
Data Mining and Knowledge Discovery
https://doi.org/10.1007/s10618-023-00927-7

A case study of improving a non-technical losses detection
system through explainability

Bernat Coma-Puig1 · Albert Calvo1 · Josep Carmona1 · Ricard Gavaldà1

Received: 31 March 2021 / Accepted: 6 February 2023
© The Author(s) 2023

Abstract
Detecting and reacting to non-technical losses (NTL) is a fundamental activity that
energy providers need to face in their daily routines. This is known to be challenging
since the phenomenon of NTL is multi-factored, dynamic and extremely contextual,
which makes artificial intelligence (AI) and, in particular, machine learning, natural
areas to bring effective and tailored solutions. If the human factor is disregarded in the
process of detecting NTL, there is a high risk of performance degradation since typical
problems like dataset shift and biases cannot be easily identified by an algorithm.
This paper presents a case study on incorporating explainable AI (XAI) in a mature
NTL detection system that has been in production in the last years both in electricity
and gas. The experience shows that incorporating this capability brings interesting
improvements to the initial system and especially serves as a common ground where
domain experts, data scientists, and business analysts can meet.
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1 Introduction

In the last decade, artificial intelligence (AI) has become a widely used discipline in
the industry, expected to provide solutions in a broad range of applications ranging
from Computer Vision, Market Analytics, or Fraud Detection. Generally speaking,
AI helps companies optimise their processes, be more productive, and continuously
work towards their goals. However, sometimes AI solutions (e.g., predictive models
obtained through machine learning algorithms) are complex and hard to understand
by a human, often requiring deep knowledge of the company goals and algorithmics.
The process of empowering AI in the industry has opened a debate on trust and
confidence, especially when it is used for automatic decision-making (Rudin 2019).
Intending to provide a solution to these problems, the data science community has
started to propose new tools to provide explanations to AI algorithms (Molnar 2020).
The field of explainability is a relatively new field in AI that is currently booming.

This paper highlights the importance of explainability of predictive models, which
are the dominant approach to Non-Technical Loss detection in utility companies. Non-
Technical Losses (abbreviated as NTL) refers to all losses caused by intentional theft
and meter malfunctions: Meter tampering, bypassing meters, faulty or broken meters,
un-metered supply or technical and human errors in meter readings (Glauner et al.
2017). It contrasts with Technical Losses (TL), the energy losses during the distribu-
tion of the energy that can be technically explained, e.g., by the network impedance.
According to a study by Northeast Group, NTL globally amounts to US$96billion per
year (Northeast group 2017). Moreover, there are other consequences of fraudulent
activity in energy consumption: Illegal connections and meter tampering are danger-
ous operations for those that carry them out, the people living in the building and the
operators that maintain and repair them. NTL is not fair to the customers that do pay
for what they consume. Ultimately, it affects public administrations that co-finance
these utility services. In conclusion, reducing NTL is one of the top priorities of energy
providers.

State-of-the-art frameworks to fight NTL use complex predictive models such as
Gradient Boosting Tree Models, Deep Learning and Support Vector Machines. These
techniques can learn very complex patterns but are challenging to interpret. This lack
of interpretability can difficult the NTL detection’s success, as human validation is
almost mandatory to confirm the detected patterns. This is hard if no explanations
are attached to the model’s prediction, or to the model itself. Moreover, classical
machine learning problems may produce hidden biases in the models learned, such
as dataset-shift, as explained in Glauner et al. (2017). This problem is typically seen
in the literature (i.e., the dilemma between accuracy vs interpretability), and recently
different explanation methods have been proposed that aim provide interpretability to
these complex algorithms.

This work is based on our experience of building an NTL detection system for the
Spanish branch of the international utility companyNaturgy, that distributes electricity
and gas. We have described the architecture and results obtained by our system in
Coma-Puig et al. (2016), Coma-Puig and Carmona (2019). This manuscript explains
different approaches recently tried by us to provide interpretability to our system,
starting fromsimple statistical analysis (i.e., odds-ratio, Pearson correlation and feature
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distribution), then using the feature importance implementation from the ensemble tree
methods, to finally using the state-of-the-art explainability methods LIME (Ribeiro
et al. 2016) (for tabular data) and SHAP (Lundberg and Lee 2017) [(specifically the
TreeSHAP method for tree-based models (Lundberg et al. 2018, 2020)]. We compare
the pros and cons of the methods, describe use cases and results obtained and finally
explain the conclusions and remaining challenges in the field.

This paper is structured as follows: Sect. 2 summarises the related work in NTL
and explainability in industry, including an explanation of our solution to detect NTL.
Section3 reports on the current alternatives available for understanding prediction
models and Sect. 4 exemplifies them for the case of NTL detection. In Sect. 5 we draw
conclusions and enumerate challenges for the present and future.

2 Background and related work in detecting non-technical losses

To contextualise our case study of explainability in the process of detecting NTL, this
section provides an overview of the entire NTL detection and management process,
the approaches used to build supervised NTL detection models, the difficulties of
reporting it, how explainability can be useful in data science industrial projects, and
related work.

2.1 Addressing the NTL problem

Companies are well aware that a fraction of customers commit fraud, either by meter
tampering to reduce their reported consumption or by creating bypasses. Moreover,
some NTLs occur because meters fail or malfunction without malicious intervention.
Theobvious solution, sending technicians to inspect everymeter is, in general, not cost-
effective. For this reason, companies generate campaigns, lists of customers that seem
more likely to incur some form of NTL according to some criterion. The campaign
can be defined by many different parameters (geography, type of contract or energy
usage, intuition of the domain expert, measurement mismatch systems, prediction by
some machine learning algorithm, …). The goal is, of course, that within a campaign,
substantially more cases of NTL occur than by inspecting a randomly chosen subset
of customers.

Once the campaign is designed, technicians are sent to visit customers and inspect
meters. Each visit can be successful or not (the customer may be absent or may refuse
access to the meter; threats to the inspectors to drive them away are not uncommon).
When successful, the result of the visit (say, tampering, malfunction, or all normal) is
reported. The company may proceed to ask for back payment or fines to the customer,
often requiring months-long legal actions. The customer’s payments are somewhat
euphemistically called “recovered energy” and measured in energy units, e.g., kWh.
The goals of a predictive model for NTL are to predict cases of NTL and predict
expected recovered energy, as that figure goes into the cost-benefit equation of a
potential campaign.
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2.2 Related work in NTL detection

Formulating the detection of NTL cases using machine learning techniques is widely
reported in the literature, especially in electricity.

A very common approach is to reduce the NTL detection problem to a binary super-
vised machine learning problem using a black-box algorithm. In Buzau et al. (2018)
a framework is presented that shares many elements with our previous work; e.g., it
also uses Gradient Boosting and is implemented for a utility company in Spain. In
Nagi et al. (2009, 2011) two examples are described that use Support VectorMachines
to detect NTL in India, whereas neural networks are proposed for NTL detection in
Costa et al. (2013), Pereira et al. (2013), Ford et al. (2014).

There exist other examples in the literature that use other supervised, unsupervised,
and statistical inference methods. In McLaughlin et al. (2013) and in Liu and Hu
(2015) there are two examples of implementingMarkov models (Hidden and Partially
ObservedMarkovmodel respectively). InMonedero et al. (2012) the Pearson Correla-
tion is used to detect abnormal consumption drops. In Badrinath Krishna et al. (2015),
Angelos et al. (2011), Cabral et al. (2008) examples are included of using unsupervised
methods (clustering and Self-OrganisedMaps respectively). Also, in the literature can
be seen examples of detecting NTL using rule-based patterns from expert knowledge
[(e.g., Guerrero et al. (2014)] or inferred by fuzzy logic techniques [e.g., Spirić et al.
(2014)].

Our approach to detect NTL is a supervised method that relies on data to detect
NTL. However, there exist other approaches that use network-oriented solutions to
detect measurement mismatch and direct manipulation of the meter. These solutions
require smart meters and infrastructure. For instance, it is common that the utility
companies install Feeder Remote Terminal Units in their distribution networks that
monitor the network distribution and consumption of a zone to detect consumption
mismatch (Zhou et al. 2015).

Among the surveys that summarise the approaches in the literature to detect NTL
in electricity, we highlight two: Glauner et al. (2017) provides a good summary of the
challenges seen in detecting NTL cases such as the dataset-shift, the representation of
reality through features and scalability. Survey (Messinis and Hatziargyriou 2018) is
more enumerative and collects the different methods used to detect NTL. In gas and
water, there are no studies, to our knowledge, of implementing supervised methods to
detect NTL cases.

Our previous work in NTL is reported in a series of papers:
Coma-Puig et al. (2016) explains our binary supervised approach to detect NTL;

Coma-Puig and Carmona (2018) is our first approach to using an explanatory algo-
rithm (in this case LIME) in our system, and Coma-Puig and Carmona (2019) provides
an extensive analysis of the benefits of using artificial intelligence techniques to detect
NTL cases, as well as the problems detected such as the dataset-shift and other
data-related biases; Coma-Puig and Carmona (2021) analyses the classical classifi-
cation approach to detect NTL cases, and shows how a point-wise ranking regression
approach provides better results in terms of energy recovered and in explanatory terms;
Calvo et al. (2020) evidences the use of a bucket ofmodels (i.e., usemore specificmod-
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Fig. 1 The NTL detection Framework: When the stakeholder configures the campaign to be done, the
system autonomously loads the data, trains the model, predicts the scores for each customer at the present,
and finally the company generates the campaign. The results of the campaign is updated in the data sources

els for each type of NTL) increases the accuracy of our system (the models used are
more specific for one type of NTL), and in interpretability (the explanations obtained
from explanatory algorithms are easier to understand); finally, Coma-Puig and Car-
mona (2021) proposes a human-in-the-loop approach to involve and empower the
stakeholders in charge of the campaign generation.

2.3 Supervisedmethods to detect non-technical losses

Let us describe our NTL detection system and the typical supervised machine
learning approach to detect NTL. See also Fig. 1.

1. Campaign configuration.The stakeholder delimits the scope of the campaign (the
type of utility, region and tariff) and extracts the required data from the company
information systems.

2. User profiling. With this information, features are built to profile the customers
visited in the past (which give the labelled training instances), and the current state
of the target customers (which give the unlabelled instances for which a prediction
is required). In general, the consumption features are the most important since
they reflect the change of the consumption behaviour, but other complementary
information such as where the customer lives, or the results of past inspections to
the same customer, should be included.

3. Model training. With the historical NTL/Non-NTL profiles, a model is trained
and a prediction if produced for each customer in the campaign. In general, the
approaches seen in the literature build classification models (i.e., reduce the NTL
detection as a binary classification problem). In our case, a prediction is both a
score (to binary determine if the customer might be committing NTL) and an
estimation of the recoverable energy. See Table 1).
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Table 1 An example of the
predictions generated by our
NTL system. For each customer,
it provides both a probability of
the customer being committing
NTL and also an estimation a
prediction of the energy to
recover for that customer

Customer Score NTL Score kWh

Customer4 0.89 1231 kWh

Customer1 0.66 6231 kWh

Customer3 0.26 331 kWh

Customer0 0.12 231 kWh

Customer2 0.01 51 kWh

4. Report generation and campaign generation. The top-scored customers are
included in a report, and the company decides which customer are included in a
campaign.

5. Feedback. The result of the inspection (or the impossibility of it) for those cus-
tomers visited in the campaign is included in the system, as feedback and labels
for future campaigns.

2.4 Challenges in detecting NTL throughmachine learning

As seen in our previous work and other examples in the literature, the supervised
approaches can provide good results in detecting NTL cases. However, many chal-
lenges hinder the system.

The main challenge faced when building NTL detection models is the use of obser-
vational data produced for other purposes. This reuse calls into question the quality of
the data, both in qualitative and quantitative terms. To begin with, direct meter inspec-
tion by a trained technician is expensive and, for this reason, the companies pre-select
those customers with energy losses to be verified on-site by the technician. Therefore,
the historical NTL cases are customers who had abnormal consumption behaviour
(e.g., a suspicion of fraud). Likewise, most of the customers that have normal con-
sumption behaviour are not represented in the system. This lack of representativeness
is especially true in regions with a very low fraud proportion, where the majority of
the customers have never been included in a campaign. All this means that one of the
maxims to guarantee a good result when using machine learning, which is that the
training and test data should be i.i.d., i.e., independent and identically distributed, is
not met. It is therefore a challenge to guarantee reliable results.

These representativeness issues are not easy for the company to correct, since it is
difficult to reconcile the short-term interests of detecting as many frauds as possible
with the idea of generating a training set representative of the whole population in the
long term, i.e., the exploitation vs. exploration dilemma. For example, it makes perfect
sense that if some customers are recidivist fraudsters (and therefore the company is
sure that it can recover energy), the company will choose to visit these customers
again rather than generate exploratory campaigns, despite this decisionmight generate
biases in the trained models. Similarly, companies tend to generate more campaigns
in those regions where, in general, the results are more efficient. We call efficient
those campaigns where the company recovers more energy because it knows the
learned patterns better (i.e., the proportion of NTL detected or energy recovered is
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usually higher than average) or where the campaigns are executed faster (because the
outsourced company in charge of the campaigns works efficiently or the population
lives in dense regions, e.g., large cities). This predilection for generating campaigns in
regionswhere historically the best results have been obtained creates biases in the data.
As a case in point, this is a real example from our NTL system: Since the company
was much more successful in detecting NTL cases in one region than in the rest of the
country, the system used to assign only high scores to customers from that region.

In many cases, we have been able to mitigate these biases by implementing sim-
ple solutions, for instance, by segmenting customers according to their characteristics
(e.g., generating local-based regional campaigns). However, these simple logical solu-
tions are useful in cases where the bias is easy to detect, but in general, the bias is not
caused by one specific sensitive feature but as a result of combining different slightly-
correlated features. The classical evaluation of a model through training-validation
analysis is simple and inaccurate when dataset-shift occurs (Drummond and Japkow-
icz 2010).

2.5 Explainability in machine learning

The difficulty in detecting bias in predictive models is largely due to the tendency to
use black-box algorithms (as in our case, that we use a Gradient Boosting Decision
Tree model) which, in principle, guarantee high accuracy but pose a clear problem in
terms of transparency. It is then difficult to determine whether the patterns detected
by the predictive system are causal, robust and generalizable to unseen data (Pearl
and Mackenzie 2018; Pearl 2009; Arrieta et al. 2020). Fortunately, the artificial intel-
ligence researchers are becoming more and more aware that society needs transparent
algorithms, and therefore several approaches have been developed to better understand
what patterns the algorithms learn. In our case, as mentioned when describing our pre-
vious work, we have been pioneers introducing some of state-of-the-art explanatory
solutions to improve report generation. We have found it crucial to address both the
stakeholder and the data scientist concerns.

This work provides a global vision of this process, not sufficiently described in
our previous works, analysing the benefits and disadvantages of using each approach
tested (statistical analysis, Feature Importance,LIME Ribeiro et al. (2016) andShapley
(1953) Values from SHAP) in the NTL detection context. Other examples in the NTL
literature that focus on understanding how the model learns to include (Salman Saeed
et al. 2020), which implements feature selection through Pearson’s Chi-square statisti-
cal test and plots the first trees of a Boosted C5.0model, and Santos et al. (2021), which
proposes a very similar approach of ours of combining state-of-the-art implementa-
tions of Gradient Boosting Trees and Shapley Values. This latter idea we introduced
in Coma-Puig and Carmona (2019) and developed in subsequent papers.

LIME and SHAP are recent techniques, yet there are relevant examples in the lit-
erature of their implementation in real scenarios. A major example of implementing
explanatory algorithms in medicine is Lundberg et al. (2018), where it is reported how
the Shapley values help to prevent the hypoxaemia during surgery. Paper Galanti et al.
(2020) describes a process management case, where the Shapley values are used to
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provide explainability to a process monitoring system, showing that this explanatory
approach, combined with a Long-Short Term Memory Neural Network model, pro-
vides accurate and trustful explanations that are in line with the explanations from
human stakeholders. Also in Rehse et al. (2019) is explained how global and local
explanatory approaches are used in a deep learning process prediction system in
industry, where the system assists the workers and provides better insights of the fully
automated DFKI-Smart-Lego-Factory using mostly textual explanations, local rules
and saliency maps. All these cases exemplify that it is possible to combine predictive
black-box and explanatory algorithms to achieve accurate yet transparent algorithms
in industry.

Despite these examples of use in industry, the issue is far from settled. Rudin
(2019) makes a strong case to abandon the explained black-box approaches and go for
interpretable models. And there are reports in the literature that these solutions may
lack in stability (Alvarez-Melis and Jaakkola 2018) and trustworthiness (Slack et al.
2020).

2.6 Interface between data scientists, stakeholders andmanagers

When discussing the use of explainability in a machine learning project, the emphasis
is often on understanding how good the predictive model is. This is, indeed, certainly
accurate, and this project is no exception. For example, as we discussed in Coma-Puig
and Carmona (2021), explainability allowed us to compare different models based
on the learned patterns beyond benchmarking on a specific dataset. However, our
experience with Naturgy also allowed us to see explainability as a tool to ensure the
success of the project by improving communication between the actors involved in
the project.

From a data scientist’s perspective, implementing an NTL detection system in
a company like Naturgy, with millions of customers in many different domains, is
extremely challenging, as each domain has its own unique characteristics and biases
derived from the use of observational data. In general, a good approach to bypass
this tedious procedure is to rely on the knowledge of the stakeholder in charge of
the campaigns, to understand what knowledge they have of the domains (e.g., which
populations have more fraud). However, this collaboration can often be unfruitful,
because on the one hand the objective of the data scientist is to replace the existing
methods to detect NTL, detecting new patterns and improving their accuracy, and on
the other hand, because the stakeholder often does not know how a predictive model
works, and it is difficult for them to adapt his knowledge to the new approach to detect
NTL.

Explainability helps to overcome this problem, as it allows to understand how
certain data affect a model, simplifying the collaboration between stakeholder and
data scientist. In other words, the data scientists move from asking the stakeholders
in a generic way "what should we know about this domain" to asking "why the model
has learned this pattern". With this fundamental change, the stakeholder can be much
more assertive, as is clearer to them what is wanted to know about their knowledge.
This allows them to take an active role, even if they do not have machine learning
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knowledge, in the NTL detection process using predictive models. The result is that
theywill not only be able to do a better double-checking analysis (aswe have explained
in Fig. 1), but also to propose new variables, correct biases and actively participate in
the pre-processing of the data.

Finally, explainability is also extremely useful for the trustworthiness of the project
in the company. One of the problems with applied data science solutions in industry
is that, in some cases, machine learning or artificial intelligence are buzzwords asso-
ciated with big promises and, therefore, the management stakeholders feel obligated
to support these techniques in the company. However, the implementation of data sci-
ence techniques in real scenarios is very challenging and, in many cases, the results
are slow in coming and, in general, the system built is not the panacea that fulfils all
the problems regarding NTL detection. Therefore, making the system transparent is
mandatory in order to guarantee stakeholders’ trust in management; if these stake-
holders are aware of the system, understand what it does, and are aware that there
is a learning process in which better and better predictive models are obtained, the
commitment to the system will be consolidated, although there may be occasional
unsatisfactory results.

3 Understanding a non-technical loss predictionmodel

This section provides an explanation of the explanatory approaches tested in our NTL
detection system.More specifically, we explain three different statistical analysis (i.e.,
feature distribution, pearson correlation and odds-ratio) as well as three explanatory
algorithms (i.e., Feature Importance, Local Surrogate Models through LIME and the
Shapley Values from SHAP). Their use in our NTL detection system is explained in
further Sect. 4, where their benefits and disadvantages is analysed.

3.1 Statistical analysis

A basic approach to understanding a predictive model is to analyse the training dataset
statistically. This work highlights the following statistical measures:

– Feature Distribution: The distribution of the values of each feature in different
domains and segments. For instance, this simple analysis is useful to identify
regions where campaigns have been more successful at detecting NTL cases.

– Pearson Correlation: A measure of the linear correlation between two features,
where 1 indicates a perfect positive correlation (i.e., for every increase in one
feature, there is a positive increase of a fixed proportion in the other feature), and
-1 indicates a perfect negative correlation (i.e., for every increase in one feature,
there is a decrease of a fixed proportion in the other feature), where 0 indicates no
linear relation. The coefficient (r ) is defined as the ratio between the covariance
Cov of the values of two features divided by the product of their standard deviation
S, i.e.,:

− 1 ≤ rXY = Cov(X , Y )

SX SY
≤ 1 (1)
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As explained in Sect. 2.2, inMonedero et al. (2012) the Pearson Correlation coeffi-
cient is used to detect an abrupt and gradual but constant decrease of consumption
in customers, hence suspicious of NTL.

– Odds-Ratio: The Odds-Ratio O R statistic is usually used in medical reports [(as
explained in Bland and Altman (2000)]. It quantifies the influence of a binary
value to an outcome. In the NTL detection context, let Fxi =1 be the number of
NTL instances x with feature xi = 1, Fxi =0 be the NTL instances x with feature
xi = 0, Cxi =1 be the non-NTL instances x with feature xi = 1, and Cxi =0 be the
non-NTL instances x with feature xi = 0; then the O R is:

O R = Fxi =1/Cxi =1

Fxi =0/Cxi =0
= Fxi =1/Fxi =0

Cxi =1/Cxi =0
. (2)

Odds-Ratio values far from 1 indicate that customers with xi = 1 and customers
with xi = 0 have a different proportion of NTL.

These statisticalmetrics are not often considered explanationmethods but are useful
to understand the data used to train the model and, in some cases, are enough to detect
biases or undesired prediction rules (e.g., a preference for a region because campaigns
there were more successful in the past).

3.2 Explainability

In machine learning, explainability refers to presenting textual, numerical or visual
information that allows the human to understand predictions (Arrieta et al. 2020). It
is therefore dependent on human judgement and so hard to mathematize uniquely.

We give two operational definitions of explainability in this paper: Model level
and instance level. If M is a trained predictive model that receives instances
x = (v1, . . . , vn) to predict, a model-level or global explanation of M is a vector
(w1, . . . , wn) that describes how each feature xi globally influences the predictions
made by M , computed typically on the training instances used to build M . An instance-
level or local prediction provides such a vector for a specific instance x , therefore how
each feature influences M to produce its specific prediction M(x).

Some simple models are considered self-explainable in one or both senses. Typical
examples are Linear and Logistic Regression models (where the coefficients indicate
how relevant each feature is for themodel),DecisionTrees (where one can followapath
in the tree to understand how the model scored an instance), or Decision Rules (where
the predictive models are a set of if-else statements that can be easy to understand).
Being the simplest, these models also tend to be the least accurate.

On the other hand, there are explainability methods that are model-agnostic, i.e.,
not related to a specific type of model, intended to be used for complex algorithms
such as Gradient Boosting and Neural Networks. These include statistical analysis
[(e.g., Partial Dependence Plot (Friedman 2001) or the Feature Interaction (Friedman
and Popescu 2008)], Global Surrogate models (interpretable models whose values
to predict are the values predicted by the complex model), Local Surrogate Models

123



A case study of improving a non-technical...

(interpretable models that aim to reproduce the behaviour of the complex model for
one specific instance) or Shapley Values.

Thiswork focuses on three representatives of the current state-of-the-art explanation
methods: feature importance (from the ensemble tree methods), local surrogates from
the LIME library, and the SHAP library that computes the Shapley Values.

3.2.1 Feature importance

In tree models (i.e., a decision tree, or an ensemble of trees), the different methods to
feature importance can be divided into prediction and occurrence methods:

– Prediction methods: Analyse the influence of the feature values in the model’s
predictions. This naive definition includes, for instance, the Random Forest imple-
mentation from Scikit-learn (Pedregosa et al. 2011) (that evaluates the Gini
impurity of the samples of the nodes decrease after a split using that feature),
or the Loss FunctionChange from Catboost (Prokhorenkova 2017) that evalu-
ates how the prediction changes if that feature is removed.

– Occurrence methods: Measure the importance of the feature by analysing their
occurrences in the training process, i.e., howmany times the feature has been used
in the splitting process, usually referred as weight or frequency, or the number of
instances in the node split by that feature, usually referred as coverage.

3.2.2 Local surrogate models

Local surrogate models are simple interpretable models that aim to replicate the pre-
diction made by complex black-box models for one specific prediction: Let M be
a predictive model that the surrogate model aims to explain, x the instance to be
explained, and Ln an interpretable model (e.g., a linear Regression) trained on n
instances chosen somehow, then we would like to have Ln(x) � M(x) while keeping
the model complexity of Ln as low as possible, for example, using as few features
as possible to provide a simple explanation. Different methods differ on the type of
model Ln and the instances used to build it, which may be selected from the training
set or synthetically generated.

A state-of-the-art approach to local surrogate models is LIME (Local interpretable
model-agnostic explanation; Ribeiro et al. 2016). This library provides different
approaches to obtain the instances to create the surrogate model. For the tabular data
approach (our case), LIME perturbs each feature of x independently, using a normal
distribution with the samemean and standard deviation. Then, it weights the perturbed
instances according to their proximity to the original instance to be explained, and
trains an interpretable model with these instances. Finally, it provides an explanation
(i.e., if each feature value increases or decreases the prediction, as visually explained
in Fig. 2). The sum of these values should correspond to the prediction made by the
original model.
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Fig. 2 Example of the output from LIME in the Boston Dataset regression prediction dataset from Scikit-
Learn. On the left is shown the local prediction. At the center the five features that most influenced the
prediction are provided. For instance, we can see that having the value of the RM feature (average number
of rooms per dwelling) greater than 6.71 increases the prediction by 7.19. Finally, on the right there is a
summary of the exact feature values for that instance

Fig. 3 Example of the output from SHAP in the Boston dataset regression prediction dataset from Scikit-
Learn. We can see that the Base Value is 22.97. In the left-side are plotted the features that increase the
prediction (e.g., the RM feature, the same one analysed in previous Fig. 2, also increases the prediction). In
right-side are plotted the features that decrease the prediction. The sum of the Shapley Values and the Base
Value is equal to the predicted value

3.2.3 Shapley values (SHAP)

Shapley (1953) Values is a method to analyse the importance of each player in a
cooperative game, to reasonably determine the importance of each player for the
payoff. SHAP adapts this idea to determine how much the value of each feature of
x influences the prediction M(x). From a Base Value that corresponds to the mean
of the labelled instances in the training set, SHAP analyses how each feature in each
instance increases or decreases this Base Value to achieve the final prediction from
M .

The Shapley Values of a feature value in instance x is usually defined as:

ψi = ∑
S⊆{x1,...,xm }\{xi }

|S|!(p−|S|−1)!
p! (val (S ∪ {xi }) − val(S))

where p corresponds to the number of features, S a subset of the features from
the instance and val corresponds to the function that indicates the payout for these
features. In the equation, the difference between the val corresponds to the marginal
value of adding the feature in the prediction for a particular subset of features S. The
summand denotes all the possible subsets S that can be done without including the
feature from which the Shapley Values is calculated, i.e., v j . Finally,

|S|!(p−|S|−1)!
p!

corresponds to the permutations that can be done with subset size |S|, to properly
distribute the marginal values between all the features of the instance. All possible
subsets of features are considered, and the effect in the prediction of including the
feature to each subset is observed. Figure3 shows an example of the feedback provided
by SHAP for explaining the prediction of a particular instance from a public dataset.
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SHAP offers different methods to compute the Shapley Values, depending on the
supervised algorithm used. In our case, we would use the TreeSHAP method for Tree
models, since we are using a Gradient Boosting Ensemble Tree model. Other methods
are theKernelExplainer,which is a generic approachusingweighted linear regressions,
similarly to the LIME approach, or the Deep Explainer, an enhanced implementation
of the DeepLift algorithm (Shrikumar et al. 2017), to compute the Shapley Values for
deep learning algorithms.

3.3 Comparison

These four approaches have different characteristics that are summarised in Table 2.
The statistical analysis is the only approach that analyses the labelled data instead

of the model learnt. Therefore, the analyses using this approach might be inconclusive
(in many cases, one might not know exactly how the biases are reflected in the learning
process), but as explained in Sect. 3.1, it can be very useful to understand better the
data available.

The feature importance method from the tree algorithms offers a global vision of
how the model was learnt by ranking the most important features. The problem with
this approach is that it provides a how much vision of the importance of a feature, but
does not provide a how: the method analyses how much the feature influences during
the training process (e.g., how many times the feature is used), but it does not provide
how the feature influenced the output.

The local surrogate approach from LIME solves the problems explained in the two
previous approaches: it explains how the model was learnt, providing instance-level
explanations. But, as explained in the next section, themethod is unstable: explanations
depend on the parameter settings and on the random sample chosen to create the
surrogate model, which results in different explanations if the algorithm is run several
times on the same instance.

SHAP also analyses how the model has learned and offers instance explanation,
but it has the advantage that the local’s explanation sum offers a global explanation of
the model. Moreover, the SHAP for tree models is robust, always providing the same
explanation for the same instance and model.

Next section explains how these methods performed in our NTL detection system.

4 Case study: explaining NTL prediction for electricity

4.1 Context and purpose of explainability in our NTL system

During the last years, we have been developing an NTL detection system for the
Spanish branch of an international utility company. Our approach, explained in Coma-
Puig and Carmona (2019), is a supervised learning system that builds a Gradient
Boosting Decision Tree (GBDT) Model for NTL patterns from the past to score the
customers at present. For each present customer, it returns a normalised value for the
probability of NTL and predicts the recoverable energy. Based on these scores and the
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target segment, the company builds a campaignwith the customers to be visited. A new
model is trained every time the system generates campaigns, since we are constantly
updating the system, including new labeled information. The domains are very varied:
from highly populated regions with a lot of historical NTL/non-NTL information, to
sparsely populated regions with very little information. This need for flexibility made
us decide to use GBDTs models, since they offer state-of-the-art results for tabular
data in all types of domains with little tuning (Shwartz-Ziv and Armon 2022).

The system achieves, in many cases, the desired results. For instance, two types of
campaigns where the system worked particularly well were those that aim to detect
NTL in customers with no contract1 (achieving campaigns with a precision i.e., pro-
portion of NTL cases among the customers visited in the campaign, higher than 50%),
and campaigns to detect NTL in non-consuming customers, achieving a precision
up to 36%.2 These results were much better than generating campaigns by random
choice of customers, and also better than the heuristics previously used by the com-
pany. However, it exhibited some of the problems mentioned in Sect. 2.4 of undesired
biases and dataset-shift (e.g., to score higher the customers from a specific region) a
known problem in the detection of NTL, as explained in Glauner et al. (2017). This
resulted in some cases in campaigns that were worse than expected.

To better understand our system and detect its biases, we started to explore which
explainability solutions could be introduced in our system to better understand it. The
result of this analysis is this paper that explores the advantages and disadvantages of
the tested methods. Introducing explainability into our system has been of great help
to improve our system, make it more robust, and facilitate the interaction between the
Stakeholders in charge ofmaking the campaigns and us scientists at theUniversity. Part
of these satisfactory results are explained in Coma-Puig and Carmona (2021), where
we analyse how explainability allowed us to compare models beyond benchmarking.
Also, in Coma-Puig and Carmona (2021), we explain howwe combined explainability
and a human-in-the-loop method to empower the stakeholder, making them active
participants in the generation of the campaigns, and thus be able to guarantee that the
system learns generalisable patterns.

To illustrate the main ideas, this paper uses features from our dataset. Appendix A
contains the list of features used in this paper, together with a short explanation. This
analysis has been the seed to explore the solutions in our systembasedon explainability.

4.2 The starting point: limitations of statistical analysis

Our first approach to understand our systemwas to use statistical analysis as explained
in Sect. 3. This approach was useful to detect several problems in our dataset, that
influenced in the training process, for instance:

– Recidivist customers: Some of the customers that commit fraud are recidivist,
that is, they commit fraud repeatedly again and again even after being detected as

1 Customers that had contract but cancelled it. The wiring and other installation, in many cases, remain
installed, so it is feasible to manipulate the installation and commit fraud.
2 This results was extremely celebrated by the company, since the company was not able to discern when
a house was empty or if it was not consuming record due to a meter manipulation.
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Fig. 4 Example of a bias in our dataset: The labelled distribution in the company for similar nearby regions
is much different, and our model using this dataset as it is could be biased to high-score the customers from
Region 1

such. Our model detected this pattern, and therefore it was highly biased towards
the features related to previous visits (e.g., if a customer has a registered episode
of NTL in the past, or if the number of visits by a technician is higher than the
average). In itself, this pattern is correct, but it was not interesting in terms of
knowledge discovery, as it was already known and used by the company.

– Biased information: The labelled information available had biases. By design,
most available labelled instances corresponded to visits actually made, so highly
biased towards the customers that had looked suspicious in the past, and also to
geographical areas where inspections had beenmore frequent for whatever reason.
Therefore, the available labelled data was not distributed as the whole population,
and our models learned some erroneous patterns. This is exemplified in Fig. 4, a
real case of bias in a segment of our labelled dataset.

Nevertheless, the statistical analysis could not provide satisfactory explanations for
how our black-box model made predictions. For this reason, we started to introduce in
our system different explanatory approaches (i.e., the methods explained in Sect. 3),
to understand better the role of each feature in the prediction process.

This section explains our experience using these algorithms in our NTL detection
system. Through the study, we fix a particular reference predictive model called M
from now on. It is a CatBoost model trained with 3060 trees and almost 303,000
labelled instances (3.5% of NTL cases), tuned through a training-validation process
(with a 90–10 proportion). The hardware used for this work is an Intel Core i7-8550U
CPU, with 16GB of RAM and an SSD disk.We report on the nature of the information
provided by each method, its helpfulness to discover biases, and its strengths and
weakness.

4.3 Feature importance

We will analyse the feature importance method in Catboost, more specifically the
PredictionV aluesChange method that evaluates how much on average the predic-
tion changes if the value of that feature is changed3 The result of the method is a

3 The definition of the PredictionV aluesChange is available in the CatBoost’s documentation,
https://catboost.ai/docs/concepts/fstr.html#fstr__regular-feature-importance.
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ranking of features by importance, where importance values are normalised so that
their sum equals 100.

Figure5 shows the top 10 features4 of our reference model M . This information
provides a global picture of the model learnt since the most important features to
detect NTL cases are consumption features (and also, to a lesser extent, visit features).
Overall, the fact that 8 out of 10 features are related to consumptions or visits (and not,
for example, town) convinces the domain experts that the model is focusing on the
right information. Hence, using feature importance is helpful as a first sanity check of
the model.

However, feature importance is insufficient to analyse deeper how features influence
the prediction. See for instance the most important feature, Last Impossible 2 in Fig. 5;
this feature indicates the last time the company was unable to do a “No Fraud" visit.
A “No Fraud" visit is one whose main aim is not to detect Fraud, but some other
general-purpose. Nevertheless, the impossibility of performing the visit can hide an
abnormal behaviour from the customer (e.g., the customer avoids the technician visit
because he knows the meter has been tampered with). Although the model has learned
this fraudulent pattern, it can not be confirmed through feature importance since it
only provides a global, very fast (it took less than 0.05 s) to compute the explanation
of the importance of the model’s features but does not provide the reason behind a
high relevance. Indeed, in the ideal case, a high relevance describes a learned pattern
of NTL. But it can also be the result of a bias in the data, or an internal decision of the
learning algorithm that is not always justified or understandable by the stakeholder.

In this situation, it is necessary to complement the Feature Analysis with, for
instance, statistical analysis. Table 3 analyses the distribution of the Last Impossi-
ble 2 feature. In general, this feature for most labelled instances is undefined, i.e., no
Last Impossible 2 has occurred, and is therefore profiled with a missing value (a value
that CatBoost handles internally). However, this proportion is reduced when we focus
our analysis on the NTL cases with more than 3500kWh5 recovered (where more
than 10% of the cases had a Last Impossible 2). Finally, 3 out of 4 cases in which
the company recovered more than 35000kWh had a defined value for Last Impossible
2 (i.e., the customer was visited by a technician but the visit was not possible to be
carried out); this pattern might be the one learnt by our model.

In conclusion, according to our experience, the feature importance methods might
not be a proper method to understand the NTL detection model’s patterns fully but
can be a good baseline approach to detect clear undesired patterns.

4.4 LIME

This section discusses an example of the explanations obtained from LIME for tabular
data. We fix one particular customer for the rest of the section. It is an NTL case for
which a fraud of 3000kWh was reported; our model predicted an energy to recover

4 This section only analyses the top n features of each method to facilitate the explanation.
5 The consumption of a house or apartment in Spain is, on average, around 3500kWh. Therefore, this figure
is informally used in the project as a delimiter of what would be a great NTL case, i.e., an NTL case in
which the amount of energy recovered is remarkable.
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Fig. 5 Top 10 most important features according to the feature importance method from Catboost, i.e.,
PredictionValuesChange. It evaluates howmuch the prediction changes if the value of that feature is changed,
on average

Table 3 Analysis of the value Last Impossible 2 feature for the NTL labelled customers with recovered
energy from 3500kWh to 35000kWh, more than 3500kWh and all the labelled customers

Top selection Last impossible 2 undef. Last impossible 2≥0

3500 to 35000 kWh 571 84

> 35000 kWh 1 3

Customers 295218 7324

This feature indicates the months passed since the last Last Impossible 2 visit, where the value remains
undefined (i.e., the missing values) in case of no visit. The proportion of Last Impossible 2 ≥ 0 increases
for the NTL cases, specially when the energy recovered is high

of around 2100kWh. The execution time to obtain the explanation was 38s. Note that
all features discussed are numerical because LIME requires re-encoding categorical
variables as numerical ones. This example has been carefully selected because it
exemplifies the problems we have had with LIME in our system.

Figure 6 shows an example of a subset (top-10) of the most important features
for that customer according to LIME: the explanation indicates which feature values
increase or decrease the specific prediction of 2100kWh; the sum of each prediction
apportion should be the prediction done by the black-box model in that local region
(or at least, a good approximation).

However, LIME seems to have an important problem of robustness, exemplified in
Figs. 6 and 7: If the LIME algorithm is rerun on the same instance, a different random
sample is generated each time to generate the local model, and this leads to different
explanations of the same instance.

A second issue with LIME, reported in the literature Molnar (2020), is the high
sensitivity of the output to the setting of certain parameters, particularly the kernel
width. For instance, Fig. 8 shows the explanation of the same instance of Fig. 6, but
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Fig. 6 Local Explanation of the NTL case, first run. The top-10 most important features from the LIME
explanation of an NTL case with energy recovered of around 3000kWh. The most important features are
the Current Reading Absences (i.e., that it has absences in readings) as an indicator of NTL and the Last
Impossible 2 feature (i.e., that has a negative value, indicating the absence of Impossible “No Fraud" visits
as a non-NTL pattern)

Fig. 7 Local Explanation of the NTL case, second run. The same instance of Fig. 6 is explained differently
by LIME in a second run, due to sampling a different set of neighbours

now using a different kernel_width value. There is also little theoretical guidance for
choosing appropriate values.

Finally, there is no guarantee that the explanation obtained from L(x) is faithful to
what M(x) computes. This can also be seen in Fig. 7- The #Threats feature indicates
if the company’s technician has received threats when performing an installation or
revision at that customer, and Energy Cut indicates whether energy has been cut to
this user any time in the past. Nevertheless, upon close inspection, these features are
not used in the computation of M(x).
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Fig. 8 Example of how the kernel_width highly influences the explanation process

Table 4 Results from the tests in
Coma-Puig and Carmona (2018)
where we used LIME as a
post-process method to discard
customers with an unjustifiedly
high score. The post-process
increases the precision (i.e., the
proportion of NTL cases in our
validation dataset that would be
included in the simulated
campaign) 13%

Dataset %NTL %Non-NTL %Precision

Original campaign 72 28 72

LIME campaign 18 3 85

Despite these problems, based on the information provided by LIME, a methodol-
ogy can be proposed. In Coma-Puig and Carmona (2018), we describe an approach
for double-checking the predictions made by a model by implementing a rule system.
This system would determine, based on the features that, according to LIME, mostly
influenced the score for each instance, if the high prediction was trustful, discarding as
NTL-cases those instances for which, according to human knowledge, a high score is
not justified. The accuracy in our tests increased around 13%with this simple heuristic,
as shown in Table 4.

4.5 SHAP

This section analyses the explanations from SHAP for trees (i.e., the Tree Explainer).
We use the same reference instance used in the previous section, i.e., the positive NTL
customer for which 3000kWh of fraud were reported and for which our model M
predicted 2100kWh of recoverable energy.

Figure9 shows the explanation of SHAP of a subset (top-10) of the most important
features for our reference instance. Similarly to LIME, SHAP indicates how the feature
values increase or decrease the specific prediction of the energy to recover. Moreover,
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Fig. 9 Example of the Shapley Values for our reference NTL case of 3000kWh. The most important feature
for this instance is the Curr. Reading Absences and the Power Contracted

it does not have the LIME’s robustness problems since the TreeSHAP’s explanation
computation is deterministic and always provides the same explanation for a given
model and instance. Also, the explanation is consistent with what the model has learnt,
whichwasnot always the case inLIMEasdescribedbeforewith theEnergy Cut feature.

SHAP for tree-based models (Lundberg et al. 2018) is, according to our experience,
a very robust and rich method to provide interpretability to our system. The fast (in
our case, the system computed the Shapley Values in around 260s6 implementation
allows to obtain instance-level explanations, but also global model interpretation, e.g.,
the summary_plot shown in Fig. 10. This plot provides a summary of the model in
terms of feature importance, similar to the feature importance reported by learning
methods. Remarkably, this global explanation is consistent with the local explanations
[as explained in Molnar (2020), "the Shapley values are the ’atomic unit’ of the global
interpretations"], and with the feature dependency of the predictive treeModel. More-
over, the theory of the Shapley (1953) Values guarantees the properties of efficiency
(the feature contribution adds up the difference of prediction), symmetry (two features
have the same Shapley Values if they contributed equally), dummy (a feature that is
not used in the prediction model has a Shapley value of 0) and additivity (if the com-
putation of the prediction can be divided into sub-processes, i.e., the boosting process
in our model, the Shapley Values can be seen as the average of the Shapley values of
each tree).

The improvements over LIME in robustness and the theory behind the explanatory
algorithm are also evident when using SHAP in post-processing. In the Table we show
a pre-processing system similar to the one implemented in Coma-Puig and Carmona
(2018) with LIME. The two post-processings are not directly comparable (e.g., in
Coma-Puig and Carmona (2018) we applied it in a classification model, while in
Coma-Puig and Carmona (2021) we applied it in a regression model), but we did
indeed detect that, as the explanations in SHAP are more robust, we could be more
precise in our post-process. The lack of robustness in LIME is shown in Table 4, where
most of the high-scored customers are discarded. This is due to the fact that LIME
provided unrealistic explanations that made most of the explanations untrustful from
the stakeholders’ point of view view.

6 In this paper we did not use the GPU accelerated version of TreeSHAP, that provides a faster computation
but requires an Nvidia GPU.
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Fig. 10 Two versions of the summary_plot from SHAP: above, a box-plot diagram showing the average of
theShapley values for themost important features (similar to feature importance plots).Below, a distribution-
like description (more fine-grained) of the same information.According to SHAP, themost important feature
in the model is Curr. Reading Absences

4.6 Comparison and final remarks

Feature importance, the local approach from LIME for tabular data, and the SHAP
method for tree-based trees are three very different approaches to providing explain-
ability to our NTL detection system. In summary:

– Depth: The big difference in terms of depth is that Feature Importance provides a
superficial and modular explanation of the influence of each variable on the pre-
dictions, while LIME and SHAP offer deeper explanations at the instance level.
Therefore, as we have seen in our use case, Feature Importance can be interest-
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Fig. 11 The summary_plot obtained by SHAP after correcting the bias detected in Fig. 10

Table 5 Results from the tests in
Coma-Puig and Carmona (2021)
where we used the local
explanations from SHAP as a
post-process method to discard
those top n high-scored
customers whose most important
fraudulent feature was not
consumption related. This small
post-process increased the kWh
recovered per customer visited
in the simulated campaign

KWh per visit n=528 n=211 n=106 n=42

Regression 887.3 1266 1554.8 1740.3

Regression + Rule 944 1398.4 1741.5 2328.7

ing because of its effectiveness in getting a first sanity check of the model, but
its superficiality would not allow us to implement the double-checking methods
exemplified in Coma-Puig and Carmona (2018) (that uses LIME) or Coma-Puig
and Carmona (2021) (that uses Shapley values).

– Bias Detection: Feature importance is a good approach to easily detect biases and
other data-related problems. However, this can also be done with SHAP, which by
complementing such information with local explanations, gives us a better insight
into which values cause biases. In contrast, LIME’s local approach makes it much
more complicated when it comes to analyzing biases and unwanted patterns in the
model due to the lack of global analysis.

– Robustness: LIME has the problems of robustness of explanations across runs
due to its random component, which makes the whole approach look unreliable.
In contrast, feature importance and SHAP (Tree SHAP) always give the same
results for the same data.

– Truthfulness: Feature importance and SHAP compute the importance of the fea-
tures by analyzing (with very different approaches and with a different focus) how
the prediction changes when there is a modification in the feature. The local model
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from LIME, on the other hand, can use features in the local explanation not used
by the model (and therefore the explanation is not trustworthy).

– Complexity: Obtaining explanations for each method, in our case study, is fast:

– The Feature Importance provides a superficial modular explanation in much
less than a second.

– The LIME method provides a local explanation in around 38s.
– SHAP provides local and global explanation in around 250s.

Thus, we could conclude that no approach can be discarded because it is computa-
tionally expensive. That said, it is worth noting that LIME offers local explanations
(i.e., if we wanted a global explanation of the system, e.g., which variable might be
relevant in general, we would have to compute the explanations multiple times).
Regarding SHAP, we should also take into account the computational cost of
obtaining the explanations with other SHAP’s explainers since we use the imple-
mentation specific for tree-based models: TreeSHAP has a computational cost of
O(T L D2), being T is the number of trees, L the maximum number of leaves
in any tree and D the maximal depth of any tree, while the KernelSHAP (the
model-agnostic approach that can be used for any type of algorithms such as neu-
ral networks, support vector machines or tree-based models) cost is O(T L2M ) in
tree models, being M the number of features.

5 Conclusions and challenges

5.1 Summary of this work

This work explains, based on our experience after several years of collaboration with
the utility company Naturgy, the existing challenges to achieving robustness in an
autonomous NTL detection system based on supervised methods. The use of observa-
tional data entails the existence of biases that, in general, are difficult to detect when
using black-box algorithms. We explored different explanatory approaches to make
our system transparent, with the aim of better understanding.

Section 4 covers a standard statistical analysis approach (i.e., using Pearson Cor-
relation, Odds-Ratio and feature distribution), to feature importance method from the
tree ensemble methods, to finally implement state-of-the-art solutions such as Local
Surrogate models (i.e., LIME for tabular data) and Shapley Values (i.e., SHAP for
tree models). According to our experience, the information provided by SHAP is the
most complete, useful, and reliable. It provides both a complete global explanation
of the model and also consistent instance-level explanations. Also, it is free from the
stability issues encountered in practice when using LIME. Feature importance also
provides a global explanation, but the information provided is generic and cannot be
used to analyse specific instances.

Therefore, after the analysis explained in this manuscript, we chose to implement
Shapley values to analyse our system.
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5.2 Achievements through explainability

The decision of using SHAP as the algorithm to explain our system was a big quality
step in our project. As expected, there was a clear improvement in terms of understand-
ing our system. This of course meant a better system overall, since we implemented
several improvements in our pre-processing and training stages that made our system
better. But it is that in addition that we had many other benefits beyond the improve-
ment in understanding our system. First, explainability meant that the research in our
project (e.g., the process of testing improvements such as introducing weights in our
labelled information) was much more agile, as with explainability we had a method
for testing these methods and their consequences in the predictions, whereas before
we had to wait months to see the campaign’s results on exploratory campaigns. This
agility was also seen in the interaction with the stakeholders. The fact that all the actors
in the NTL detection process could be involved, as we explained in Sect. 2.6, meant
that more and better improvements could be implemented in our system.

5.3 Challenges and future work

The inclusion of the explanatory algorithm allowed us to improve the system, but it
also adds an extra layer to the system that slows down the generation of campaigns.
From our point of view as data scientists, this is a minor problem as we prioritise the
predictive capacity of the model; introducing the explanatory process, even if it means
increasing the time needed to generate a campaign, also means avoiding generating
campaigns that, basedon the patterns learned, are bad (as theyhave learnedbadpatterns
that do not generalise correctly) and should not be generated. But sometimes, based
on our experience with Naturgy, the generation of campaigns in a specific period of
time is mandatory to meet business objectives. Thus, the opinion of the data scientist
(i.e., iterate as many times as necessary a model to ensure its correctness) and the need
of the company (i.e., generate a campaign at a precise time) come into conflict.

A possible improvement for our system would be to make the whole process of
campaign generation and validationmore organic and natural to the company’s tempo,
makingmodel generation andvalidation faster. Therefore, our future goal is tomake the
whole process of campaign generation more intuitive for the company’s stakeholders.
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A explanation of the features commented in the paper

This appendix provides an explanation of all the features mentioned in the plots or
examples used along the paper. Unlike other work we have done for the company in
gas, we do not deseasonalise the electricity consumption curve, as the differences in
consumption between months are mild and do not justify it.
Last Impossible 2: This variable indicates the number of months elapsed since the last
time the company could not perform a visit, e.g., installation inspection. For instance,
a technicianmight visit an installation, but might not be able to carry out the inspection
because the customer prevents it (e.g., the installation is on their property and does
not allow the technician to access it). Suffix 2 indicates that the original purpose of
the visit was not to detect an NTL case (referred to below as "no Fraud" visit), but to
perform another technical visit.
# Impossible 2: Number of times the company could not perform a visit to the cus-
tomer. The purpose of the visit was not to detect NTL.
# Correct 2: Number of “no Fraud" visits to the customer with result of “no NTL
detected”.
Last Impossible: Number of elapsed months since the last time the company could
not perform a visit. In this case we compute both the visits to detect NTL cases but
also the other visits (referred in this analysis, as explained before, with the suffix 2).
Current Reading Absences: Number of months since the last meter reading.
Power Contracted: The power contracted by the customer.
Town: Town where the customer lives. This is a categorical variable.
# Visits 2: Number of “no Fraud" visits made to customer. We do not consider the
results of the visit, but if the customer has been historically "controlled" by the com-
pany.
SCC12MP: Similarity (in terms of consumption curve, 12 months) between the cus-
tomer and similar customers from the same province. More specifically, we compute
the average consumption per month of the customers from the same province and
Tariff, normalize the consumption curve, and compute how similar is this normalized
consumption curve with the normalized consumption curve of the customer. A low
value would indicate that the consumption is similar to the expected consumption
curve, while a very high value indicates that there is no similarity. It is expected that
a customer would have a consumption curve similar to the customer from the same
region and, therefore, a high value shoould be an indicator of NTL.
SCC12M: Similarity (in terms of consumption curve, 12 months) between the cus-
tomer and similar customers. This variable is computed as explained in SCC12MP,
but the comparison is done with all the customers included in the campaign, i.e., the
customers from the region.
Con.Penultimate Year: Consumption of the customer during the penultimate year.
By itself, this information might not provide great information, but it is useful to
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understand the historical consumption behaviour of the customer and, therefore, can
nuance themeaningof consumptionbehaviours at the present time (e.g., if the customer
has a low consumption right now, this low consumption is more suspicious if we see
that in the past the customer consumed large amounts of energy).
Last Bill: Amount of energy billed (i.e., kWh) to the customer in the last bill.
Last Fraud 2: Number of months since the last time the company performed a “no
Fraud" visit with an NTL result.
Con.Drop 24–6M Abs: Absolute consumption difference (i.e., kWh) between two
consecutive 6-months period of time. It is checked for the last 24 months.
Last Threat: Number of months since the last time the customer threatened a techni-
cian from the company to avoid the technical revision of the meter.
#Threat: Number of times the customer has threatened a technician from the company
to avoid their technical revision of the meter. A threat indicates that the customer
violently prevents the technician from checking the installation, a clear indicator that
the customer has tampered with the meter.
Last Threat: Number of months since the last time the customer threatened a techni-
cian from the company to avoid the technical revision of the meter.
Energy Cut: Number of times the company cut the energy supply to the customer.
Fraud Building 1Y: Number of times an NTL has been found in the building of the
customer during the last year. This information is interesting since between neighbors
can share information about how to implement fraud.
#Gas Fraud: Number of times the customer has had NTL cases in gas.
Con.Last Year/CLYZone: Ratio between the customer consumption and the average
consumption in the region (last 12 months). This information is straightforward, i.e.,
a much lower consumption should be an indicator of NTL.
Con.Low 24–6M.: Ratio between the customer consumption and the average con-
sumption of similar customers (i.e., customers from the same region and Tariff). The
period of time considered is the last 24 months, and the consumption window is 6
months.
Con. Customer/Con. Cust. 24M: Ratio between the customer consumption and the
average consumption in the region (last 24 months).
Median Bill 12M: Median Bill of the customer for the last 12 months.
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