices resulting from this
experiment, where, in comparison, it is clear to see that the GNN model was the
only model capable of maintaining good classification results.
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Figure 4.16: Confusion Matrix - NN.

Figure 4.17: Confusion Matrix - GNN.
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The results were very positive, as they were proof of the generalisation and
resilience capabilities that can be achieved by using a graph-based model in
comparison to other well-known models.

4.3.4 Final Features

Selecting the features was a crucial part of the process. If a model uses many
features for classifying, it is very likely that it will eventually acquire good
results on the training datasets, however, this may be due to overfitting, and not
because of the resilience of the model.

Hence we decided to use a small number of features, for the following reasons:
● Avoid overfitting.
● Emphasising the relevance of the graph structures against the features

used.
● Making the model generalizable to other network scenarios (features are

meant to be as network-independent as possible).
● Using features that could be extracted through different flow processors

(to ease integration with other traffic capture systems).

For our implementation of the GNN model, the selected features were:

Feature name Description

Flow Duration Duration of the flow in Microseconds.

Flow Packets / s Number of flow packets per second.

Flow IAT Mean Mean time between two packets sent in the flow.

Fwd IAT Mean Mean time between two packets sent in the forward
direction.

Bwd IAT Mean Mean time between two packets sent in the backward
direction.

Table 4.1: Features selected.
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As mentioned before, the CIC-FlowMeter processor extracts around 80 features
to describe each flow. So we could have loaded the model with as many features
as possible. However, the intention of our project was not to present what final
features should be selected, but rather unveiling the potential of Graph Neural
Networks for intrusion detection.

4.4 Training and Evaluation

We have mainly focused on three types of network events:
● Benign traffic.
● PortScan attacks [17].
● DoS / DDoS attacks [18].

The main reason behind this selection is the fact that, PortScan attacks (which are
part of the reconnaissance attacks), are graphically very distinguishable from the
Denial of Service attacks (which are part of the flooding attacks). This way, we
start from a scenario where the network events will mainly be identified by their
overall structure and flow inter-dependencies, instead of solely based on the
individual features that describe each flow.

A PortScan attack is mainly characterised by multiple network flows targeting
multiple ports in a victim. Its purpose is to discover the status of the ports to
potentially find some vulnerabilities. Attackers normally execute them by
sending packets using different protocols, such as TCP, UDP or ICMP.

Figure 4.18: Network flows representing a PortScan attack.

On the other side, a Denial of Service (DoS) or Distributed Denial of Service
(DDoS) attack aims at flooding a certain port that can be running an important
service, such as port 80 - HTTP, to bring it down. Hence, its graph representation
is significantly different from the PortScan, as this time, we can see all network
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flows directing traffic to a single port. In the case of a distributed attack, we
would see the same behaviour, but coming from different sources.

Figure 4.19: Network flows representing a DoS attack.

4.4.1 Batching traffic by the number of network flows

For the training and evaluation phase, we used the same dataset mentioned in
section 4.1.1 CIC-IDS 2017. However, prior to getting into the actual results, it is
important to add some context. These datasets contain a huge number of flows
(in the order of hundreds of thousands). The most intuitive approach would be to
build an entire graph from all this data records, and use it as the input data for
training.

However, despite this could be done, it is far from what a production NIDS
would require. A NIDS is meant to detect network attacks, to do so it needs to
analyse batches of collected network traffic data. This means that if it collects
data once a day it will only be able to make assumptions about the status of the
network once a day.

That is why NIDS normally collect data according to two different criteria:
● Time Interval: for instance, flows can be collected every minute, every

hour, etc.
● Number of flows: batches can be created based upon receiving a certain

amount of flows, such as 50, 100 or 1000 records.

Although both options are similar, we focused on the latter. Mainly because
collecting by the number of flows allows the system to work with networks of
different sizes.
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A huge network could collect many more flows in the same time span as a small
network, hence a model trained for collecting data every X seconds may not
behave equally under different scenarios.

On the other hand, if a model is trained based upon the number of flows, it might
take less in a bigger network to collect them than in a smaller network, but the
model will behave similarly.

Hence, in the following sections, the results will be presented as a relation
between the number of flows collected in each batch and the performance of the
model. The main metrics that were analysed were:

● F1-Score.
● Accuracy.
● Precision.
● Recall.

For training the model, we used the Adam [19] optimizer, with learning rate 1e-3
and weight-decay 5e-4a and we used the Cross-Entropy Loss [20] criterion for
the backward loss propagation.

4.4.2 PortScan attack vs Benign Traffic

In this initial setup we aimed to test our model in a binary classification scenario,
with benign traffic and PortScan attack records. Instead of creating a single graph
with all the data, as mentioned before, we analysed the performance of the model
according to the number of flows included in each batch. For training the model,
we:

● Shuffled the dataset, so samples would be distributed throughout the
multiple graphs.

● Splitted the dataset in chunks (varying according to the number of flows).
● Fed the model each of these chunks via a DataLoader16 object.

The classification results in the training phase were:

16

https://pytorch-geometric.readthedocs.io/en/latest/modules/loader.html#torch_geometric.loader.DataLoad
er
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Figure 4.20: Training Classification Metrics related to Number of Flows per
Graph.

As can be seen from the previous graph, the Number of Flows per Graph axis
ranges from 10 up to 4000. For the smallest number of flows (10), the model still
acquires values above 0.90 in all metrics.

The results are good for all the chunk sizes, however, the bigger the graph, the
higher the classification metrics. For instance, the models that use graphs
containing between 2000-4000 flows acquire values around 0.97 in all metrics.

This makes sense, as smaller graphs tend to be less representative of an attack, as
they can be confused with benign traffic. Nevertheless, a performant model on
smaller graphs is faster in intrusion detection, as it does not require that much
information to make decisions.

The models presented very good classification results in the validation phase. In
this case, it was the model trained with batches of 500 flows per graph the one
that acquired the highest classification metrics.
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Figure 4.21: Evaluation Classification Metrics related to Number of Flows per
Graph.

We can specifically take a look at the F1-Score results for training and validation,
as this is a good representative metric of the performance of a model. As we can
see from the graphs attached below, in this scenario, our model achieves very
good classification results, despite using few features and varying the number of
flows included in each graph.

Figure 4.22: F1-Score results - Training and validation (bar chart).
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Figure 4.23: F1-Score results - Training and validation (tendency line).

We selected one of the models to create some illustrations of how the graphs are
classified. This is a good way of better understanding how our GNN model
works, as some of the explanations used in this field can be sometimes abstract.
The following graph represents a benign connection. The model will colour the
flow nodes as green if the flow is benign or red if the flow is malign.
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Figure 4.24: Benign traffic graph (raw).

Figure 4.25: Benign traffic graph (classified).
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As we can see, our model properly understands the flow in the graph as not
malicious. In the case of a graph that represents a PortSan attack:

Figure 4.26: PortScan attack graph (raw).

Figure 4.27: PortScan attack graph (classified).
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Our model is able to classify all of the flow nodes properly in the graph, as it
labels them as malign, and in fact these represent a PortScan attack.

These good results were initially expected, as the graph representations of a
PortScan attack and benign traffic are very differentiable. Our next approach was
to use some training data that contained other types of graphs which could
complicate the classification results.

4.4.3 PortScan attack vs Not-PortScan traffic

In this case we created a dataset that contained three different types of network
events, but classified binary:

● PortScan traffic.
● Not-PortScan traffic: which contained both benign traffic and DoS traffic.

The idea behind this approach was to add more complex graph structures in the
training and validation datasets. The training results were positive, as even
varying the number of flows included in each graph, we were able to achieve
very high classification metrics.

Figure 4.28: Training Classification Metrics related to Number of Flows per
Graph.
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In comparison with the previous experiment, the classification results dropped a
little bit. The model trained with very few flows per graph dropped in F1-Score
and Accuracy to values between 0.76-0.78. However, some of the models, such
as the one using 2000 flows per graph, still acquired very good classification
results, obtaining values superior to 0.90 in all metrics.

Figure 4.29: Validation Classification Metrics related to Number of Flows per
Graph.

Surprisingly, the model that is trained with batches of 4000 flows, acquires
similar results to the model trained with batches of 10 flows. This could be due to
the increase in graph complexity that comes when using a huge number of flows
representing multiple network events. In these scenarios, the graph
differentiability between different network events can be drastically reduced.

We can specifically take a look at the F1-Score results for training and validation,
as this is a good representative metric of the performance of a model. As we can
see from the graphs attached below, the results in the training phase are this time
clearly better than the validation phase.

It is clear to see that the models that use around 2000 flows per graph obtained
better results than the other types of models. This could be due to multiple
reasons, as for instance, it is expected that graphs with very few flows are not
representative for complex network events. Nevertheless, this model still
obtained very good results, over 0.90 for the F1-Score.
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Figure 4.30: F1-Score results - Training and validation (bar chart).

Figure 4.31: F1-Score results - Training and validation (tendency line).

As with the previous experiment, we selected one of the models to create some
illustrations on how the model classifies the different types of traffic included in
this dataset.

The following graph represents a mix of benign traffic and a PortScan attack.
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Figure 4.32: Graph including benign traffic and PortScan attack (raw).

Our model is able to properly distinguish both network events, as it correctly
labels the Not-PortScan flow nodes (green) and the PortScan flow nodes (red).

Figure 4.33: Graph including bening traffic and PortScan attack (classified).

56



In this case, the graph contains DDoS samples and PortScan samples:

Figure 4.34: Graph including DDoS and PortScan samples (raw).

Figure 4.35: Graph including DDoS and PortScan samples (classified).
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Our model is able to properly distinguish the two graph structures, despite the
fact that one of the flow nodes is still misclassified. In this scenario it has been
trained to label Not-PortScan traffic in green and PortScan samples in red.

We can still create a more complex graph, which contains all three types of
network events: benign traffic, DDoS samples and PortScan samples.

Figure 4.36: Graph including benign traffic, DDoS and PortScan samples (raw).

Figure 4.37: Graph including benign traffic, DDoS and PortScan samples
(classified).
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Again, our model is able to distinguish the different network events with
complex and nested graph structures (despite some minor misclassifications).
These illustrations are very helpful to reduce the abstraction that comes when
evaluating a model and looking at the classification metrics and the bar charts.

Our model needed the graphs to be more representative this time, to achieve good
classification results. It was expected that small graphs would not yield very high
results, as the data used is more complex and graphs need to be insightful enough
for the model to differentiate between the different network events.

4.4.4 PortScan, DDoS and Benign traffic

We also tested our model in a ternary classification scenario, where the three
types of network events included were:

● PortScan attack.
● DDoS attack.
● Benign traffic.

The idea behind this experiment was to see the performance of the model when
trying to specifically differentiate between different types of network attacks. In
this case, and based upon the results obtained in the two previous experiments,
we only tested the model for batch sizes including between 100 and 2000 flows.

Figure 4.38: Training Classification Metrics related to Number of Flows per
Graph.
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Figure 4.39: Validation Classification Metrics related to Number of Flows per
Graph.

Figure 4.40: F1-Score results - Training and validation (bar chart).
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Figure 4.41: F1-Score results - Training and validation (tendency line).

As expected, we can see that the performance of the model directly increases
with the number of flows included in each batch. We set up a scenario where
there were more complex graph structures and three types of classes. Hence, the
models which were trained with few flows, could not yield good classification
results.

We can see an increase in the F1-Score when the number of flows included is
higher than 500. This does not mean that models trained with batches containing
fewer nodes can not perform properly. But it is true that, as we are using very few
features from the original dataset, the graph structure will impact the
classification.

If the graph structure did not alter the classification, the results would be the
same for all the models, as it would be the same as applying a traditional Neural
Network on each of the set of initial flow features.

On the other hand, we also do not want to use models based on a huge number of
flows, as these might exponentially increase in graph complexity and hence
reduce the performance of the model. These experiments have shown us that
models based on approximately 1000-2000 network flows, achieve good results
in most scenarios and without the need of using many network features.
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4.4.5 Evaluation of a “Reconnaissance” attack

Our next experiment was to evaluate the created models with some attack records
that belonged to a completely different dataset. To do so, we selected the
CIC-BoT-IoT17 dataset, which is a dataset that was created to train models for
Internet of Things18 applications.

The purpose of this test was to see the performance of the different models with
data that had been generated in a completely different way. The main intuition
behind this approach was that, despite there were going to be some potential
changes in the features and their values, the attacks contained could have similar
structures and resemble the ones used for training.

That is why we selected the Reconnaissance19 attack, which can present a similar
structure as the PortScan attack. For it, we created a dataset which contained a set
of Reconnaissance attack samples and also some benign traffic.

Figure 4.42: Reconnaissance attack graph.

19 https://www.blumira.com/glossary/reconnaissance/

18 https://en.wikipedia.org/wiki/Internet_of_things

17 https://staff.itee.uq.edu.au/marius/NIDS_datasets/#RA14
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As can be seen in the graph illustration, even if this dataset was generated in a
different way, it still presents some similarities to the graphs that we used for
training and evaluation.

We first tested the models that had been trained to perform a binary classification
between PortScan samples and Benign traffic. Among the results obtained we
selected the one that obtained higher classification metrics.

Figure 4.43: Validation Classification Metrics related to Number of Flows per
Graph (on Reconnaissance attack samples).

As can be seen, the model that yielded the highest results was the one trained
with 2000 flows per input graph. The results were very good if we take into
account that the data being used for evaluation had been generated in a totally
different way, hence our model was still maintaining predictive capabilities in an
unseen scenario.

In fact, the model that was trained with batches of 2000 flows per graph,
managed to perfectly classify all of the samples. We can take a look at its
confusion matrix to further analyse the results.
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Figure 4.44: PortScan vs Benign model (2000 flows per graph) confusion matrix.

The model is able to perfectly distinguish among the samples in the attack cluster
and the extra benign traffic that is contained. We can also look at the graphical
prediction:

Figure 4.45: PortScan vs Benign model (2000 flows per graph) graphical
prediction.
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All the nodes in the cluster (Reconnaissance attack) are coloured in red, whereas
the legitimate traffic is coloured in red.

We then tested the models that had been trained to perform a binary classification
between PortScan samples and Not PortScan traffic. As we recall, the Not
PortScan traffic contained a mix of benign and DDoS/DoS samples. Among the
results obtained we selected the ones that obtained higher classification metrics.

Figure 4.46: Validation Classification Metrics related to Number of Flows per
Graph (on Reconnaissance attack samples).

The model that obtained the highest results was the one that had been trained
with batches of 1000 flows per graph. It obtained an F1-Score of 0.82 and an
accuracy of 0.98. If we inspect its confusion matrix we can see that most of the
samples were properly classified, as only 1 was misclassified.
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Figure 4.47: PortScan vs Not PortScan model (1000 flows per graph) confusion
matrix.

Figure 4.48: PortScan vs Not PortScan model (1000 flows per graph) graphical
prediction.
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For both cases, despite some minor misclassifications, the results are very good.
We have to take into account that we are testing the trained models with fully
unseen data. This led us to believe that the similarity in the attack structures that
the PortScan and Reconnaissance samples favoured that some models could
accurately classify the different samples.

4.4.6 An alternative approach: training with individual graphs

As mentioned at the beginning of this section, throughout the previous
experiments, we trained the models according to different batch sizes of flows
per graph. However, an alternative approach would be to train the model via
feeding individual / isolated graphs.

This would mean that each training sample would be a single graph, which could
either describe a benign connection or any sort of attack. The main difference
would be that in the same graph there would not be different types of network
events or traffic included.

We compared the results yielded by this alternative approach to the ones obtained
in the previous subsections:

Figure 4.49: PortScan vs Benign classification - comparison of training types.
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Figure 4.50: PortScan vs Not PortScan classification - comparison of training
types.

Figure 4.51: Benign, PortScan and DDoS classification - comparison of training
types.

We compared the model trained with individual graphs with the best performing
models from the previous experiments. What we can clearly see is that the former
obtained the highest classification results in all cases. It obtained 0.99 in all
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evaluation metrics. These results prove that this alternative approach could yield
higher results than the one analyzing by batches of flows.

We evaluated one of the models (PortScan vs Benign), trained with individual
graphs, with the “Reconnaissance” attack samples, as we did in one of the
previous subsections:

Figure 4.52: Evaluating the PortScan vs Benign model on the “Reconnaissance”
attack samples.

The model was able to propely classify all samples and present very high
performance. In fact, an ideal approach could be to combine both of the
aforementioned methods. On the one hand, we would inspect the traffic by
batches of the number of flows, and on the other hand, we would process the
collected traffic batch to create individual graphs and feed them into the model.

In a production environment, we could find some problems to create these
individual graphs, as benign and malign traffic can come from the same source,
hence reducing the separability required to analyse each graph individually.
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4.5 Source code

All the source code is stored in a GitHub repository, and each of the modules,
files and functions developed has a description of its purpose and functionality.
Nevertheless, we will elaborate on the main directories and files included.

The main folders of the source code are structured as follows:

Folder Location Contents

datasets ./ Contains the datasets used for training and
validation.

eval ./datasets/ Contains the datasets used for validation.

train ./datasets/ Contains the datasets used for training.

src ./ Contains the main python modules involved in the
development and implementation of the model.

runs ./src/ Can be integrated to store records to be presented in
the tensorboard dashboard.

venv ./ Contains the virtual environment setup used for this
project.

Table 4.2: Source code main folders.

The main files of the source code are structured as follows:

Folder Location Contents

README.md ./ Contains relevant information on how
to set up the virtual environment and
run the scripts.

requirements.txt ./ Contains the list of required pip
packages to be installed.

config.ini ./src/ Contains the main variables used in the
python modules: file names, batch
sizes, sampling rates, etc.

data.py ./src/ Contains the set of functions to process
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the CSV datasets.

graph.py ./src/ Contains the set of functions to build
the graphs.

graphical_prediciton.py ./src/ Contains a module to create visual plots
of graph classifications.

metrics.py ./src/ Contains the set of functions to
compute the main classification metrics.

model.dat ./src/ Will be generated once a new model is
trained to hold the models’ state
dictionary.

model.py ./src/ Contains the GNN (MPNN) model.

nn.py ./src/ Contains the NN module used for
comparing with the GNN.

rf.py ./src/ Contains the RF module used for
comparing with the GNN.

svm.py ./src/ Contains the SVM module used for
comparing with the GNN.

plot.py ./src/ Contains the set of functions used to
plot graphs, loss curves, etc.

predict.py ./src/ Contains the module to validate the
model.

train.py ./src/ Contains the module to train the model.

Table 4.3: Source code main files.
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5. Conclusions

GNNs were created to work over graph-structured data, which essentially makes
them ideal for certain domains. Networks and security are one of them, as
network data and traffic can be naturally represented as a graph. Existing
approaches analyse network flows individually, effectively obviating the fact that
flows present inter-dependencies between them. That is why this novel approach
can unlock and create tremendous value.

That being said, as a general conviction, we are going to state the most important
conclusions obtained throughout the development of this research project:

1) The different network events, specially the network attacks, should be
graphically distinguishable, as differentiability between graphs will favour the
GNN model in the classification process. That is why, the dataset used should be
previously deeply inspected to create a graph representation tailored to the
contents of the data. In our case, we came up with a three-node representation
that helped distinguish between PortScan, DDoS and benign traffic.

2) Through the different hypothesis-validation experiments, we came up with the
conclusion that solely the graph structure is not enough to classify the network
events, as we also need some relevant features information.

3) Our GNN model was able to obtain good classification results from a set of
features that did not work for a NN. This worked as proof that the graph structure
and the message-passing phase created extra value in comparison to analysing
the flows individually.

4) The GNN has proven to be resilient against certain synthetic modifications of
the validation datasets (resembling an attacker’s behaviours to bypass the
security systems). In comparison to three other models, such as a NN, a RF and a
SVM, whose prediction capabilities dropped when exposed to the tampered data.

5) The network flow features should be carefully selected to favour
generalisation and to avoid overfitting. This means that features that are
network-dependent, may affect the model when evaluating it with unseen data.
For instance, some features may depend on the capacities of network links, which
is something that can drastically change between networks.
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6) When analysing the traffic by batches of collected network flows, we have
seen that if the batch contains very few flows, it will lack information and present
low prediction capabilities if the scenario is complex, on the other hand, if the
batch contains a huge number of flows, the graph complexity will heavily
increase and also affect the performance. We have seen that batches of around
100 flows already start yielding very good results and are small enough to be
rapidly processed (less detection delays).

7) To maximise the detection capabilities, the model should be based on a
combination of two approaches, batching by number of network flows and
analysing graphs individually. This approach would essentially bring two main
advantages, firstly, by batching the traffic, an anomaly-based system would
reduce the processing delays and provide early-detection, and secondly, by
analysing graphs individually, the model would learn to better differentiate
among different graph structures.

6. Future Work

GNNs have proven to be a very powerful alternative for network intrusion
detection. However, we are still in the early stages of research. The main
challenge faced by the industry is the availability of insightful security datasets
that could be used for training. Despite the fact that there are a few datasets
available, most of them can not be used to create graph representations of
network events. However, some of them can still be synthetically modified to
serve the purpose.

Starting from the basis of this research project, future research could continue
examining how to implement an anomaly-based system that leverages a GNN
model for network intrusion detection. We think that one of the main areas of
focus would be creating graph representations that can present differentiability
among multiple types of attacks. For the scope of this project, we focused mainly
on benign traffic, DDoS and PortScan samples, but there are many other types of
threats.

There is still a lot of work to do before implementing this technology in a
production environment, but we believe that we have been able to shed a light on
the potential that GNNs could have in the future of network security.
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Glossary

NIDS - Network Intrusion Detection System
ML - Machine Learning
DL - Deep Learning
GNNs - Graph Neural Networks
NNs - Neural Networks
IDS - Intrusion Detection System
SIEM - Security Information and Event Management
HIDS - Host Intrusion Detection System
MPNN - Message Passing Neural Network
GCN - Graph Convolutional Network
GAT - Graph Attention Network
CNN - Convolutional Neural Network
COO - Coordinate Format
DDoS - Distributed Denial of Service
DoS - Denial of Service
RF - Random Forest
SVM - Support Vector Machine
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