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a b s t r a c t

In the ongoing energy transition, small and medium-sized industrial companies are making energy
equipment investments due to the obsolescence of their current equipment as well as social, political
and market pressures. These firms typically choose investments with low risk exposure based on
a combination of criteria that are not always quantifiable. However, published studies on energy
investment to date have not been suitable for industrial SMEs because they do not assess the value
of the investment over time, ignore the qualitative aspects of decision-making, and do not consider
uncertainties. To fill this gap in the literature, this paper proposes a methodology that considers
both quantitative and qualitative parameters and risks over time through an extended two-stage risk-
informed approach. The proposed methodology includes fuzzy and statistical techniques for evaluating
both qualitative and quantitative parameters, as well as their uncertainties, at the time of decision-
making and over the investment lifetime. Fuzzy logic is used in the first stage of the optimisation
process to measure qualitative parameters and their uncertainty, while quantitative parameters are
expressed using probability density functions to account for their uncertainty and measure the
quantitative risk assumed by the investor. This methodology is applied to a case study involving a real
industrial SME, and the results show that considering both quantitative and qualitative parameters
and uncertainties in the optimisation process leads to a more balanced consideration of economic,
environmental and social criteria and reduces the variability of the outcome compared to economic-
only approaches that do not account for risks. Specifically, the case study shows that considering these
parameters and uncertainties resulted in a 15.7% reduction in the size of the cogeneration system due
to its environmental and social impacts, and 4.2% reduction in the variability of the economic result.

© 2023 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The energy sector is undergoing a paradigm shift towards
system that ensures energy supply while preserving sustain-
bility. This transition requires the reduction of greenhouse gas
GHG) emissions through, among others, the incorporation of
enewable Energy Sources (RES), increased penetration of dis-
ributed energy resources, and active participation of actors in
he energy market. Among these actors, consumers are expected
o play a key role by becoming active prosumers rather than
assive users. Currently, industrial consumers account for 37% of
lobal energy use and produce 24% of total emissions (IEA, 2020).
ndustrial small-and-medium enterprises (SMEs) are particularly
ignificant in terms of energy consumption, as they use more
han half of the energy in industrial and commercial sectors
Fawcett and Hampton, 2020), being critical for the green trans-
ormation (Özbuğday et al., 2020). However, these enterprises
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352-4847/© 2023 Published by Elsevier Ltd. This is an open access article under the
are generally under-researched and face more difficulties than
larger entities in adopting new energy strategies (Kakran and
Chanana, 2018). SMEs may need or be required to upgrade their
energy infrastructure by incorporating RES and flexibility due to
the obsolescence of their equipment and as a result of the current
Industry 5.0 revolution, which aims to renew industries and
make them more future-proof, resilient, sustainable and human-
centred (Cotta et al., 2021). SMEs tend to prefer investments with
short payback periods, favourable economic, environmental and
social parameters, low exposure to risks and such that the infras-
tructure is maintained in operation for its whole lifetime once it
is upgraded (Gveroski and Risteska, 2017). However, energy in-
vestments are inherently linked to risks arising from uncertainty
both in quantitative parameters, whose exact value over time
is unknown, and qualitative parameters, which reflect subjec-
tive preferences and opinions. In the current changing situation,
where public perception is increasingly important and the energy
market is becoming more volatile, these risks inhibit investments
and firms’ innovation activity (Alaali, 2020). To facilitate these

actions in industrial SMEs, this paper addresses their energy

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.egyr.2023.01.131
https://www.elsevier.com/locate/egyr
http://www.elsevier.com/locate/egyr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.egyr.2023.01.131&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:eva.maria.urbano@upc.edu
https://doi.org/10.1016/j.egyr.2023.01.131
http://creativecommons.org/licenses/by-nc-nd/4.0/


E.M. Urbano, V. Martinez-Viol, K. Kampouropoulos et al. Energy Reports 9 (2023) 3290–3304
Nomenclature

General Abbreviations

AHP Analytical Hierarchy Process
CHP Combined Heat and Power
CVaR Conditional-Value-at-Risk
DS Direct Search
EES Electrochemical Energy Storage
FIS Fuzzy Inference System
HP Heat Pump
JC Job Creation
LHS Latin Hypercube Sampling
MF Membership Function
NPV Net Present Value
O&M Operation and Maintenance
PDF Probability Density Functions
PV Photovoltaic
RES Renewable Energy Source
RF Renewable Factor
SA Sensitivity Analysis
SME Small-and-Medium Enterprise
TES Thermal Energy Storage
UA Uncertainty Analysis
VaR Value at Risk

Energy infrastructure sizing and operation parameters

P Electrical power
Q Thermal power
η Efficiency
C Economic cost
QC Qualitative cost
Cap Capacity of energy storage
RC Charge ratio of energy storage
RD Discharge ratio of energy storage
SD Self-discharge ratio of energy storage
E Energy stored in energy storage system
I Cash flow
r Hurdle rate
W Weeks per year analysed
WY Total weeks per year
A Area
w Weight assigned to a decision parameter
VARlevel Probability level for computing the VaR
E(x) Expected value of x

Subscripts and superscripts

max Maximum capacity of equipment
min Minimum capacity of equipment
j Time instant considered for operation’s

optimisation
i Optimisation year
0 Instant when decision is taken
T Expected lifetime of energy infrastruc-

ture
PV PV system
ES Electrochemical energy storage
3291
CES Charge EES
DES Discharge EES
ED Electrical demand
UG Utility Grid
FI Feed-in
CHP Cogeneration system
CHPe Electrical side of the CHP system
CHPth Thermal side of the CHP system
TL Thermal Load
BOI Boiler
TS Thermal energy storage
CTS Charge TES
DTS Discharge TES
g Gas from the grid
GHG Greenhouse gases
O&M Operation & Maintenance
ref Hypothetic case without investment
JC Job Creation
nom Nominal power
ec Economic parameter
so Social parameter
en Environmental parameter
ql Qualitative parameter
qt Quantitative parameter
norm Normalised value

investment problem by considering quantitative and qualitative
parameters and uncertainties over the expected lifetime of the
upgraded infrastructure.

Most current studies on energy investment do no considering
uncertainties in their optimisation processes. For example, Li et al.
(2022) optimise a hybrid to minimise cost and maximise per-
formance, but without considering risks or uncertainties. Some
papers do analyse energy investment uncertainty, but only after
obtaining the solution, rather than optimising with regards to
uncertainties. Mavromatidis et al. (2018) carry out Uncertainty
Analysis (UA) and Sensitivity Analysis (SA) to evaluate the effect
of uncertain input values on the year cost performance of a multi-
carrier energy system. Similarly, Solangi et al. (2019) analyse
several strategies for sustainable energy planning and conduct a
SA to evaluate the robustness of the obtained solution, Qiao et al.
(2022) address the risks of renewable energy projects investment
without optimising the investment, and Liu et al. (2022) perform
a SA on the design of a nearly zero-energy community. These
approaches provide investors with information about the risk as-
sumed when investing, but do not propose an adaptation strategy
for unacceptable risk levels or incorporate uncertainty and risk
analysis into the optimisation problem.

The literature on energy investment optimisation that con-
siders risks within the decision-making problem is scarce. Chen
et al. (2016) develop an optimisation model for regional energy
systems, which includes degrees of fulfilment for the uncertain
constraints, providing decision-makers with alternatives under
different violation parameters. Afzali et al. (2020) address an
optimal energy system by minimising total annual cost while
limiting average worst-case emissions. Both of these studies do
not consider risk as an optimisation objective, but rather as a
limitation, creating a strategy that is robust in the face of uncer-
tainties. While robust optimisation provides a simple framework
for dealing with uncertainty, it is conservative and trades off
system performance for robustness (Lekvan et al., 2021). Another
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trategy commonly employed in the literature to consider uncer-
ainty is two-stage stochastic optimisation, in which the decision
arameters are selected in the first stage and all possible scenario
ealisations are considered in the second stage, optimising the
ean resultant value. This approach is used in Pickering and
houdhary (2019), which applies a two-stage stochastic model
o a district energy system optimisation under uncertainty on
he demand side, in Tian et al. (2021), which employs two-
tage stochastic search for the optimal sizing and placement of
nergy storage, and in Wang et al. (2022), where this technique is
sed to optimise thermal storage under wind uncertainty. While
wo-stage stochastic methods do incorporate uncertainty in the
ptimisation problem, they do so from a risk-neutral perspec-
ive, not providing a clear measure of the risk taken by the
nvestor (Noyan, 2012). Li et al. (2020) present an improved
ethod including a risk-aversion strategy, in which the plan-
ing of an integrated energy system is done by incorporating
onditional-Value-at-Risk (CVaR) as part of the objective func-
ion. Following the same approach, Xie et al. (2021) propose
sizing methodology that assesses risk through the computa-

ion of the mean variance, and Mu et al. (2022) also use CVaR
o optimise a community energy system considering uncertain
emand. These studies express risk using quantitative-only ap-
roaches that focus mainly on economic parameters. Few of
he aforementioned studies consider other objectives such as
nvironmental or social ones, and when these are considered,
hey use quantifiable parameters as criteria. Zhang et al. (2022b)
reate an index covering techno-economic, financial and social-
nvironmental benefits, though they only use measurable criteria,
nd Gao (2022) includes social utility in the optimisation problem
s a combination of the value of price and quantity of energy
elivered by the sized system. In contrast, Zhang et al. (2022a)
onsider policy support not as a criterion but as an input param-
ter, creating policy scenarios that the quantitative optimisation
odel runs on, without including policy support in the optimi-
ation itself. However, quantitative-only optimisation models are
nsufficient for energy sizing problems because there are decision
nd uncertainty dimensions that should be addressed through
ualitative approaches, which can equal or dominate quantitative
nes (Pye et al., 2018). Therefore, it is essential to incorporate
ualitative considerations in energy investment decision-making
Bhardwaj et al., 2019), which improves the evaluation of un-
ertainty and the competitiveness of the enterprise, resulting in
ignificant positive outcomes (Cornejo-Cañamares et al., 2021).
To date, qualitative parameters inside the decision-making

rocess have been considered in the literature for non-energy
ptimisation problems. Boudreau et al. (2019) present a generic
ethodology for assets management decision-making that con-
iders quantitative and qualitative factors, where the latter are
risply measured. Solangi et al. (2019) propose country energy
lanning strategies that use qualitative criteria, although they are
ot optimised. Harter et al. (2020) consider both quantitative and
ualitative parameters for uncertainty assessment in the design
f a building, although qualitative attributes are set as crisp nu-
erical values without considering judgemental vagueness. More

ecently, Bishnoi and Chaturvedi (2022) propose an approach
or the site selection of hybrid renewable installations that con-
iders both quantitative and qualitative parameters, measuring
he latter through crisp numbers specified by decision-makers.
ven though these studies incorporate qualitative parameters,
hey do not account for the uncertainty linked to their subjective
ature. Kaya et al. (2019) assess decision-making methodologies
or energy policy making and present fuzzy set theory as a tool to
xpress uncertainties inherently associated with human opinions.
t is concluded that fuzzy set theory can be successfully used

ith multi-criteria optimisation problems to get a more sensitive,
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concrete and realistic result. However, although the non-energy
approaches mentioned in this paragraph include qualitative pa-
rameters crisply or by proposing the use of fuzzy logic, they leave
quantitative information in a background position, not creating a
suitable framework for energy infrastructure optimisation.

In addition to the lack of a methodology that incorporates both
quantitative and qualitative parameters and their uncertainties
for energy investment decisions, most studies on this topic do
not consider the lifetime value of the investment, but only its
cost or profit over a shorter period. In the energy sizing studies
described above, a time frame is specified, such as in Guo and
Xiang (2022), where a set of typical days of a year are simulated to
reveal the performance of the energy system. Thus, the suitability
of the investment is evaluated based on a static time frame,
simplifying the evolution of parameters and considering them
constant for several years. This optimisation procedure does not
reflect the current changing context and leads to suboptimal so-
lutions that overestimate the performance of the selected energy
infrastructure (Pecenak et al., 2019). Few of the most recently
published papers incorporate a continuous-time framework for
energy sizing problems. It is the case of Mavromatidis and Petkov
(2021), which develop a model for multi-year, multi-location of
energy sources. Petkov et al. (2022) present an upgrade of this
model that includes the possibility of retrofitting the designed
energy system, but does not provide a framework for design
based on the probability of future events. Urbano et al. (2021a)
perform the design of multi-carrier energy infrastructure consid-
ering the time evolution of parameters. UA and SA are carried out
to acknowledge the risk and identify the most relevant param-
eters, but uncertainty is not incorporated into the optimisation
problem. Bohlayer et al. (2021) consider energy carriers’ price and
investment costs uncertainties within the optimisation problem
through a two-stage stochastic strategy. However, this two-stage
stochastic strategy is risk-neutral as it optimises the expected
value of the solution, not directly analysing the risk related to it.

In summary, existing methodologies for energy investment
decision-making proposed up to date are incomplete and not
suitable for industrial SMEs since:

• qualitative spectrum of the decision-making process, includ-
ing qualitative parameters measurement and uncertainty
assessment, is omitted;

• quantitative uncertainty is either neglected, analysed out-
side of the optimisation problem or included in the optimi-
sation through a risk-neutral strategy; and

• energy parameters are most of the time considered static
and time evolution and uncertainty growth is not evaluated.

To fill these gaps, a novel optimisation methodology is pro-
posed in this paper. This methodology presents the following
contributions to the state-of-the-art:

• Qualitative parameters and related uncertainty handling
through a fuzzy logic approach, which enables their mea-
surement considering uncertainty and improving crispy
strategies used in the literature.

• Inclusion of risk-averse factors for energy infrastructure op-
timisation, which improves risk-neutral strategies.

• Investment optimisation considering combined quantitative
and qualitative parameters, which contributes to the inclu-
sion of qualitative parameters and improves the considera-
tion of quantitative only approaches presented up to date in
the literature for energy investment problems.

• Energy infrastructure operation optimisation considering
dynamic quantitative and qualitative parameters over time,
improving static approaches in which parameters and re-
lated uncertainty do not evolve over time.
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Fig. 1. Risk-informed energy-investment optimisation procedure.
The proposed complete methodology is therefore the main
ontribution outcome of this paper and is presented as an ex-
ended two-stage risk-informed optimisation. As stated above,
his methodology considers both quantitative and qualitative pa-
ameters and their uncertainties at the moment of taking the
ecision and over the lifetime of the energy infrastructure.
Specifically, the equipment in which to invest is selected in

he first stage of the optimisation and qualitative criteria are
easured considering the uncertainty linked to them through

uzzy logic. In the second stage, the performance of the energy in-
rastructure is computed by optimising its operation over lifetime
valuating both quantitative and qualitative parameters together
ith their uncertainty through a risk-averse strategy. In this way,

t is possible to optimise the energy investment by considering
ts quantitative and qualitative global performance as well as
ts risks. A practical case study based on a real manufacturing
ndustrial SME is described to appreciate the effects of including
uantitative criteria, qualitative criteria and risks in enterprises’
ecision-making process.
The paper is organised as follows: Section 2 describes the

roposed optimisation methodology, Section 3 presents the case
tudy, Section 4 discusses the results, and Section 5 offers the
onclusions.

. Methodology

The proposed methodology in this paper for optimising energy
nvestment is illustrated in Fig. 1. The first step is to identify
he input parameters and their uncertainty. The process then
roceeds to a two-stage risk-informed optimisation. In the first
tage, the equipment is selected through an optimiser, and direct
onstraints such as allowable investment and available space for
nstallations are checked. Then, qualitative parameters such as
cological impact and administration alignment are evaluated.
iven their subjective nature, the uncertainty associated with
hese parameters is considered using a fuzzy logic approach. The
peration of the selected energy infrastructure is then optimised
or its lifetime, taking into account both quantitative and qualita-
ive costs and the associated uncertainty. Operation constraints
re checked, and the expected performance and risks of the
nergy infrastructure are calculated. With this information, the
osts and benefits of the upgraded energy infrastructure are eval-
ated using the selected criteria. In this stage, the fulfilment of
onstraints imposed by the company such as maximum payback
r minimum return on investment, is verified. If the optimiser
eets its stopping criteria, the process ends here. Otherwise,

nother possible energy equipment solution is analysed.

3293
2.1. Input data and uncertainty characterisation

The input data required to address the energy investment
problem depends on the characteristics of the potential energy
infrastructure as well as on the criteria that the enterprise wants
to consider for taking the decision. These data can be divided into
two types: quantitative and qualitative.

2.1.1. Qualitative data
Qualitative data is necessary for making decisions, but it can-

not be measured quantitatively. Its value is determined by an
expert or decision-maker based on their knowledge of, for ex-
ample, the industry context and the governmental framework
(Peng et al., 2019). The subjectivity of qualitative parameters
introduce uncertainty, and treating them as precise numbers can
lead to loss of information. To include this uncertainty in energy
investment optimisations Fuzzy logic can be used (Srivastava and
Bisht, 2019) to evaluate the probability and impact of the en-
ergy infrastructure on the relevant qualitative perceptions (Brocal
et al., 2019). In the studied problem, impact refers to the potential
effect that of the qualitative perception on the performance of the
energy infrastructure, while probabilitymeasures the likelihood of
is the impact occurring (Nieto-Morote and Ruz-Vila, 2011). Both
impact and probability depend on the mix of technologies chosen
for upgrading the energy infrastructure, as well as on their social,
environmental and technical influences. To consider all these
factors and determine a measure of the qualitative perception
that includes uncertainty, the fuzzy system illustrated in Fig. 2
is proposed. The capacities of the selected technologies are first
fuzzified and membership functions (MFs) are assigned to them.
Probability and impact are then calculated based on the rules set
by decision-makers, and these impact and probability functions
are aggregated to form a fuzzy set for the qualitative perception.
This set is later defuzzified to provide an accurate representation
of qualitative parameters that improves their treatment as crisp.

This analysis supports a non-exclusively quantitative process
that incorporates qualitative parameters into the first stage of
the optimisation, allowing the solution to be tailored to the
company’s interests. However, the socio-political framework is
susceptible to changes, so these parameters should also be in-
cluded in the second stage of the problem. To do this, decision-
makers should analyse potential socio-political changes and as-
sess how the employed technologies would impact investment
performance in the new context, considering both positive and
negative influences. This analysis reflects the alignment of the
chosen technologies with the company’s interest over time and

can be translated into dynamic qualitative costs for inclusion
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Fig. 2. Process flow for the assessment of qualitative criteria through a fuzzy approach.
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n the operation optimisation, creating a strategy that is aware
f qualitative factors. Since these dynamic costs are subject to
agueness, fuzzy logic is also used. To do this, technologies are
valuated individually to compute the cost of employing them
nd probability and impact values are assigned. The qualitative dy-
amic cost is then calculated using the same fuzzy methodology
hat is used for initial qualitative perceptions.

.1.2. Quantitative data
Quantitative data is necessary to conduct a technical and eco-

omic analysis of the solution. To evaluate the investment’s per-
ormance over time, it is important to consider their values and
ncertainties. Quantitative data can also be characterised by prob-
bility and impact. On one hand, probability refers to the possible
alues that input parameters can take and how likely each value
s. This probability can be represented using a range of discrete
alues or by assigning Probability Distribution Functions (PDF)
Borgonovo and Plischke, 2016). On the other hand, impact refers
o the influence of the input values on the result or on the com-
any’s chosen criteria. To calculate impact, the company’s criteria
ust be evaluated for each input, requiring sampling of the PDFs
nd solving the energy infrastructure performance optimisation
roblem for the resulting samples. Using a PDF assigned to un-
ertain quantitative parameters, a method like Latin Hypercube
ampling (LHS) that generates samples according to these prob-
bility distributions can provide a reliable output that captures
he distribution across the entire variation range (Tran and Smith,
018). LHS is selected in this study because it efficiently covers
broad range of the PDF at a relatively low computational cost

Kristensen and Petersen, 2016). Once uncertainty samples have
een generated, impact is computed in the second stage of the
ptimisation problem.

.2. Two-stage risk-informed optimisation

This section provides details on the two-stage risk-informed
ptimisation considering a standard industrial SME plant. This in-
ustrial plant purchases electricity directly from the utility grid to
atisfy electrical demand and owns a boiler to transform chemical
nergy into thermal one. The candidate equipment to be included
re: PV system, thermal energy storage (TES), electrochemical
nergy storage (EES), cogeneration (CHP), and heat pump (HP).
3294
.2.1. First-stage
In the first stage of the optimisation, a set of potential solu-

ions made up of equipment capacities that could be installed in
he company is obtained from a global optimiser. In this case, a
erivative-free global optimisation algorithm called Direct Search
DS) is used because it can effectively handle complex, disconnect
easible areas and has been successful in front of practical prob-
ems (Lewis et al., 2000). After DS selects the potential solutions,
heir compliance with the company’s constraints are checked.
f they meet the constraints, initial qualitative parameters are
omputed by introducing the equipment in the proposed fuzzy
ystem.

.2.2. Second-stage
In the second stage of the process, shown in Fig. 3, the chosen

quipment is used to optimise the operation of the infrastructure
ased on both quantitative and qualitative costs. First, data from
revious stages is gathered and the first scenario is selected from
he samples of uncertain quantitative inputs. The operation of
he upgraded plant is then optimised for the investment lifetime,
aking into account 7-day weeks over the course of several years
o consider weekly energy patterns both in industrial demand
nd energy markets. Inputs are considered to vary with time in
representative time frame. Electricity cost, for example, varies

n an hourly manner and presents an evolution between different
eeks and years. To obtain realistic dispatching strategies, equip-
ent degradation is also included in the optimisation problem.
his stage evaluates a prosumer operation to consider the adop-
ion of new roles arising in the energy market. To perform this
ptimisation, a mathematical model of the plant is needed. The
odel used in this research, which is based on the Energy Hub

EH) concept, allows to consider all energy equipment, energy
arriers and their interconnectivity in a single entity, maximising
he efficiency of the system (Mansouri et al., 2020). Urbano et al.
2021b) exposes the definition of the specific model used in
his research article, its mathematical formulation and validation
esults. Inputs to the model include technical parameters and
conomic and qualitative costs, connexion efficiencies, and costs
elated to emissions and energy inputs such as electricity and gas.
he model is formulated with all possible equipment in mind,
ith the capacity of each to be set to zero when they are not

ncluded in the analysed solution. For the standard industrial SME
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Fig. 3. Second-stage optimisation procedure.

described earlier the energy equilibrium for the electrical side is:

PPVηPV+PUGηUG+QCHP
ηCHPe

ηCHPth
+PDESηDES =

PED
ηED

+PFI+
PCES
ηCES

+PHP (1)

or thermal side, the equilibrium is:

CHP + QBOI + QDTSηDTS + PHPηHP =
QTL

ηTL
+

QCTS

ηCTS
(2)

These equilibriums are subject to restrictions related to power
exchange with external grids and to maximum capacity of equip-
ment:

0 ≤ PUG ≤ PUG,max (3)

0 ≤ PFI ≤ PUG,max (4)

0 ≤
QCHP

ηCHPth
+

QBOI

ηBOI
≤ Qg,max (5)

0 ≤ QBOI ≤ QBOI,max (6)

0 ≤ QCHP ≤ QCHP,max (7)

0 ≤ PHP ≤ PHP,max (8)

For the energy storage, restrictions include not only their charge
and discharge ratios but also the energy stored. The formulation
for the TES and EES is similar, and is described below:

0 ≤ QCTS ≤ RCTS × CapTS (9)

0 ≤ Q DTS ≤ RDTS × CapTS (10)
j
TS = E j−1

TS + ∆t (QCTS − QDTS) − SDTSE
j
TS (11)

ap ≤ E j
≤ Cap (12)
TS,min TS TS

3295
With this mathematical model, it is possible to carry out the
equipment’s operation optimisation. As the proposed optimisa-
tion considers both quantitative and qualitative costs, the fitness
function for this stage of the optimisation is:

fop =

N∑
j=1

wec
(
PPV ,jCPV + PUG,jCUG,j + CES

(
PCES,j + PDES,j

)
+ PCHP,jCCHP + PHP,jCHP + QBOI,jCBOI

+

(
QCHP,j

ηCHPth
+

QBOI,j

ηBOI

) (
CG,j + FgCGHG,j

)
+CTS

(
QCTS,j + QDTS,j

)
− PFI,jCFI,j

)
+ wql

(
PPV ,jQCPV + QCES

(
PCES,j + PDES,j

)
+ PCHP,jQCCHP + PHP,jQCHP,j + QBOI,jQCBOI

+QCTS
(
QCTS,j + QDTS,j

))
(13)

his optimisation problem can be solved using linear program-
ing, which allows for efficient determination the global mini-
um (Liberti, 2008). Once the operation for single scenario has
een obtained, quantitative criteria of interest can be computed.
ne useful parameter for evaluating the performance of the en-
rgy infrastructure over time is the net present value (NPV),
hich takes into account various cash inflows and outflows for
ach year and converts them into current value, allowing for the
ssessment of the profitability of energy investments (Eriksson
nd Gray, 2017). The NPV is calculated by comparing the up-
raded industrial plant to its hypothetical operation without any
nvestment, using the following formula:

PV = −I0 +

T∑
i=1

Ii
(1 − r)i

(14)

ash flow are computed for the analysed weeks and extrapolated
or years as:

i =
WY

W

W∑
k=1

⎛⎝ N∑
j=1

PFI,i,k,jCFI,i,k,j +
(
PUG,ref ,i,k,j − PUG,i,k,j

)
CUG,i,k,j

+

(
QBOI,ref ,i,k,j

ηBOI
−

QCHP,i,k,j

ηCHPth
−

QBOI,i,j,k

ηBOI

) (
CG,i + FgCGHG,i

)⎞⎠
−

(
CO&M,CHPQCHP,nom + CO&M,HPQHP,nom + CO&M,ESCapES

+CO&M,TSCapTS + CO&M,PVAPVPPV ,nom
)

(15)

Once the quantitative parameters are computed, another scenario
including a different set of possible inputs is evaluated until all
scenarios are covered. Then, the PDF of the quantitative parame-
ters is obtained. This is used to compute their expected value and
to evaluate the risk through CVaR, which enables to consider the
complete outcome PDF avoiding undesirable profit distributions
(Vahedipour-Dahraie et al., 2020). CVaR is computed as:

CVaR(x) =
1

1 − VaR

∫ VaRlevel

−1
xp (x) dx (16)

where p (x) dx is the probability of the value x according to the
PDF.

2.2.3. Optimality assessment
In this stage, the optimal equipment is determined based on

the quantitative and qualitative criteria calculated in the optimi-
sation process, which are combined in a single fitness function.
The criteria can be combined through aggregation or multiplica-
tion. In this case, aggregation is used because it takes into account
both positive and negative criteria and handles outliers better,
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imiting their influence on the final function value. The qualitative
riteria evaluated in the first stage of the optimisation include
heir uncertain definition and risk in their value. In contrast, the
uantitative criteria have two distinct measures: expected value
nd CVaR. In this paper, these values are unified into a single
easure using the VaR level, which defines CVaR, as:

measure with risk = E (x) + VARlevelCVaR(x) (17)

nce values for all criteria including their uncertainties are ob-
ained, they are structured under the main decision-making crite-
ia employed for investment evaluation in enterprises: economic,
ocial and environmental (Hoogmartens et al., 2014). The main
riteria are computed as the arithmetic means of the criteria
nder them. To avoid numerical illness, remove dimensions, and
btain a realistic measure of the criteria, all parameters are nor-
alised previous to the balance. The mathematical formulation

s, for the case of the economic criteria:

ec =

∑n
k=1 Xec,qt,norm,k +

∑m
z=1 Xec,ql,norm,k

m + n
(18)

here m is the number of qualitative sub-criteria and n is the
number of quantitative sub-criteria. Main criteria are then in-
corporated into a single function reflecting the preferences of
decision-makers. These preferences are obtained through the
Analytical Hierarchy Process (AHP) (Saaty, 1987), which allows
the consideration of subjective preferences in a robust manner
(Roszkowska, 2013). The objective function is thus:

f = wecXec + wsoXso + wenXen (19)

his fitness function is computed and the global optimiser checks
ts stopping criteria, which can include result tolerance, number
f iterations without improvement, optimisation time, etc. If the
ptimal solution has been reached, the optimiser finalises its
peration. Otherwise, the result is returned to the first stage
here new potential solutions are created and the process is
epeated.

. Case study

This section presents the application of the proposed method-
logy to a manufacturing SME from the automotive sector located
n Spain. First, the industrial plant to which the methodology
s applied is described. Then, both quantitative and qualitative
nput parameters are collected, which is an essential part of the
roposed methodology for conducting optimisation with uncer-
ainties. On one hand, the quantitative input factors and their
ncertainties, which are used to calculate quantitative criteria
nd associated risks, are analysed statistically. On the other hand,
he rules and membership functions of the fuzzy logic system are
stablished to calculate the relevant qualitative criteria for the
ptimisation problem, as well as the qualitative costs of using
echnologies. Finally, decision preferences are evaluated using
HP and weights for the different decision criteria are obtained.
ith this data, the mathematical optimisation process described

arlier can be run to obtain the results, which are discussed in
ection 4.

.1. SME industrial plant

The studied enterprise relies on a boiler to transform gas into
hermal power and purchases electricity from the utility grid to
eet the electrical load. Fig. 4 exemplifies the demand pattern for
typical winter week, exposing an important thermal demand
hich fluctuates with days and occupation and a more stable
lectrical demand. The enterprise is exploring the possibility to
pgrade its energy infrastructure and transform into a prosumer
3296
Table 1
Decision-making criteria the case study industrial SME.
Main criteria Sub criteria

Economic • NPV
• Business continuity

Environmental • GHG emissions
• Ecological impact

Social • Social acceptance
• Administration alignment

Table 2
Energy investment constraints for the case study.
Constraint Value

Maximum initial investment 1 000000 e

Maximum time for the return of investment 6 years
Maximum emissions at year 15 300 tCO2
Maximum area of the PV system 12000 m2

by including increasingly adopted technologies. These technolo-
gies are: PV system, CHP system, HP and storage, both electrical
(EES) and thermal (TES). The new equipment is foreseen to be
kept in operation for the next 15 years. Equipment degradation
considering this horizon is mainly present in PV and EES systems.
For the case of PVs, a continuous performance loss of 0.8% per
year is implemented (Jordan et al., 2015). For the ESS, the degra-
dation appears as a loss of capacity instead of a loss of efficiency.
In this paper, continuous degradation of 6% per year accumulated
is applied (Carnovale and Li, 2020). Table 1 exposes the criteria
that the enterprise considers important for taking the decision.
From these criteria, NPV and GHG emissions can be computed
quantitatively. In contrast, business continuity, ecological impact,
social acceptance, and administration alignment are considered
qualitatively. The energy investment should fulfil the set of con-
straints specified by the industrial SME that appear in Table 2 and
which are related with maximum investment, maximum payback
time, maximum emissions and are available for the installation of
the PV system.

3.2. Quantitative data

The quantitative data required to carry out the optimisa-
tion include equipment parameters, operation and maintenance
(O&M) costs, energy carriers’ costs and connexion efficiencies.
Although the evolution of all of these parameters is uncertain,
only energy carriers’ costs uncertainty affect significantly the
performance of the energy infrastructure (Urbano et al., 2021a).
Therefore, their uncertainty is incorporated in the optimisation
process whereas the rest of the quantitative parameters are
considered deterministic. The industrial SME under study em-
ploys two energy carriers: electricity and gas. Electricity price is
forecasted to increase between 0.51% and 2.69% yearly (Afman
et al., 2017; Comission, 2016; Zhou, 2021). Fig. 5 shows how
these cost evolution scenarios can be fitted to the PDF which
will be employed to obtain the samples that will serve as input
for the optimisation problem. The PDF is selected according
to the goodness of the fit measured through the loglikelihood
function and is in this case an Inverse Gaussian distribution with
parameters µ = 1.48 λ = 3.72. For gas, today’s cost is expected
to vary in upcoming years between −2.19% and 1.4% (Zhou et al.,
2019; Zhou, 2021). Fig. 6 shows these values together with the
fitted Extreme Value PDF with parameters µ = 0.67 σ =

1.10. Initial energy carrier’s costs are obtained from wholesale
markets in Spain, being of 90e/MWh (Omie, 2021) for electricity
and 48e/MWh for gas (MIBGAS, 2021). Other quantitative data
employed in the optimisation can be consulted in Appendix.
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Fig. 4. Demand pattern of the industrial case study for a typical winter week.
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Fig. 5. Electricity price evolution uncertainty characterisation.

Fig. 6. Gas price evolution uncertainty characterisation..
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3.3. Qualitative data

3.3.1. Initial perception
In the first stage of the optimisation, the qualitative criteria

are computed according to the selected technologies. To do so,
MFs and rules of the fuzzy system are defined. MFs represent
imprecise information coming from human opinions and senti-
ments regarding energy equipment. To do so, the employment
of Gaussian MFs is preferable as they describe the continuity of
opinions better than other common types of MFs due to their
smoothness and naturality (Abdar et al., 2020). MFs can be di-
rectly defined by decision-makers through their expertise in the
field or obtained through opinion mining (Serrano-Guerrero et al.,
2021). The process of opinion mining and definition of the most
suitable MFs is out of the scope of this study and thus, for the
sake of exposition, the MFs shown in Figs. 7 and 8 are assumed
to suitably represent society’s opinion for this case study. Fig. 7
expose the MFs for the analysis of the size of energy equipment
and are in this case those of the PV system, although they are
common to the rest of the equipment. Fig. 8, in contrast, expose
the MFs for the evaluation of impact and probability that are
needed to obtain the value of a qualitative perception through
the fuzzy system.

Decision-makers also establish the rules to compute impact
and probability for business continuity, administration alignment,
social acceptance, and ecological impact. The rules are written in
an if–then format and enable obtaining the output based on the
set of provided inputs and the MFs — exposed in Fig. 8. These
if–then rules, together with previously exposed MFs, enable the
creation of a fuzzy surface, which represents the computation
of the impact or the probability of a specific solution based on
the inputs provided. The fuzzy method used to compute impact
and probability employs max–min composition to consider all
activated rules. Then, probability and impact resultant functions
re aggregated through the max method and the resultant func-
ion defuzzified employing the centroid method. Fig. 9 shows
he surface for impact on administration alignment according
to different PV and CHP sizes. It can be seen that in this case,
according to decision-makers, the solution is more aligned with
the administration if it contains PV and it is less aligned with the
administration if it contains a bigger size of CHP.
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Fig. 7. MFs for the assessment of energy equipment size: PV system.

Fig. 8. MFs for the assessment of impact and probability.

Fig. 9. Impact surface for administration alignment based on the size of the PV
nd CHP systems.

.3.2. Continuous qualitative cost of technologies
Qualitative perceptions are also included in the second stage

f the optimisation as the qualitative costs of employing a spe-
ific technology. To obtain this cost, decision-makers evaluate for
5 years of the investment’s lifetime the impact and probability
f the technology to contribute negatively to the specified quali-
ative criteria. Impact and probability are then incorporated into a
fuzzy system which computes the cost. The MFs for these inputs
3298
and for the output are the same as exposed in Fig. 8, with the
difference that the output’s range is [0,0.1] to have the same
magnitude order as the economic costs. In this case, the rules
generated by decision-makers, depend only on two inputs and
therefore can be expressed in a qualitative risk matrix. Table 3
expose the generated if–then rules for the case study analysed in
a qualitative risk matrix, exposing which is the suitable output
MF according to the input impact and probability MFs.

3.4. Decision preferences

The sub-criteria are structured under the main criteria as seen
in Table 1. To obtain the criteria weights the Saaty method is
followed in this case study, which concludes with Table 4. This
table represent the Saaty comparison matrix and the resultant
computed weights. For the case analysed, it can be seen that
the predominant criterion is the economic one, followed by the
environmental and the social, which are at an approximately
equal level although being the social spectrum slightly of more
interest for the enterprise than the environmental one. These
weights serve to create the objective function which is used
through the optimisation process.

4. Results and discussion

Table 5 shows the optimal energy infrastructure for this case
study, as well as the results for a baseline optimisation that
considers deterministic parameters and NPV as a single objective,
to compare the proposed methodology with a common approach
used in the literature. It can be seen that the PV system covers
all available area as it positively impacts all criteria. In contrast,
the CHP size and its operation are moderated in the proposed
optimisation, while its size is larger in the baseline case. CHP
is mainly used to meet thermal demand, contributing also to
electrical one. In the proposed optimisation, the moderate use
of CHP is a due to the emissions caused, the increasing quali-
tative cost of employing it – decreasing social acceptance and
a high ecological impact – and the lack of alignment with the
administration, as there are measures planned for reducing the
installed capacity of CHP systems (Spanish Government, 2020).
When qualitative criteria are not considered, the CHP system is
15.7% larger because it contributes positively to the economic
performance of the enterprise. However, when qualitative criteria
and risks are considered, its size is reduced due to its negative
impacts on the environment, making it a riskier option given
current social perceptions of gas-fired facilities and the trend
towards moving away from them. Therefore, the benefits of in-
corporating quantitative and qualitative criteria and risks in the
optimisation problem include a more complete understanding of
the CHP system. Thermal storage is used to better align electri-
cal and thermal demands and maximise the usefulness of CHP
output. Regarding the HP system, it is not selected since the
difference between electricity and gas costs makes it not econom-
ically viable, despite some favourable qualitative parameters. ESS
are also excluded from the optimal infrastructure due to their
current costs and ecological impact. The case study industrial
plant has been optimised as a prosumer, interconnecting also
the different equipment to maximise efficiency and security of
supply. Fig. 10 shows the operation of the plant for a typical
autumn week together with thermal and electrical demand. It can
be seen that the energy generated by the PV system surpasses
electrical demand and thus excess energy is present in the system
which is sold to the utility grid. Another important finding is that
the CHP system follows the thermal load except at some points
in which it adapts its behaviour to better supplement electrical

load. It is at these points in time where the thermal storage acts
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Table 3
Qualitative risk matrix that express the if–then rules for the evaluation of technologies’ qualitative cost.

Probability

Large Considerable Moderate Minor Negligible

Impact

Large Large Large Considerable Considerable Moderate
Considerable Large Considerable Considerable Moderate Moderate
Moderate Considerable Considerable Moderate Moderate Minor
Minor Considerable Moderate Moderate Minor Negligible
Negligible Moderate Moderate Minor Negligible Negligible
Table 4
Saaty pairwise comparison matrix and resultant criteria weights.

Table 5
Results of the optimisation.
Equipment Optimal size Baseline size

PV 12000 m2 12000 m2

Thermal storage 250 kWh 250 kWh
Cogeneration 118 kW 140 kW

Fig. 10. Operation of the optimal energy infrastructure for a typical winter week.

and captures the excess thermal storage generated by the CHP or
provides thermal power to thermal demand.

To reach the exposed results, qualitative parameters are ob-
tained through the initial fuzzy system, whose operation is ex-
posed for ecological impact and business continuity in Figs. 11
and 12. In these figures, MFs for probability and impact are shown
together with their aggregation and defuzzification. It can be seen
that for both criteria two rules are activated for the computation
of impact and probability, being all of them truncated following
the min implication method and aggregated through the max
ethod. The followed process enables the obtention of a final
efuzzied value for the qualitative criteria which account for
ncertainty and vagueness in judgements. Table 7 shows these
alues for all the qualitative criteria evaluated in the analysed
ase study. Qualitative costs of employing technologies over time,
hich are used in the second stage of the optimisation process to
reate a qualitative-aware operation strategy, are also computed
hrough fuzzy logic and exposed in Table 6.

Aside from qualitative criteria, to reach the mentioned result
he optimisation algorithm also computed quantitative criteria

nd related risks. Table 8 exposes NPV and GHG emissions’ mean

3299
Fig. 11. Ecological impact criteria fuzzy computation: activated rules, min
implication, max aggregation and defuzzification.

Fig. 12. Business continuity criteria fuzzy computation: activated rules, min
implication, max aggregation and defuzzification.

value, CVaR, and standard deviation both for the proposed optimi-
sation and for the baseline case. These values have been obtained
by sampling the input quantitative uncertain parameters and
propagating them through the optimisation process, which gen-
erated different NPV and GHG emissions results which can be
seen in Figs. 13 and 14. These results were used to statistically
analyse the proposed solution, obtaining the VaR and CVaR as also
shown in the figures.

The optimal energy investment obtained through the pro-
posed methodology has a lover NPT compared to the baseline
case. However, the proposed methodology balances different cri-

teria and thus the obtained GHG emissions are lower than those
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Table 6
Qualitative costs for employing energy equipment technologies. Values in e/kWh × 10−3 .

Year

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Technology

PV 40.6 40.6 35.1 35.1 30.5 30.1 28.9 28.9 28.9 26.2 21.7 21.1 20.3 20.3 20.3
CHP 55.0 59.4 59.4 59.4 59.4 69.5 72.5 72.4 72.0 74.2 74.3 74.3 74.3 76.3 80.0
ESS 50.0 40.6 40.6 40.6 40.6 35.1 35.1 35.1 35.1 30.5 30.5 30.1 27.3 27.3 27.3
HP 40.6 40.6 40.6 35.1 35.1 35.1 30.5 30.1 27.3 27.3 24.4 24.4 21.1 20.3 20.3
TSS 40.6 40.6 35.1 38.4 35.1 35.1 32.1 30.4 28.9 27.3 24.9 24.4 20.5 21.1 21.1
Fig. 13. NPV probability distribution function with obtained VaR and CVaR.

Fig. 14. GHG probability distribution function with obtained VaR and CVaR.

f the baseline case. While there is still some variability in NPV
nd GHG, the proposed optimisation strategy reduces the CVaR
nd standard deviation of the quantitative criteria and thus the
ncertainty in the investment outcome. In particular, the variabil-
ty of the economic outcome is reduced by 4.2%. This variability is
inked to the uncertainty of the input energy carriers, electricity
nd gas. Given the uncertainty in the evolution of these two en-
rgy sources, the quantitative criteria are also uncertain and their
ncertainty grows exponentially over time, as shown in Fig. 15.
onetheless, the proposed optimisation approach minimises this
ariability and the risk of quantitative outcomes are lower than in
he baseline case, resulting in a more robust and resilient energy
nvestment option.
3300
Table 7
Initial qualitative criteria evaluation: resultant defuzzified values for the obtained
solution.
Qualitative criteria Defuzzified value

Business continuity 0.6268
Ecological impact 0.3732
Social acceptance 0.7882
Administration alignment 0.4745

Table 8
Quantitative criteria values for the obtained solutions.
Parameter Optimal value Baseline value

NPV mean 9586600 e 9617900 e

NPV CVaR 9228400 e 9247800 e

NPV standard deviation 168970 e 176450 e

GHG mean 220630 kgCO2 220776 kgCO2
GHG CVaR 220426 kgCO2 220579 kgCO2
GHG standard deviation 103 kgCO2 100 kgCO2

Fig. 15. NPV mean and NPV uncertainty evolution over investment lifetime.

Fig. 16 illustrates the final values of the economic, social, and
environmental criteria used in the optimisation. Economic criteria
have been prioritised followed by social and then environmental
ones, reflecting the preferences of decision makers. Although eco-
nomic criteria are the primary focus, their improvement has been
conditioned by social and environmental criteria, reaching in a
trade-off solution where economic criteria are maximised while
social and environmental criteria also reach acceptable values. As
the criteria include risks in both qualitative and quantitative pa-
rameters, the resulting optimal energy infrastructure represents
a solution that minimises risk while achieving good performance
across the spectrum of decision criteria.

The results of this case study demonstrate the benefits of using
a two-stage risk-informed optimisation approach compared to a
base case that only considers deterministic quantitative criteria.
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Fig. 16. Optimisation normalised criteria for the resultant energy investment.
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y including uncertainties and qualitative criteria in the optimi-
ation process, it has been possible to identify and verify the
dvantages of this approach. These results can also be compared
ith those of other case studies and scenarios found in the

iterature to validate the proposed methodology. To this end,
hile there are no studies in the literature that examine all of
he parameters considered in the proposed optimisation, we have
sed the following works as references: Liu et al. (2022), Bohlayer
t al. (2021), Coppitters et al. (2020), Das et al. (2021) and Khan
t al. (2021). These works represented important developments
n the field and include segments of the methodology proposed
ere, allowing a comparison to be made between the results
btained. Specifically, the references mentioned can be divided
nto the following groups:

• Optimisation with posterior analysis of uncertainty: Liu
et al. (2022)

• Optimisation considering uncertainty in quantitative param-
eters: Bohlayer et al. (2021) and Coppitters et al. (2020)

• Optimisation considering different economic, technical, en-
vironmental and social parameters (Das et al., 2021; Khan
et al., 2021)

A comparison between the results obtained in these studies
nd those obtained here is presented in the following paragraphs.
irst, Liu et al. (2022) present an optimisation methodology for
hybrid energy system with the goal of minimising energy ex-
hange with the grid, as well as emissions and system cost. They
nalyse various case studies, the results of which demonstrate
he suitability of incorporating a photovoltaic system with energy
torage, which is consistent with the findings of this study. After
btaining the solution, Liu et al. (2022) perform a SA to see
he effect of electricity price on emissions and operating cost,
ncreasing it from 40% to 160%. While a full statistical analysis
nd comparison cannot be conducted due to the small number of
amples used in the SA, it can be seen that emissions vary from
heir average value between −22% and +39% and operational cost
aries from −20% to +20%. By using the optimisation approach
roposed in this paper, which takes uncertainties into account in
he energy investment problem, these figures are significantly re-
uced. The variation of emissions ranges from −0.22% to +0.32%
elative to their average value, and the net present value (NPV),
hich is calculated using operational cost, varies from −9% to
8%.
In contrast, Bohlayer et al. (2021) consider uncertainty within

he optimisation problem by performing a two-stage stochastic
ptimisation. Their case study involves the energy supply system
f an industrial complex in Germany. In this case, the total system
ost has a standard deviation of 3%–10%, which is similar to the
PV standard deviation reported in this paper - 1.76% - and
3301
upports the benefits of incorporating uncertainties in the optimi-
ation problem. Coppitters et al. (2020) also include uncertainties
n the optimisation problem and further evaluated the impact of
odifying the optimisation result on a non-economic objective:
elf-sufficiency. Coppitters et al. (2020) study the sizing of a PV
ystem with energy storage and concluded that, if only economic
erformance is considered, the PV system without storage is the
ptimal choice with the lowest operating cost. However, if self-
ufficiency and variability are taken into account as criteria, the
nclusion of a battery in the resulting energy infrastructure leads
o higher costs. The results of Coppitters et al. (2020) for the PV
ystem without a battery show a standard deviation in cost of
8%–20% of the mean, which is reduced to 12.2% by incorporating
battery that supports the isolation of the system from electric-

ty grid price uncertainty. These results are consistent with the
indings of this paper, indicating the economic inappropriateness
f including a battery, the significant effect of electricity price on
ystem uncertainty, and the importance of criteria selection in the
esulting energy infrastructure.

Finally, Das et al. (2021) optimise a hybrid renewable energy
ystem to use excess energy generated to meet external electrical
nd thermal load demands and reached a similar conclusion
egarding the battery system: the option with the lowest cost
s the one with the least amount of battery installed. In contrast
o previous research that has focused on quantitative parameters
uch as economics and the environment (emissions), Khan et al.
2021) develop a hybrid renewable energy system optimisation
hat also examines its techno-financial and social viability. The
ptimisation criteria included net present cost of the system, cost
f energy, life cycle emissions, renewable energy penetration,
nmet load, duty factor, human development index, particulate
atter, and job creation. The resulting energy infrastructure was
combination of renewable energy sources, fossil fuel generators,
nd storage systems that balanced all of these criteria. The net
resent cost, which is directly related to the NPV, had a variability
f 8% relative to its mean value, similar to the NPV variability,
rom −9% to +8%, of the methodology proposed in this study.

Through the analysis of the results and the comparison with
ther studies in the literature, it is possible to conclude that
he proposed methodology is an improvement over incomplete
ethodologies that do not consider quantitative and qualitative

actors and uncertainties simultaneously. The results of this paper
re consistent with those in the literature, but offer greater pre-
ision and reliability due to the consideration of a larger number
f parameters and real-world conditions in the decision-making
rocess.
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. Conclusions

This paper has presented an extended two-stage optimisation
ethodology for the sizing of energy infrastructures for industrial
MEs. This methodology evaluates quantitative and qualitative
riteria and risks affecting the investment, both at the time of
ecision-making and during the operation of the energy infras-
ructure. This approach is well-suited for industrial SMEs, as it
onsiders a wide range of diverse and inherently different criteria
nd aims for long-term low-risk investments. Previous researches
as either focused on quantitative or qualitative parameters, leav-
ng the other spectrum aside, and most of them do not consider
ncertainty or the investment performance over time. Therefore,
he methodology presented in this paper fills a gap in the liter-
ture by providing a comprehensive and detailed methodology
or the treatment of criteria and risks of interest for the energy
nvestment.

In the proposed methodology, qualitative parameters dealing
ith subjective perceptions are calculated using a fuzzy system
hat evaluates the impact and probability of the decision on the
nalysed perceptions. Fuzzy logic is also used to determine the
ynamic qualitative cost of using the energy equipment over
ime. These approaches allow for the incorporation of the uncer-
ainty dimension in the measures of qualitative parameters. Risks
or quantitative parameters are managed through a probabilis-
ic approach, obtaining through the optimisation their expected
alue and CVaR. During the first stage of the optimisation, the
nergy infrastructure to be analysed is selected and qualitative
riteria directly linked to it are calculated using the proposed
uzzy approach. In the second stage, the operation of the in-
rastructure is optimised by considering both quantitative and
ualitative costs and associated uncertainties to determine ex-
ected values and risk measures. The suitability of the analysed
nergy infrastructure is assessed based on the preferences of
ecision-makers and the various criteria and risks, leading to a
olution that recognises the overall performance of the invest-
ent across different decision-making spectrums. A case study
as been conducted to examine the benefits of including quan-
itative and qualitative parameters and risks over time in the
ptimisation process. The energy infrastructure obtained through
he proposed optimisation methodology has been compared with
baseline optimal infrastructure resulting from considering only
n economic objective. The comparison reveals that including
uantitative, qualitative and risk parameters in the optimisation
rocess does indeed affect the resultant energy infrastructure.
ithout these criteria, equipment that is economically feasible
ut has the potential for significant negative social and environ-
ental impacts may be chosen for installation. However, when
ualitative criteria and risks are considered, the equipment is
elected through a trade-off between different criteria, resulting
n a solution that is overall less risky. Therefore, the selection
f criteria is crucial and affects drastically the resultant solution
f the optimisation problem. Additionally, even though the op-
imisation problem considers the economic, environmental, and
ocial spectrums, the specific criteria selected to measure them,
.g. emissions or ecological impact for environmental criteria
easurement, can alter the optimisation output by prioritising
ne outcome to another. The proposed optimisation approach
lso leads to a lower level of quantitative risk for the investor
nd a more robust and resilient energy investment option when
ncertainties are considered.
This paper presents a new approach for helping industrial

MEs make energy investment decisions that enable them to
dapt to changing energy conditions and improve their com-
etitiveness. This approach can be used to solve generic asset
nvestment problems, as it allows the consideration of various
3302
criteria and uncertainties in a problem in which there exists
a model for the performance of the asset. To further develop
this methodology, future research could focus on defining qual-
itative perceptions, determining the most relevant criteria for
energy investment optimisation, and extending the methodology
to include optimal energy equipment retrofitting.
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Appendix. Case study quantitative data

Parameter Value
PV
Initial cost 950 e/kW
LCOE 0.07 e/kWh
Initial O&M cost 6.56 e/kW-year
O&M cost variation −2.3% per year
PV connexion efficiency 99%
Job creation 0.87 jobs/GWh
Electrochemical storage
Initial cost 430 e/kWh
LCOE 0.06 e/kWh
Initial O&M cost 8.22 e/kW-year
O&M cost variation −3.8% per year
Charge efficiency 94%
Discharge efficiency 94%
Charge ratio 0.5C
Discharge ratio 5C
Job creation 0.01 jobs/MWh- capacity
CHP
Initial cost 3400 e/kWe
LCOE 0.042 e/kWeh
O&M cost 36 e/kWe-year
G2E efficiency 35%
G2T efficiency 55%
Job creation 0.31 jobs/GWh
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C

C

HP
Initial cost 700 e/kW
LCOE 0.076 e/kWh
O&M cost 5.56 e/kW-year
COP 4.5
0.25 jobs/GWh
Thermal storage
Initial cost 5 e/kWh
LCOE 0.0243 e/kWh
O&M cost 0.26 ect/kW-year
Charge efficiency 92%
Discharge efficiency 92%
Self-discharge 1%
Charge ratio 5C
Discharge ratio 0.25C
Job creation 0.01 jobs/MWh-

capacity
Boiler
LCOE 0.053 e/kWh
O&M cost 70e/kW-year
Efficiency 90%
Connexion efficiencies 99%
Emissions
Initial emissions cost 25 e/tCO2
Increase ratio 3.9% per year
Feed-in tariff 0.85 of wholesale

market price
Demand growth 1.5% per year
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