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a b s t r a c t 

A novel approach based on a specialized interior-point method (IPM) is presented for solving large- 

scale stochastic multistage continuous optimization problems, which represent the uncertainty in strate- 

gic multistage and operational two-stage scenario trees. This new solution approach considers a split- 

variable formulation of the strategic and operational structures. The specialized IPM solves the normal 

equations by combining Cholesky factorizations with preconditioned conjugate gradients, doing so for, 

respectively, the constraints of the stochastic formulation and those that equate the split-variables. We 

show that, for multistage stochastic problems, the preconditioner (i) is a block-diagonal matrix composed 

of as many shifted tridiagonal matrices as the number of nested strategic-operational two-stage trees, 

thus allowing the efficient solution of systems of equations; (ii) its complexity in a multistage stochastic 

problem is equivalent to that of a very large-scale two-stage problem. A broad computational experience 

is reported for large multistage stochastic supply network design (SND) and revenue management (RM) 

problems. Some of the most difficult instances of SND had 5 stages, 839 million linear variables, 13 mil- 

lion quadratic variables, 21 million constraints, and 3750 scenario tree nodes; while those of RM had 8 

stages, 278 million linear variables, 100 million constraints, and 10 0,0 0 0 scenario tree nodes. For those 

problems, the proposed approach obtained the solution in 1.1 days using 174 gigabytes of memory for 

SND, and in 1.7 days using 83 gigabytes for RM; while CPLEX v20.1 required more than 53 days and 

531 gigabytes for SND, and more than 19 days and 410 gigabytes for RM. 

© 2023 The Authors. Published by Elsevier B.V. 
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. Introduction and motivation 

The realization of the uncertain parameters in dynamic mathe- 

atical optimization is usually structured in a finite set of scenar- 

os along stages in a given time horizon ( Birge & Louveaux, 2011; 

flug & Pichler, 2015 ). The representation of the uncertain data af- 

ects the type of decision models and the decomposition method- 

logies for problem solving to be dealt with. Therefore, the qual- 

ty of the solution for the decision making process is also affected 

y the type of scenario tree generated in stochastic optimization. 

n dealing with problems within a time horizon (such as capac- 

ty expansion planing (CEP) to name one), we undoubtedly must 

ave two types of uncertainties and two types of variables, namely, 

trategic and operational ones. The strategic variables are related 
∗ Corresponding author. 
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scudero), monge@umh.es (J.F. Monge) . 
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o the decisions on the location, capacity and timing on the in- 

rastructure elements of a system’s CEP as supply chain, produc- 

ion system, rapid transit network, energy transmission network 

nd energy generation mix system, to name a few. The operational 

ariables are related to the decisions on the operations of the avail- 

ble elements in the system at the stages along the time horizon. 

herefore, there are two types of dynamic optimization submodels, 

amely, strategic and operational ones which are intrinsically inter- 

elated in a usually large-sized global model for real-life problem 

olving. 

The rationale behind the partition of uncertain parameters into 

trategic and operational ones, basically, consists of considering 

hat the strategic decisions should not be based on individual 

perational ones at the stages; see Escudero & Monge (2018) . 

owever, strategic decisions should depend on the realizations 

f the strategic uncertain parameters as well as on the set of 

ealizations of the operational parameters as a whole in the stage 

nd successors. Therefore, that observation is translated into 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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onsidering that the strategic nodes in the scenario tree should 

ot be successors of individual operational nodes. (An additional 

eason is the gigantic stochastic model that would result in the hy- 

othetical case where the strategic and operational features are not 

aken into independent consideration; note that the uncertainty 

ould be represented in a multistage scenario tree, where the 

odes represent a mixture of the strategic and operational uncer- 

ain parameters; see Escudero & Monge (2021) .) Note that the op- 

rational uncertainty can be represented in a two-stage tree, where 

he second stage nodes have one-to-one correspondence with the 

perational scenarios in the stage. The root nodes of those trees 

re precisely the strategic nodes in the stage. The above approach 

as been considered in works for different industrial sectors as 

roduction energy planning ( Kaut et al., 2014; Werner et al., 2013 ), 

apid transit network design ( Cadarso et al., 2018 ), dynamic forest 

tand harvesting selection planning ( Alonso-Ayuso et al., 2020 ) 

nd, recently, hub network expansion planning ( Escudero & Monge, 

021 ), among few others. In a different context, see a strong mul- 

istage multiscale-based stochastic formulation in Glanzer & Pflug 

2020) . A scheme for obtaining lower and upper bounds on this 

ype of stochastic problems is presented in Maggioni et al. (2020) . 

Given the large sizes of real-life instances of many strate- 

ic optimization problems, and the current limitations of hard- 

are/software resources, the only alternative for their efficient 

olution is to consider decomposition algorithms. See Escudero 

t al. (2017) for a comprehensive overview of important types of 

hose algorithms. This work presents a new alternative interior- 

oint method (IPM) ( Gondzio, 2012; Wright, 1997 ) for multistage 

tochastic optimization problems, and it is based on a nested split- 

ing formulation for the step variables (i.e., state strategic vari- 

bles that link a strategic node to only its immediate succes- 

ors in the multistage stochastic tree). The splitting formulation 

or the solution of stochastic problems is not new; as far as 

e know, it was introduced in Lustig et al. (1991) for two-stage 

tochastic problems. The purpose of that splitting was to avoid 

he constraint matrix having dense columns, which are known 

o be a drawback for IPMs. Other practical split-variable refor- 

ulations of multistage stochastic optimization for IPMs are pre- 

ented in Ruszczy ́nski (1993) , but without reporting any compu- 

ational evidence. Steinbach (2001) extends the IPM proposed in 

n earlier work based on KKT structures to exploit the multi- 

tage scenario tree sparsity. Limited computational experience is 

eported. Blomvall & Lindberg (2002) consider a primal barrier 

PM for solving a stochastic multistage convex nonlinear program- 

ing (NLP) problem, where a dynamic programming approach is 

mbedded for solving the subproblems in the multistage scenario 

ree. Gondzio & Grothey (2007) present an approach for solv- 

ng large-scale stochastic multistage NLP problems by consider- 

ng the primal-dual IPM OOPS (Object-Oriented Parallel Solver), 

ntroduced in an earlier work. The IPM-based primal-dual col- 

mn generation approach introduced in Gondzio et al. (2016) ef- 

ciently solves large instances of two-stage stochastic optimiza- 

ion problems, but it is not easily generalized to the multistage 

ase. This same set of two-stage instances was also solved in 

anneau et al. (2021) with a Dantzig–Wolfe decomposition using 

he Tulip interior-point academic code. However, extending this 

pproach to multistage stochastic problems is also not straightfor- 

ard. In addition, the dimensions of the two-stage instances tested 

n those two previous references using IPMs are much smaller than 

he ones of the multistage problems solved in this work. Hübner 

t al. (2017) present a IPM for large-scale stochastic multistage 

LP problems by exploiting its KKT structures in the subproblems, 

ach with a moderate number of variables, in a depth-first distri- 

ution of the nodes in the scenario tree over the hardware threads. 

nother approach that relies on IPMs is the dual decomposition 

mplemented in the DSP (Decomposition for Structured Program- 
269
ing) stochastic solver ( Kibaek & Zavala, 2018 ), which includes an 

nterior-point cutting-plane generator. DSP, however, is not com- 

etitive for large-scale problems. 

In this new proposal, the nested strategic-operational two-stage 

rees are rooted at the strategic nodes of the multistage stochas- 

ic tree. The form in which those structures are represented im- 

acts the constraints of the model. This new solution approach 

onsiders a split-variable formulation for the step variables in the 

rst stage nodes of the strategic and operational structures. There- 

ore, each variable in any strategic node has copies, which are re- 

ated to the first stage of both types of interlinked two-stage sub- 

roblems. The first copy is related to the strategic two-stage sub- 

roblem and the second to the operational one. The efficiency of 

he new approach relies on exploiting the primal block-angular 

tructure of the resulting split-variable reformulation of the mul- 

istage stochastic problem. This is done by means of the special- 

zed IPM, which was initially introduced in Castro (20 0 0) for mul- 

icommodity flows, and later extended to other classes of primal 

lock-angular problems ( Castro, 2007; Castro & Cuesta, 2011 ). This 

lgorithm —which was implemented in a package named BlockIP 

 Castro, 2016 )— solves the normal equations associated with the 

ewton direction of the IPM by combining Cholesky factorizations 

ith a preconditioned conjugate gradient (PCG). The main contri- 

utions of this work are: 

(i) A two-stage split-variable feature as embedded in the de- 

terministic equivalent model for the multistage multiscaling 

stochastic problem. Then, the proposal links the split vari- 

ables of a strategic node through the strategic immediate 

successor nodes jointly with the operational ones of that 

strategic node in the multistage tree. For that purpose, a cir- 

cular scheme is used for the classical nonanticipativity con- 

straints that has to be satisfied “if two different scenarios s 

and s ′ are indistinguishable at time t on the basis of infor- 

mation available about them at time t” ( Rockafellar & Wets, 

1991 ); see also Birge (1985) . That way the dense columns in 

the model are avoided, among other advantages. 

(ii) A particular form of the preconditioner is introduced for 

multistage stochastic optimization problems, so that the lin- 

ear systems of equations can be efficiently solved at each 

iteration. As it will be shown, for any multistage stochastic 

optimization problem, with both strategic and operational 

decisions, the proposed preconditioner is block diagonal and 

each block is a v -shifted tridiagonal matrix, where the num- 

ber of blocks is the number of nested two-stage subtrees, 

and v is the number of variables replicated in the related 

two-stage tree. 

(iii) One of the significant features of the proposal is that the 

complexity of the preconditioner for a multistage stochastic 

problem does not grow in comparison with that of a two- 

stage problem. This is in contrast to alternative methods, in 

which solving a multistage problem is significantly more dif- 

ficult than solving a two-stage one. 

The overall approach has been implemented in a package 

amed MSSO-BlockIP (MultiStage Stochastic Optimization based 

n BlockIP). As it will be seen in the computational results, and 

n terms of both CPU time and required gigabytes of memory, 

SSO-BlockIP outperformed even the primal-dual barrier method 

mplemented in the state-of-the-art solver CPLEX v20.1 for mul- 

istage stochastic optimization problems with up to 839 million 

ariables, up to 100 million constraints, and more than 10 0,0 0 0 

odes in scenario trees with 8 stages. This new approach requires 

ar fewer computational resources for huge problems, thereby 

lso significantly reducing energy consumption and, thus CO 2 , 

missions. We note that a simpler variant of this approach has 

lready proven to be efficient for two-stage stochastic optimization 
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Fig. 1. Strategic multistage scenario tree. 
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roblems ( Castro & de la Lama-Zubirán, 2020 ); and that algorithm 

s indeed a particular case of the one introduced in this work, 

amely, when the number of stages is only two and there are no 

perational decisions. 

The rest of the work is organized as follows. For completeness 

nd to introduce some notations to be used throughout the work, 

ection 2 outlines the main concepts underlying strategic multi- 

tage stochastic trees that have operational two-stage trees em- 

edded in them. Section 3 presents the two multistage stochas- 

ic metamodels used in this work. The first model is presented 

n compact form and the second in its split-variable formulation, 

hich is more amenable to IPMs. Section 4 introduces the spe- 

ialized IPM for multistage stochastic problems. Its implementa- 

ion, MSSO-BlockIP, is presented in Section 5 , which also reports 

he results of computational experiments comparing our approach 

ith CPLEX v20.1 in the solution of two different applications—

escribed in Appendices Appendix A and Appendix B —namely, for 

trategic and operational supply network design, and strategic rev- 

nue management. Section 6 draws the main conclusions and out- 

ines future research plans. 

. Strategic multistage operational two-stage stochastic trees 

The notation is taken from Escudero & Monge (2021) . 

.1. Strategic multistage stochastic tree 

Let a strategic scenario be the realization of the uncertain 

trategic parameters along the time horizon. A strategic node for 

 given stage has one-to-one correspondence with the group of 

trategic scenarios that have the same realization of the uncertain 

arameters up to the stage. This information structure can be visu- 

lized as the tree depicted in Fig. 1 , where each root-to-leaf path 

epresents a specific scenario and, then, it corresponds to a real- 

zation of the whole set of the uncertain parameters. Let us point 

ut that it is beyond the scope of this work to present a method- 

logy for multistage scenario tree generation and reduction; see 

.g., Dupacova et al. (20 0 0) ; Heitsch & Römisch (2009) ; Henrion &

ömisch (2018) ; Hoyland et al. (2003) ; Leövey & Römisch (2015) ;

i & Floudas (2016) ; Pflug & Pichler (2014) , among others. 

exicographically ordered sets in the strategic tree 

T , stages. 

N , nodes in the scenario tree. 

N t , nodes in stage t , where N t ⊂ N , t ∈ T . By construction, 

|N 1 | = 1 . 

�, scenarios. Each one comprises the nodes in the Hamiltonian 

path from root node 1 to a node, say, ω in the last stage, up
270 
through the stages in set T ; therefore, ω ∈ N |T | . For conve-

nience, a scenario has traditionally been denoted by its last 

node in the path. 

�n ⊂ �, scenarios containing node n in the path from root node 

1 to their last node ω ∈ N |T | . Note that �1 = �. 

A 

n , node n and its ancestors, n ∈ N . Note that A 

1 only con-

tains node 1 ∈ N 1 . 

S n , successors of node n , n ∈ N . Note that S n = ∅ , n ∈ N |T | ;
and S 1 = N \ { 1 } . 

S n 
1 

⊂ S n , immediate successors of node n , n ∈ N . 

ther elements in strategic node n for n ∈ N 

w 

n , weight factor representing the likelihood that is associated 

with node n . Note that w 

n = 

∑ 

ω∈ �n w 

ω , where w 

ω gives the

modeler-driven likelihood associated with scenario ω, such 

that 
∑ 

ω∈ � w 

ω = 1 . 

t n , stage that node n belongs to, therefore, n ∈ N t n . 

σ n , immediate ancestor node of node n . 

Note: It is assumed that σ 1 = 0 . 

 

n (i ) , i th node in set S n 
1 

: t n < |T | , i = 1 , . . . , � n , where � n = |S n 
1 
| . 

s an illustration, let us consider an instance with |T | = 3 stages

say, years) and a scenario tree where the number of strategic 

mmediate successor nodes of node n is � n = 2 , n ∈ N : t n < |T | .
herefore, the cardinality of the strategic scenario tree is |N | = 

 

t∈T |N t | = 1 + 2 + 4 = 2 3 − 1 = 7 nodes, see Fig. 1 . 

.2. Operational uncertainty in the stages in set T along the time 

orizon 

The operational uncertainty is represented in a finite set of 

tage-dependent operational scenarios in each stage t , t ∈ T . It is 

hus assumed that the operational uncertainty originates in any of 

he previous or current stage—independent of the strategic uncer- 

ainty. Let us introduce the following additional notation: 

�t , set of operational scenarios in stage t . 

w 

π , weight of operational scenario π , π ∈ �t , such that ∑ 

π∈ �t 
w 

π = 1 . 

t (i ) , i th operational node in set �t , i = 1 , . . . , | �t | . 
A solution approach for a strategic multistage stochastic prob- 

em with stage-related uncertainty requires that the operational 

ecisions for a given strategic realization are structured in a two- 

tage stochastic tree at any stage. The first stage is made of the ap- 

ropriate strategic node and the second stage is composed of the 

perational scenarios. As an illustration, Fig. 2 depicts a scenario 

ree with the same strategic node set as in Fig. 1 , plus a set of op-

rational scenarios (i.e., it is a multistage multiscale scenario tree), 

here | �t | = 2 , ∀ t ∈ T . 
Note that in the unlikely case where the strategic nodes are also 

tagewise-dependent on the operational ones, the tree depicted in 

ig. 2 will instead result in a gigantic multistage scenario tree con- 

aining the full combination of strategic and operational scenarios. 

s an illustration, a joint multistage scenario tree for an instance 

ith | T | = 5 and � n = 2 for t n ∈ T : t n < 5 has 23,405 nodes and

6,384 scenarios for | �t | = 4 ; and 629,145 nodes and 528,288 sce- 

arios for | �t | = 8 ∀ t ∈ T ; see Escudero & Monge (2021) . 

. Strategic multistage operational two-stage stochastic 

etamodels 

The compact version of the strategic multistage operational 

wo-stage metamodel can be expressed as 
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Fig. 2. Strategic multistage scenario tree with operational two-stage scenario trees. 

s

t  

t  

c

w  
in 

∑ 

n ∈N 
w 

n 
[
a n x n + 

1 

2 

x n 
� 

Q 

n 
x x 

n + b n z n + 

1 

2 

z n 
� 

Q 

n 
z z 

n 

+ 

∑ 

π∈ �t n 

(
w 

π c π y πn + 

1 

2 

y πn 
� 

Q 

π y πn 
)]

(1a) 

. to (T n x σ
n 

) : t n > 1 + W 

n x n + M 

n z n = h 

n ∀ n ∈ N (1b) 

 

π x n + W 

π y πn = h 

π ∀ π ∈ �t n , n ∈ N (1c) 

 ≤ x n ≤ u 

n 
x , 0 ≤ z n ≤ u 

n 
z ∀ n ∈ N (1d) 

 ≤ y πn ≤ u 

π
y ∀ π ∈ �t n , n ∈ N , (1e) 

here the new parameters are as follows: a n , b n , c π and Q 

n 
x , Q 

n 
z ,

 

π are the vectors and (positive semidefinite) matrices of the lin- 

ar and quadratic terms of the objective function for the variables 

 

n , z n and y πn , respectively; T n and W 

n , respectively, are the con-

traint matrices of the state strategic variables x σ
n 

in the first stage 

nd x n in the second one (both in the related embedded strate- 

ic two-stage submodel); M 

n is the constraint matrix of the lo- 

al strategic variables z n in the first stage strategic node n in the 

elated embedded strategic two-stage submodel; T π and W 

π , re- 

pectively, are the constraint matrices of the state strategic vari- 

bles x n in the first stage and the operational variables y πn in the 

econd one of the embedded operational two-stage submodels; h n 

nd h π are the right-hand-side (RHS) of the two-stage strategic 

nd operational constraints, respectively; and u n x , u n z and u πy are 

he upper bounds of the variables in the vectors x n , z n and y πn ,

espectively. Figure 3 shows the structure of the constraint matrix 

or metamodel (1) in the Fig. 2 example, which we have simpli- 

ed by omitting the columns related to the z n variables (i.e., terms 

 

n z n ). 

To overcome the existence of dense columns in (1) (e.g., x i , i =
 , 2 , . . . , in Fig. 3 ), split-variable reformulations are required when

he models are solved by IPMs ( Castro & de la Lama-Zubirán, 2020; 

ustig et al., 1991; Ruszczy ́nski, 1993 ). Our approach considers that 

ormulation by using the following copies of the variables: 
Fig. 3. Constraint matrix of metamodel (1) for the e

271 
x s n , copy of x n in strategic node s , where n is the strategic node 

that roots the strategic two-stage tree and s is a second stage 

node, for s ∈ S n 
1 
, n ∈ N : t n < |T | . 

x πn , copy of x n in operational node π , where n is the strategic 

node that roots the operational two-stage tree and π ∈ �t n . 

The copies of those variables above are forced to have the 

ame value through a set of linking constraints. To simplify no- 

ation, let us drop the superindex n in s n (i ) and � n , n ∈ N , and

he subindex t in πt (i ) , t ∈ T , when no ambiguity exists in the

ontext being studied. Therefore, for the strategic two-stage tree 

e impose x n − x s (1) 
n = 0 and x s (i ) 

n − x s (i +1) 
n = 0 , i = 1 , . . . , � n − 1 , for
xample in Fig. 2 , omitting columns z n , n ∈ N . 
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Fig. 4. Constraint matrix of meta formulation (2) for the example in Fig. 2 , omitting columns z n . 
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ach node n that is not in the last stage (that is, n ∈ N : t n <

T | ). And for the operational two-stage tree, we have for any 

ode n ∈ N : x s (� ) n − x π(1) 
n = 0 if t n < |T | , or x n − x π(1) 

n = 0 if t n =
T | ; and x π(i ) 

n − x π(i +1) 
n = 0 , i = 1 , . . . , | �t n | − 1 . Our split-variable

cheme first covers the entire set of strategic immediate succes- 

ors of node n and, next, all the operational scenarios for any 

trategic node. It is worth pointing out that x s (� ) n − x π(1) 
n = 0 could 

e replaced by x n − x π(1) 
n = 0 , among other alternatives. However, 

he chosen scheme has the advantage that the variables in set 

 x n , x s (1) 
n , . . . , x s (� ) n , x π(1) 

n , . . . , x 
| �t n | 
n } simply appear in two linking

onstraints, with the exception of x n and x 
| �t n | 
n which appear in 

nly one (see Fig. 4 for an example). 

Thus, the split-variable formulation of metamodel (1) consid- 

red by our approach is: 

in 

∑ 

n ∈N 
w 

n 
[
a n x n + 

1 

2 

x n 
� 

Q 

n 
x x 

n + b n z n + 

1 

2 

z n 
� 

Q 

n 
z z 

n 

+ 

∑ 

π∈ �t n 

(
w 

π c π y πn + 

1 

2 

y πn 
� 

Q 

π y πn 
)]

(2a) 

. to (T n x n σ n ) : t n > 1 + W 

n x n + M 

n z n = h 

n ∀ n ∈ N (2b) 

 

π x πn + W 

π y πn = h 

π ∀ π ∈ �t n , n ∈ N (2c) 

 

n − x s (1) 
n = 0 , x s (i ) 

n − x s (i +1) 
n = 0 ∀ i = 1 , . . . , � n − 1 , n ∈ N : t n < |T | 

(2d) 
i

272 
 

•
n − x π(1) 

n = 0 , x π(i ) 
n − x π(i +1) 

n = 0 ∀ i = 1 , . . . , | �t n | − 1 , n ∈ N 

(2e) 

 ≤ x n ≤ u 

n 
x , 0 ≤ z n ≤ u 

n 
z ∀ n ∈ N (2f) 

 ≤ y πn ≤ u 

π
y ∀ π ∈ �t n , n ∈ N , (2g) 

here x •n ≡ x s (� ) n for n ∈ N : t n < |T | and x •n ≡ x n for n ∈ N |T | . Con-

traints (2d) and (2e) are the linking equations for the split- 

ariables that are used in, respectively, the strategic and opera- 

ional nodes (that is, in (2b) and (2c) ). Notice that those linking 

quations are given in a circular form of the classical nonanticipa- 

ivity constraints which our IPM will take benefit from. Fig. 4 de- 

icts the structure of the constraint matrix of the meta formula- 

ion (2) for the same example in Fig. 3 for metamodel (1) , omitting

olumns z n to save space. 

. The specialized IPM for multistage stochastic optimization 

In the rest of the work, and due to notation saving purposes, let 

ariables vector x replace the notation x, y, z that have been used 

n metamodels (1) and (2) . Let us consider the following general 
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ormulation of a primal block-angular optimization problem: 

min 

 

1 , ... ,x k ,x 0 

k ∑ 

i =1 

(
c i 

� 
x i + x i 

� 
Q 

i x i 
)

. to 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

N 1 

N 2 

. . . 

N k 

R 1 R 2 . . . R k I 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

x 1 

x 2 

. . . 

x k 

x 0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

b 1 

b 2 

. . . 

b k 

b 0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

0 ≤ x i ≤ u 

i i = 0 , . . . , k. 

(3) 

The matrices N i ∈ R 

m i ×n i and R i ∈ R 

l×n i , i = 1 , . . . , k , define, re-

pectively, the block and linking constraints, where k is the num- 

er of blocks, l is the number of linking constraints, and m i and n i 
enote the number of constraints and variables of block i . It will 

e seen below that for MSSO problems the number of blocks k is 

he number of strategic and operational nodes in the multistage 

cenario tree, and that matrices N i and R i are related to constraints 

2b), (2c) and (2d), (2e) , respectively. Vectors x i ∈ R 

n i and u i ∈ R 

n i 

re the variables and their upper bounds, respectively, for block 

 = 1 , . . . , k . The components of x 0 ∈ R 

l are the slacks of the link-

ng constraints; if they are equalities their upper bounds u 0 ∈ R 

l 

an be set to 0 or to a very small feasibility tolerance. The ob- 

ective function considers both linear and convex quadratic sepa- 

able costs, as defined by vectors c i ∈ R 

n i and matrices Q 

i ∈ R 

n i ×n i 

 Q 

i = Q 

i � and Q 

i � 0 ), i = 1 , . . . , k . The vectors b i ∈ R 

m i , i = 1 , . . . , k

nd b 0 ∈ R 

l define, respectively, the RHS of the block and the link- 

ng constraints. 

By using an appropriate reordering of variables and con- 

traints, any multistage stochastic optimization problem (2) can 

e recast as a primal block-angular problem (3) . This is illus- 

rated in Fig. 4 for the particular case of the scenario tree in 

ig. 2 . Note that variable vectors z n , n ∈ N are omitted to save

pace, but, this does not affect the matrix structure depicted in 

ig. 4 because they are local to each node and are therefore not 

eplicated. The order of the variables is based on a breadth-first- 

earch (BFS) in the scenario tree (that is, nodes are explored 

y stages). And for each node n in the BFS, the first variables 

onsidered are those involved in the (nested) strategic two-stage 

ree composed of node n and its immediate successors s ∈ S n 
1 

namely, variable vectors x n , all the copies x s n , the local strategic 

ariables vector z s , and the state strategic ones x s ), followed by 

he variables in the operational two-stage tree comprising the 

odes n and π ∈ �t n (that is, variable vectors x πn and y πn ). As for

he constraints, (2b) and (2c) are moved to the first rows (block 

onstraints in (3) ), while (2d) and (2e) correspond to the linking 

onstraints. Observe that with this particular ordering the two 

roups of (block and linking) constraints have a stair-type form. 

n Fig. 4 vertical lines separate the k blocks of the problem; a 

ouble horizontal line separates the diagonal block constraints 

 i x 
i = b i , i = 1 , . . . , k , from the linking constraints; and, within the

inking constraints part, a horizontal line separates the constraints 

f different (nested) two-stage trees. For instance, the linking 

onstraints in Fig. 4 are partitioned into seven groups, which 

orrespond to the seven (nested) two-stage trees in Fig. 2 , each 

ne composed of the scenario root node n , followed by the first 

trategic node s n (1) until the last node in S n 
1 

, and trailed by the

rst operational node π(1) until the last node in �t n , namely, 

 1 , 2 , 3 , 1 a , 1 b } , { 2 , 4 , 5 , 2 c , 2 d } , { 3 , 6 , 7 , 3 c , 3 d } , { 4 , 4 e , 4 f } , { 5 , 5 e , 5 f } ,
 6 , 6 e , 6 f } , { 7 , 7 e , 7 f } . Note also that the number of blocks k is

qual to the number of nodes in the multistage scenario tree, 

hat is, k = 

∑ 

n ∈N (1 + | �t n | ) . For the particular case of a problem

here | �| = | �t | for all t ∈ T , and � = |S n | for all n ∈ N : t n < |T | ,

1 

273
he number of blocks can be computed as k = 

� |T | − 1 

� − 1 
( | �| + 1)

e.g., in Fig. 4 we have � = 2 , |T | = 3 and | �| = 2 , so k = 21 , which

s the number of (strategic and operational) nodes in the tree in 

ig. 2 ). It is worth pointing out the high sparsity of the matrices 

 i ∈ R 

l×n i , where all coefficients are zero, except for at most three 

iagonal (identity) matrices I or −I (see e.g., Fig. 4 ). This high 

parsity will be crucial for the efficient solution of problem (3) . 

e also remark that (3) can deal with more general MSSO models 

han those of formulation (2) , for instance, for problems where the 

et of operational scenarios is different for each node of the same 

tage, that is, we have �n , n ∈ N instead of �t , t ∈ T . This is a

ase in which the operational uncertainty is stagewise-dependent 

as oppose to stage-dependent), but the strategic uncertainty 

ontinues to be non-dependent of individual realizations of the 

perational uncertainty. 

The previous discussion can be summarized in the following re- 

ult: 

roposition 1. Any multistage stochastic optimization problem that 

as both strategic and operational decisions, and is based on the split- 

ariable formulation (2) can be recast as a primal block-angular prob- 

em (3) . 

roof. Using the following reordering of variables and constraints, 

roblem (2) is reformulated as (3) : 

The ordering of variables is based on a BFS in the scenario tree 

that is, nodes are explored by stages). For each node n in the 

FS, the first variables are those in the strategic two-stage tree 

omposed of node n and its immediate successors s ∈ S n 
1 

, followed 

y the variables in the operational two-stage tree comprising the 

odes n and π ∈ �t n . That is, for each node n in the BFS, the or-

er of variables is: variable vectors x n , all the copies x s n , the local

trategic variables vector z s , the state strategic ones x s , and variable 

ectors x πn and y πn of operational nodes. 

Constraints (2b) and (2c) are moved to the first rows (block 

onstraints in (3) ), ordered by node n in the BFS. Constraints 

2d) and (2e) form the linking constraints, and they are ordered, 

rstly by each two-stage tree in the scenario tree, and, secondly, 

sing the BFS order of the nodes within each two-stage tree. �

Problems in the form of (3) can be solved by the specialized 

PM of Castro (20 0 0, 20 07) ; Castro & Cuesta (2011) , which was

ecently implemented in the BlockIP package ( Castro, 2016 ). This 

pproach is based on an infeasible long-step primal-dual path- 

ollowing method ( Wright, 1997 ) that solves the normal equa- 

ions at each IPM iteration by exploiting the particular structure 

f the constraint matrix of (3) . 

For completeness, we summarize the primal-dual path- 

ollowing IPM. Problem (3) can be written in standard form as 

min 

x 
c � x + 

1 
2 

x � Qx 

s. to Ax = b 
0 ≤ x ≤ u, 

(4) 

here c, x, u ∈ R 

n , A ∈ R 

m ×n , Q ∈ R 

n ×n and b ∈ R 

m , m and n , respec-

ively, being the overall number of constraints and variables of the 

roblem (in our context, n = 

∑ k 
i =1 n i + l, m = 

∑ k 
i =1 m i + l). 

The dual problem of (4) is 

max b � λ − 1 
2 

x � Qx − λ� 
u u 

s. to A 

� λ − Qx + λ0 − λu = c 
λ0 , λu ≥ 0 , 

(5) 

here λ ∈ R 

m , λ0 and λu ∈ R 

n are, respectively, the Lagrange mul- 

ipliers of the equality constraints and the lower and upper bounds 

f (4) . 

Replacing the bounds in (4) with a logarithmic barrier having 

arameter μ ∈ R 

+ , the μ-perturbed version of the KKT conditions 
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f (4) becomes 

 c ≡ c − (A 

� λ − Qx + λ0 − λu ) = 0 , (6a) 

 b ≡ b − Ax = 0 , (6b) 

 xλ0 
≡ μe − X 	0 e = 0 , (6c) 

 sλu 
≡ μe − S	u e = 0 , (6d) 

(x, s, λ0 , λu ) ≥ 0 , (6e) 

here e ∈ R 

n is a vector of ones, X, U, 	0 , 	u ∈ R 

n ×n are diago-

al matrices made up of, respectively, vectors x, u, λ0 , λu , and S

s defined as S = U − X . Equations (6a) and (6b) impose, respec- 

ively, dual and primal feasibility, whereas (6c) and (6d) impose 

 μ-perturbed) complementarity. The set of unique solutions from 

6) for each μ value is known as the central path. When μ → 0 ,

hese solutions converge to those of (4) and (5) . The primal-dual 

ath-following algorithm solves the nonlinear system (6) by a se- 

uence of damped Newton directions (that is, with step length re- 

uction to preserve (6e) ), reducing the μ parameter at each it- 

ration, and staying close to the central path. The monographs 

ondzio (2012) ; Wright (1997) provide an excellent discussion 

bout primal-dual path-following algorithms. 

The Newton direction (
x, 
λ, 
λ0 , 
λu ) is obtained by the 

olution of the system 

 

 

 

−Q A 

� I 
A 

	0 X 

−	u S 

⎤ ⎥ ⎦ 

⎡ ⎢ ⎣ 


x 

λ

λ0 


λu 

⎤ ⎥ ⎦ 

= 

⎡ ⎢ ⎣ 

r c 
r b 

r xλ0 

r sλu 

⎤ ⎥ ⎦ 

. (7) 

y eliminating 
λu and 
λ0 in (7) , as follows, 

λ0 = X 

−1 r xλ0 
− X 

−1 	0 
x (8a) 

λu = S −1 r sλu 
+ S −1 	u 
x, (8b) 

e obtain a symmetric indefinite system known as the augmented 

ystem : 

−�−1 A 

� 

A 

][

x 

λ

]
= 

[
r 
r b 

]
, (9) 

here � and r are defined as 

= (Q + S −1 	u + X 

−1 	0 ) 
−1 r = r c + S −1 r sλu 

− X 

−1 r xλ0 
. (10)

f, in addition, we eliminate 
x from the last group of equations in 

9) , the normal equations form is obtained: 

A �A 

� )
λ = g where g = r b + A �r (11a) 

x = �(A 

� 
λ − r) . (11b) 

The Newton direction is computed from (8a), (8b), (11a) and 

11b) . For linear (i.e., Q = 0 ) or separable quadratic problems � is a

ositive diagonal matrix and can be easily computed and inverted. 

Computationally, the most time-consuming step of the algo- 

ithm is solving system (11a) at each iteration of the IPM. An 

fficient solution approach for this system is needed mainly for 

arge-scale problems such as the multistage stochastic optimiza- 

ion models (1) and (2) , which can easily reach millions of vari- 

bles and constraints even for scenario trees with a small number 

f stages (see Section 5 ). The IPM specialization used in this work 
274 
olves the normal equations by exploiting the structure of matrix 

 in (3) . Appropriately partitioning �, the matrix A �A 

� of the nor-

al equations can be recast as 

 �A 

� = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

N 1 �1 N 

� 
1 N 1 �1 R 

� 
1 

. . . 
. . . 

N k �k N 

� 
k 

N k �k R 

� 
k 

R 1 �1 N 

� 
1 . . . R k �k N 

� 
k 

�0 + 

∑ k 
i =1 R i �i R 

� 
i 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

[
B C 

C � E 

]
, (12) 

here B ∈ R ̃

 m ×˜ m ( ̃  m = 

∑ k 
i =1 m i ), C ∈ R ̃

 m ×l , and E ∈ R 

l×l are the

locks of A �A 

� ; and �i , i = 0 , . . . , k , are the submatrices of � as-

ociated with the k + 1 groups of variables (x 0 , x 1 , . . . , x k ) in (3) .

onsidering a partitioning of the RHS of (11a) g = [ g � 
1 

g � 
2 

] � , where

 1 ∈ R ̃

 m and g 2 ∈ R 

l , and the direction of Lagrange multipliers λ,

λ = [
λ� 
1 


λ� 
2 

] � , with 
λ1 ∈ R ̃

 m and 
λ2 ∈ R 

l , the normal 

quations can be written as 

B C 

C T E 

][

λ1 


λ2 

]
= 

[
g 1 
g 2 

]
. (13) 

liminating 
λ1 from the first group of equations in (13) , we get 

E − C � B 

−1 C)
λ2 = (g 2 − C � B 

−1 g 1 ) (14) 

 
λ1 = (g 1 − C
λ2 ) . (15) 

ollowing Castro (20 0 0, 20 07) ; Castro & Cuesta (2011) , system

15) will be solved by performing one Cholesky factorization for 

ach diagonal block N i �
i N 

� 
i 

, i = 1 , . . . , k of matrix B . Computing

he matrix of system (14) can be very expensive, because it in- 

olves the inverse of B . Even if computed, it might result in a dense

nd large matrix, whose factorization would be prohibitive. There- 

ore, system (14) will be solved by an iterative method, namely 

he preconditioned conjugate gradient (PCG). The dimension of 

his system is l (the number of linking constraints, as previously 

tated), which can be very large in practice. Therefore a good pre- 

onditioner is crucial for a fast solution of (14) . 

The preconditioner initially developed in Castro (20 0 0) for mul- 

icommodity flows can be used for any primal block-angular prob- 

em ( Castro, 2007 ). It is based on the following Neumann series of 

he inverse of the matrix of system (14) : 

E − C � B 

−1 C) −1 = 

( 

∞ ∑ 

i =1 

(E −1 (C � B 

−1 C)) i −1 

) 

E −1 . (16) 

t was proven in Castro (20 0 0) that the eigenvalues of E −1 (C � B −1 C)

re in ([0,1), and that the infinite sum in (16) converges. The pre- 

onditioner is obtained by considering a number of terms (say, φ) 

f the infinite sum. Its efficiency depends on the following two fac- 

ors: 

• The spectral radius ρ (i.e., the largest eigenvalue) of the matrix 

(E −1 (C � B −1 C)) . When ρ is not excessively close to 1, the con- 

tribution of higher order terms in the series decreases quickly, 

and then a small φ is enough for a good approximation of the 

inverse of E − C � B −1 C. Unfortunately, the value of the spectral 

radius ρ is problem dependent and cannot be controlled or de- 

termined a priori. We have just a few results stating that ρ is 

smaller for quadratic problems than for linear ones (see Castro 

& Cuesta, 2011 , Theorem 1, Proposition 2). Although computing 

ρ is not practical, it can be approximated using the Ritz values 

of the PCG, as described in Bocanegra et al. (2013) . This allows 
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monitoring their values along the IPM iterations. Although, in 

theory, the greater the φ, the better the preconditioner, increas- 

ing φ by one means solving an additional system with matrices 

E and B at each PCG iteration. In practice, it has been observed 

( Castro, 20 0 0; 20 07; 2016; Castro & de la Lama-Zubirán, 2020 )

that the best results are obtained for φ = 1 (that is, the pre- 

conditioner is E −1 ) or φ = 2 (in this case the preconditioner is 

(E −1 (C � B −1 C)) E −1 ). In general, for very large problems, φ = 2

can be very time consuming due to the extra computations 

needed ( Castro, 2016 ). For this reason, this work obtains all the 

computational results with φ = 1 . 
• The efficient solution of systems with matrix E is instrumental 

for the performance of the method. Unlike the spectral radius 

ρ , which is not possible to determine a priori whether or not 

it will be far from 1, the particular structure of E for any mul- 

tistage stochastic instance can be analyzed before starting the 

IPM iterations. This is done in the next subsection, which shows 

that systems with E are easy to solve. 

By abuse of notation, matrix E is denoted as the preconditioner 

hroughout the rest of the work. 

.1. The structure of preconditioner E

According to (12) , preconditioner E is defined as 

 

l×l � E = �0 + 

k ∑ 

i =1 

R i �i R 

� 
i . (17) 

Let k̄ denote the number of (nested) computational strategic- 

perational two-stage trees in the multistage scenario tree, where 
¯
 = |N | for | �|T | | > 0 and otherwise, k̄ = |N \ N |T | | . The first node

n any of those trees is a strategic node n and the node set in the

econd stage is 

 

n 
1 ∪ �t n if t n < |T | , or �t n if t n = |T | . (18) 

or problems where the number of strategic and operational nodes 

s constant for each node (that is, � = |S n 
1 
| for all n ∈ N : t n < |T | ,

nd | �| = | �t | for all t ∈ T ), the number of nested two-stage trees

s 

¯
 = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

� |T | − 1 

� − 1 

if | �| > 0 

� |T | −1 − 1 

� − 1 

if | �| = 0 . 

(19) 

As discussed in the previous section, the linking constraints can 

lso be partitioned by rows in groups of constraints for each nested 

wo-stage tree (e.g., see again Fig. 4 which is associated to the sce- 

ario tree depicted in Fig. 2 ). Then, the linking constraint matrix 

an be decomposed as 

R 1 R 2 . . . R k 

]
= 

⎡ ⎢ ⎢ ⎣ 

R 11 R 21 . . . R k 1 

R 12 R 22 . . . R k 2 

. . . 
R 

1 ̄k 
R 

2 ̄k 
. . . R 

k ̄k 
. 

⎤ ⎥ ⎥ ⎦ 

, (20) 

Each submatrix R i j of (20) , i = 1 , . . . , k , for the two-stage tree

j, j = 1 , . . . , ̄k , is any of the following matrices (see Fig. 4 for an

xample): 

• A zero matrix, if the variables of block i (which is associated 

with some node in N of the scenario tree) do not intervene in 

the two-stage tree j. 
• A matrix containing an identity submatrix I, and zeros else- 

where, if block i corresponds to the root node n ∈ N of the

strategic two-stage tree j. This identity starts the splitting of 

variables x n , and its dimension is the number of components of 

x n . 
275 
• A matrix containing a submatrix of the form 

[
−I 

I 

]
associated 

with a node in set S n 
1 

∪ �t n , other than the last node, where n

is the root node of the two-stage tree. The dimension of I and 

−I is the number of components of x n . This matrix continues 

the splitting of x n between nodes in S n 
1 

∪ �t n . 
• A matrix containing a submatrix −I, associated with the last 

node in set S n 
1 

∪ �t n , where n is the root node of the two-stage

tree. This matrix ends the splitting of x n , and its dimension is 

the number of components of x n . 

Then, from (17) and (20) , preconditioner E can be rewritten as 

 = �0 + 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

k ∑ 

i =1 

R i 1 �i R 

� 
i 1 . . . 

k ∑ 

i =1 

R i 1 �i R 

� 
i ̄k 

. . . 
. . . 

k ∑ 

i =1 

R 

i ̄k 
�i R 

� 
i 1 . . . 

k ∑ 

i =1 

R 

i ̄k 
�i R 

� 
i ̄k 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= �0 + 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

k ∑ 

i =1 

R i 1 �i R 

� 
i 1 

. . . 
k ∑ 

i =1 

R 

i ̄k 
�i R 

� 
i ̄k 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (21) 

here the last equality comes from the fact that each two-stage 

ree has its own split-variables, in other words, the matrices I, 

−I 

I 

]
, and −I of R i j and R i j ′ , j � = j ′ , are located in different columns,

nd, thus, R i j �i R 
� 
i j ′ = 0 . Therefore, considering an appropriate par- 

ition �0 j , j = 1 , . . . , ̄k , of the diagonal matrix �0 , it follows that

is a block diagonal matrix with k̄ block submatrices �0 j + 

 k 
i =1 R i j �i R 

� 
i j 

, j = 1 , . . . , ̄k , each of them associated with a (nested)

wo-stage tree of the multistage scenario tree. For any two-stage 

ree j ∈ { 1 , . . . , ̄k } that is associated with some node n ∈ N , the

tructure of 
[
R 1 j . . . R k j 

]
is as follows 

R 1 j . . . R k j 

]
= 

x n x 1 n x 2 n . . . x 
ξ−1 
n x 

ξ
n ⎡ ⎢ ⎢ ⎣ 

. . . I . . . −I 
I −I 

. . . 

I −I 

⎤ ⎥ ⎥ ⎦ 

,

(22) 

here, by abuse of notation, x i n , i = 1 , . . . , ξ , represents either the

opy of x n in the i th strategic immediate successor node of root 

ode n , i ∈ S n 
1 

, or it is the copy of x n in the π th operational node,

∈ �t n . Note that ξ = |S n 
1 
| + | �t n | . 

From (22) , and by block multiplication, we get 

k ∑ 

i =1 

R i j �i R 
� 
i j 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

�x n + �x 1 n −�x 1 n 

−�x 1 n �x 1 n + �x 2 n −�x 2 n 

. . . 
. . . 

. . . 

−�x 
ξ−2 
n �x 

ξ−2 
n + �x 

ξ−1 
n −�x 

ξ−1 
n 

−�x 
ξ−1 
n �x 

ξ−1 
n + �x 

ξ
n 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

,

(23) 

hat is, 
∑ k 

i =1 R i j �i R 
� 
i j 

is a v -shifted tridiagonal matrix , where v is

he number of components of x n , which is also the dimension of 
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Fig. 5. Structure of (a) linking constraints and (b) preconditioner E, for a problem with |T | = 4 stages, |S n 1 | = 2 for n ∈ N : t n < |T | and | �t n | = 2 , n ∈ N . 
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he �-matrices. This type of matrix is a generalization of a tridi- 

gonal one where the superdiagonal (nonzero diagonal above the 

ain diagonal) and subdiagonal (nonzero diagonal below the main 

iagonal) are shifted v positions from the main diagonal. In other 

ords, elements (i, j) are non-zero only if | i − j| is either 0 or

 . The matrices with such a structure can be efficiently factorized 

ith zero fill-in by extending a standard factorization for tridiago- 

al ones. Therefore, systems with the preconditioner E are reduced 

o the solution of k̄ independent smaller systems, each one involv- 

ng the (fast) factorization of a v -shifted tridiagonal matrix. In ad- 

ition, note that systems with E can be easily parallelized for the 
¯
 smaller systems. 

The description above proves the following result: 

roposition 2. For any multistage stochastic optimization problem, 

ith both strategic and operational decisions, based on the split- 

ariable formulation (2) , matrix E, as defined in (17) , is block diag- 

nal with k̄ blocks; and each block j is a v j -shifted tridiagonal ma- 

rix, where k̄ is the number of nested two-stage trees in the multistage 

cenario tree, and v j is the number of variables replicated in the two- 

tage tree j ∈ { 1 , . . . , ̄k } . 
roof. From the definitions of E and 

[
R 1 . . . R k 

]
in, respec- 

ively, (17) and (20) , the structure of preconditioner E is given 

y (21) , where the last equality of (21) comes from the fact that

 i j �i R 
� 
i j ′ = 0 , j � = j ′ . For any two-stage tree j ∈ { 1 , . . . , ̄k } that is as-

ociated with a node n ∈ N , the structure of 
[
R 1 j . . . R k j 

]
is 

iven by (22) . From (22) , and by block multiplication, we get that

ny diagonal block of (21) has the form of (23) , proving that pre-

onditioner E is a block diagonal matrix with k̄ blocks, each block 

eing a v j -shifted tridiagonal matrix. �

Figure 5 shows the structure of 
[
R 1 . . . R k 

]
and precondi- 

ioner E for a problem with |T | = 4 stages, |S n 
1 
| = 2 for n ∈ N :

 

n < |T | and | �| = | �t n | = 2 for every node n ∈ N (then, |N | =
5 ), where the number of split-variables at every two-stage tree 

s v = 10 . Note that, according to (19) , since | �| > 0 the num-

er of two-stage trees (i.e., tridiagonal blocks of E) in Fig. 5 is 
276 
¯
 = 

2 4 −1 
2 −1 = 15 , and each of those trees has four and two two-stage

trategic-operational nodes for t n < 4 and t n = 4 , respectively, see 

18) . 

It is worth pointing out that the approach in Castro & de la 

ama-Zubirán (2020) for the split-variable formulation of two- 

tage stochastic problems is a particular case (when k̄ = 1 ) of the 

ore general preconditioner E presented in this work for the split- 

ariable formulation (2) . One of the most significant features of the 

roposal is that the complexity of the preconditioner for a multi- 

tage stochastic problem (where E has k̄ v -shifted tridiagonal ma- 

rices) does not grow in comparison with that of a large two-stage 

roblem (where E would be a unique large v -shifted tridiagonal 

atrix). In other approaches, like a nested Benders decomposition 

see Birge, 1985 ), solving a multistage case is generally more com- 

lex than solving a two-stage problem. 

. Computational results 

This section presents the computational validation of the new 

pproach based on two pilot applications. The first one is sup- 

ly network design presented in Appendix A , where the multi- 

tage stochastic scenario tree has strategic and operational nodes. 

he second application is revenue management , presented in 

ppendix B , where the multistage stochastic scenario tree has only 

trategic nodes. For each of the instances in the testbed of each pi- 

ot application, the new approach MSSO-BlockIP is compared with 

he state-of-the-art solver CPLEX v20.1 using both splitting and 

on-splitting modeling schemes. 

.1. Implementation details and computational environment 

The specialized IPM described in Section 4 was implemented 

n C++ giving rise to the BlockIP package ( Castro, 2007; 2016 ). 

n this work, BlockIP has been extended to deal with the pre- 

onditioner E described in the previous section. The new code, 

amed MSSO-BlockIP, runs on top of BlockIP, and it is appro- 

riate for very large multistage stochastic optimization problems 

ith both strategic and operational uncertainties. MSSO-BlockIP 
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nd its user’s guide can be retrieved from http://www-eio.upc.edu/ 

jcastro/MSSO-BlockIP.html . Given the sizes of the instances to be 

ested (up to hundreds of millions of variables and tens of millions 

f constraints), we considered an optimality tolerance of 10 −2 in 

SSO-BlockIP; that is, we require a primal and dual solution with 

 relative duality gap (i.e., difference between the objective func- 

ions in (4) and (5) ) of less than 10 −2 . For such huge problems, the

nly reliable and non-heuristic code (thus, able to compute an op- 

imal solution) that can be used for comparison with MSSO-BlockIP 

s some state-of-the-art implementation of an IPM. In this work, 

e used the standard primal-dual implementation of the barrier 

lgorithm in CPLEX v20.1; for huge problems this variant is ex- 

ected to outperform the homogeneous self-dual IPM in CPLEX 

20.1, which is selected by default in some cases. Default values 

ere used for all the CPLEX parameters except for the crossover 

ostprocess, which was deactivated (i.e., the solver provides an 

nterior-point solution instead of a basic one). Another modified 

PLEX parameter was the optimality tolerance, which was also set 

o 10 −2 in order to make a fair comparison with MSSO-BlockIP. 

his is an additional argument for using the standard primal-dual 

arrier instead of the homogeneous self-dual algorithm, since the 

atter would not benefit from reducing the optimality tolerance; on 

he other hand, the standard primal-dual code can trigger an early 

top with feasible primal and dual solutions, as well as with a de- 

ired duality gap. 

One of the most influential parameters in MSSO-BlockIP for the 

fficient solution of (14) is the tolerance required by the PCG. This 

olerance is dynamically updated at each interior-point iteration i 

s εi = max { βεi −1 , min ε} , where ε0 is the initial tolerance, min ε

s the minimum allowed tolerance, and β is a tolerance reduc- 

ion factor at each interior-point iteration. For the very large MSSO 

roblems solved in this work we used by default the conservative 

alues: ε0 = min ε = 10 −2 , β = 1 for the supply network design in- 

tances in Section 5.2 ; and ε0 = 10 −2 , β = 0 . 98 and min ε = 10 −3 

or the revenue management problems in Section 5.3 . Although 

ighter values may significantly increase the number of PCG iter- 

tions, it was necessary in some cases to reduce β and min ε in 

rder to obtain either a solution or a faster solution (e.g., we used 

= 0 . 98 , and min ε = 10 −3 for a few supply network design in-

tances; and β = 0 . 95 , and min ε ∈ { 10 −4 , 10 −5 } for a few revenue

anagement problems). 

The values of the objective function for the solutions will be 

mitted in the tables of results of next sections, in order to save 

pace; and both MSSO-BlockIP and CPLEX v20.1 reached similar 

olutions, with relative differences of around 10 −3 in the optimal 

alues. 

It is worth noting that BlockIP performs matrix factorizations 

f linear equation systems using the academic Ng–Peyton block 

parse Cholesky package ( Ng & Peyton, 1993 ), which uses an ap- 

roximate minimum degree algorithm for reordering constraints 

nd variables. On the other hand, modern state-of-the-art IPM 

ommercial solvers (such as CPLEX v20.1 and others) implement 

ighly efficient numerical linear algebra routines that exploit hard- 

are capabilities ( Mészáros, 2016 ). Therefore, any computational 

dvantage of MSSO-BlockIP over CPLEX is not due to implemen- 

ation details, but to the specialized algorithm introduced in this 

ork. 

The computational experiments in this work were carried out 

n a Fujitsu Primergy RX2530 M4 server with two 2.3 GHz Intel 

eon Gold 6140 CPUs (72 cores) and 503 gigabytes of RAM, run- 

ing on a GNU/Linux operating system (openSuse 15.0). However, 

ecause of memory limitations, the two largest instances of below 

ection 5.2 (whose dimensions and results are reported in last two 

ows of Tables 1–3 , namely, instances SC-T5-L4-PI-10-P40-S20 0 0- 

40 0 0-L and SC-T5-L4-PI-10-P40-S20 0 0-C40 0 0-Q) had to be run 

n a different and larger server: a DELL PowerEdge R7525 with 
277 
wo 2.4 GHz AMD EPYC 7532 CPUs (128 total cores) and 768 Gi- 

abytes of RAM, running on a GNU/Linux operating system (open- 

use 15.3). Unless otherwise stated, all the runs were sequential, 

.e., without exploitation of multithreading capabilities. 

.2. Supply network design planning 

A multistage extension of the stochastic two-stage problem in 

astro & de la Lama-Zubirán (2020) is presented in Appendix A . In 

his problem the raw material supply and end product production 

nd distribution network G = (S ∪ P ∪ C, A ) is considered, where

 ∪ P ∪ C is the set of nodes, A is the set of arcs, S is the set of raw

aterials to be supplied, P is the set of potential plants where the 

aw materials are processed, and C is the set of customer centers 

here the end product is distributed to satisfy the demand. 

The aim of the problem, as presented in Appendix A , consists 

f deciding on the strategic manufacturing plant locations in the 

etwork, such that the total expected cost is minimized along the 

ime horizon in both the strategic and operational scenarios. The 

ncertain strategic parameters are the stagewise-dependent initial 

apacity of the plant and its expansion unit costs, and the plant 

apacity’s residual unit value. The uncertain operational parame- 

ers are the stage-dependent unit cost of the raw material being 

upplied and transported to the manufacturing plants, the manu- 

acturing plant’s required capacity for processing a unit of raw ma- 

erial, and the end product demand from customer centers, among 

thers. According to the metamodels (1) and (2) , two application 

odels can be derived, depending on whether or not copies of 

ariables are considered. These are named the split-variable for- 

ulation (24) and the compact model (25) . 

We generated a set of eight very large instances (four linear 

nd four quadratic), which the authors will provide upon request. 

hese instances contain both strategic and operational uncertain- 

ies, and their sizes are reported in Table 1 . Columns headed with 

T | and � give, respectively, the number of stages and immediate 

uccessors of each node in the scenario tree, where � = |S n 
1 
| ∀ n ∈

 : t n < | T | . Column | �| shows the number of operational sce-

arios in each strategic node. Columns k , “#var. L.”, “#var. Q.”, 

#cons.”, and l show, respectively, the numbers of blocks (i.e., the 

umber of nodes in the multistage scenario tree), linear variables, 

uadratic variables, block constraints 
∑ k 

i =1 m i , and linking con- 

traints in the problem. Instances’ names are denoted as SC-Tx-Ly- 

I-z-Pu-Sv-Cw-L/Q, where “x” = |T | , “y” = � , “z”= | �| , “u” is the

umber of potential plants, “v” is the number of raw materials, “w”

s the number of customer centers, and L/Q denotes whether the 

roblem is linear or quadratic. It can be noted from Table 1 that 

he number of linking constraints equating the split-variables is 

ot very large. In other words, despite they are instances with 

uge numbers of variables, the numbers of split-variables for them 

re moderately low. 

Table 2 shows the results for the supply network design in- 

tances that were obtained using MSSO-BlockIP and CPLEX v20.1. 

SSO-BlockIP solved the split-variable formulation (2) as a pri- 

al block-angular problem. Three different runs were performed 

ith CPLEX v20.1 in order to make a fair comparison with MSSO- 

lockIP, and they were marked as variants (1) , (2) and 

(3) . CPLEX 

ariant (1) solved the split-variable formulation (2) using the de- 

ault CPLEX aggregator option, which may remove many of the 

plitting constraints (2d) and (2e) and, thus, reduce the size of the 

roblem; however, it can eventually degrade the sparsity of the 

onstraint matrix and thereby increase the fill-in of IPM factoriza- 

ions. To avoid this fill-in issue, CPLEX variant (2) also solved the 

plit-variable formulation (2) , but it deactivated the default CPLEX 

ggregator option (that is, CPLEX v20.1 solves the same model as 

SSO-BlockIP). Finally, CPLEX variant (3) solved the compact for- 

ulation (1) (without the default CPLEX aggregator, which turned 

http://www-eio.upc.edu/jcastro/MSSO-BlockIP.html
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Table 1 

Sizes of supply network design instances. 

Instance |T | � | �| k # var. L. # var. Q. # cons. l

SC-T4-L4-PI-10-P40-S2000-C4000-L 4 4 10 935 209,219,005 — 5,212,245 37,360 

SC-T4-L4-PI-10-P40-S2000-C4000-Q 4 4 10 935 205,819,005 3,400,000 5,212,245 37,360 

SC-T4-L4-PI-20-P40-S2000-C4000-L 4 4 20 1785 418,421,005 — 10,414,245 71,360 

SC-T4-L4-PI-20-P40-S2000-C4000-Q 4 4 20 1785 411,621,005 6,800,000 10,414,245 71,360 

SC-T3-L15-PI-15-P40-S4000-C2000-L 3 15 15 3856 889,772,161 — 22,152,921 154,200 

SC-T3-L15-PI-15-P40-S4000-C2000-Q 3 15 15 3856 882,542,161 7,230,000 22,152,921 154,200 

SC-T5-L4-PI-10-P40-S2000-C4000-L 5 4 10 3751 839,187,661 — 20,760,421 150,000 

SC-T5-L4-PI-10-P40-S2000-C4000-Q 5 4 10 3751 825,547,661 13,640,00 20,760,421 150,000 

Table 2 

Results for supply network design instances. CPU times are in seconds unless otherwise stated. Fastest execution in boldface. 

Instance MSSO-BlockIP CPLEX (1) CPLEX (2) CPLEX (3) 

it. PCG CPU it. CPU it. CPU it. CPU 

SC-T4-L4-PI-10-P40-S2000-C4000-L 179 9071 24,296 28 50,285 24 42,906 13 5997 

SC-T4-L4-PI-10-P40-S2000-C4000-Q 40 6043 14,770 47 84,252 45 78,564 23 9528 

SC-T4-L4-PI-20-P40-S2000-C4000-L 135 13,904 67,371 32 441,330 27 392,539 14 33,004 

SC-T4-L4-PI-20-P40-S2000-C4000-Q 122 8934 46,572 62 842,572 48 641,410 46 108,112 

SC-T3-L15-PI-15-P40-S4000-C2000-L 440 27,836 323,956 � � � � 18 389,321 

SC-T3-L15-PI-15-P40-S4000-C2000-Q 507 31,694 371,227 � � � � 35 746,641 

SC-T5-L4-PI-10-P40-S2000-C4000-L 370 34,067 201,205 � , § � � � � 24 2,024,861 � , ∗

SC-T5-L4-PI-10-P40-S2000-C4000-Q 217 12,655 99,147 � , ‡ � � � � 57 4,632,673 � , † 

(1) CPLEX v20.1 solved the split-variable formulation (2) , with default aggregator. 
(2) CPLEX v20.1 solved the split-variable formulation (2) , deactivating default aggregator. 
(3) CPLEX v20.1 solved the compact formulation (1) , deactivating default aggregator. 
∗ 2,024,861 seconds = 23 days: 10 hours: 27 minutes: 41 seconds. 
† 4,632,673 seconds = 53 days: 14 hours: 51 minutes: 21 seconds. 
� Out of memory. 
� Execution performed on a different server of 755gigabytes of RAM. 
§ 334,740 seconds if executed in usual server. 
‡ 144,238 seconds if executed in usual server. 

Table 3 

Memory requirements (in gigabytes of RAM) for supply network design instances. 

Instance MSSO-BlockIP CPLEX (1) CPLEX (2) CPLEX (3) 

SC-T4-L4-PI-10-P40-S2000-C4000-L 42 126 126 117 

SC-T4-L4-PI-10-P40-S2000-C4000-Q 43 128 128 119 

SC-T4-L4-PI-20-P40-S2000-C4000-L 83 285 285 246 

SC-T4-L4-PI-20-P40-S2000-C4000-Q 86 289 289 249 

SC-T3-L15-PI-15-P40-S4000-C2000-L 164 > 503 > 503 480 

SC-T3-L15-PI-15-P40-S4000-C2000-Q 184 > 503 > 503 482 

SC-T5-L4-PI-10-P40-S2000-C4000-L 167 > 503 > 503 526 

SC-T5-L4-PI-10-P40-S2000-C4000-Q 174 > 503 > 503 531 

(1) CPLEX v20.1 solved the split-variable formulation (2) , with default aggregator. 
(2) CPLEX v20.1 solved the split-variable formulation (2) , deactivating default aggregator. 
(3) CPLEX v20.1 solved the compact formulation (1) , with default aggregator. 
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ut to be the fastest option for the compact model of the supply 

etwork design instances). Columns “it.” and “CPU” provide the 

umber of IPM iterations and CPU time in seconds for each run 

unless otherwise stated). The overall number of PCG iterations is 

lso given for MSSO-BlockIP. The CPU of the fastest execution is 

arked in boldface. 

Looking at Table 2 it can be concluded that, for supply net- 

ork design instances, both CPLEX variants (1) and 

(2) based on 

he split-variable formulation were never competitive with the 

ompact variant (3) . Indeed, variants (1) and 

(2) exhausted the 

03 gigabytes of the server for the four largest instances. It is 

lso observed that MSSO-BlockIP was significantly faster than any 

PLEX variant for the largest instances, especially for the last two. 

hese last two instances were executed on a different server (with 

55 gigabytes of RAM) because even CPLEX compact variant (3) 

equired more than 503 gigabytes. For the largest linear case, 

SSO-BlockIP found a solution in 2.3 days, while CPLEX needed 

ore than 23 days. The difference is even more dramatic for the 

uadratic problem: MSSO-BlockIP and CPLEX required, respectively, 
278 
.1 and 53 days. Table 2 also shows that MSSO-BlockIP is generally 

ore efficient for quadratic than for linear problems, which is con- 

istent with the theoretical results found in Castro & Cuesta (2011) . 

MSSO-BlockIP may also be much more efficient than general 

PM solvers in terms of memory requirements. This can be seen 

n Table 3 , which reports the gigabytes of RAM required by each 

ethod for all the supply network design instances. MSSO-BlockIP 

learly requires a fraction of the memory used by CPLEX in those 

nstances. Therefore MSSO-BlockIP could be successfully run on 

uch smaller hardware, thereby significantly saving energy and 

ontributing to a reduction in CO 2 emissions. 

Finally, since one of the strengths of state-of-the-art implemen- 

ations of IPMs (such as CPLEX) is its ability to efficiently scale 

o multiple threads (i.e., the Newton direction is solved by highly 

fficient parallel sparse Cholesky solvers), we ran the six largest 

nstances of Tables 1–3 with the CPLEX v20.1 parallel barrier. We 

nly considered the compact model (1) with CPLEX v20.1, because, 

s shown in Table 2 , it was (by a large margin) the most effi-

ient formulation with the sequential barrier. We also ran these in- 
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Table 4 

Results of parallel runs for supply network design instances. Times are wall-clock seconds. Fastest execution in boldface. 

Instance threads MSSO-BlockIP CPLEX (3) 

it. PCG Time Speedup it. Time Speedup 

SC-T4-L4-PI-20-P40-S2000-C4000-L 50 135 13,904 8859 7.6 20 9118 3.6 

SC-T4-L4-PI-20-P40-S2000-C4000-Q 50 122 8934 6979 6.7 58 26,875 4.0 

SC-T3-L15-PI-15-P40-S4000-C2000-L 50 440 27,836 53,652 6.0 17 42,686 9.1 

SC-T3-L15-PI-15-P40-S4000-C2000-Q 50 507 31,694 65,516 5.7 48 106,405 7.0 

SC-T5-L4-PI-10-P40-S2000-C4000-L 100 370 34,067 33,470 � 6.0 27 54,136 � 37.4 

SC-T5-L4-PI-10-P40-s2000-C4000-Q 100 217 12,655 15,072 � 6.6 65 128,192 � 36.1 

(3) CPLEX v20.1 solved the compact formulation (1) . 
� Execution performed on a different server of 755gigabytes of RAM. 
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tances with a preliminary parallel version of MSSO-BlockIP based 

n openMP. It is worth noting that this preliminary parallel MSSO- 

lockIP only focuses on the solution of the k systems with matrix 

 of (12) in parallel. However, each of those k systems is solved 

ith the standard sequential sparse Cholesky solver of Ng & Pey- 

on (1993) , instead of with a highly efficient parallel one. The par- 

llel results are reported in Table 4 . We considered 50 threads for 

he first four instances, and 100 for the two largest ones (which 

ere run in the larger server), as shown in column “threads” of 

able 4 . Columns “Times” give the wall-clock time (instead of CPU 

ime), in seconds. Columns “Speedup” give the ratio t 1 /t κ , where 

 1 and t κ are, respectively, the execution times with one thread 

sequential time) and κ threads (parallel time). Then, the greater 

he speedup, the faster the parallel execution. The sequential times 

re those in columns “CPU” (for MSSO-BlockIP and CPLEX 

(3) ) in 

able 2 . We want to stress that the sequence of points (and num- 

er of iterations) generated by the CPLEX v20.1 parallel barrier dif- 

ers from that of the sequential barrier, even imposing the option 

deterministic parallel mode”. On the other hand, MSSO-BlockIP al- 

ays generates the same sequence of points, both in parallel and 

equential runs. We see that, even with a preliminary parallel im- 

lementation, MSSO-BlockIP produced the fastest runs (which are 

arked in boldface in Table 4 ) for all but one instance. Compar- 

ng the speedups of MSSO-BlockIP and CPLEX, they were similar 

or the first four instances, but for the two largest problems CPLEX 

btained speedups six times greater than MSSO-BlockIP (approx., 

6 vs 6). A possible explanation is that, in huge problems, the so- 

ution of the linear systems of equations for the Newton direction 

ominates the rest of steps of the algorithm, and then a highly effi- 

ient parallel sparse Cholesky solvers is more efficient. Indeed, ac- 

ording to Amdahl’s law ( Bertsekas & Tsitsiklis, 1995 ), the theoreti- 

al speedup s̄ (which is an upper bound for the observed speedup) 

s given by the expression 

¯
 = 

1 

f/κ + (1 − f ) 
, 

here κ is the number of threads, and f is the fraction of the al- 

orithm which is run in parallel (thus 1 − f is the fraction of the 

lgorithm which is run sequentially, and it represents a bottleneck 

or the parallel execution). From Amdahl’s law we have that 

f = 

κ( ̄s − 1) 

s̄ (κ − 1) 
. 

f, from the last two rows of Table 2 , we consider that s̄ = 6 for

SSO-BlockIP and s̄ = 36 for CPLEX, and using κ = 100 , the corre- 

ponding values of f would be f = 

100(6 − 1) 

6(100 − 1) 
≈ 0 . 84 for MSSO- 

lockIP, and f = 

100(36 − 1) 

36(100 − 1) 
≈ 0 . 98 . That is, the parallel fraction 

f the algorithm is 98% for CPLEX, whereas it is just 84% for MSSO- 

lockIP. This gap could be reduced by attempting to parallelize 

ther sections of BlockIP, such as the PCG solver. This is part of 

uture research on BlockIP. 
279 
.3. Revenue management (RM) 

As pointed out in Talluri & van Ryzin (2004) , “revenue manage- 

ent aims to maximize the revenue of selling limited quantities 

f a set of resources by means of demand management decisions. 

 resource in RM is usually a perishable product/service, such as 

eats on a single flight leg or hotel rooms for a given date. It is

ommon in RM that multiple resources are sold in bundles”. 

The aim of the problem, as presented in Appendix B , consists of 

eciding on the number of accepted bookings for bundle-class in 

ny stage, as well as in the stages previous to the service that will 

e provided, such that the expected income is maximized along 

he scenarios time horizon. The uncertain (strategic) parameter is 

he stagewise-dependent bundle-class demand, which means that 

e are dealing with a multistage strategic tree. As for the sup- 

ly network design instances, we also consider the compact model 

26) and its split-variable formulation (27) by following (1) and (2) , 

espectively. 

We generated a set of 14 large (linear) instances following 

scudero et al. (2013) , and the objective function was transformed 

o a minimization formulation. These instances are available from 

he authors by request. Their sizes are reported in Table 5 . Column 

eaded with “#var.” shows the number of (linear) variables 
∑ k 

i =1 n i 
f the problem. The rest of columns have the same meaning as 

n Table 1 . Instances’ names are denoted as RM[-c]-Tx-Ly, where 

x” = |T | and “y” = � . The difference between RMc-Tx-Ly and RM- 

x-Ly instances is that the former includes an additional set of 

onstraints and variables (see the note about the tightening for- 

ulation of model (26) considered in Section B.2 of Appendix B ). 

able 5 shows that, unlike in the supply network design instances, 

he number of linking constraints is very large. This is due to RM 

roblems having large numbers of split-variables. 

Table 6 shows the results obtained for the RM instances us- 

ng MSSO-BlockIP and CPLEX v20.1. The columns headings are the 

ame as those for the supply network design instances in Table 2 , 

ith the only exception that CPLEX variant (3) was ran with the 

efault aggregator, since it was the most efficient option for the 

ompact RM model. The CPLEX variants (1) and 

(2) are based on 

he split-variable formulation. For RM problems, the latter outper- 

ormed the former in many instances. We note that this means the 

plit-variable formulation (2) has collateral benefits not only for 

ur specialized method but also for general state-of-the-art solvers. 

he best CPLEX variants for RM problems were generally (2) and 

3) . 

It can be observed in Table 6 that MSSO-BlockIP required many 

ore IPM iterations than CPLEX. This is due to the inexact New- 

on directions provided by the PCG, whereas CPLEX instead uses 

ore accurate directions computed by Cholesky factorizations. It is 

nown, however, that inexact directions can be used in IPMs with- 

ut significantly affecting their convergence properties ( Gondzio, 

013 ). The CPU time of the fastest execution is marked in bold- 

ace, and it is clearly observed that MSSO-BlockIP outperformed 
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Table 5 

Sizes of revenue management instances. 

Instance |T | � k # var. # cons. l

RMc-T5-L5 5 5 781 1,951,700 702,900 624,000 

RM-T5-L5 5 5 781 1,936,100 687,300 624,000 

RMc-T8-L3 8 3 3280 8,199,200 2,952,000 2,623,200 

RM-T8-L3 8 3 3280 8,089,900 2,842,700 2,623,200 

RMc-T3-L100 3 100 10,101 25,251,700 9,090,900 8,080,000 

RM-T3-L100 3 100 10,101 25,241,600 9,080,800 8,080,000 

RMc-T4-L25 4 25 16,276 40,689,200 14,648,400 13,020,000 

RM-T4-L25 4 25 16,276 40,624,100 14,583,300 13,020,000 

RMc-T10-L3 10 3 29,524 73,809,200 26,571,600 23,618,400 

RM-T10-L3 10 3 29,524 72,825,100 25,587,500 23,618,400 

RMc-T8-L5 8 5 97,656 244,139,200 87,890,400 78,124,000 

RM-T8-L5 8 5 97,656 242,186,100 85,937,300 78,124,000 

RMc-T6-L10 6 10 111,111 277,776,700 99,999,900 88,888,000 

RM-T6-L10 6 10 111,111 276,665,600 98,888,800 88,888,000 

Table 6 

Results for revenue management instances. CPU times are in seconds unless otherwise stated. Fastest execution in 

boldface. 

Instance MSSO-BlockIP CPLEX (1) CPLEX (2) CPLEX (3) 

it. PCG CPU it. CPU it. CPU it. CPU 

RMc-T5-L5 87 2136 83 19 268 35 177 14 135 

RM-T5-L5 183 15,182 485 16 303 27 137 18 104 

RMc-T8-L3 143 5706 884 24 7447 35 1985 15 2825 

RM-T8-L3 239 6278 1040 22 2465 41 1040 28 12,521 

RMc-T3-L100 210 9866 4968 44 6971 56 7845 22 23,073 

RM-T3-L100 249 8726 4558 44 5049 40 7719 19 21,234 

RMc-T4-L25 265 11,695 10,049 39 23,904 44 30,590 25 3823 

RM-T4-L25 733 7244 9479 39 10,165 46 14,928 23 3584 

RMc-T10-L3 471 16,874 24,952 38 101,444 48 91,650 — > 14d † 

RM-T10-L3 355 16,661 22,923 33 82,746 45 60,121 — > 33d † 

RMc-T8-L5 907 27,515 151,979 55 1,710,241 ∗ — > 6d † — > 14d † 

RM-T8-L5 1360 15,837 112,013 — > 31d † — > 10d † — > 144d † 

RMc-T6-L10 673 34,891 197,701 — > 17d † — > 3.3d † 38 235,954 

RM-T6-L10 1165 17,730 129,291 — > 22d † — > 3.3d † 33 207,714 

(1) CPLEX v20.1 solved the split-variable formulation (2) , with default aggregator. 
(2) CPLEX v20.1 solved the split-variable formulation (2) , deactivating default aggregator. 
(3) CPLEX v20.1 solved the compact formulation (1) , with default aggregator. 
∗ 1,710,241 seconds = 19 days: 19 hours: 33 minutes: 36 seconds. 

— Execution was stopped early by excessive expected CPU time. 
† Estimated number of days of CPU from the total number of arithmetic operations for factorizations 

reported in the CPLEX log file. 
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Table 7 

Memory requirements (in gigabytes of RAM) for revenue management 

instances. 

Instance MSSO-BlockIP CPLEX (1) CPLEX (2) CPLEX (3) 

RMc-T10-L3 23 102 133 166 

RM-T10-L3 21 81 102 480 

RMc-T8-L5 83 410 469 481 

RM-T8-L5 77 317 468 454 

RMc-T6-L10 92 408 438 331 

RM-T6-L10 87 468 452 307 

(1) CPLEX v20.1 solved the split-variable formulation (2) , with default 

aggregator. 
(2) CPLEX v20.1 solved the split-variable formulation (2) , deactivating 

default aggregator. 
(3) CPLEX v20.1 solved the compact formulation (1) , with default aggre- 

gator. 

e

o

s

t  

p

PLEX in all but four of these very large instances. For example, 

n instance RMc-T8-L5 MSSO-BlockIP took 151,979 seconds (1 day, 

8 hours, 12 minutes, and 57 seconds) of CPU time, while CPLEX 

ariant (1) required almost 20 days of CPU. Because of this ex- 

essive amount of time with CPLEX, some runs (for the largest 

nstances) were stopped early and the overall CPU time was es- 

imated by comparing the total number of arithmetic operations 

eeded for the Cholesky factorizations (reported in the CPLEX log 

le) with the value in CPLEX variant (1) for instance RMc-T8-L5. 

Looking at MSSO-BlockIP results in Table 6 , it can be observed 

hat variant RMc-Tx-Ly outperformed variant RM-Tx-Ly in only two 

ut of the seven instances, with CPU times being much higher in 

he other five. It is worth pointing out that the opposite is ob- 

erved when using a stochastic programming-based decomposition 

lgorithm (as in Escudero et al., 2013 ) for the revenue management 

ompact model (26) that is detailed in Section B.2 of Appendix B . 

he rationale behind this is that the higher sizes of the classi- 

al tightening approaches for non-IPMs usually degrade the matrix 

parsity. 

As with the network design instances, MSSO-BlockIP was also 

uch more efficient than CPLEX in terms of memory requirements, 

hich can be observed in Table 7 . This table shows the gigabytes 

f RAM required by each method in a subset of the largest rev- 
φ  

280 
nue management instances. MSSO-BlockIP also required a fraction 

f the memory used by CPLEX and, thus, could be run on much 

maller hardware. 

Since all previous executions have been performed with φ = 1 , 

o check the effect of φ (the number of terms of (16) used in the

reconditioner) we ran the first eight RM instances of Table 5 with 

∈ { 2 , 3 } (the results for φ = 1 are those in the Table 6 ). The
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Table 8 

Results for some revenue management instances for different number of terms ( φ) in the preconditioner. 

Fastest execution in boldface. 

Instance φ = 1 φ = 2 φ = 3 

it. PCG CPU it. PCG CPU it. PCG CPU 

RMc-T5-L5 87 2136 83 95 1574 105 96 1270 121 

RM-T5-L5 183 15,182 485 108 1645 106 110 1411 126 

RMc-T8-L3 143 5706 884 153 4323 1145 146 3221 1215 

RM-T8-L3 239 6278 1040 244 3609 991 249 2940 1134 

RMc-T3-L100 210 9866 4968 197 6940 5805 217 5988 7030 

RM-T3-L100 249 8726 4558 274 6084 5433 270 5000 6163 

RMc-T4-L25 265 11,695 10,049 296 8365 11,509 255 6670 12,602 

RM-T4-L25 733 7244 9479 759 5889 11,077 768 4358 11,310 

Table 9 

Results for some revenue management instances, with optimality tolerance 10 −3 , for different number of terms 

( φ) in the preconditioner. Fastest execution in boldface. 

Instance φ = 1 φ = 2 φ = 3 

it. PCG CPU it. PCG CPU it. PCG CPU 

RMc-T5-L5 131 3989 146 140 3107 196 136 2427 217 

RM-T5-L5 230 19,058 559 140 2931 176 141 2383 199 

RMc-T8-L3 201 13,471 1908 213 10,297 2546 208 7798 2788 

RM-T8-L3 298 9191 1350 403 10,942 2652 325 5012 1813 

RMc-T3-L100 226 22,371 10,133 227 15,401 12,084 237 14,166 15,842 

RM-T3-L100 254 22,805 10,289 277 18,427 14,424 278 14,539 16,307 

RMc-T4-L25 286 32,151 22,602 286 21,907 26,871 282 17,224 30,425 

RM-T4-L25 494 22,896 17,492 506 17,348 22,565 515 13,998 25,961 
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esults are shown in Table 8 . We see that by increasing φ, the

verall number of PCG iterations was effectively reduced, but not 

he CPU time, and φ = 1 provided the fastest execution (except 

or instances RM-T5-L5 and RM-T8-L3, where φ = 2 was the best 

hoice). 

To observe the effect of φ when tighter optimality tolerances 

re requested, we repeated the same runs but reducing the op- 

imality tolerance to 10 −3 . The results are shown in Table 9 . We

ee that the number of PCG iterations and CPU time significantly 

ncreased with the tighter optimality tolerance. But, as in the pre- 

ious Table 8 , φ = 1 was still the best option in most cases (only

= 2 was a better choice for instance RM-T5-L5). Therefore, it can 

e concluded that, in general, the best option for MSSO-BlockIP is 

o consider φ = 1 . 

. Conclusions 

The new approach for multistage stochastic optimization intro- 

uced in this work, which is based on a specialized interior-point 

ethod for primal block-angular problems, has proven to be very 

ffective for solving huge problems. Unlike previous MSSO tech- 

iques, the new method can deal with both operational and strate- 

ic uncertainties, and it can solve both linear and (convex separa- 

le) quadratic problems. The method relies on the particular struc- 

ure of preconditioner E (discussed in Section 4.1 ), which allows 

fficiently solving systems of equations. The extensive computa- 

ional experience reported (using two applications: supply network 

esign and revenue management) shows that the MSSO-BlockIP 

ackage—which implements the new method—outperformed one 

f the best state-of-the-art solvers by a significant margin. 

This work could be extended in several ways. One line of re- 

earch could apply the new method to problems other than supply 

etwork design and revenue management. A second line of work 

ould be extending this new approach to general convex separa- 

le MSSO (that is, problems with nonlinear objective functions and 

ositive diagonal Hessian matrices), for which, in practice, no so- 

ution techniques are available for huge problems. 
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ppendix A. Supply network design under uncertainty: models 

The multistage strategic supply network design problem consid- 

red in this work deals with strategic and operational uncertain- 

ies. The two-stage stochastic trees rooted at the strategic nodes 

epresent the operational uncertainty that is realized in the sec- 

nd stage scenarios. As for the revenue management pilot appli- 

ation, see Appendix B , two mathematically equivalent models are 

onsidered, namely, the compact model and the split-variable for- 

ulation. 

There are state strategic variables at the nodes as well as local 

trategic ones. The state variables link two consecutive stages (i.e., 

he strategic node that belongs to and their immediate successors). 

he plant capacity expansion in the strategic nodes is represented 

y local strategic variables. The actual capacity (a state strategic 

ariable) is represented by the step variables modeling object that 

nsures the strategic nodes are linked only between consecutive 

tages. 

1. Introduction and notation 

The strategic decision variables are related to the plant capacity, 

uch that the local ones are the initial plant capacity and its exten- 

ions; and the state variables represent the resulting plant capacity 

s the link between the strategic nodes and their immediate suc- 

essors. Therefore, the strategic variables belong to the nodes of 

he Hamiltonian path from root node 1 up to a node, viz., ω in 
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he last stage of the multistage scenario tree. The uncertain strate- 

ic parameters are the initial capacity and expansion unit costs 

nd the plant capacity residual unit values. On the other hand, 

he operational decision variables are related to the raw materials 

eing supplied and their transportation from the suppliers to the 

lants, their processing in the plants, and the transportation of the 

anufactured end product from the plants to the customer cen- 

ers. The uncertain operational parameters cover all stages along 

he time horizon, and they are the cost of supplying, transporting 

nd processing the raw materials in the plants, the processing co- 

fficients in the plants, the end product transporting cost from the 

lants to the customer centers, and the demand from those cen- 

ers. This operational uncertainty is captured in scenarios that are 

epresented as nodes in the second stage of the stochastic two- 

tage trees rooted at the strategic nodes. 

Let the notation of the different elements, usually capital let- 

ers and the symbol (. ) , denote data, while lowercase and Greek 

etters denote variables. Recall from Section 5.2 that S , P , C, and 

 denote, respectively, the sets of raw materials to be supplied, 

lants, customer centers, and arcs connecting the nodes associated 

o S ∪ P ∪ C. 

eterministic data 

ˆ x 0 
j 
, Current existing capacity of plant j, j ∈ P , at the beginning 

of the time horizon. Note: ˆ x 0 
j 
= 0 ∀ j ∈ P means that the in-

frastructure system is anew. 

x j , Maximum capacity that is allowed for plant j, j ∈ P . 

B t , budget available for plant investment (either initial capacity 

or extension) at stage t , t ∈ T . 
ρ ∈ (0 , 1) , parameter that gives the fraction of the investment 

in any plant capacity over the overall plant investment at 

any stage. 

M 

t 
j 
, plant unit maintenance cost, j ∈ P , at stage t , t ∈ T . 

y i , maximum stock volume of raw material i that can be sup- 

plied under any operational scenario at any stage, i ∈ S . 

y t i j , upper bound on the flow from node i to node j , (i j ) ∈ A ,

being raw material for i ∈ S, j ∈ P and end product for i ∈
P, j ∈ C. 

M d , unit penalization of demand shortfall under any operational 

scenario at any stage, k ∈ C. 

trategic uncertain data in node n , n ∈ N 

C n 
j 
, unit cost of the investment on the initial capacity or its ex- 

pansion in plant j, j ∈ P , in strategic node n . 

V n 
j 
, unit residual value of the capacity investment on plant j, j ∈ 

P , in node n at the end of the time horizon (i.e., n ∈ N |T | ).
Usually, V n 

j 
< C n 

′ 
j 

, n ′ ∈ N . 

perational uncertain data under scenario π , π ∈ �t , t ∈ T 
C π

i j 
, unit cost of raw material i supplying, its transporting to and 

processing in plant j, i ∈ S, j ∈ P , and unit cost of trans-

porting the end product from plant i to customer center j, 

i ∈ P, j ∈ C, under scenario π , provided that (i, j) ∈ A . 

P π
i j 

, capacity requirement of plant j to process a unit of raw ma- 

terial i , i ∈ S, j ∈ P , under scenario π , provided that (i j) ∈ A .

D 

π
k 

, end product demand from customer center k , k ∈ C, under 

scenario π . 

Note: Under the assumption that the parameters C π
i j 

, P π
i j 

and 

D 

π
k are not stagewise-dependent but stage-dependent ones, 

it means that they do not depend on the plants’ capacity. 

tate strategic variables in node n , n ∈ N 

x n 
i 
, end product capacity of plant i , i ∈ P , and raw material i

stock volume, i ∈ S , that is available in strategic node n . Ob-
282 
serve that x n 
i 
, i ∈ P , is the result of the cumulated invest-

ment that is carried out in the previous strategic nodes back 

to stage t = 1 , including node n . (i.e., set ∀ n ′ ∈ A 

n ). 

Therefore, note that x n 
i 
, n ∈ N |T | , is the capacity investment 

in plant i , i ∈ P , that results at the end of the time horizon. 

ocal strategic variables in node n , n ∈ N 

δn 
j 
, end product initial capacity of plant j or its expansion, 

j ∈ P , to be invested in strategic node n at stage t n . 

(x ρ ) n 
j 
, fraction of the total plant capacity that has not been 

considered while deciding the capacity of plant j, j ∈ P , 

by strategic node n during stage t n , it is a slack variable. 

(b a ) 
n , unused budget for plant investment (either initial capac- 

ity or expansion) in strategic node n during stage t n , it 

is a slack variable. 

perational variables under scenario π , π ∈ �t n , n ∈ N 

y n,π
i j 

, flow from node i to node j , (i j ) ∈ A , being raw material

for i ∈ S, j ∈ P , and end product for i ∈ P, j ∈ C, under

scenario π . 

(y a ) 
n,π
j 

, unused capacity of plant j, j ∈ P , under scenario π . 

(d a ) 
n,π
k 

, demand shortfall from customer center k under scenario 

π , k ∈ C. 

Note: For levelizing the end product demand shortfall 

in the customer centers, the quadratic of (d a ) πk is M d - 

penalized in the objective function of the model below. 

2. Strategic multistage operational two-stage split-variable 

ormulation 

This type of formulations is more suitable for IPM solvers, see 

astro & de la Lama-Zubirán (2020) . 

tate strategic split-variables in node n , n ∈ N 

x s 
j,n 

, copy of x n 
j 

where n is the strategic node that roots the em- 

bedded strategic two-stage tree, where { s } is the set of sec- 

ond stage nodes, ∀ j ∈ P, s ∈ S n 
1 
, n ∈ N : t n < |T | . 

x π
j,n 

, copy of x n 
j 

where n is the strategic node that roots the oper- 

ational two-stage tree, where { π} is the set of second stage 

nodes, ∀ j ∈ P, π ∈ �t n , n ∈ N . 

he model can be expressed 

min 

∑ 

n ∈N 
w 

n 
[∑ 

j∈P 

(
M 

t n 

j x 
n 
j + C n j δ

n 
j 

)
+ 

∑ 

π∈ �t n 

w 

π
( ∑ 

(i j) ∈A 
C πi j y 

n,π
i j 

+ 

∑ 

k ∈C M d ((d a ) 
n,π
k 

) 2 
)]

−
∑ 

j∈P 

∑ 

n ∈N |T | 
w 

n V 

n 
j x 

n 
j (24a) 

The objective function (24a) minimizes the expected cost of 

he plant investment and their maintenance, the expected cost of 

he operational activity and the quadratic penalization of demand 

hortfall in the scenarios, minus the residual value of the plants’ 

apacity at the end of the time horizon. 

The strategic and operational split-variables definition is repre- 

ented in the constraint system to be expressed as 

x n 
j 
− x s (1) 

j,n 
= 0 , x s −1 

j,n 
− x s 

j,n 
= 0 ∀ j ∈ P, s ∈ S n 1 \ { s (1) } , n ∈ N : t n < |T | 

(24b) 

x •
j,n 

− x π(1) 
j,n 

= 0 , x π−1 
j,n 

− x π
j,n 

= 0 ∀ j ∈ P, π ∈ �t n \ { π(1 } , n ∈ N , 

(24c) 

here (24b) define the split-variables of the strategic plant invest- 

ent variables x n 
i 
, and (24c) does the same for the operational 
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strategic variable. 
opies of those variables. Note that x •
j,n 

≡ x s (� ) 
j,n 

for n ∈ N : t n < |T |
nd x •

j,n 
≡ x n 

j 
for n ∈ N |T | . 

The other constraints system for the strategic multistage opera- 

ional two-stage problem can be expressed 

(x n 
j,σ n ) : t n > 1 + δn 

j 
− x n 

j 
= 0 − ( ̂  x σ

n 

j 
) : t n =1 ∀ j ∈ P, n ∈ N (24d) 

∑ 

i ∈S:(i j) ∈A 
P πi j y 

n,π
i j 

+ (y a ) 
n,π
j 

− x πj,n = 0 ∀ j ∈ P, π ∈ �t n , n ∈ N 

(24e) 

x n j + (x ρ ) n j − ρ
∑ 

j ′ ∈P 
x n j ′ = 0 ∀ j ∈ P, n ∈ N (24f) 

∑ 

j∈P 
C n j δ

n 
j + (b a ) 

n − B 

t n = 0 ∀ n ∈ N (24g) 

∑ 

j ∈P:(i j ) ∈A 
y n,π

i j 
= y i ∀ i ∈ S, π ∈ �t n , n ∈ N (24h) 

∑ 

i ∈S:(i j) ∈A 
P πi j y 

n,π
i j 

−
∑ 

k ∈C:( jk ) ∈A 
y n,π

jk 
= 0 ∀ j ∈ P, π ∈ �t n , n ∈ N 

(24i) 

∑ 

j ∈P:( j k ) ∈A 
y n,π

jk 
+ (d a ) 

n,π
k 

= D 

π
k ∀ k ∈ C, π ∈ �t n , n ∈ N (24j) 

0 ≤ δn 
j 
, x n 

j 
≤ x j ∀ j ∈ P, n ∈ N (24k) 

0 ≤ (x ρ ) n 
j 
∀ j ∈ P, n ∈ N (24l) 

0 ≤ (b a ) n ∀ n ∈ N (24m) 

0 ≤ y n,π
i j 

≤ y 
t n 

i j ∀ (i j) ∈ A , π ∈ �t n , n ∈ N (24n) 

0 ≤ (y a ) 
n,π
j 

∀ j ∈ P, π ∈ �t n , n ∈ N (24o) 

0 ≤ (d a ) 
n,π
k 

∀ k ∈ C, π ∈ �t n , n ∈ N (24p) 

The strategic constraints (24d) introduce the step variable mod- 

ling object for plant capacity. It is assumed that the initial capac- 

ty or expansion δn 
j 

in plant j from x n 
j,σ n up to x n 

j 
is performed 

t the beginning of stage t n . The strategic operational constraints 

24e) bound the operational consumption of raw material volume 

n each plant. The state strategic constraints (24f) keep a ρ-based 

quilibrium on the plants’ capacity. The local strategic constraints 

24g) force plant investment budget limitations. The operational 

onstraint (24h) bound the raw material volume to supply un- 

er the operational scenarios in order to cover the manufacturing 

eeds in the plants, without keeping stock volume at the end of 

he stages. The operational constraints (24i) balance the end prod- 

ct volume manufactured in each plant with the total volume dis- 

ributed to the customer centers under the operational scenarios. 

he operational constraints (24j) balance the end product manu- 

actured in the plant set for each customer center with its demand 

nd, so, defining the demand shortfall (d a ) 
n,π
k 

, if any, under the 

perational scenarios. 
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elationship between the split-variable formulation (24) and 

plit-variable meta formulation (2) 

The vectors of the variables of meta formulation (2) can be ex- 

ressed by the following sets of variables of formulation (24) , for 

j ∈ P, π ∈ �t n , (i j) ∈ A , i ∈ S, k ∈ C, n ∈ N : 

•
(
x n σ n = (x n 

j,σ n ) 
)

t n > 1 
, x n = (x n 

j 
) , z n = (δn 

j 
, (x ρ ) n 

j 
, (b a ) 

n ) , 

•
(
x πσ n = (x n,π

j,σ n ) 
)

t n > 1 
, y πn = (y n,π

i j 
, (y a ) 

n,π
j 

, (d a ) 
n,π
k 

) , 

3. Strategic multistage operational two-stage-based compact model 

This type of model is more suitable for primal and dual Simplex 

olvers, and also for IPM solvers if the number of dense columns 

s not large. It can be expressed 

min (24 a ) (25a) 

s. to ( ̂  x σ
n 

j 
) : t n =1 + (x σ

n 

j 
) : t n > 1 + δn 

j 
− x n 

j 
= 0 ∀ j ∈ P, n ∈ N (25b) 

∑ 

i ∈S:(i j) ∈A 
P πi j y 

π
i j ≤ x n j ∀ j ∈ P, π ∈ �t n , n ∈ N (25c) 

x n j ≤ ρ
∑ 

j ′ ∈P 
x n j ′ ∀ j ∈ P, n ∈ N (25d) 

∑ 

j∈P 
C n j δ

n 
j ≤ B 

t n ∀ n ∈ N (25e) 

(24 h ) –(24 p) (25f) 

The constraints (25b) introduce the state and local strategic 

ariables. The constraints (25c), (25d) and (25e) bound the pro- 

essing volume of the required raw materials in the plants under 

he operational scenarios, bound the plants’ capacity and bound 

he plants’ investment, respectively. The other constraints are as in 

he system (24h) –(24p) for the split-variable formulation. 

ppendix B. Revenue management under uncertainty: models 

1. Introduction and notation 

The revenue management model used in this work for maxi- 

izing expected income is taken from DeMiguel & Mishra (2006) . 

he following notation is used to present the problem in a multi- 

tage setting: 

ets 

R , resources. 

I, bundles. 

J , fare classes. 

I r , bundles using resource r, r ∈ R . 

eterministic parameters 

f i j , fare of bundle-class i j, i ∈ I, j ∈ J . 

C r , capacity on resource r, r ∈ R . 

ncertain parameters 

d n 
i j 
, demand for bundle-class i j in stage t n at node n , i ∈ I, j ∈
J , n ∈ N . 

ariables for i ∈ I, j ∈ J , n ∈ N 

b n 
i j 
, number of accepted bookings for bundle-class i j at stage t n 

in node n . Note: It is a local strategic variable. 

B n 
i j 
, cumulative number of accepted bookings of bundle-class i j

along the path from root node 1 to node n . Note: It is a state
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b
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D  
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E

E

E

G

G

G

G
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H
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H

2. Strategic multistage revenue management compact model 

The last stage satisfaction capacity-based model can be ex- 

ressed 

max 
∑ 

n ∈N 
w 

n 
∑ 

i ∈I 

∑ 

j∈ J 
f i j b 

n 
i j (26a) 

s. to B 

σ n 

i j 
+ b n 

i j 
= B 

n 
i j 

∀ i ∈ I, j ∈ J , n ∈ N (26b) 

∑ 

i ∈I r 

∑ 

j∈J 
B 

n 
i j ≤ C r ∀ r ∈ R , n ∈ N |T | (26c) 

0 ≤ b n 
i j 

≤ d n 
i j 

∀ i ∈ I, j ∈ J , n ∈ N . (26d) 

Note that the constraints (26c) impose that the total number of 

ccepted bookings along the whole booking horizon is restricted 

y the resource capacity. 

A tightening formulation of model RM (26) (which in Tables 5–

 is denoted as RMc) that is useful for some approaches consists 

f replacing ∀ r ∈ R , n ∈ N |T | with ∀ r ∈ R , n ∈ N in constraints

26c) (see Escudero et al., 2013 ) for a stochastic dynamic program- 

ing decomposition algorithm for problem solving. Note that the 

ew constraints impose that the overall number of accepted book- 

ngs in each stage’s nodes along the booking horizon is restricted 

y the resource capacity. 

3. Strategic multistage revenue management split-variable 

ormulation 

As an alternative to the compact model RM (26) that is more 

menable to IPMs, we use the split-variable formulation RM (27) . 

t requires the following variable 

B s 
i j,n 

, copy of B n 
i j 

where n is the node that roots the two-stage tree 

where { s } is the set of second stage nodes, s ∈ S n 
1 
, n ∈ N :

t n < |T | . 
The formulation can be expressed 

max 
∑ 

n ∈N 
w 

n 
∑ 

i ∈I 

∑ 

j∈ J 
f i j b 

n 
i j (27a) 

s. to B 

n 
i j − B 

s (1) 
i j,n 

= 0 , B 

s −1 
i j,n 

− B 

s 
i j,n = 0 ∀ s ∈ S n 1 \ { s (1) } , 

i ∈ I, j ∈ J , n ∈ N : t n < |T | (27b) 

B 

n 
i j 

= B 

n 
i j,σ n + b n 

i j 
∀ i ∈ I, j ∈ J , n ∈ N (27c) 

∑ 

i ∈I r 

∑ 

j∈J 
B 

n 
i j ≤ C r ∀ r ∈ R , n ∈ N |T | (27d) 

0 ≤ b n 
i j 

≤ d n 
i j 

∀ i ∈ I, j ∈ J , n ∈ N . (27e) 

Notice that here the constraints (27d) impose that the total 

umber of accepted bookings along the whole booking horizon 

s restricted by the resource capacity. Additionally, for the RM 

odel (26) , a tightening of formulation RM (27) (that in Tables 5–

 is denoted as RMc) consists of replacing ∀ r ∈ R , n ∈ N |T | with

 r ∈ R , n ∈ N in constraints (27d) . 
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