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Abstract

The aim of this project is to modify, adapt, correct and test two target tracking algorithms
to check their feasibility for future implementation in Advanced Driving Assistance
Systems (ADAS). These systems, which range from automatic brake action to direct
intervention in vehicle steering, require constant real-time monitoring of the environment
(other cars, pedestrians, wild animals, etc.) and, in this respect, tracking algorithms have
a crucial role to play, as they allow the continuous estimation of a target’s trajectory in
an accurate and efficient way.

This project is the continuation of a project initiated by the Wireless Communications
Research Unit of the Institute of Telecommunications of the TU Wien. As a starting
point, two algorithms designed and implemented by the researchers working on the
original project have been used. The first of these algorithms is a Particle Filter (PF)
implemented in Python, developed to track a single target, while the second consists of a
complex algorithm combining a Multiple Hypothesis Tracking (MHT) algorithm coupled
to a Particle Filter (PF), also implemented in Python, with the intention of performing
multiple target tracking.

The project has been developed as follows. First, a random trajectory of a target was
simulated in Matlab, using a random walk. Then, a Frequency Modulated Continuous
Wave (FMCW) radar simulator, implemented in Matlab, developed by researchers at
TU Wien, was used to perform the corresponding measurements. For the measurement
process, a system consisting of four FMCW radars, placed in a square arrangement, was
simulated. Finally, all data coming from the four radars was introduced into the two
algorithms and combined by means of sensor fusion techniques in order to improve the
quality of the trajectory estimates.
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CHAPTER 1
Introduction and objectives

In recent decades, the number of cars on the road has increased exponentially, and
more and more people are opting for private transport to get from one place to another.
Moreover, according to a study by the Spanish Government’s Ministry for Ecological
Transition and the Demographic Challenge [33], drivers are making longer and longer
daily journeys, which can lead to increased fatigue and lack of concentration at the wheel.
This combination of factors, more congested roads and increased driver distractions,
therefore, seems to create a scenario conducive to road accidents. According to several
studies [49], around 90% of road accidents are due to human error, so, there is an urgent
need to find ways to reduce them, as avoiding them could save many lives. Of course, the
solution lies in technology, and more and more companies are investing in the research
and development of the so-called Advanced Driving Assistance System (ADAS), which
are passive and active safety systems designed to eliminate or minimize the human error
component in the operation of vehicles of many types. These systems use advanced
technologies to assist the driver during driving to improve driving performance. They
use a combination of sensor technologies to perceive the world around the vehicle and
then provide feedback to the driver or take action when necessary. In summary, the aim
is to combine sensors and algorithms to understand the vehicle environment so that the
driver can receive assistance or be warned of potential hazards.

A coordinated ADAS then enables safer, more efficient and environmentally friendly
traffic between road users. There are several distinct levels of ADAS, from simple backup
cameras and blind-spot warning sensors to lane departure warning systems, pedestrian
detection and avoidance systems, adaptive cruise control, self-parking, and more. The
latest extension of ADAS are semi-autonomous or near-autonomous vehicles, i.e. vehicles
that are capable of driving themselves with little or no human intervention. In this
regard, systems for detecting pedestrians and nearby vehicles, as well as estimating and
tracking their respective trajectories in real time, are key to enable such vehicles to drive
themselves properly and without causing any collisions. One of the most important
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1. Introduction and objectives

components of these systems are the automotive radar systems, which typically consist
of one or more Frequency Modulated Continuous Wave (FMCW) radars, capable of
determining both the distance, the position and the speed of surrounding obstacles.
Therefore, the application of a suitable radar data fusion algorithm can significantly
increase the quality and robustness of the estimations. The optimal estimation of the
neighbouring vehicle’s trajectory based on the fused data with the help of Bayesian
statistics enables a reliable reaction in a safety-critical situation in road traffic.

Focusing on this area, a group of researchers from the Institute of Telecommunications at
the Technischen Universität (TU) Wien and from the Austrian Institute of Technology
(AIT) has been working on the design and implementation of several object tracking
algorithms, among which are a Particle Filter (PF), capable of estimating the trajectory
of individual targets in real time, and a combined algorithm that merges a Multiple
Hypothesis Tracking (MHT) algorithm and a PF, suitable for multiple target scenario.
Nevertheless, originally only a preliminary version of these algorithms was implemented,
so one of the most important tasks of this project has been the completion, improvement
and adaptation of both algorithms to make them functional.

Once this has been achieved, the main objective of the project has been to test these
algorithms in different scenarios, for example by varying the number of targets present or
by varying the number of radar sensors that make up the measurement system used, in
order to check its behaviour and efficiency in real-time tracking, and to evaluate whether
its implementation in ADAS systems for semi-autonomous cars is feasible or not.

To carry out all these analyses, it was first necessary to simulate the radar measurements.
For this purpose, a FMCW radar system simulator has been used. This simulator was
designed, developed and implemented by the Institute of Telecommunications of the
Wien, which has allowed its use for the present project.

The thesis is structured in seven chapters: Chapter 1 briefly introduces the topic and
motivates the Bachelor thesis; Chapter 2 is dedicated to the study of the state of the
art of target tracking algorithms; Chapter 3 provides a theoretical background and
presents the fundamentals of the FMCW radar; Chapter 4 introduces the basics of
target tracking techniques and develops the key ideas and theory underpinning both the
and MHT algorithms; Chapter 5 briefly presents the setup used for this thesis, including
the FMCW radar system simulator and the implemented PF and MHT algorithms,
and details their main features and operation; Chapter 6 gathers the experimental
results and the different tests carried out with the presented setup, and shows how the
implemented target tracking systems perform in different scenarios; and finally, Chapter
7 exposes the conclusions of the thesis and future work.
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CHAPTER 2
State of the art

Firstly, it is important to focus on the state of the art of target tracking techniques. This
is fundamental because it allows to learn about new discoveries, the main short- and
long-term objectives in this field, the techniques and methods developed by the different
authors, among others. That is to say, it provides a basis on which to start working in
order to improve what has already been done or to innovate by creating new things, thus
contributing to the achievement of new advances in the field.

Tracking is essential for guidance, navigation and control of autonomous systems, so
over the years different target tracking techniques and methods have emerged and been
developed. Initially, techniques based on closed-loop control systems were widely used for
Single Target Tracking (STT) [15, 20]. These techniques basically consisted in using the
error signal to adjust the pointing direction of the radar antenna so that it always pointed
at the target, and thus be able to track its trajectory. However, these techniques are only
useful for tracking a single object, and are ineffective when the number of targets to be
tracked is greater than one, so soon Bayesian filters [43], which had much more potential
in this area, gained momentum and began to be used for target state estimation. It was
at this point, then, that the use of PFs for target tracking began to develop and become
popular, along with their great competitor, the Kalman filter [52].

Since their introduction in 1993 [8], PF algorithms have become a very popular class
of numerical methods for the solution of optimal estimation problems in nonlinear non-
Gaussian scenarios. Compared to standard approximation methods, such as the popular
extended Kalman filter, the main advantage of particle methods is that they do not
rely on any local linearisation technique or any coarse functional approximation. The
price to be paid for this flexibility is computational: these methods are completely
expensive. However, thanks to the availability of ever-increasing computational power,
these methods are already used in real-time applications appearing in fields as diverse
as chemical engineering, computer vision, financial econometrics, target tracking and
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2. State of the art

robotics. Due to the popularity of particle methods, some tutorials on the subject have
already been published [14, 24, 23, 24, 25].

Therefore, one of the starting points of this thesis has been the work of a group of
researchers from the Institute of Telecommunications at the TU Wien [48], in which they
fused data from different radar sensors by means of a particle filter (PF), thus achieving
a better quality of estimations and providing greater robustness to the tracking system.

However, that work only considered the single target racking, as an ordinary particle
filter alone does not have the ability to associate the multiple radar detections with each
of the moving targets present in the scene and thus make parallel estimates of the state
of each of them. In this sense, therefore, one of the goals of the thesis has been to go a
step further and combine a data association algorithm with the existing particle filter to
see how powerful it was in tracking multiple targets. The main data association methods
and techniques are presented and developed in depth in the book by S. Blackman and R.
Popoli [10]. One of them, which is also one of the most recent, is the MHT, which was
initially proposed in 1979 by D. Reid [4]. Since then, several researchers have decided to
follow the same path and have implemented this type of algorithm in various tracking
systems [34, 44, 47].

The data association method chosen in this thesis has been, therefore, the MHT, following
the work carried out by a group of researchers from the AIT [45], who combined a PF
with a MHT algorithm, using sensor fusion techniques, in order to be able to merge data
from different radars and provide robustness and quality to the system. This mentioned
work has been the other starting point of the thesis, and hence one of the goals has
been to adapt, modify, correct and improve the algorithm proposed in [45] and to test it
in different scenarios to see its behavior and power when it comes to tracking multiple
objectives.
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CHAPTER 3
The FMCW radar system

Advanced Driver Assistant Systems (ADAS), like autonomous emergency breaking, take
charge of identifying imminent collisions and hitting the brakes before the driver even
starts to react. Therefore, this technology requires the simultaneous measurement of
range, velocity and angle of objects in the surrounding area of the automobile. There is a
wide variety of sensors capable of performing these tasks, e.g. camera or laser, however,
the sensor par excellence, and the one most chosen by automotive companies, is the
frequency modulated continous wave (FMCW) radar. Compared to other automotive
sensors, FMCW radar plays an important role due to its inherent advantages [32], such as
its ability to provide stable performance in night and rainy environments or its affordable
price, which makes it the ideal candidate for that type of tasks.

3.1 Basics of the FMCW radar

Frequency modulated continuous wave (FMCW) radar is a radar set capable of determin-
ing distance and other kinematic magnitudes. Unlike traditional Continuous Wave (CW)
radars, FMCW radars can change its operating frequency during the measurement, i.e.
the signal transmitted by these type of radars is frequency modulated. Such frequency
modulation provides, then, the capability to measure distances as the modulation provides
a time reference.

Furthermore, if the frequency modulation is linear, the process of analysing echo signals is
considerably simplified, as will be discussed in the following section. In that sense, there
are several possible modulation patterns which can be used for different measurement
purposes, e.g., sawthooth or triangular. For instance, while the first one is ideal for
long range estimation, the second one is very useful to measure velocities. Nevertheless,
although it is true that each of them is suitable for a certain situation, the idea behind
their functioning is the same. So, in order to make it simple, from now on sawthooth
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3. The FMCW radar system

modulation will be taken as a reference to explain the principles of measurement of
FMCW radars.

Figure 3.1: Different modulation patterns.

In Figure 3.1 both sawthooth and triangular modulation patterns are presented. Note
that in the first pattern, frequency modulation starts at f0 and then it is increased with
constant slope k (also known as chirp rate) during a certain period of time T . The range
of frequencies covered by the sawtooth wave in a period is the bandwidth (BW) of the
chirp.

Therefore, as can be gathered from Figure 3.1, the expression for the instantaneous
transmitted frequency over (0, T ) will be:

f(t) = f0 + kt = f0 + BW

T
t (3.1)

Then, the phase of the carrier, over (0, T ), will be given by:

ϕ(t) = 2π
∫ t

0
f(τ)dτ = 2πf0t+ πkt2 + ϕ0 (3.2)

And finally, the real signal transmitted by the radar can be expressed as:

sT X(t) = A · cos(2πf0t+ πkt2 + ϕ0) (3.3)

6



3.1. Basics of the FMCW radar

This chirp signal, known as Transmit (TX) signal, is generated by a voltage-controlled
oscillator (VCO) circuit, which is an oscillator circuit whose output frequency can be
controlled or varied through an adjustable control voltage input, i.e., if the input control
voltage is increased, the output frequency will increase proportionately, and vice versa.
Then, it is amplified and emitted trough the antenna.

If there is any obstacle in the surrounding area, the signal will be reflected, and then an
echo of the transmitted wave will be detected at the receiver but at a lower power and
delayed temporarily. This echo is then amplified trough a low-noise amplifier (LNA)).
The resultant signal of this operation is called received (RX) signal.

Next, both transmitted (TX) and RX signals are introduced into the frequency mixer.
The resultant signal is then low-pass filtered giving rise to the intermediate frequency
(IF) signal, whose frequency, known as beat frequency (fB), and whose phase (ϕ0) are
really useful to determine some kinematic magnitudes. The beat frequency and initial
phase can be easily found by computing the Discrete Fourier Transform (DFT) of IF
signal using a Fast Fourier Transform (FFT) algorithm, which provides the spectrum of
the signal from which it is possible to obtain this information.

However, it is often usual to have external interference (e.g. from other radars) or
background noise, which hamper spectrum peak detection, so an extra step is required in
order to mitigate those interference and select the right DFT peaks. As for interference
mitigation, there are several solutions to this problem, among which the application of
an adaptive filter, developed and explained in [51], stands out. For its part, Constant
False Alarm Rate (CFAR) algorithms, which will be introduced in section 3.3, arise as a
great solution to the problem of target detection in the presence of clutter.

In Figure 3.2 the general block diagram of a FMCW radar is shown. It summarizes and
illustrates all steps presented before.

Figure 3.2: General block diagram of a FMCW radar sensor.
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3. The FMCW radar system

3.2 Principles of measurement

As mentioned before, by operating on the transmitted and received signal, it is possible to
obtain a third signal, which is called IF signal, whose frequency and initial phase provide
kinematic information about the detected object. This process and the mathematical
development behind will be detailed next, following the steps of the diagram presented
in Figure 3.2. In order to make it simple, though, the last block of the diagram has been
omitted along the explanations. It will be discussed in depth in further sections.

3.2.1 Range estimation for static targets

The simplest scenario is that the targets in the surrounding area are static, or at least
have zero radial velocity. Then, the received signal has only a temporal delay τ and
amplitude attenuation, both due to the round trip the wave makes before reaching the
receiver antenna. This time delay is directly proportional to the distance r to the detected
object, and it is given by

τ = 2 · r
co

(3.4)

where co is the speed of light. Furthermore, the temporal delay leads to a constant
difference of frequencies during the up-chirp (see Figure 3.3). This frequency difference,
which is called fB, is the key element of this measurement method, as it can be directly
related to the range r by using the slope k of the modulation.

fB = 2 · r · k
co

(3.5)

Therefore, the aim of this technique is to determine somehow the value of fB.

As explained in section 3.1, the emitted wave is described as in equation 3.3, so that the
expression of the echo signal received at the antenna is given by

sRX(t) = A · α · cos
(
2πf0(t− τ) + πk(t− τ)2 + ψ0

)
(3.6)

where α is a dumping factor due to path losses.

Then, as shown in Figure 3.2, both the TX and RX signals are mixed, so the output of
the mixer is read as follows

sIF ′(t) = A2 · α · cos(2πf0t+ πkt2 + ψ0) · cos
(
2πf0(t− τ) + πk(t− τ)2 + ψ0

)
. (3.7)

This expression can be easily decomposed into a sum of sinusoids using the appropriate
trigonometric identities 1.

1It has been used that cos(α) · cos(β) = 1
2 (cos(α + β) + cos(α − β))

8



3.2. Principles of measurement

Figure 3.3: Frequency patterns of both the transmitted and the received signal for a
single static target case.

sIF ′(t) = A2α

2 ·
(
cos(2πf0τ + 2πkτt− πkτ2) + cos(4πf0t+ 2πkt2 + 2ψ0 − 2πf0τ − 2πkτt+ πkτ2)

)
.

(3.8)

As can be seen in the equation above, the frequency of the first sinusoid is already the
beat frequency (remind that fB= kτ). Therefore, in order to get rid of the undesired
high frequency components, the signal is low-pass filtered. This gives rise to what is
known as IF signal, whose frequency is fB, and which can be expressed as

sIF (t) = sIF ′(t)∗hLP (t) = A2α

2 ·cos
(
2πkτt+ (2πf0τ − πkτ2)

)
= A2α

2 ·cos
(
2πfBt+ (2πf0τ − πkτ2)

)
.

(3.9)

Finally, this beat frequency can be obtained by computing the DFT of the IF signal.
As commented, fB is directly proportional to the distance between the radar and the
non-moving object. This range can be found, then, with the following relation:

r = co

2kfB = co

2
Tc

BW
fB . (3.10)

In a multiple target scenario, the transmitted signal is reflected by each object in the
radar environment. Therefore, the resulting RX signal is the superposition of all the
RX components, with different time delays, corresponding to the different targets in the
surrounding area. Consequently, the IF signal is also a composition of sinusoids with
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3. The FMCW radar system

different beat frequencies, each related to a target. In this case, then, the DFT will show
multiple peaks, one for each beat frequency, which will provide information about the
distance to each detected obstacle.

If the chirp signal reaches two or more objects that are very close in terms of distance to
the radar, the signal at the mixer output will be composed of several very close tones.
On this matter, the minimum range difference required between two detected objects
for the radar to be able to distinguish them depends only on the bandwidth of the
transmitted chirp [36, 50]. This is because, as explained above, the range is estimated
from the frequency shift between the TX and RX signal, so the range resolution (∆r) will
depend on the frequency resolution (∆f) achieved. Typically, this frequency resolution
corresponds to the inverse of the signal observation time, which in this case is

∆f = 1
Tc

2. (3.11)

In turn, this expression for ∆f can be easily written in terms of the bandwidth by using
the chirp rate (k),

∆f = k

BW
. (3.12)

Finally, by introducing this expression into equation 3.2.1, it is found that the radar
range resolution is inversely proportional to the bandwidth [36, 50].

∆r >
co

2 ·BW (3.13)

Intuitively, this can be explained as follows. One can realise that there are two possible
options for increasing the range resolution. On the one hand, the first, the most trivial
one, can be derived directly from equation 3.11, and consists of improving the resolution
of the frequency shift estimate by increasing the sweep time (Tc). On the other hand,
it is also possible to decrease the time delay for a given frequency shift by increasing
the chirp rate (k). However, it should be noted that to do one of these options without
sacrificing the other, the only possible solution is to increase the bandwidth (BW), since
the relation BW = k · Tc must be mantained.

3.2.2 Range and velocity estimation for non-static targets

If the object to be located is, moreover, moving at a radial speed v, the received echo
signal will also show a frequency shift due to the Doppler effect, apart from the time
delay τ (Figure 3.4). This frequency shift will be negative or positive depending on
whether the object is moving away from or towards the radar, respectively. If speed v is
small compared to the speed of the emitted wave this variation, hereafter denoted as as
fD, is directly proportional to v.

2Remind that the Fourier Transform of a tone with a rectangular window of size T has nulls at
f − 1/T and f + 1/T (being f the tone’s frequency).
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3.2. Principles of measurement

According to Doppler effect 3 equation, if it is assumed that co >> v, the frequency shift
that the TX signal experiments when it reaches the moving target is described as follows,

fI =
(

1 + v

co

)
fT X , (3.14)

where fI refers to the new frequency experienced at the target position when it is hit by
the transmitted wave. The signal is then reflected and travels until it reaches the receiver
antenna. During this second trip, the signal undergoes another frequency shift, also due
to the relative movement between the receiver antenna and the emitting source, which,
in this case, is the object with which the TX signal has bounced off. Hence, the Doppler
effect of the whole process is described as [39]

fRX =
(

1 + v

co

)2
fT X . (3.15)

Assuming, again, that co >> v, this expression simplifies to [39]

fRX =
(

1 + 2v
co

)
fT X . (3.16)

Lastly, the total frequency shift fD is given by

fD = fRX − fT X = 2v
co
fT X = 2v

λ0
(3.17)

where λ0 is the wavelength of the TX signal.

Figure 3.4 shows the time behaviour of the received signal frequency when the received
wave comes from a target that has non-zero radial velocity. Note that in this case, the
frequency shift due to the temporal delay is mixed with that caused by Doppler effect, so
that, to determine both the distance and the speed of the moving object it would only
be necessary to find the parameters ∆f and fD. However, the Doppler shift introduced
by movement of targets is actually several orders of magnitude less than the bandwidth
of the signal of interest, making it almost impossible to detect, as it is much smaller
than the frequency resolution of the algorithm used to find the beat frequency. For that
reason, the radar uses another technique, consisting in sending several pulses in a row,
not just a single chirp. The key idea is the following.

The FMCW radar emits two consecutive chirps, separated by a time Tc. The first chirp
reaches the target which is located at a certain range r0, bounces back and gets to the
receiving antenna. Due to that round trip, the received signal undergoes a temporal delay
denoted by τ , as discussed before. Then, both the TX and RX signals are introduced into

3The Doppler effect or Doppler shift is the change in frequency of a wave in relation to an observer
who is moving relative to the wave source. It is named after the Austrian physicist Christian Doppler,
who described the phenomenon in 1842. Mathematically, this frequency shift is expressed as f =
( co+vreceiver

co+vsource
)f0 [39].
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3. The FMCW radar system

Figure 3.4: Frequency patterns of both the transmitted and the received signal for a
single non-static target case when the object is moving towards the radar. The RX signal
frequency pattern shows a vertical displacement due to Doppler effect.

the mixer, and the IF signal is obtained. This IF signal, which is a constant frequency
sinusoid, has a certain initial phase that depends on the phase difference between the
input signals. In fact, the initial phase of the signal at the mixer output is exactly the
difference between the initial phases of the two inputs. This situation is illustrated in
figure 3.5.

As for the second chirp sent, when it reaches the moving target, the object is not exactly in
the same position, as it has moved slightly a certain radial distance ∆r. Then, assuming
that the motion of the target is linear within the sweep duration (which is a reasonable
assumption, since sweep duration in automotive FMCW radar systems is usually in the
order of 10− 1000µs), this ∆r can be expressed as ∆r = vTc.

Therefore, since the distance between the target and the radar is slightly different at
the times when the first and the second chirp are transmitted, the time delay between
the received signal and the transmitted signal is also different for each chirp. This small
variation in the temporal delay, which from now on will be denoted as ∆τ , represents
a not so small variation in the phase difference between the signals at the input of the
mixer, which leads, in turn, to a difference in the initial phase of the IF signal (∆ϕ0), as
can be seen in figure 3.6 4.

Finally, looking at equation 3.9, and assuming that ∆τ << 1, the term πk∆τ2 becomes

4Note that the phase difference between the points A and D (∆ϕAD) of the TX chirp is the same
as the phase difference between points C and F (∆ϕCF ) in the third graph, which represents the phase
difference between two IF signals arising from two consecutive chirps (∆ϕ0).
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3.2. Principles of measurement

Figure 3.5: Example of transmitted (TX), received (RX) and intermediate (IF) signal
[53].

Figure 3.6: Received (RX) and intermediate (IF) signal arising from the second chirp
(blue). Comparison with those signals arising out of the first chirp (grey) [53].
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3. The FMCW radar system

negligible and then the expression for the initial phase difference reads as [53]

∆ϕ0 = 2πf0∆τ. (3.18)

In turn, this expression can be written in terms of the velocity:

∆ϕ0 = 2πf0∆τ = 4π∆r
λ0

= 4πvTc

λ0
. (3.19)

So, the velocity of the target can be expressed as

v = λ0
4πTc

∆ϕ0. (3.20)

In summary, in order to determine the velocity, the phase difference between the IF
signals arising from the consecutive chirps sent must be found.

Figure 3.7: Schematic representation of the meaning of ωϕ.

Note that this ∆ϕ0 can be understood as the spin rate (ωϕ) of the initial phase of the IF
signal arising from each chirp, as illustrated in figure 3.7, and that, therefore, equation
3.20 can be rewritten as

v = λ0
4πTc

ωϕ. (3.21)

Then, one realises that this ωϕ can be easily found by performing a double DFT. First, a
DFT of each IF signal, corresponding to each emitted chirp, shall be calculated. Each
of these DFTs allows for finding the frequency of the corresponding IF signal and its
initial phase. For all calculated DFTs, the spectrum will show peaks at the same place,
i.e at the same frequency bin, which means that the frequency of the IF signals coming
from each chirp is practically the same. This is because the range variations during the
emission of the chirps are so small that the corresponding frequency variations are well
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3.2. Principles of measurement

below the frequency resolution5 of the DFT algorithm. In contrast, as shown before, the
phase of the IF signal is very sensitive to small changes in the range of the target, so that
significant variations in the phase associated to the dominant frequency in the different
spectrums obtained from the different DFTs will be noticeable.

Then, assuming that the radar has emitted M consecutive chirps, there will be M
complex solutions, one for each chirp emitted. At this point, another DFT must be
calculated, now along the phases associated to the M dominant frequencies found from
the M spectrums, which will provide the phase spin rate (ωϕ). Then, using equation
3.21, the radial velocity can finally be determined.

Regarding the velocity resolution (∆v), one can deduce from equation 3.21 that it is
directly related with the resolution achieved in the estimation of the initial phase spin
rate (∆ωϕ).

∆v = λ0
4πTc

∆ωϕ (3.22)

As explained in the previous section, the resolution in frequency (∆f) is given by equation
3.11, so, in this case, ∆ωϕ should be given by [53]

∆ωϕ >
2π
M
, (3.23)

where M represents the number of emitted chirps and, hence, the number of initial phase
(ϕ0) samples.

Lastly, by imposing this condition to equation 3.22, the final expression for the velocity
resolution (∆v) of this technique is read as [36, 53]

∆v > λ0
2MTc

. (3.24)

3.2.3 Azimuth estimation

Unlike range or radial velocity estimation, azimuth estimation requires at least two
receiving antennas (RX), not just one. These antennas should be separated by a small
distance l, so that the distance between the detected object and each antenna is slightly
different (∆d) (see figure 3.8).

Consequently, the echo signal received by each antenna will have a lightly different time
delay ∆τ . As discussed in section 3.2.2, small variations in range, and the resulting small
variations in time delay, do not produce significant changes in the beat frequency of
the IF signal, but they do considerably affect its initial phase (figure 3.6). Furthermore,
following the same idea as that used to determine the velocity, the initial phase difference

5Since the range variations ∆r during the emission of the chirps are so small, the variations frequencies
fB of the different IF signals are imperceptible, so the ranges measured based on them are assumed to be
equal to each other.
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3. The FMCW radar system

Figure 3.8: Schematic illustration of the angle estimation system [54].

between the IF signals received at each antenna can be directly related to the slight
difference in range between the target and each of the receivers:

∆ϕ0 = 2πf0∆τ = 2π∆d
λ0

6. (3.25)

As for the small range difference ∆d, it can be related to the azimuth angle by making
some approximations and using triangulation. Under far-field assumptions, i.e. supposing
that d >> l, the wavefront is assumed to be flat, so the line of sight from each antenna to
the target can be shown to be parallel and the time delays for each consecutive antenna
is linearly increasing if the different receivers are evenly spaced forming a linear array.

Therefore, as shown in figure 3.9, ∆d can be written in terms of the azimuth angle:

∆d = d2 − d1 = lsin(θ). (3.26)

Equation 3.25 turns then into
∆ϕ0 = 2πlsin(θ)

λ0
, (3.27)

which means that θ can finally be determined by calculating the initial phase difference
between the IF signals generated at each of the antennas:

θ = arcsin

(
λ0∆ϕ0

2πl

)
. (3.28)

6Note that in this case it has been taken into account that the only wave that travels an extra path
is the received wave, not the transmitted one, so the expression has been divided by two with respect to
equation 3.19. It has been assumed, then, that the TX signal used as an input to the mixer is exactly the
same for all RX antennas, and that it has been emitted by a TX antenna located at the same place as
the first RX antenna in the linear array (Fig 3.8).
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3.2. Principles of measurement

Figure 3.9: Approximation of the azimuth estimation problem (assuming that d >> l)
[54].

Note again that this initial phase difference (∆ϕ0) between consecutive chirps can be
understood as the initial phase spin rate (ωϕ), and therefore equation 3.28 is read as

θ = arcsin

(
λ0
2πlωϕ

)
. (3.29)

Lastly, as it is done to determine the velocity (see section 3.2.2), a double DFT must
be performed in order to find the value of ωϕ. The procedure is the same. Assuming
that the number of antennas in the linear array is L, there will be L IF signals, one for
each antenna, and hence a DFT must be performed for each of them. Then, as seen in
the previous section, L complex solutions will be obtained, with the same modulus (fB)
and different phases. Last, another DFT must be performed along the phases of these L
complex solutions in order to determine the phase spin rate (ωϕ), from which we can
finally calculate the azimuth angle (θ) at which the detected target is located.

As for azimuth resolution (∆θ), this depends on the spin rate resolution (∆ωϕ) achieved.
And ∆ωϕ, in turn, is obtained similarly to equation 3.23, therefore, it can be written as
[54]

∆ωϕ >
2π
L
. (3.30)

where L is the number of RX antennas in the linear array, so it is also the number of IF
signals obtained, and therefore it is the number of initial phase (ϕo) samples.

Then, assuming that two targets are located at azimuths θ and θ + ∆θ relative to the
radar, the corresponding initial phase spin rates (ωϕ) differ in

∆ωϕ1,2 = ωϕ1 − ωϕ2 = 2πd
λ0

(sin (θ + ∆θ)− sin(θ)) ≈ 2πd
λ0

cos(θ)∆θ 7. (3.31)

7The formal definition of the derivative has been used here: d
dx

[sin(x)] = sin(x+∆x)−sin(x)
∆x

= cos(x) .
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3. The FMCW radar system

In the end, by applying the condition defined in equation 3.30 to this expression, the
final azimuth resolution of this estimation technique is written as [54]

∆θ > λ0
L · l · cos(θ) . (3.32)

Note that the resolution is not constant, as it depends on θ. This means that if the
azimuth is small, i.e. if the target is in front of the antenna array, the resolution will be
much better than if the target is aligned with the antenna array.

3.3 Introduction to CFAR methods

The biggest challenge in object detection is to decide whether a peak in the spectrum
corresponds to a potential object or not. Comparing the frequency spectrum with a
fixed threshold value might work perfectly well for an ideal spectrum. However, in a real
measurement, the presence of noise of unknown power can cause many false alarms if the
threshold value is chosen too low. Conversely, if it is set too high, fewer objects will be
detected. The so-called constant false alarm rate (CFAR) technique thus provides an
output adapted to the background noise and ensures that the number of false alarms
does not depend on the power of the noise (see Figure 3.10). The assumed noise model
is a zero-mean complex-valued Gaussian random variable, which is independently and
identically distributed. To find an adaptive threshold for the given noise model, the
noise power has to be estimated. On this matter, there are two main types of CFAR
algorithms, which are the two most widely used: the cell-averaging CFAR (CA-CFAR)
[37] and ordered-statistics CFAR (OS-CFAR) [29].

This section, though, will focus only on the OS-CFAR method, which is the one imple-
mented in the FMCW radar system generator used for this project. Next, then, the
basics of this method will be briefly introduced, just to give the reader a quick overview
of the OS-CFAR technique.

3.3.1 Ordered-statistic CFAR (OS-CFAR)

As seen in the previous sections, once a DFT is performed, each frequency bin of the
spectrum obtained represents a specific range, azimuth or velocity, depending on the
data series over which the DFT is performed. Each frequency bin, hereinafter referred
to as cells, must be analysed to determine whether an object is in that cell or not, i.e.,
to determine whether an actual object is responsible for causing a in the DFT in that
particular frequency bin or not.

The basic idea of CFAR algorithms is to create a reference window around each cell
under test Y , composed of its neighbouring cells X1 to XN , and calculate its threshold
value based on the DFT amplitudes of those N neighbouring cells. In this sense, though,
it is important to note that since the peaks are not located in a single cell, but are spread
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3.3. Introduction to CFAR methods

Figure 3.10: Example of a threshold calculated with an OS-CFAR algorithm.

over several cells, the reference window should not be placed directly next to the test cell.
This means, therefore, that when constructing it, the cells right next to Y , the so-called
guard cells, must be omitted and the next N nearest cells must be selected.

The main difference between the CA-CFAR and Order Statistics Constant False Alarm
Rate (OS-CFAR) methods is the way the reference window is used to calculate the
threshold value. On the one hand, as for CA-CFAR algorithms, they calculate the
threshold by averaging the DFT amplitudes of neighbouring cells. However, the detection
procedure of such algorithms is not designed for the detection of multiple objects, as
other detected objects within the reference window may distort the noise estimate and
consequently increase the threshold value. It is at this point, therefore, that OS-CFAR
methods emerge, trying to overcome this issue. The point is that unlike the CA-CFAR
procedure, which uses all signal amplitudes in the reference window to determine the
threshold, the OS-CFAR algorithm only selects a single amplitude. The general idea of
this technique is to sort the cells in the reference window by amplitude in ascending order
and then estimate the noise based on the kth value in the list. Lastly, the estimation of
the noise floor has to be multiplied by a scaling factor TOS to obtain the threshold value,
as shown in Figure 3.11.

Therefore, the first important task is to find a suitable value for k, as it decides which
value of the reference window is used for the background noise estimation. According to
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3. The FMCW radar system

Figure 3.11: Basic functioning of a OS-CFAR algorithm [40].

[27], three quarters of the window size N is a reasonable choice for k. Furthermore, as
explained, the amplitude of the kth cell has to be multiplied by a scaling factor in order
to achieve a given constant probability of false alarm (PF A). The scaling factor TOS can
be calculated by solving [6, 21]

PF A =
(
N

k

)
k!(TOS +N − k)!

(TOS +N)! (3.33)

for a given probability of false alarm and a given k. The complex process leading to this
expression is developed and explained in detail in [6].
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CHAPTER 4
Target tracking

Target tracking is an essential requirement for surveillance systems employing one or
more sensors, together with computer subsystems, to interpret the environments. Typical
sensor systems, such as radar (section 3.1) , infrared (IR), and sonar, report measurements
from diverse sources: targets of interest, background noise such as clutter, or internal
error sources such as thermal noise. The target tracking objective is to collect sensor
data from a FMCW radar containing one or more potential targets of interest and then
to partition the sensor data into sets of observations, or tracks, that are produced by the
same sources. Once tracks are formed and confirmed (so that the background and other
false targets are reduced), the number of targets can be estimated and quantities, such
as target velocity, future predicted position, and target classification characteristics, can
be computed for each track [10].

In this sense, there are two possible situations that one can encounter in the scope of
target tracking. On the one hand, if there is only one object in the field of view of
the sensor or if the user’s goal is to track the trajectory of a single object, then a STT
algorithm is used. On the other hand, though, if the number of targets to track is more
than one, then a Multiple Target Tracking (MTT) system will be required. Although the
idea behind the algorithms used to solve each of the situations is essentially the same,
the fact is that when multiple, co-existing targets are involved, the process becomes
more complicated due to the measurement origin uncertainty. For its part, single target
tracking corresponds to the simplest case and its solution is summed up to solving a state
estimation problem 1[5],which is tackled by employing different so-called Bayesian-filters
[3, 19]. For multi-target tracking, the source uncertainty in the observations must be
resolved before tackling the state estimation task. Therefore, the extension of STT to
MTT first requires a complex data association logic to classify the returning sensor data

1The term state estimation problem comprehends all those problems that consist of determining the
current, or future, state of a complex system given the complete history of observations and measurements
that have been taken by sensors so far.
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into the general categories of targets of interest, recurring sources that are not of interest
(such as background clutter), and spurious signals with little or no correlation in time
[10]. In this respect, several data association techniques can be used.

In the following section, the basics of multi target tracking systems will be introduced,
and next the data association algorithm and the Bayesian filter implemented in this
project will be presented and detailed.

4.1 Introduction to Multiple Target Tracking (MTT)
Multiple target tracking has immense application in areas such as surveillance, air
traffic control, defense and computer vision. As mentioned, the aim of a target tracking
algorithm is to estimate the target position precisely from the partial noisy observations
available. The real challenges of multiple target tracking are to accomplish the same in
the presence of measurement origin uncertainty and clutter [35].

As mentioned, in multiple target tracking, the positions of individual targets are estimated
in presence of noisy partial observations arising from a number of indistinguishable targets
moving about. The random measurements received might belong to any of the targets
and an appropriate mapping between the targets and their corresponding measurements
is necessary before state estimation. For its part, the measurement originating from any
non-target is regarded as clutter which deteriorates the performance of the tracker. In
that sense, multiple target tracking seeks solution to two major problems encountered
in this scenario: problem of data association and state estimation. On the one hand,
suitable data association algorithms are required prior to the filtering in order to overcome
the inherent problem of measurement origin uncertainty associated with a multi-target
environment [22]. Then, after that data association, state estimation techniques, such as
the ones presented in the previous section, are used to track the different targets and
predict their following position.

So first, this section will focus on introducing the basics of data association techniques,
and then it will centre on presenting and developing the Multiple Hypothesis Tracking
(MHT), which is algorithm that has been implemented in this project.

4.1.1 Elements of a conventional MTT system

Figure 4.1 gives a representation of the functional elements of a simple recursive MTT
system. However, the truth is that, when recently developed techniques, such as MHT, are
used, there is considerable overlap of the functions of these elements and the distinction
between these individual elements becomes less apparent. Nevertheless, this representation
provides a convenient partitioning that will be used to introduce the typical functions
required for an MTT system [10]. The purpose of the figure is to give an overview of the
MTT problem and to show how the elements interrelate.

Let us assume recursive processing is being used so that tracks have been formed on
the previous scan. Now, input data are received from the sensor and processing loop
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described in Figure 4.1 is to be performed. Incoming observations are first considered for
the update of existing tracks. Gating tests determine which possible observation-to-track
pairings are "reasonable", and a more refined association algorithm is used to determine
the final pairings. Observations that are not assigned to existing tracks can initiate new
tentative tracks. A tentative track becomes confirmed when the number and quality of
observations included in the track satisfy confirmation criteria. Similarly, low-quality
tracks, as usually determined by the update history, are deleted. Finally, after inclusion
of the new observations, tracks are predicted ahead to the arrival time for the next set of
observations. Gates are placed around these predicted positions and the processing cycle
repeats [10, 22, 45].

Figure 4.1: Basic elements of a MTT system [10].

4.1.2 Basics of data association

The gating, observation-to-track association and track maintenance functions shown
in Figure 4.1 are part of the overall data association function. Each of these will be
introduced and explained in more detail in the following sections.

4.1.2.1 Gating

Gating is a technique for eliminating unlikely observation-to-track pairings. It is used as
a screening mechanism to determine which observations are valid candidates to update
existing tracks and it is performed primarily to reduce unnecessary computations by the
association and maintenance functions that follow.

As discussed below, a gate is formed around a predicted measurement and all observations
that satisfy the gating relationship (fall within the gate) are considered for track update.
The manner in which the observations are actually chosen to update the track depends
on the data association method but most data association methods utilize gating in order
to reduce later computation.

Figure 4.2 illustrates gating for two closely spaced targets and four observations. Note
that the gates may overlap for closely spaced targets. Gates are established and gating is
performed in the following general way.
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Figure 4.2: Gating example [10].

1. First of all, estimations are made of what the measured quantity should be at the
time of the next observation. This process is called prediction, and it is carried out
by special filters, such as Kalman-Filter [41] or Particle Filter (PF) (see section
4.10), which require statistics describing the accuracy of these estimates [10].

2. Then, the difference between each measurement and its corresponding estimate is
calculated.

3. A maximum error between estimate and measurement is calculated for all mea-
sured quantities by using the estimate and measurement accuracy. The computed
differences are compared to the computed maximum allowable error, and if the
differences are less than the maximum allowable errors, the observation satisfies
the gate.

Furthermore, as it is shown in Figure 4.2, it is often useful to form a kind of total distance
d2

ij from track i to observation j. Thus, a normalization process is required whereby
the differences in each of the component measurements are squared, divided by certain
constants, which usually are the variances of the expected differences (if they are known),
and summed to form a kind of total normalized distance. For example, if range (R),
azimuth (Φ) and elevation (Θ) are measured, then the normalized distance would be

d2 = (Rp −Ro)2

a2 + (Φp − Φo)2

b2 + (Θp −Θo)2

c2 (4.1)

where (Rp,Φp,Θp) is the predicted position and (Ro,Φo,Θo) is the measured position
[10].
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Then, as an alternative, the gating can be also carried out by using this normalized
distance, as in [22, 45]. Nevertheless, although it is a quite extended praxis, the truth
is that computations can usually be saved if the measurement components are first
examined individually.

4.1.2.2 Observation-to-track association

Regarding the observation-to-tracking association function, its job is to take the observation-
to-track pairings that satisfy gating and determine which observation-to-track assignments
will actually be made. That is, new possible tracks are created at this point, with the
observations that satisfied gating and, then, they are evaluated, validated or rejected in
the next step of the flowchart.

4.1.2.3 Track maintenance

For its part, track maintenance refers to the functions of track initiation, confirmation
and deletion. A simple approach to track initiation, used by the Global Nearest Neighbor
(GNN) method [17], is to start new tracks on those observations that are not assigned
to existing tracks. However, a more preferable method, used with multiple hypothesis
tracking (MHT) [22, 45], will start tentative tracks on all observations and use subsequent
data to determine which of these newly initiated tracks are valid [10].

Once a tentative track is formed, a confirmation logic is usually required because the
probability of a single observation being from an extraneous source is too high for
immediate confirmation. Thus, it is usually required that at least one other observation
is assigned to a tentative track before the track is considered to be confirmed. However,
a much better approach is to define a track score function and compare this score with
an appropriately chosen track confirmation threshold [10, 31].

A track that is not updated becomes degraded, and it must be deleted if not updated
within some reasonable interval. If a sufficiently long time elapses without detection,
the target will probably no longer be within the scan volume. A typical simple rule is
to delete a track after ND consecutive scans have produced no updating observations.
Again, however, the use of a track score function is more general and more readily applied
to varying detection capabilities. Also, the track score reflects the quality of the update
so that updates that barely satisfy the gate may actually decrease the score [10, 31]. The
computation of this score function depends on the implemented method and requires
complex probabilistic expressions that include all aspects of the data association problem,
as discussed in [10].

Further in the text, in section 4.2, the focus will be put on the multiple hypothesis tracking
(MHT) algorithm, which is one of the most widely used data association methods, and it
is the one that has been evaluated in this project.
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4.1.3 Basics of state estimation

State estimation problems, also designated as nonstationary inverse problems [19], are of
great interest in innumerable practical applications. In such kind of problems, the available
measured data is used together with prior knowledge about the physical phenomena and
the measuring devices in order to sequentially produce estimates of the desired dynamic
variables. This is accomplished in such a manner that the error is minimized statistically
[3].

As mentioned before. state estimation problems are solved with the so-called Bayesian
filters 2 [3, 16, 19]. In the Bayesian approach to statistics, an attempt is made to
utilize all available information in order to reduce the amount of uncertainty present
in an inferential or decision-making problem. As new information is obtained, it is
combined with previous information to form the basis for statistical procedures. The
formal mechanism used to combine the new information with the previously available
information is known as Bayes’ theorem [16, 19, 26].

The most widely known Bayesian filter method is the Kalman filter [1, 3, 14, 19]. However,
the application of the Kalman filter is limited to linear models with additive Gaussian
noises. Extensions of the Kalman filter were developed in the past for less restrictive cases
by using linearization techniques [2, 9, 14, 19]. Similarly, Monte Carlo 3 methods have
been developed in order to represent the posterior density in terms of random samples
and associated weights. Such Monte Carlo methods, usually denoted as Particle Filters
(PF) among other designations found in the literature, do not require the restrictive
hypotheses of the Kalman filter. Hence, particle filters can be applied to non-linear
models with non-Gaussian errors [3, 11, 12, 14]. For this reason, the filter selected to
perform the state estimation tasks in this project has been the latter, the particle filter,
which will be presented and described in detail in section 4.3.

4.2 Multiple Hypothesis Tracking (MHT) algorithm

As stated before, multiple hypotheses tracking (MHT) is one of the earliest successful
algorithms for multi-target tracking and has become especially popular in the radar
target tracking community. It was originally proposed in 1979 by Reid [4], and the
key idea is to collect all observations taken at a certain time step and pose all possible
associations between them, then score each of the associations according to the distance
between the associated observations by calculating the likelihood, and finally take those
non-conflicting association hypotheses with the highest score [34].

2Bayes Filtering is the general term used to discuss the method of using a predict and update cycle
to estimate the state of a dynamical system from sensor measurements.

3A Monte Carlo simulation is a model used to predict the probability of different outcomes when
the intervention of random variables is present. It is a technique in which a large quantity of randomly
generated numbers are studied using a probabilistic model to find an approximate solution to a numerical
problem that would be difficult to solve by other methods.
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In the following sections, the key elements of the MHT algorithm are introduced and
detailed. However, a brief clarification of the concepts and the notation that will be used
throughout the explanations is appropriate first.

4.2.1 Previous concepts and definitions

As commented, in order to illustrate the working basics of the MHT algorithm, it is first
necessary to introduce some concepts that will be used recurrently during the explanation.
On the one hand, the term connection is defined as the 2-to-2 association between two
measurements or observations obtained at the same time step, or as the association
between an observation and one of the state estimates made between the previous time
step. On the other hand, the term track refers to a local hypothesis, i.e. each of the
possible links between the multiple connections made. Finally, the term global hypothesis
will be used to refer to a set of independent tracks, i.e. a set of tracks that are compatible
with each other since they do not have any observations in common [45].

As for the observations, from now on they will be denoted as zs
k,t, where s refers to

the sensor to which the observation belongs (if the total number of sensors is S, then
s ∈ [1, S]), k is the id of the detection (assuming that the radar has made K detections
at the same time step, then k ∈ [1,K]), and t represents the time instant at which the
measurements are made. For its part, connections are denoted as An, tracks as hn and,
finally, global hypothesis as Hn.

4.2.2 Main stages of the MHT algorithm

Figure 4.3 shows the flowchart of the conventional multiple hypothesis tracking algorithm.
As can be seen, the MHT algorithm operates in three main stages (since the prediction
phase is performed by an external state-estimation algorithm).

Figure 4.3: Flow diagram of the Multiple Hypothesis Tracking algorithm [45].
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4.2.2.1 Association 2-to-2. Gating and connection scoring

The first of these stages, the 2-to-2 association, consists in taking all the observations
obtained at a given time instant and comparing them all with each other, using the
gating technique, to assess whether they are two potential measurements of the same
target or whether, on the contrary, they are independent measurements coming from
two different targets. If the gating process is successful, a connection (An) between
the two observations is established, scored and added to the list of connections. To
connect the current measurements with the trajectories estimated so far (x̂P F

k,1:t−1), the
last state predictions (x̂P F

k,t−1), made at the previous time instant, are taken and added
to the list of observations, so that they also take part in the 2-to-2 association process,
and are connected with the received observations. In addition, the possibility for each
measurement to be independent and not associated with any other measurement is also
added to the list of connections. In this case, the connection is denoted as An = [zs

k,t ∼ 0].
This whole process described above is exemplified and illustrated in the figure 4.4.
Gating

As explained in section 4.1.2.1, the gating process is based on the distance between
the target position predictions and the observations (in black in Fig. 4.4), or between
two different observations (in blue in Fig. 4.4), weighted by the maximum allowable
error. Taking into account one prediction as x̂P F

k,t−1 = (Rp,Φp,Θp) and a new arriving
observation as zs

k,t = (Ro,Φo,Θo), and R as distance, Φ as azimuth and Θ as elevation,
then the weighted distance dw is defined as in 4.1:

dw = (Rp −Ro)2

a2 + (Φp − Φo)2

b2 + (Θp −Θo)2

c2 (4.2)

The variables a, b and c are the maximum allowed differences between the values of
distance, azimuth and elevation, and they are defined arbitrarily. Note that the equation
above describes an ellipsoid. With differences of azimuth, elevation and distance within
this ellipsoid, the distance is within 0 or 1. For this reason, the gating procedure is
considered passed when the value dw is less than or equal to 1. If the gating process
is passed, the connection is added to the list of connections (see Fig. 4.1). As can be
guessed, depending on the magnitude of these values (a, b, c), the gates built around the
predicted positions and the arriving observations will be larger or smaller, and hence the
amount of connections done will also be larger or smaller, respectively. Therefore, they
should be adjusted according to the accuracy of the measurements.
Connection scoring

Finally, as explained in section 4.3 a score based on its likelihood function is given to each
new connection. In the model implemented in this project, the score of this connections
has been computed based on dw with the following relation [45]:

a = α · e−λ·dw (4.3)
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Figure 4.4: Example of the 2-to-2 association process and connection formulation.

The α variable takes into account the confidence parameters of both measurements with
λ, a user-defined parameter.

On the other hand, the possibility that one of the observations or predictions is inde-
pendent and not associated with any other observation or prediction (An = [zs

k,t ∼ 0]) is
scored with a fixed low score of 0.05 [45].

All the steps presented and described above are shown and implemented in algorithm
4.1, which forms the first phase (a key one) of the complex MHT algorithm.

4.2.2.2 Local hypothesis formulation

Once all possible connections have been noted, the next step of the MHT algorithm is
to formulate all possible local hypotheses. For this, all the connections made are taken
into account and, in addition, the possible mergers and combinations between these
connections are also added, thus creating associations of more than two observations.
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Algorithm 4.1: Association 2-to-2. Gating and scoring algorithm. Connection
formulation. (example with 2 targets).

Data: Measurement vectors zs
t for all sensors s and all time-steps t. Target state

predictions x̂P F
k,t−1

Result: Connection list (Alist) containing all possible 2-to-2 associations.
1 Observation 1: the measurement vector zs

t of each sensor contains 2
detections at each time step (remind that there are 2 targets in the scene),
which from now on will be denoted as zs

1t and zs
2t.

2 Observation 2: the estimate of the position of the targets in the previous
iteration x̂P F

1,t−1, x̂
P F
2,t−1 is added to the list of measurements as zS+1

t (where S is
the total number of sensors), in order to perform the gating between the
arriving measurements and the previous estimates.

3 for t ∈ [0, N − 1] do
4 Associations 2 by 2: these associates will be denoted by Ah.
5 n = 0
6 for s ∈ [1, S + 1] do
7 for r ∈ [s+ 1, S + 1] do
8 for k ∈ [1, 2] do
9 for j ∈ [1, 2] do

10 Connection hypothesis: An = [zs
k,t ∼ zr

j,t]
11 Gating and scoring:
12 ∆Φ = Φs

k,t − Φr
j,t

13 ∆Θ = Θs
k,t −Θr

j,t

14 ∆R = Rs
k,t −Rr

j,t

15 dw = ∆R2

a2 + ∆Φ2

b2 + ∆Θ2

c2

16 if dw < 1 then
17 gate = TRUE

18 Score = α · e−λ·dw

19 Alist(n) = An (An is added to the connection list.)
20 n = n+ 1
21 else
22 gate = FALSE
23 end
24 end
25 Independent measurements: In addition, the possibility for

each measurement to be independent and not associated with any
other measurement is added to the list of connections. This is
denoted as An = [zs

k,t ∼ 0].
26 An = [zs

k,t ∼ 0]
27 Alist(n) = An

28 Score = 0.05
29 n = n+ 1
30 end
31 end
32 end
33 end
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4.2. Multiple Hypothesis Tracking (MHT) algorithm

These local hypotheses or tracks, therefore, are nothing more than the 2 to 2 connections
already made, plus all the possible unions between these connections [45].

An illustration of a local hypotheses list is shown in figure 4.5, following the example set
out in section 4.2.2.1.

Figure 4.5: Local hypothesis list for the example set out in Fig. 4.4.

As for the local hypotheses score, for those tracks that are the result of the union of
several connections, the score will be the sum of the scores of each of the connections
that make up the track. Otherwise, if the tracks are directly a connection, the score will
be the same as that of the connection [45].

4.2.2.3 Global hypothesis formulation

Finally, in the last stage of the MHT algorithm, the global hypotheses (Hn) are formed by
defining sets of independent tracks, i.e. tracks that do not have common measurements.
To do this, what is done is to construct a graph in which the nodes represent each of the
local hypotheses, and the lines link those nodes that have measurements in common (see
figure 4.6). In this way, it is easier to identify which hypotheses are independent of each
other and therefore compatible.

Once the graph is constructed, the Maximum Weighted Independent Set (MWIS) [34]
method is used to find the set of independent local hypotheses, i.e. the global hypothesis,
with the highest score and, therefore, the highest probability. The basic operation of this
technique is to select the highest scoring local hypothesis and then search for the next
highest scoring local hypothesis that is compatible with the first selected hypothesis. From
here, the same recursive approach is followed until there are no observations included in
any of the local hypotheses selected during the process. This set of selected independent
tracks forms a global hypothesis and its score is the sum of the scores of each of the
tracks [34].

Using this procedure, several global hypotheses are formulated and the one with the
highest score is selected. Then, each of the tracks that make up the selected global
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Figure 4.6: Construction of the node graph with the local hypotheses set out in Fig. 4.5.

hypothesis, i.e. each of the different sets of associated measurements, are introduced
into a PF, each track to a filter, in order to estimate the state of each of the targets
separately. If the track contains one of the target state predictions made in the previous
iteration (x̂P F

k,t−1), then the track is introduced into the previously created particle filter
to continue with the estimation of that target. Conversely, if the track does not contain
any of the state predictions, the set of measurements is introduced into a new filter to
start the estimation of the state of a new target. This track-to-filter assignment process
is shown and implemented next, in algorithm 4.2.

Algorithm 4.2: Track-to-filter assignment algorithm.
Data: Selected global hypothesis Hn = [hj , hi], target state predictions x̂P F

k,t−1
Result: Correct assignment between the track and the particle filter.

1 for h ∈ Hn do
2 if x̂P F

1,t−1 ∈ h then
3 Assign track h to Particle Filter 1.
4 h → PF1
5 else if x̂P F

2,t−1 ∈ h then
6 Assign track h to Particle Filter 2.
7 h → PF2
8 else
9 Assign track h to a new Particle Filter.

10 h → PFnew

11 end
12 end

Finally, local hypotheses that fall outside the global hypothesis are pruned and removed
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to save computational cost.

4.3 The Particle Filter (PF)

The Particle Filter (PF) Method [13, 18, 24, 35] is a Monte Carlo technique [55] for the
solution of the state estimation problem. This method is based on the estimation of
the posterior probability densisty function (pdf) based on all observations and estimates
made so far.

The key idea of particle filters is that any pdf can be represented as a set of samples
(particles). That is, any pdf can be recreated just by drawing a whole lot of samples from
it, so that the density of samples in one area of the state space represents the probability
of that region. Each particle has one set of values for the state variables. This method
can represent any arbitrary distribution, making it good for non-Gaussian, multi-modal
pdfs. Again, the key idea is that one can find an approximate representation of a complex
model (any arbitrary pdf) rather than an exact representation of a simplified model
(Gaussians).

Figure 4.7: Recreation of a non-Gausian pdf from a set of samples (particles) [30].

Particle filters make use of a Bayesian approach towards state estimation in a nonlinear,
non-Gaussian scenario [13]. In Bayesian framework, the probability density function
of the state is estimated based on all available information. Since this pdf embodies
all available statistical information, it may be said to be the complete solution to the
estimation problem. PF have this common feature that they approximate the posterior
density by means of a set of particles and their associated weights. At least two models, a
system model, modeling the evolution of the system with time, and a measurement model
are required for efficient estimation. The particles are propagated through the system
model and weights are calculated recursively via the noisy observations received. The
PF algorithms estimate the posterior density incorporating Monte Carlo sampling and
approximation techniques and they are also referred as Sequential Monte Carlo (SMC)
filters. As the number of samples becomes very large, this Monte Carlo characterization
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becomes an equivalent representation of the posterior probability function and the solution
approaches the optimal Bayesian estimate. As stated before, the main advantage of this
approach is that it makes no restrictions on the system and measurement models or the
distribution of the noise [35].

4.3.1 System model

As explained above, two models are needed for a proper estimation, one that models the
evolution of the system over time and one that models the noisy observations.

It is important to underline that the motion model will be the one followed by the
particles and that, upon arrival of new observations, i.e. new radar measurements, the
probability that each particle is correctly representing the real position of the detected
target will be calculated, based on the difference between the observations and the state
of each particle, and taking into account the measurement model that models these
observations. From there, a weight shall be assigned to each particle and an estimate
of the true position shall be calculated taking into account the whole set of particles.
However, this will be developed in detail in section 4.3.2.

4.3.1.1 Movement model

In regard to the motion model, there are several alternatives for modelling the behaviour
of particles over time. In particular, in this project, the particles move according to a
Markov [46] movement, as described next.

First, it has been assumed that a general target is originally located at an unknown
position on the considered map according to a uniform distribution, so that the particles
are randomly distributed throughout that region. Then, each of the particles follows a
movement according to a sequence of random states. The state of a particle at a certain
time-stamp is defined by x ∈ R4 = [x, y, vx, vy]T and it evolves according to the following
state space equations [48]

xt+1 = Axt + u. (4.4)

Here, A ∈M4×4(R) is the state transition matrix defined as

A =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 , (4.5)

and u is the driving noise defined as a Normal distributed multivariate variable according
to

u ∼ N (04×1, Cu). (4.6)

34



4.3. The Particle Filter (PF)

For its part, the driving noise covariance matrix Cu ∈M4×4(R) is defined as

Cu = σ2
uI4, (4.7)

where σ2
u is the driving noise covariance and I4 is the 4× 4 identity matrix.

4.3.1.2 Measurement model

On the other hand, measurements representing observations of the system are received
from time to time. The measurement model indicates how the state xt is transformed
into a measurement zt by the sensor, depending on its particular characteristics and a
noise variable.

Figure 4.8 depicts the basic operation of one radar sensor. As explained in section 3.1, if
the radar detects a target, it estimates its range and azimuth (r and ϕ) by comparing
both the transmitted and the received signals. However, as expected, these estimates are
not fully accurate, due to background noise or the technical limitations of the radar itself,
so there is always some error in the measurements. This situation can be modelled by
assuming that both measurements follow a normal distribution N (µr, σr) and N (µϕ, σϕ),
whose mean value, µr and µϕ, respectively, are the true polar coordinates of the detected
target. Then, the noise in the observations, i.e. the error between the true target
coordinates and those estimated by the radar, can also be modelled by zero-mean normal
distributions with the same variances (σr,σϕ): er ∼ N (0, σr) and eϕ ∼ N (0, σϕ).

Figure 4.8: Measurement model. The sensors estimate range (r) and azimuth (ϕ). Both
parameters estimated as noisy observations with variances σ2

r and σ2
ϕ [48].

Furthermore, radars may sometimes fail to detect a target due to multiple reasons.
Therefore, this must also be taken into account and modelled. For this, the parameter
Pd has been defined, which determines the probability of each sensor, at each time step,
to detect a surrounding target.

35



4. Target tracking

Lastly, each sensor also detects clutter consisting of a random amount M of additional
detections. This number is distributed according to the Poisson distribution [48]

p(M) = λM e−λ

M ! . (4.8)

4.3.2 State estimation via Particle Filter

As explained above, the particle filter uses a particle cloud to approximate the posterior
pdf of the target position at time step t given all prior measurements f(xt|z1:t). Then,
based on that posterior pdf it is possible to construct the Minimum Mean Squared Error
(MMSE) estimate [7]

x̂MMSE
t =

∫
xt f(xt|z1:t)dxt. (4.9)

Nevertheless, as mentioned, the exact posterior pdf is not known, so what the filter does
is to approximate it by distributing a set of J random samples propagating in the state
space. Hence, in the PF algorithm, equation 4.9 is approximated by J particles xj

t and
their associated weights wj as

x̂MMSE
t ≈ x̂P F

t =
J∑

j=1
xj

t w
j (4.10)

The superscript PF refers to the estimate of the particle filter and the weights obey∑
j w

j = 1. This estimation of the target state is performed at every time step. However,
state estimation is the last phase of the process, as it requires a prior approximation of
the posterior pdf.

4.3.2.1 Main stages of the Particle Filter algorithm

The first step of that process is to initialize the particles by spreading them uniformly
around the considered set. Then, the algorithm iterates over three principal stages:
prediction, update and resampling (see algorithm 4.3 and figure 4.9).

In the prediction step, the movement model is applied to each particle individually,
according to equation 4.4. In this step, the weights are set to be equal.

The update step then computes a global likelihood function for a given particle given the
set of all measurements taken at time step t, denoted as f(zt|xt), where zt is a stacked
vector comprising all measurements from individual sensors zt = [z1

t , z
2
t , ..., z

S
t ] (being S

the number of sensors). The computation of this global likelihood function is explained
in detail later in the section. Finally, the weights are recomputed proportionally to the
global likelihood and renormalized [48].
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Algorithm 4.3: State estimation via Particle Filter [48].
Data: Measurement vectors zs

t for all sensors s and all time-steps t
Result: Approximate MMSE estimates x̂MMSE

t for all time-steps t
1 Initialization of the particles:
2 for j ∈ [1, J ] do
3 wj

1 ← 1
J ;

4 xj
coord ∼ U(xmin, xmax);

5 yj
coord ∼ U(ymin, ymax);

6 θ ∼ U(θmin, θmax);
7 v ∼ N (µv, σv);
8 vj

x = vcos(θ);
9 vj

y = vsin(θ);
10 xj

1 = [xj
coord, y

j
coord, v

j
x, v

j
y]T ;

11 end
12 while t ≤ T do
13 Prediction: Apply the movement model to the set of particles.
14 for j ∈ [1, J ] do
15 xj

t = Axj
t−1 + u;

16 wj
t ← 1

J ;
17 end
18 Update: Compute likelihood function f(zt|xt) based on all measurements

and update the weights (wj
t ).

19 for j ∈ [1, J ] do
20 wj

t = wj
t f(zt|xj

t );
21 end
22 wj

t = wj
t∑J

j
wj

t

;

23 x̂t = ∑J
j=1w

j
tx

j
t ;

24 Resample: Draw J new particles (xj∗
t ) from the old set with replacement.

Each old particle is drawn with probability wj
t :

25 P (xj∗
t = xj

t ) = wj
t ;

26 end
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wj
new = wj

old · f(zS |xj)∑J
j=1w

j
old · f(zS |xj)

(4.11)

Is at this point, then, where the current estimate is computed using equation 4.10.

This process has the risk of having very few relevant particles with high weights and
all other particles being insignificant, which is called the degeneracy problem [14]. The
filter requires a higher number of particles to sample the probability distribution. Hence,
resampling is applied. This means that a new set of J particles is generated from the old
set by drawing from the old set J times with replacement. Every old particle is assigned
its weight as drawing probability. That is, a new set of particles is generated in the
following way [48]:

{xj∗}N0
j=1 s.t. P (xj∗ = xj) = wj with N0 ∈ [1, J ]. (4.12)

This process ensures that there is a healthy population of relevant particles.

Figure 4.9: Schematic diagram of basic PF operation. The filter operates over three
principal stages, prediction, update and resampling.
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4.3.2.2 Global likelihood function computation

As mentioned, a global likelihood of a given particle is computed considering all observed
measurements. Hence, this means that a global fusion center for all sensors is considered.
First of all, the local likelihood function of sensor S having observed measurement zs,m

is considered. It is given as [48]

flocal,s(zs,m|xj) = fϕ(zs,m|xj) · fr(zs,m|xj). (4.13)

The individual likelihood functions are Normal distributed according to the defined
measurement model for range and bearing (see section 4.8):

fϕ(zs,m|xj) = 1
2πσ2

ϕ

e
(ϕj −ϕs,m)2

2σ2
ϕ , fr(zs,m|xj) = 1

2πσ2
r

e
(rj −rs,m)2

2σ2
r . (4.14)

Then, the overall local likelihood function that takes into account the detection probability
Pd as well as the clutter with mean λ can be computed, and its expression ends up at
[28, 48]

fs(zs|xj) = C

(1− Pd)λ+ Pd

Ms
t∑

m=1

flocal,s(zs,m|xj)
R2π

 . (4.15)

C is chosen such that f(zs
t |x

j
t ) is a valid pdf, i.e. with an area equal to 1. For its part,

the normalization R2π derives from the uniformly random placement of the clutter [42].
M s

t refers to the total number of measurements sensor s has taken at time-step t. Then,
if it is assumed that the measurements of different sensors are conditionally independent
given x, the global fused likelihood function is computed as [48]

f(zS |xj) =
S∏

s=1
fs(zs|xj) . (4.16)
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CHAPTER 5
Simulation setup

As mentioned in the introductory chapter (section 1), the main objective of this project
is to test the Particle Filter (PF) and the MHT algorithm, in order to check its behaviour
and efficiency in real-time tracking of one or several moving targets, and to evaluate
whether its implementation in assisted driving systems for semi-autonomous cars is
feasible or not.

In order to carry out these analyses and tests, the setup required for this project must
consist of two main blocks, the first one in charge of generating a random trajectory of
a target and simulating the corresponding measurements taken by the radar, and the
second one responsible for estimating the real trajectory of the target from these noisy
observations. Both blocks and their main elements are presented and detailed below 1.

5.1 Measurement generator

To test the designed target tracking algorithms, it is necessary to first generate a random
trajectory, emulating a possible real target movement and, then, from this trajectory,
simulate the corresponding measurements that would be taken with an FMCW radar. In
this sense, therefore, two main elements are required. On the one hand, a Ground Truth
generator is required for the first task, while a FMCW radar system simulator is needed
for the second one.

1For reasons of confidentiality, it has not been possible to explicitly display the Matlab and Python
codes used in this project, as they are owned by the Telecommunications Institute of the TU Wien.
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5.1.1 Ground Truth generator

As for the simulation of the target trajectory, it is performed by means of a two-dimensional
random walk2, which is implemented in a Matlab code. This Matlab code, which is
actually a function, has been designed and developed during the project, as part of it,
and requires two main inputs. The first is the number of time steps (N) the user wants
the target trajectory to have, while the second corresponds to the initial location of that
moving target, in Cartesian coordinates (xo, yo). In addition, this ground truth simulator
actually requires two additional inputs, which are the variance of the random variable
associated with the angle (σ2

z) and the modulus of the constant velocity of the target
(v) (see algorithm 5.1), but these are usually defined within the algorithm itself. In the
end, the output of this function is an N × 2 matrix representing a sequence of N random
positions, also in Cartesian coordinates, that make up the trajectory of the object.

The main idea of the random walk is that at each iteration a random azimuth (ϕ) angle
is generated (see algorithm 5.1), which dictates in which direction the target will move
at the next instant of time. This azimuth angle (ϕ) is governed by a random variable z,
which follows a zero-mean Gaussian distribution with variance σ2

z . Next, by applying
a linear movement in the vertical and horizontal directions, the coordinates of the new
target position are generated. In this case, the target is assumed to have a constant
velocity v during this linear displacement. This process is then repeated N times to
achieve a sequence of positions that make up the complete trajectory. The following
recursive algorithm describes the process in detail.

Algorithm 5.1: Random walk generator algorithm.
Data: Target’s initial position (x0, y0), variance of the random variable

associated to the angle (σ2
z), number of time-steps (N) and target’s

constant velocity (v).
Result: Random trajectory in Cartesian coordinates.

1 Initialization of the target:
2 ϕ0 = 2πz where z ∼ N (0, σz);
3 x0 = x0 ;
4 y0 = y0 ;
5 Random walk iteration:
6 for t ∈ [0, N − 1] do
7 ϕt+1 = ϕt + π

3 z where z ∼ N (0, σz);
8 xt+1 = xt + v · cos(ϕt+1);
9 yt+1 = yt + v · sin(ϕt+1);

10 end

As can be seen from algorithm 5.1, the motion model used assumes a constant velocity
along the entire trajectory and limits the angle of rotation of the target between two

2A random walk is a mathematical object, known as a stochastic or random process, that describes a
path that consists of a succession of random steps on some mathematical space such as the integers [38].

41



5. Simulation setup

consecutive time instants (∆ϕ = ϕt+1 − ϕt) to ±π
3 . Constant velocity has been assumed

because it has been thought to reflect well the movement of objects that a vehicle may
encounter while driving, be they other vehicles or pedestrians, all of which tend to show
more or less constant movement. As for the rotation angle, the aim was to avoid abrupt
changes of direction, as this is not a movement that is typical of vehicles, and so, after
several tests, it was concluded that a steering angle of maximum ±π

3 was adequate for
the scenarios to be studied.

5.1.2 FMCW radar system simulator

Once the target trajectory has been generated, the next step is to perform the corre-
sponding measurements with the FMCW radar. For this purpose, a FMCW radar system
simulator, designed and developed entirely by the Institute of Telecommunications of the
TU Wien and implemented in Matlab, is available. This simulator works almost in the
same way as a real radar system, according to the diagram showed in figure 3.2, and the
only things that have to be inputed are the real coordinates of the target, the location of
the radar itself and the bandwidth of the TX signal emitted by the radar. In response,
the simulator returns noisy measurements of that trajectory, based on the range and
azimuth estimation made, in turn, based on the IF signal, as detailed in section 3.2. Both
the inputs and outputs of the simulator are in Cartesian coordinates.

However, as in real life, it is possible that during the trajectory the radar may not detect
the target at a certain moment, e.g. if the target moves out of the radar’s field of view
(FOV) or if it moves too far away from the radar, exceeding the maximum measurable
range (rmax) (see table 5.1). It may also happen that if two objects are very close to
each other, the radar detects only one target and not two, due to limitations resulting
from the resolution of the radar. In such cases, the radar simulator does not return
any value, as no object has been detected. Therefore, in order to identify and localise
those missdetections and to convert the data into intelligible material for the tracking
algorithms used, a functionality has been added in the post-processing, which consists
of filling the output radar detection list with infinities, provided that the length of the
output is smaller than the length of the obstacle list input to the measurement simulator.
So, at the end of it all, if any missdetection occurs, the data that will be entered to the
tracking algorithm will be of the type [∞,∞].

The simulated radar system consists of a single transmitting antenna and eight receiving
antennas, placed in a row and separated by a distance equal to half the wavelength of
the emitted signal (l = λ0

2 ). It is this linear arrangement of the receiving antennas that
allows the estimation of the azimuth, as explained in section 3.2.3. The transmitting
antenna, for its part, emits a pulse composed of 40 consecutive chirps, in the shape of a
sawtooth (see figure 3.1). The carrier frequency (f0) of each of these chirps is 76 GHz,
and their period (Tc) is 10 µs. As commented, the bandwidth of this emitted signal is
not fixed, and it can be swept between 75 MHz and 1.5 GHz, to achieve higher or lower
range resolution, respectively.
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5.2. Target tracker

In addition, the radar simulator has an integrated OS-CFAR algorithm, which allows
the detection of radar targets embedded in clutter by calculating a threshold for the IF
signal spectrum, which reduces detection of ghost targets. The probability of false alarm
in this case is set to 10−4.

The FMCW radar system simulator
Parameter Value Units

Number of TX antennas (NT X) 1 -
Number of RX antennas (NRX) 8 -

Starting frequency of the chirp signal (f0) 76 GHz
Period of each chirp (Tc) 10 µs

Bandwidth of the chirp (BW ) 0.075-1.5 GHz
Number of emitted chirps (Nc) 40 -

Radar’s field of view (FOV) 160 º
Maximum measurable range (rmax) 100 m

Probability of False Alarm OS-CFAR (PF A) 10−4 -

Table 5.1: Summary of the main features of the FMCW radar system simulator.

5.2 Target tracker

The second block of the assembly is responsible for real-time target tracking, taking
and processing data from the radar, and predicting and estimating the actual target
trajectory from these noisy observations, thus achieving a lower error than that present
in the radar measurements.

In this sense, there are two possible scenarios. The first one, is when there is only a
single target present in the region of interest. In this case, then, the radars will only
provide measurements of the same trajectory, so it will be sufficient to apply a particle
filter to this data to track the target. However, if the number of targets in the scene
is greater than one, the radar system will provide two measurements at every time
step, corresponding to two different trajectories, so it will be necessary to use an MHT
algorithm, prior to the particle filter, to correctly associate each of the measurements
obtained with each of the two trajectories. Therefore, this block consists of two elements,
one appropriate for each of these situations.

5.2.1 Particle Filter algorithm

To deal with the individual targets, a PF algorithm implemented in Python is available.
A preliminary version of this algorithm was originally designed and implemented by
the Institute of Telecommunications at the TU Wien, however, an important part of
this project has been to modify, improve and adapt it to the incoming data from the
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5. Simulation setup

radar simulator in order to make it functional and suitable for carrying out the required
analyses and tests.

The PF algorithm is prepared to process data from several different radars, from one
to four, as well as to deal with missdetections and ghost target detection. Furthermore,
it is designed only to deal with two-dimensional scenarios, i.e. to track targets in the
XY-plane. In order to make it work, the data from each of the sensors, in Cartesian
coordinates, and the position of each of the sensors must be input. Then, it is also
necessary to set the parameters of the movement and the measurement model (see section
4.3.1), as well as the number of particles the filter will consist of and other parameters
that provide statistical reliability to the algorithm such as the detection probability (see
section 4.3.2.2). In response, the algorithm outputs an accurate estimate of the target’s
real position at each time step, allowing real-time tracking of the target.

Particle filter settings
Parameter Units

Number of sensors (S) -
Position of the sensors m

Number of particles (J) -
Boundaries of the region of interest (xmin, xmax, ymin, ymax) m

Driving noise variance (σ2
u) -

State transition matrix (A) -
Range variance (σ2

r ) m
Bearing variance (σ2

ϕ) rad

Detection probability (Pd) -

Table 5.2: Particle filter algorithm tuning parameters.

5.2.2 MHT-PF combined algorithm

When more than one target enters the scene, the radars provide multiple detections at
each time instant corresponding to each of the moving objects. These measurements
are outputed without any order, so an algorithm is needed to sort these detections and
associate each of them to each of the targets present in the region of interest. Once the
data is associated, the same algorithm is responsible for sending the data belonging to
each of the objects separately to a particle filter, in order to be able to perform the state
estimation independently.

Therefore, to carry out this entire process, a complex algorithm which combines an MHT
algorithm and a PF, has been used. As in the previous case, a draft version of this
algorithm was designed and implemented by the Austrian Institute of Technology (AIT)
for other projects, but had to be modified, corrected and adapted to make it functional
and suitable for the current project. It is also implemented in Python, and consists of a
PF with almost the same characteristics as the one used for individual targets, and a
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5.2. Target tracker

MHT algorithm, placed before the filter, which processes the data coming directly from
the radar, associates them, and transmits them in an ordered way to the PF. However,
unlike the PF algorithm presented above, this combined MHT-PF algorithm is able to
deal with three-dimensional trajectories, although this functionality will not be used as
the focus of this project is on two-dimensional tracking.

The algorithm is prepared to work with multiple radars, from one to four, and for it to
work, the data from the radars must be entered in spherical coordinates and the positions
of the radars must be entered in Cartesian coordinates. In addition, it is also necessary
to set the maximum allowable errors (see section 4.2.2.1) for each of the coordinates, in
order to be able to perform the gating process, and the characteristic parameters (α, λ)
of the score function (see equation 4.3), as well as all the other parameters needed to
characterize the PF, as explained in the previous section. As in the previous case, the
output of the algorithm at each time step is a set of estimated positions, corresponding to
an estimation of the position of each of the targets on scene. In the end, therefore, several
sequences of positions will have been constructed, each corresponding to the estimation
of the trajectory of each of the moving objects.

MHT-PF settings
Parameter Units

Number of sensors (S) -
Position of the sensors m

Maximum allowable range error (a) m
Maximum allowable azimuth error (b) m

Score factor (α) -
Score exponential factor (λ) –

Number of particles (J) -
Boundaries of the region of interest (xmin, xmax, ymin, ymax) m

Driving noise variance (σ2
u) -

State transition matrix (A) -
Range variance (σ2

r ) m
Bearing variance (σ2

ϕ) rad

Detection probability (Pd) -

Table 5.3: MHT-PF combined algorithm tuning parameters.
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CHAPTER 6
Simulation analysis and results

Once the target tracking systems that have been developed throughout this project have
been presented and explained, the last step is to test them in different scenarios, analyse
the results and evaluate their behaviour in these situations. This chapter will, therefore,
present the most important results obtained during this last phase of the project, followed
by a detailed analysis of them.

6.1 Measurement preparation
Before proceeding to the analysis of the results, though, it is important to first describe
the radar system used to perform the measurements and to show the results of the
measurements, as well as to describe the scenarios to be studied.

As for the radar system used, a system consisting of four FMCW radars placed in the
shape of a square with a centre at the origin of coordinates, one at each vertex, has been
used. Originally, the distance between two consecutive radars, i.e. the length of the sides
of the square they form, has been set at 50 m, but it can be changed.

On the other hand, the region of interest through which the target to be tracked will
move is precisely the interior of this square, so all radars are oriented towards its centre.
This region delimiting the target’s movement is also a square centred on the origin of
coordinates, but its sides are slightly shorter (40 m). This small margin is left to prevent
the simulated trajectory from getting too close to the edges of the radar square, since
this is a region where many missdetections occur due to the limitations of the radar’s
field of view (FOV).

Once the system and the measurement equipment used have been configured and described,
the next step is to decide which scenarios will be studied and under which conditions the
two designed tracking algorithms will be tested. In this sense, two cases will be studied:
the first one, with which the PF algorithm will be tested, will consist of a single target
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6.1. Measurement preparation

Figure 6.1: Setup topology of the radar system used.

tracking problem; while the second one, for which the combined MHT-PF algorithm will
be used, will be a multi-target tracking problem of two simultaneous moving targets.
The trajectories of the targets involved in these two scenarios have been simulated with
the Ground Truth simulator (section 5.1.1), and the corresponding measurements have
been simulated using the FMCW radar simulator, using the setup topology shown in
figure 6.1.

In order to have a more representative sample of the results, and with the aim of enriching
the analyses and checking how the implemented tracking algorithms behave when the
precision and accuracy of the measurements change, a sweep over the bandwidth of the
FMCW radar has been performed, and different measurements of the same trajectory
have been taken, using the same setup, but varying the bandwidth of the radars that
integrate it, from 75 MHz to 1.5 GHz.

Below is an example of the measurements taken of the two simulated scenarios, using a
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6. Simulation analysis and results

radar system with a bandwidth of 1 GHz (figures 6.2 and 6.3).

Figure 6.2: Simulated single-object trajectory, and the corresponding measurements
(example with a BW of 1 GHz).

Figure 6.3: Simulated multiple-object trajectories, and the corresponding measurements
(example with a BW of 1 GHz).
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6.2. Target tracking algorithms evaluation

6.2 Target tracking algorithms evaluation
The following sections will show the results of the tests and analysis performed on the
two target tracking systems presented.

As mentioned before, several measurements of the same trajectory have been made
using radars with different BW, thus obtaining different accuracies and precisions in
the observations, so both algorithms have been tested with all those observations, in
order to see their behavior and evolution when working with measurements with different
characteristics.

To evaluate these behaviors, some parameters directly related to the estimation error
(eest), defined as the Euclidean distance between the estimated position and the real
position of the target, will be analyzed and studied.

eest =
√

(xreal − xestimate)2 + (yreal − yestimate)2. (6.1)

On the one hand, one of the objects of analysis will be the probability of success (PS(d)),
which is defined as the probability that the estimation error is less than a certain threshold
value.

PS(d) = P (eest < d). (6.2)

On the other hand, the study will also focus on the quantiles of the estimation error
(Q(d)), which provide information on the distribution of the errors:

Q(x) = eest,k where k = d

100 ·N, (6.3)

where eest,k represents the k − th smallest error, which fixes that the d percent of the
total number of errors are below its value, and where N represents that total number of
errors.

Finally, to conclude the study, the variance (σ2
est) and mean errors (ēest) of the estimates

will be compared with the variance (σ2
meas) and mean errors (ēmeas) of the measurements

to check the effectiveness of the algorithms. Note that in this case, the term measurement
errors refers to the error between the measurements simulated with the FMCW radar
simulator and the actual trajectory.

emeas =
√

(xreal − xmeas)2 + (yreal − ymeas)2. (6.4)

6.2.1 PF algorithm evaluation: Single target tracking

As for the evaluation of the PF algorithm, in addition to repeating the estimation of
the same trajectory for different measurements with different characteristics, varying
the radar bandwidth, extra elements have been added in the simulations to check the
strength of sensor fusion.
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6. Simulation analysis and results

What has been done is to add and force missdetections in the measurements 1, thus
reducing the information about the environment available to the Particle Filter and
making the estimation of the target state more difficult. These false detections are
randomly distributed over the measurement vectors provided by the radars (zs

1:t), and
are regulated by a missdetection ratio (rm), which sets the percentage of missdetections
present in the observations. Furthermore, the number of working sensors has also been
modified, in order to check the power of sensor fusion. In such cases, the sensors have been
placed according to the following rule. If a single sensor is used, it is placed in the centre
of the field. For 2, 3 or 4 sensors, they are placed in a circle with equal angular spacing
between them. Therefore, simulations have been carried out with different missdetections
ratios (rm) and different number of sensors (S).

The PF configuration parameters used for these simulations are as follows.

Particle filter settings
Parameter Values

Number of sensors (S) 4
Number of particles (J) 1000

Driving noise variance (σ2
u) 1/9

State transition matrix (A) as described in equation 4.5
Range variance (σ2

r ) depending on the measurement characteristics
Bearing variance (σ2

ϕ) depending on the measurement characteristics
Detection probability (Pd) 0.95

Table 6.1: Particle filter algorithm tuning parameters used for the simulations.

Finally, the results of the multiple tests performed are summarized in the following
figures.

On the one hand, figures 6.4 and 6.5 show the success probability of the Particle Filter for
each bandwidth and for different rm and different number of sensors. On the other hand,
figures 6.6 and 6.7 show the quantiles of the estimation errors and, finally, figures 6.8
and 6.9 show a comparison between the measurement errors and the estimation errors.

As can be seen, the results obtained are quite similar for the different BW values. This
means that, although the characteristics of the measurements fed into the filter are
different (see figures 6.8 and 6.9), the estimates made by the PF are consistent and their
quality does not seem to be affected too much by changes in the accuracy and precision
of these measurements.

However, there are more noticeable differences when the missdetection ratio and the
number of sensors are varied.

1The original measurements, i.e. measurements without any modification, have a detection error rate
of less than 1%, due to the characteristics of the radars themselves.
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6.2. Target tracking algorithms evaluation

Figure 6.4: PF success probability for rm < 1% and different number of sensors.

Figure 6.5: PF success probability for rm = 50% and different number of sensors.

On the one hand, one can notice that, as is logical, the greater the number of sensors
used, the greater the precision and accuracy of the estimates. This happens because
the more sensors are active, the greater the amount of information available about the
environment and, therefore, the greater the amount of data available to the filter, the
higher the quality of its estimates. However, it is observed that the improvement in
estimates corresponding to adding an extra sensor becomes smaller and smaller as the
number of sensors increases. That is, the difference between using 1 or 2 sensors is much
greater than the difference between going from 3 to 4 sensors. In addition, it is observed
that under normal conditions, i.e. when rm < 1%, when a minimum of 2 sensors are
used, the estimates made by the particulate filter are more than acceptable, with an
average error of less than 30cm (figure 6.8) and 95% of the estimates with an error of
less than 70cm (figure 6.6). In contrast, it can be observed that when only 1 radar is
available, the quality of the estimates decreases considerably, reaching an average error
of 60cm (figure 6.8), and with only a 0.5 probability that the estimation errors are less
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Figure 6.6: PF estimation error quantiles for for rm < 1% and different number of
sensors.

Figure 6.7: PF estimation error quantiles for rm = 50% and different number of sensors.

than 50cm (figure 6.4). However, it is found that in no case is the target track lost, as at
no time are the estimation errors greater than 5m (figure 6.4).

On the other hand, it is observed that, evidently, when introducing data in the PF with
a rm of 50%, the quality of the estimates decreases. However, it can be seen that, in
spite of this high missdetection ratio, when working with data from several radars, the
decrease in the quality of the estimates can be controlled quite well, and the results
obtained are not much worse than those obtained under normal conditions. In this sense,
it is observed, for example, that when working with 4 radars whose measurements have
50% detection errors, the average estimation error remains below 40cm (figure 6.9) and
the probability of these errors being less than 1m is practically 1 (figure 6.5). These
results are surprisingly good, considering that practically half of the measurements are
been ineffective and useless. On the contrary, as the number of sensors decreases, this
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6.2. Target tracking algorithms evaluation

Figure 6.8: PF estimation error characteristics for rm < 1% and different number of
sensors.

Figure 6.9: PF estimation error characteristics for rm = 50% and different number of
sensors.

lack of information becomes more and more noticeable, which has a considerable impact
on the precision and accuracy of the estimates. For example, if we only have a single
radar and its missdetection rate is 50%, the average error of the estimates grows up to
1m (figure 6.9). It is here, then, where we can appreciate the power and effectiveness of
sensor fusion techniques. However, although it is evident that increasing the number of
radars increases the quality of the estimates, it can be seen that even with a single radar,
and with practically half of its observations containing null information of the target, a
correct tracking of the target can be performed, with little accuracy, but at no time the
track of the object is lost, since the estimation errors in the vast majority of cases remain
below 4m (figure 6.7). This fact, then, highlights the great potential and usefulness of
PFs as object tracking algorithms.
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6. Simulation analysis and results

In any case, it is verified that the particle filter works correctly and that its estimates
are more than acceptable. In addition, it is verified that from the fusion of 4 radars,
and under normal missdetection conditions, the algorithm already produces more precise
(lower error variance) and accurate (lower mean error) estimates than the observations
themselves, which was one of the main objectives to be achieved (figure 6.8).

6.2.2 MHT-PF combined algorithm evaluation: Multiple target
tracking

Regarding the evaluation of the combined MHT-PF algorithm, as in the previous section,
several simulations have been performed using different measurement sets obtained with
radar systems with different bandwidths. However, in this case, no forced missdetection2

has been added to the observation vectors, so the simulations have been performed only
with the raw data obtained directly from the radar system, without any manipulation.
This is because, given that the particle filter used to perform the state estimation in this
case is the same as the one tested in the previous section, the aim of this section is to
check the correct functioning of the data association algorithm, the MHT, and to verify
that its implementation does not affect the quality of the estimates.

In order to perform these simulations, the MHT-PF combined algorithm has been
configured as indicated in table 6.2. It is important to remember that this algorithm uses
exactly the same filter as the one tested in the previous section, but in this case an MHT
algorithm has been incorporated to perform the above data association.

MHT-PF algorithm settings
Parameter Values

Number of sensors (S) 4
Maximum allowable range error (a) 5m

Maximum allowable azimuth error (b) 15º
Score factor (α) 1

Score exponential factor (λ) 0.69
Number of particles (J) 1000

Driving noise variance (σ2
u) 1/9

State transition matrix (A) as described in equation 4.5
Range variance (σ2

r ) depending on the measurement characteristics
Bearing variance (σ2

ϕ) depending on the measurement characteristics
Detection probability (Pd) 0.95

Table 6.2: MHT-PF algorithm tuning parameters used for the simulations.

2It is important to bear in mind that, as with any radar measurement system, some missdetections
have occurred naturally when making observations on the trajectories, specially when multiple there are
multiple targets in scene. The missdetection rate of the radar system was, in this case, less than 10%.
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The most relevant results obtained from the multiple simulations are summarised in the
following figures. For these simulations, a setup consisting of 4 FMCW radars, as shown
in figure 6.1, has been used.

As before, figure 6.10 shows the probability of estimation success for the two tracked
targets, while figure 6.11 provides information on how the estimation errors are distributed.
Finally, figure 6.12 shows a comparison between estimation errors and measurement
errors.

Figure 6.10: MHT-PF success probability for both targets.

Figure 6.11: MHT-PF estimation error quantiles for both targets.

First of all, it is important to note that, at first sight, the trajectory estimation errors of
both targets turn out to be quite similar in terms of accuracy and precision. However,
if we look at the quality of the measurements corresponding to each of the targets, we
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Figure 6.12: PF estimation error characteristics for both targets.

observe that the variance of the measurement errors for the case of target 2 is much
higher than that corresponding to target 1 (figure 6.12). This confirms, therefore, the
idea that the PF has a very robust and stable behavior, and that it is not too much
affected by variations in the characteristics of the measurements used.

As before, the results prove to be very good, and improve the precision and accuracy of
the measurements used to make the estimates, as can bee seen in figure 6.12, where the
mean and the variance of the estimation errors are quite below the mean and variance of
the measurement errors.

In general, therefore, it seems that the results obtained with the MHT-PF combined
algorithm are quite similar to the results obtained with the PF algorithm, with almost
no loss of accuracy and precision in the estimates. This means, then, that the function of
the MHT implemented before the PF fulfills perfectly, since the observations are perfectly
associated before passing through the filter, and that this association process does not
reduce the quality of the estimates.
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CHAPTER 7
Conclusions and future work

From the outset, the aim of this project has been to modify, adapt, improve and evaluate
the two tracking algorithms presented. Both algorithms have been correctly implemented
and evaluated thanks to the use of a FMCW radar simulator, by means of which real
measurements of the trajectory of several targets have been simulated and subsequently
introduced into the tracking algorithms to carry out the analyses.

In this sense, the results obtained with both algorithms have been found to be more
than acceptable, so they should be taken into consideration as a starting point when
developing complex target tracking systems, especially in the automotive field. Obviously,
the algorithms shown and tested in this project are a preliminary version with certain
limitations, so they are not ready to be directly implemented in any advanced driving
assistance system (ADAS). However, it has been proven that they can become a basis on
which to start building, researching and developing.

On the other hand, it is clear that both algorithms need to be tested in many more
situations than those studied in this project, in order to draw clearer and firmer con-
clusions, but due to lack of time this has not been possible, so this task will be left to
future researchers. For example, it would be interesting to study how both algorithms
behave when the errors in the measurements are significantly larger than in the studied
situations, and to see what is the limit, if any, beyond which the algorithm is no longer
able to track the target. This has not been possible to evaluate in this project as the
FMCW radar simulator used did not provide measurements with higher errors.

Another future avenue of research for the MHT-PF combined algorithm would be to
increase the number of targets in the scene, and look for the limit. In addition, it would
also be interesting to see if, as the number of targets increases, the quality of the estimates
decreases.

It would also be of great interest to analyze what happens when there are interferences,
of different levels, that alter and hinder the taking of measurements by the radars,
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thus causing an increase in missdetections and the appearance of ghost detections, i.e.,
detections that do not correspond to any real object present in the scene. This scenario
is of particular interest because if more and more cars are to be equipped with this
type of system to obtain information from the environment, the probability of mutual
interference between the radars of the different cars will increase.

Finally, after all these previous studies, the last phase would consist of testing both
algorithms in a real situation, i.e., taking measurements of a moving object (e.g., a car),
introducing them into the algorithms and estimating the position of the detected objects
in real time. The most important thing here is to evaluate whether the processing time
of the system (considering both the process of taking measurements and the process
of estimating the state of the target) is short enough to be used for real-time tracking
functions.

Therefore, as has been seen, there is still a lot of research to be done in this field, so the
idea after this project is to continue the research, run more simulations and evaluate
many more scenarios, and thus obtain more solid and conclusive results. So, what is in
mind is to present all these analyses and more complete results in a future publication to
be released soon.
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