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Abstract
We present a comprehensive study shedding light on how thermal fluctuations affect correlations
in a Bose gas with contact repulsive interactions in one spatial dimension. The pair correlation
function, the static structure factor, and the one-body density matrix are calculated as a function of
the interaction strength and temperature with the exact ab-initio Path Integral Monte Carlo
method. We explore all possible gas regimes from weak to strong interactions and from low to high
temperatures. We provide a detailed comparison with a number of theories, such as perturbative
(Bogoliubov and decoherent classical), effective (Luttinger liquid) and exact (ground-state and
thermal Bethe Ansatz) ones. Our Monte Carlo results exhibit an excellent agreement with the
tractable limits and provide a fundamental benchmark for future observations which can be
achieved in atomic gases, cavity quantum-electrodynamic and superconducting-circuit platforms.

1. Introduction

Understanding the role of strong correlations in complex quantum many-body systems such as gases of
interacting atoms or electrons is one of the most important challenges in modern condensed matter physics,
material research, and chemistry. In this context, one-dimensional (1D) Bose gases composed by particles
with contact repulsive interactions [1] have proven to be a versatile testbed for the study of strong
correlations in quantum many-body physics, where solid-state, low-temperature, and atomic physics
converge. They offer a simple yet nontrivial model which can still be captured with reasonable theoretical
effort [2], by allowing for the direct comparison between exact and analytical results.

The 1D Bose gas model may be precisely simulated by cavity quantum-electrodynamic devices, by
shedding light on the behavior of its correlation properties [3]. Most importantly, it has been experimentally
realized in superconducting circuits where correlations have been indeed measured from weakly to strongly
interacting regime [4]. However, the best experimental platform so far was provided by ultracold atoms as
they offered an exquisite and precise control over many system parameters [5], including the interaction
strength between atoms. These ultracold atomic gases are so dilute that the in-depth understanding of the
physics at stake is possible in most cases. Finally, they can be realized in different spatial dimensions,
including 1D geometry.

At finite temperature, many momentum modes in the longitudinal 1D direction are excited. This leads to
markedly different behavior of a 1D Bose gas compared to the three-dimensional Bose–Einstein condensate
(BEC), where the lowest momentum mode remains macroscopically occupied at low temperature. The
excitation of momentum modes with temperature is the origin of highly enhanced density and phase
fluctuations which prevent the off-diagonal long-range order [6, 7] and then the formation of a true BEC.
Instead, an extraordinarily rich landscape of many different degenerate regimes emerges [8–14], which are
separated by smooth crossovers and they might or not share the typical features of a BEC. They can be
explored by changing the interaction strength and temperature.
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Distinct quantum regimes can be conveniently classified by the characteristic behavior of
thermodynamic properties. Asymptotic analytical limits have been described by a variety of physical models
[13, 14] and compared with the exact solution provided by the thermal Bethe-ansatz (TBA) method within
the Yang–Yang theory [15, 16]. A new intriguing quantum regime in a 1D Bose gas has been recently
predicted by the same authors of the present manuscript [14]. It is signaled by a thermal anomaly in the
temperature dependence of the specific heat for any finite value of the interaction strength. Calculations of
the dynamic structure factor with the ab-initio Path Integral Monte Carlo (PIMC) method showed that, at
temperatures similar to the anomaly threshold, the excitation pattern experiences the breakdown of the
quasiparticle description holding instead at low temperature [14]. Both behaviors of the specific heat and the
dynamic structure factor suggest that the novel so-called hole anomaly, which is induced by the presence of
unpopulated states in the excitation spectrum of the system, is a reminiscence of the superfluid-normal phase
transition at the critical temperature, although any phase transition is not allowed in 1D geometry [17].

Different quantum regimes in a 1D Bose gas can be also identified with the corresponding analytical
limits of the pair correlation function (also called two-body distribution function) [8–10]. However, the full
function cannot be readily obtained with TBA and require instead ab-initio techniques. At zero temperature,
several correlation properties have been calculated for arbitrary interaction strength with quantumMonte
Carlo [18, 19] and density matrix renormalization group [20] techniques. Previous finite-temperature
studies only focus on very limited regimes of interaction and temperature and are based on different
approaches. In the weakly-interacting limit, some mean-field methods, including Bogoliubov theory [21,
22], and the stochastic Gross–Pitaevskii (GP) equation [23] can be employed at low temperature, while the
semiclassical expansion [24] is valid only at high temperature. In the strongly-interacting regime, available
methods are the Bose–Fermi mapping [25] and the numerical stochastic gauge technique whose results are
only reported for a single value of temperature [26]. At temperature below the hole anomaly, correlation
properties have been computed with Bethe-Ansatz method [27], PIMC technique using worm updates [28],
by relying on the mapping with the sinh-Gordon model [29, 30] and on the form factor approach [31]. At
high temperature, imaginary time stochastic gauge-P simulations can be employed [10].
Low-momentum [32] and large-distance [33–36] correlations have been also explored.

The present work fills an important existing gap by providing a complete study of the stationary
microscopic correlation properties of a 1D Bose gas for a wide range of interaction strength, all over from the
weakly- to the strongly-repulsive regime, and for temperatures crossing from the quantum to the classical
gas. We calculate the spatial dependence of the one-body density matrix and the pair correlation function, as
well as the static structure factor as a function of the momentum, in a very broad range of values. This
calculation is carried out using the PIMC technique which allows us to obtain unbiased results with a
controllable accuracy for any temperature and interaction strength values. Our results show an excellent
agreement with exact TBA solution [15, 16] and analytical limits in regimes of their validity. Our PIMC
findings are fundamental for benchmarking the theoretical predictions and to stimulate future experimental
measurements.

The structure of the paper is as follows. In section 2 we introduce the studied model of the 1D Bose gas at
finite temperature. Section 3 is devoted to a brief description of the Path Integral Monte Carlo method used
for the numerical results of the correlation functions. Our findings of the pair correlation function, the static
structure factor, and the one-body density matrix are reported in sections 4–6, respectively, and they exhibit
an excellent agreement with analytical and thermal Bethe-Ansatz limits. In section 7, we discuss possible
upcoming experimental observations of our predictions. Finally, in section 8, we draw the conclusions and
future perspectives of our work.

2. Model

The many-body Hamiltonian of a 1D homogeneous gas of N Bose particles interacting via repulsive contact
pseudopotential (Lieb–Liniger model) is given by

H=− ℏ2

2m

N∑
i=1

∂2

∂x2i
+ g

N∑
i>j

δ(xi − xj), (1)

wherem is the atomic mass, g=−2ℏ2/(ma)> 0 is the positive 1D coupling constant [37], and a< 0 is the
negative 1D s-wave scattering length. The dimensionless interaction strength γ =−2/(na) is related to the
gas parameter na, where n= N/L is the linear density with L being the length of the system. We are interested
here in the thermodynamic properties which are obtained by taking the N,L→∞ limit while keeping the
density n constant. There is a continuous crossover which encompasses different quantum degeneracy
regimes. In the Gross-Pitaevskii (GP) limit of weak repulsion γ≪ 1 and high density n|a| ≫ 1 the gas admits
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a mean-field description [38]. In the Tonks–Girardeau (TG) regime [39, 40] of very strong repulsion γ≫ 1
and low density n|a| ≪ 1, bosons become impenetrable and they cannot cross each other. This constraint,
together with the spatial peculiarity of 1D systems, acts as an effective Pauli exclusion principle, resulting in a
dramatic suppression of three-body losses and making the TG gas stable. In this highly correlated limit, the
wavefunction of strongly repulsive bosons can be mapped onto that of an ideal Fermi gas, resulting in
identical thermodynamics and excitation spectrum [40]. Seminal experiments have explored the GP–TG
crossover in the past years [41–47].

At zero temperature, the Bethe-Ansatz method allows one to calculate exact energetic properties of the
Lieb–Liniger model such as the ground-state energy E0, chemical potential µ0 = (∂E0/∂N)a,L and sound
velocity v=

√
n/m(∂µ0/∂n)a which are all functions of the interaction strength γ [38, 48–50]. The speed of

sound vmonotonically increases with γ from the mean-field vGP =
√
gn/m to the Fermi vF = ℏπn/m value

in the TG limit.
At finite temperature, the complete thermodynamics within the canonical ensemble can be inferred from

the Helmholtz free energy A= E−TS, where E is the internal energy and S=−(∂A/∂T)a,N,L the entropy.
Its knowledge can be used to calculate the pressure

P=−(∂A/∂L)T,a,N, (2)

and the inverse isothermal compressibility

κ−1
T = (∂P/∂n)T,a,N = n(∂µ/∂n)T,a,N (3)

where µ= (∂A/∂N)T,a,L is the chemical potential at finite temperature and we have employed the
Gibbs–Duhem relation dP= ndµ+ sdT with s= S/L the entropy density. The quantity (∂n/∂µ) is directly
related to the atom number fluctuations which can be measured in ultracold atom experiments. In this way,
one has access to the isothermal compressibility, κT , equation of state and temperature T [51–55]. The
experimental estimate of temperature is also possible through the use of equation (3) and the combination of
the measurements of the density n, the isothermal compressibility κT and the pressure P [56, 57].

In a system with zero-range interaction, one can define the Tan’s contact parameter [13, 58–60]

C =
4m

ℏ2

(
∂A

∂a

)
T,N,L

, (4)

which connects short-range (large-momentum) correlations with the thermodynamic functions [58, 61–64].
A set of exact thermodynamic relations holding for any value of interaction strength and temperature, and
based on simple scaling considerations [64, 65], has been recently derived [13].

3. Path Integral Monte Carlo technique

The PIMC is a powerful stochastic method which allows to obtain numerically structural and energetic
properties of a quantum system at finite temperature [66] which is described here by the microscopic
Hamiltonian (1). Some information on the structure of the excitation spectrum can be inferred as well from
the dynamic structure factor by using the inverse Laplace transform [14]. PIMC method relies on the
Feynman path-integral description of an ensemble of N quantum atoms in terms of a set of N classical
polymers, each of them reproducing a quantum delocalized particle [66]. In this way, the thermal average or
expectation value ⟨O⟩ of the quantum observable O is expressed as a multidimensional integral which can be
efficiently computed via Monte-Carlo sampling of the coordinates R:

⟨O⟩= Tr(nTO) =
1

ZN!

∑
P

ˆ
dR G(R,PR;β)O(R) (5)

where we have introduced the thermal density matrix nT = e−βH/Z, the partition function Z= Tr
(
e−βH

)
,

the inverse temperature β = (kBT)
−1 and H is the Hamiltonian, equation (1). In the following, we work in

coordinate representation G(R1,R2;β) = ⟨R2|e−βH|R1⟩ and O(R) = ⟨R|O|R⟩ where Ri = {x1,i,x2,i . . . ,xN,i}
denotes a set of the coordinates of the N atoms of the system and G(R1,R2;β) is the Green function
propagator describing the evolution in the imaginary time β from the initial R1 to the final R2 configuration.
The configuration PR in equation (5) is obtained by applying a permutation P of the particle labels to the
initial configuration R and the sum

∑
P over the N! permutations allows to take into account the quantum

statistics of the identical bosonic atoms.
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The key aspect of the path integral formalism is the convolution property of the propagator

G(R1,R3;β1 +β2) =

ˆ
dR2G(R1,R2;β1)G(R2,R3;β2) , (6)

which can be generalized to a series of intermediate steps R2 . . .RM (technique known as trotterization)
defining a path withM configurations and total time β = εM, where ε is the time step. For a finite value of
M, the path is discrete in time. In the limit of largeM, the path becomes continuous and ε approaches zero,
so each step corresponds to high temperatures T. In this classical gas limit, the propagator admits an
analytical approximation where the quantum effects of the non-commutativity between the kinetic and
interaction potential operators in the Hamiltonian are neglected. The thermal expectation value,
equation (5), can be then approximated as

⟨O⟩ ≃ 1

ZN!

∑
P

ˆ
dR1 . . .dRMO(R1)

M∏
i=1

G(Ri,Ri+1;ε) (7)

where the Bose–Einstein statistics imposes the boundary condition RM+1 = PR1. The probability
distribution p(R1, . . . ,RM) =

∏M
i=1G(Ri,Ri+1;ε) is positive definite and its integral over the space of

configurations is equal to the unity. The PIMC approach is based on a stochastic evaluation of the integral in
equation (7) by sampling N ×M degrees of freedom according to the probability distribution p(R1, . . . ,RM).
In order to improve the permutation sampling, we use the worm algorithm [67]. Decomposition (7)
becomes exact in the limitM→∞ where the imaginary time ε is small and the analytical high-temperature
approximation for the propagator G is accurate, allowing for an exact calculation of the thermal averages ⟨O⟩
with the PIMC method. We approximate the propagator within a pair-product scheme which is based on the
exact solution of the two-body problem for the Hamiltonian in equation (1) [68, 69]. The optimization of
the number of the convolution termsM in equation (7) has been achieved by benchmarking the PIMC
expectation values of the internal energy per particle E/N and the isothermal compressibility κT as a
function of temperature and interaction strength against the exact thermal Bethe-Ansatz results [14].

The PIMC method requires an average time of several days for performing a single calculation as the
computational cost scales quadratically with the number of particles N. This scaling is much more favorable
as compared to the diagonalization methods which typically have an exponential cost. PIMC thus allows us
to efficiently calculate various observables, including correlation functions, by obtaining a mean value and an
error bar. The errors are characterized by two different contributions. The first one is the statistical error
which can be reduced by increasing the number of iterations. It typically scales with the inverse of the square
root of the number of iterations. The second one is the systematic error which is controlled by decreasing the
time step ε and increasing the number of configurationsM. By fixing ε, it is easy to see thatM is proportional
to the inverse of temperatureM∼ β ∼ 1/T. The lower is the temperature, the larger is the requiredM to
keep the systematic error sufficiently small. In the classical limit of high temperatures, the effects of quantum
delocalization of particles are less relevant and a small value ofM is sufficient for an accurate description of
the many-body system. In the quantum regime of low temperatures, it is necessary instead a largeM which
makes the calculation more time demanding. By fixing the temperature, the computational cost also depends
on the interaction strength γ which scales with the inverse of the linear density γ ∼ 1/n where n∼ N. In the
GP regime of weak interactions γ≪ 1 and high density, a large number of atoms N is needed, making
calculations challenging. By approaching the opposite TG regime of strong interactions γ→∞, N can be
relatively small. However, the importance of quantum correlations is enhanced by increasing γ, thus
requiring a large value ofM. To summarize, within the PIMC calculations, it is possible to keep the error bars
under control and to decrease them in a systematic way at the expenses of longer simulation times.

In the following Sections, we report the PIMC results for the pair correlation function, the static
structure factor, and the one-body density matrix, whose expectation values have been computed with
equation (7) for a broad range of values of interaction strength γ and temperature.

4. Pair correlation function

The pair correlation function or normalized density–density correlator quantifies the probability of finding
two particles separated by a distance x [38], according to

g2 (x= x1 − x2) =
⟨ψ̂† (x2) ψ̂† (x1) ψ̂ (x1) ψ̂ (x2)⟩

n2
(8)

where ψ̂ (x) is the bosonic field operator and ⟨· · · ⟩ denotes an average over an ensemble at thermal
equilibrium at a given temperature T. Here n= ⟨ψ̂†ψ̂⟩ is the diagonal density where the operators are
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evaluated at the same spatial coordinate. The pair correlation function provides the characteristic length
scale over which the density-density fluctuations decay. In a 1D Bose gas, g2 (x) plays a key role in the study of
interference properties of atom lasers in a 1D waveguide [70], by fostering practical applications such as
matter-wave interferometry [71]. In the experimental image of an expanding gas cloud, g2 (x) can be
employed to probe complex many-body states of trapped ultracold atoms [72].

The local pair correlation function g2 (0), at x= 0, gives the probability of two particles to overlap. Its
value is related to the derivative of the free energy with respect to the coupling constant (∂A/∂g)T,N,L [8]
according to the Hellmann–Feynman theorem [73]. By using equation (4) and the definition of the
interaction strength γ, one finds the relation with the Tan’s contact C [38]:

g2 (0) =
1

γ2n3
C
N
. (9)

Its value can be calculated exactly in a 1D Bose gas through the TBA [8, 13, 15, 16]. Since g2 (0) and C are
proportional, equation (9), they both connect the short-range behavior of correlations with the
thermodynamic properties. Analytical limits of g2 (0) and C in various physical regimes are reported in [8,
74] and [13], respectively.

At large relative distances in a gas phase, atoms become uncorrelated and the pair correlation function
approaches the g2 → 1 value.

In the decoherent classical (DC) regime, an excellent approximation for the pair correlation function
is [9, 10]

g2 (x)DC = 1+ e−x2/σ2

− γnσ
√
πerfc

(
|x|
σ

)
(10)

where σ = λ/
√
2π is proportional to the thermal de Broglie wavelength λ=

√
2πℏ2/(mkBT) and erfc(x) is

the complementary error function. The DC regime holds for kBT≫max
{
2ℏ2/(ma2),ℏ2n2/(2m)

}
. That is,

the temperature must be large compared both to the characteristic energy associated with the s-wave
scattering and to the quantum degeneracy temperature Td = TF/π

2 related to the Fermi energy
EF = kBTF = ℏ2π2n2/(2m). For T≫ Td, the chemical potential µ is large and negative, so the bosonic
occupation number is small n(k)≪ 1 and can be approximated by the Maxwell–Boltzmann (MB)

distribution n(k)MB ≈ e−β[ℏ2k2/(2m)−µ], where k is the momentum. Such an approximation yields
equation (10). In the DC regime, both phase and density fluctuations are large, thermal effects always
dominate over the interactions and the system approaches the ideal Bose gas behavior at very high
temperature even if quantum effects still play a role [8–10, 14], as signaled by the corrective term in
equation (10) depending on the interaction strength γ. The parameter σ is thus always smaller than the
absolute value of the 1D s-wave scattering length: σ < |a|.

In the non-interacting limit γ→ 0 of equation (10), the classical ideal gas result [75] is recovered and
characterized by the Gaussian MB decay at large distance with a correlation length fixed by σ which
determines the approaching to the uncorrelated limit g2 → 1.

In figures 1–3, PIMC results for the pair correlation function g2 (x) are reported with symbols for several
values of the interaction strength γ and temperature in units of the quantum degeneracy value
Td = ℏ2n2/(2mkB). Horizontal lines denote the results of exact TBA values for the local pair correlation
function g2 (0), equation (9), which is a monotonic increasing function with temperature at fixed γ. PIMC
results are in a perfect agreement with the TBA predictions for the local correlations at x= 0 and provide a
full description for non-local x> 0 values.

Below the quantum degeneracy temperature T≪ Td and for any interaction strength γ, the amplitude of
the long-range decay of the pair correlation function g2(x) is proportional to 1/x2 and corresponds to the
Fourier transform of the linear phonon expression for the static structure factor, S(k) = ℏ|k|/(2mv). Another
main feature observed in g2(x) is the antibunching effect that is voiding the region around x= 0 as the
repulsive atoms tend to avoid each other. In the limit of strong repulsion (large γ), pair correlation function
approaches that of an ideal Fermi gas (IFG), g2(x)IFG ≈ 1− sin2(πnx)/(πnx)2, for which the voiding is
complete, g2(0)IFG = 0 [9, 10, 19, 25, 76]. Here, g2(x)IFG features Friedel oscillations manifested as a series of
maxima located at the multiples of the mean interparticle distance∼ 1/n. Friedel oscillations can be
interpreted as a interference effect between incident and reflected wave in the two-body collisions on an
impenetrable potential. Friedel oscillations are also found in the density profile of a 1D interacting electron
gas with an impurity [77]. Since local maxima in the pair correlation function imply the existence of more
likely separations between atoms, Friedel oscillations can be also understood as a quasicrystalline order (with
a period∼1/n) in the two-particle sector of the many-body wavefunction even though the density of the gas
is uniform. The IFG limit g2(x)IFG is equally valid for strong attractive interactions, i.e. for large and negative
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Figure 1. Pair correlation function g2 (x) as a function of the interatomic relative distance x in units of the inverse density n−1 for
the interaction strength γ = 10−1. Different values of temperature in units of the quantum degeneracy value Td = ℏ2n2/(2mkB)
are reported. Symbols denote exact Path Integral Monte Carlo results and their sizes are larger than the statistical error bars.
Horizontal lines represent the local pair correlation function g2 (0) calculated with thermal Bethe Ansatz, equation (9), and they
are reported in an increasing order of the temperature from low (bottom) to high (top) values in each panel. In the lowest panel,
black dot-dashed lines show the decoherent classical limit, equation (10).

γ, by describing the pair correlations of a metastable state known as super Tonks-Girardeau gas [78–80]. For
weaker interactions (small and intermediate values of γ), g2(x) is a monotonically increasing function at very
low temperatures.

Thermal fluctuations lead to a qualitatively different behavior due to the bunching effect in which the
probability of two particles to overlap is enhanced, so that the local value for g2(x) increases with
temperature until the maximum value g2(0) = 2 of the classical gas is reached. As a result of the competition
between the thermal bunching and antibunching due to the interparticle repulsion, the pair correlation
function shows a global maximum larger than unity g2 (xmax)> 1 located at a finite interparticle distance
xmax > 0. This global maximum is formed above a threshold temperature which is higher for larger values of
γ. The value in the maximum, g2 (xmax), increases while its position xmax decreases with temperature.

At high temperatures, all pair correlation functions, calculated at different values of γ, approach the
Gaussian shape as predicted by the DC theory and given by equation (10). We find an excellent agreement
between the PIMC results and the DC theory. In this regime, the local pair correlation function is always
larger than unity, g2 (0)> 1. The maximum value is achieved for local correlations x→ 0, where strongest
bunching effect is observed. The limiting value g2 (0)→ 2 is the same as in an ideal Bose gas and is fully
driven by the thermal energy. The DC regime is achieved at higher temperatures for stronger interactions
[14] and the value of the global maximum in the pair correlation function is approximated by
g2 (xmax)DC = 2− γ

√
2π/τ + 2γ2/τ which is located at xmax = 2γ/(nτ)≪ n−1 [9, 10] where τ = T/Td.

This maximum is more clearly visible by increasing γ, figures 1–3.
In figure 1, we show the characteristic examples of the pair correlation function in the weakly-interacting

GP regime with γ = 10−1. Each panel corresponds to different thermal regimes in order of increasing
temperature values: hole anomaly (upper), intermediate (middle) and DC regime (lower) [14]. In the limit
of zero temperature, g2 (0)≈ 0.7 for this value of γ, that there is a weak suppression of the probability of two
particles to overlap, as compared to the uncorrelated (ideal Bose gas) value, g2(0) = 1. At very low
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Figure 2. Pair correlation function for the interaction strength γ= 1, similarly as in figure 1. Symbols denote exact PIMC results.
Horizontal lines represent g2 (0) calculated with TBA, equation (9), and are reported in an increasing order of the temperature
from low (bottom) to high (top) values in each panel. Black dot-dashed lines show the DC limit, equation (10).

temperature, there is a quasicondensate in the system, which is characterized by suppressed density
fluctuations due to repulsive interactions [81] and enhanced long-wavelength phase fluctuations due to
thermal excitations [82]. The resulting local pair correlation function indicates second-order coherence
g2 (0)≈ 1, for which there exists a finite probability that two particles come close to each other. So that, the
existence of the quasicondensate is fully driven by the correlations induced by very weak interatomic
repulsion, similarly to the case of the DC regime g2 (0)≈ 2 where interaction effects can be neglected.

In figure 2, we report the pair correlation function for the intermediate value of the interaction strength
γ= 1 in the hole anomaly (upper panel) and in the DC (lowest panel) regimes [14]. This is the most difficult
regime to describe as it cannot be treated perturbatively and one has to rely on numerics in order to obtain
accurate results. At zero temperature, g2 (0)≈ 0.5, in agreement with TBA calculations. The potential energy
of two-body interactions, Epot/N= g2(0)gn/2, is maximal in this regime, as compared to the GP regime with
vanishing coupling constant, g→ 0, and the TG regime of impenetrable particles, g2(0) = 0. As the
temperature is increased, antibunching effect becomes less prominent, until temperature T≈ 4Td is reached
with g2 (0)≈ 1. Further increase in the temperature leads to bunching effect.

In figure 3, we show the pair correlation function in the case of strong repulsion, γ= 10. Different
thermal regimes are reported in each panel: hole anomaly (upper), virial hard-core (HC) and beyond
(middle) and DC regime (lower) [14]. At zero temperature, the local pair correlation function approaches
zero g2 (0)≈ 0.1, by signaling the antibunching effect. The gas is then fermionized as the strong repulsion
mimics the Pauli exclusion principle for intrinsic fermions at zero relative distance and pairs of bosons are
thus never at the same spatial position, g2(0) = 0. The antibunching is washed out by thermal effects. At the
lowest temperature here reported T= 2Td, Friedel oscillations are not visible at larger distances, by
confirming that they exist only below the quantum degeneracy point T≪ Td.

In the virial HC regime (we refer to the middle panel of figure 3) of strong interactions and high
temperature π2 < τ ≲ γ2 [13, 14] the local pair correlation function does not manifest complete
antibunching g2 (0) = 0, as witnessed by exact TBA and PIMC results. Instead, its value remains finite
(0.4≲ g2 (0)≲ 0.6) which is in contrast to what is claimed in [9, 10].

The crossover from the virial HC to the DC regime can be induced by increasing the temperature [14]. It
is signaled by the global maximum in the pair correlation function emerging at temperature τ ≈ γ2

corresponding to σ ∼ |a| [10] where a is the 1D scattering length and σ, up to some multiplicative constant,
corresponds to the thermal de Broglie wavelength. Such a crossover is explained by the interplay between the
thermal bunching and repulsion antibunching effects acting on comparable scales σ ∼ |a| [10]. In the
crossover regime γ2/τ ≃ 0.1− 0.4 (middle and lowest panels of figure 3), the local pair correlation function
exhibits a behavior similar to the quasicondensate g2 (0)≈ 1, indicating local second-order coherence.
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Figure 3. Pair correlation function for the interaction strength γ= 10, similarly as in figure 1. Symbols denote exact PIMC results.
Horizontal lines represent g2 (0) calculated with TBA, equation (9), and are reported in an increasing order of the temperature
from low (bottom) to high (top) values in each panel. Black dot-dashed lines show the DC limit, equation (10).

However, unlike the quasicondensate regime, the non-local correlations on distance scale |x| ∼ σ ∼ |a| are
not coherent but bunched as witnessed by the presence of the maximum [10].

In the high temperature regime (lowest panel of figure 3), we find an excellent agreement between the
PIMC results and the analytical limit provided by the DC theory, equation (10), except for the lowest value of
temperature for which the deep DC regime is not yet achieved [8–10, 14].

It is important to point out that other known analytical limits for the pair correlation function g2 (x)
(weakly- and strongly-interacting at high temperatures and decoherent quantum regimes) [9, 10] are not
reported in the present work as they do not show agreement with our exact PIMC results. Comparison with
the approximate theories of the weakly- and strongly-interacting quantum regimes [9, 10] is not possible due
to the growing computational cost of PIMC method going down to extremely low temperatures. While our
exact PIMC and TBA results for the local pair correlation function g2 (0) agree for any considered value of
the interaction strength and temperature, they do not match with the corresponding analytical limits [8] in
some regimes. Given the proportionality with Tan’s contact parameter, equation (9), g2 (0) is an additional
thermodynamic property. New analytical descriptions have been built and they exhibit an excellent
agreement with TBA in their regimes of validity and for several thermodynamic quantities [13, 14, 50].

5. Static structure factor

The static structure factor S(k) is directly related to the Fourier transform of the pair correlation function,
equation (8) [38]:

S(k) = 1+ n

ˆ +∞

−∞
dx [g2(x)− 1]cos(k · x) , (11)

and quantifies the spatial correlations in momentum space, where k= k1 − k2 is the relative momentum of
atoms.
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At small k, the static structure factor is sensitive to thermal and dynamical correlations and at k= 0 is
related to the isothermal compressibility κT , equation (3) [38]

S(0) = kBTκT. (12)

Its value can be computed exactly through the TBA calculation of κT [14–16, 27] which has been recently
compared with corresponding PIMC results, by showing an excellent agreement [14]. Equation (12) is a
general result following from the fluctuation-dissipation theorem and holds for any value of temperature and
interaction strength.

For large momenta, k→∞, the static structure factor approaches the uncorrelated value,
S(|k| ≫ n)→ 1 [38].

If the excitation spectrum ϵ(k) is exhausted by a coherent single-mode (SM) quasiparticle [14] then the
static structure factor can be approximated as follows [38]

SSM (k) =
ℏ2k2

2mϵ(k)
coth

[
ϵ(k)

2kBT

]
. (13)

The prefactor in equation (13) recovers the Feynman relation [83] and corresponds to the static structure
factor at zero temperature ℏ2k2/ [2mϵ(k)]. In a previous publication [14], PIMC results for S(k) were used to
estimate the spectrum within the Feynman approximation and to show that it is valid for temperatures below
the hole anomaly value. The low-temperature correction in equation (13) is derived from the principle of the
detailed balance.

By using the T= 0 Bogoliubov (BG) spectrum ϵ(k) =
√
(ℏkv)2 +(ℏ2k2/2m)

2 [48, 49] in equation (13),
one can analytically obtain the static structure factor at low temperature in the weakly-interacting regime
τ ≪√

γ≪ 1 [8–10, 13, 14]. For large momenta, one can use the expansion of the BG spectrum
ϵ(ℏ|k| ≫mv)∼ ℏ2k2/(2m)+mv2 in equation (13) and obtain at the level of the Feynman approximation
[38]:

SBG (ℏ|k| ≫mv) = 1− 2m2v2

ℏ2k2
, (14)

which recovers the model-independent limit S(|k| ≫ n)→ 1 after a further expansion ℏ|k| ≫mv. For
arbitrary values of the interaction strength γ, the first term in equation (14) is recovered by assuming the
free-particle excitation spectrum, ϵ(k) = ℏ2k2/(2m) in equation (13) within the Feynman approximation.
Equations (13) and (14) are very general as they are also valid for a Bose gas in three spatial dimensions [38].

At small momenta, ℏ|k| ≪mv, the excitation spectrum is dominated by linear phonons ϵ(k) = vℏ|k|
propagating with sound velocity v. This allows to obtain from equation (13) a generic expression for the
static structure factor at small momenta,

SLL (ℏ|k| ≪mv) =
ℏ|k|
2mv

coth

(
vℏ|k|
2kBT

)
. (15)

The speed of sound itself is related to the zero-temperature compressibility,

mv2 = κ−1
T=0 = n

∂µ0
∂n

, (16)

and can be obtained from the equation of state, µ0(n), which is expressed in terms of the chemical potential
at zero temperature µ0. Equation (15) is then a reliable small-k approximation for the static structure factor
which corresponds to the Luttinger Liquid (LL) regime holding at very low temperatures kBT≪ µ0 and for
any interaction strength γ [50, 84]. Equation (15) recovers the classical result, equation (12), where the
isothermal compressibility is calculated at zero temperature κT=0 = 1/

(
mv2

)
.

In figures 4–6, we report the static structure factor S(k) calculated for characteristic values of the
interaction strength γ and temperature in units of the quantum degeneracy value Td = ℏ2n2/(2mkB). In
figure 4, we report S(k) in the weakly-interacting GP regime with γ = 10−1. Each panel corresponds to a
different physical thermal regime ordered by increasing temperature values: hole anomaly (upper) and
intermediate (lower) [14]. In the upper panel, black dashed lines denote equation (13) calculated with the
BG spectrum and black solid line represents the corresponding large-k behavior, equation (14). We show
S(k) calculated in the regime of the intermediate interactions, γ= 1, in figure 5. The case of strong
correlations, γ= 10, is considered in figure 6.

Horizontal lines denote the exact zero-momentum static structure factor S(0) as calculated by TBA,
equation (12). In the limit of zero temperature, zero value is recovered, S(0) = 0, for any γ. S(0) quantifies
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Figure 4. Static structure factor S(k) as a function of the relative momentum k in units of the density n for the interaction
strength γ = 10−1. Different values of temperature in units of the quantum degeneracy value Td = ℏ2n2/(2mkB) are reported.
Symbols denote exact Path Integral Monte Carlo results. Horizontal lines represent the static structure factor at zero momentum
S(0) calculated with thermal Bethe Ansatz, equation (12). Dashed colored lines show equation (15) calculated with the phononic
spectrum. Black dashed lines denote equation (13) calculated with the Bogoliubov spectrum. All limits are reported in an
increasing order of the temperature from low (bottom) to high (top) values in the upper panel and in the reversed order in the
lower panel. Black solid curve represents the large-k behavior of the Bogoliubov approximation, equation (14), which is
independent of temperature.

Figure 5. Static structure factor for the interaction strength γ= 1, similarly as in figure 4. Symbols denote exact PIMC results.
Horizontal lines represent S(0) calculated with TBA, equation (12). Dashed line shows equation (15) calculated with the
phononic spectrum.

the interplay between the quantum and thermal fluctuations. The effect of the temperature is more
prominent in weakly-interacting systems. For example, at the degeneracy temperature T= Td, the thermal
effects are large for weak interactions, γ = 10−1, and moderate for strong interactions, γ= 10. In fact, in the
weakly-repulsive regime, the inverse isothermal compressibility κ−1

T , equation (3), is small and S(0) grows
rapidly as the temperature is increased. In the opposite fermionized regime with γ≫ 1, κ−1

T is large and S(0)
remains small even at relatively high temperature. A characteristic thermal crossover temperature, defined by
the condition S(0) = 1, is an increasing function of γ and reaches values as large as τ = T/Td ∼ 102 (not
reported in figure 6). Above this temperature threshold, the static structure factor develops a global
maximum S(kmax) = S(0)> 1 which defines the most likely momentum kmax of atoms. The
zero-momentum value, S(0), is a non-monotonic function of temperature and it exhibits a maximum
occurring at a certain temperature τmax. The temperature τmax itself increases monotonically with increasing
the strength of interactions γ. This temperature is higher than that of the hole anomaly and smaller than that
of the DC regime [14] for any interaction strength. Such universal result holds even for the largest considered
interaction strength, γ= 10, where the maximum of S(0) occurs at temperature around τmax ∼ 104 not
shown in figure 6.
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Figure 6. Static structure factor for the interaction strength γ= 10, similarly as in figure 4. Symbols denote exact PIMC results.
Horizontal lines represent S(0) calculated with TBA, equation (12). Dashed lines show equation (15) calculated with the
phononic spectrum. All the lines are reported in an increasing order of temperature from low (bottom) to high (top) values.

It is instructive to identify the temperatures and momenta for which the LL description, equation (15), is
applicable. This theory is based on assuming a linear phonon dispersion relation and has the same
underlying assumption as the SM result given by equation (13). By making a comparison of this effective LL
theory (colored dashed lines in figures 4–6) with the exact numerical PIMC result, one finds that the SM
phonon assumption holds well at low momenta and low temperatures. For a fixed value of γ, such low-k
approximation holds for a broader range of k at lower temperatures. The range of applicability gets broader
by increasing γ provided the LL condition ℏ|k| ≪mv being v a monotonic increasing function with γ [49,
50]. Our results also confirm the temperature-range of validity of the LL description kBT≪ µ0. Such a range
gets broader by increasing the interaction strength as the zero-temperature chemical potential µ0 is an
increasing function with γ [48, 50].

All analytical limits agree in their regimes of validity with the corresponding PIMC results calculated at
the same value of temperature and for any interaction strength.

For each set of results at fixed γ, the DC regime at high temperature is not reported as the static structure
factor is trivially a constant function for any value of k and approaches the model-independent value
S(k)≈ 1.

6. One-body density matrix

The one-body density matrix (OBDM) quantifies the coherence and is defined as [38]

g1 (x= x1 − x2) = ⟨ψ̂† (x1) ψ̂ (x2)⟩. (17)

It is proportional to the amplitude of the process in which one particle is annihilated at position x2 and the
same state is recovered by creating a particle at position x1. Definition (17) applies to any value of the
interaction strength and temperature. For a zero displacement, x= 0, one recovers the diagonal density of the
system which, in the uniform configuration studied here, exactly provides the linear density n. The
momentum distribution n(k) which is a function of the momentum k, is the Fourier transform of the
OBDM [38].

At very high temperatures, T≫ Td, the system behaves as a classical gas and follows the MB statistics.
The OBDM exhibits the Gaussian behavior

g1 (x)MB = ne−x2/(2σ2) , (18)

and vanishes at distances much larger than the standard deviation σ = λ/
√
2π which is proportional to the

thermal wavelength λ, already defined in equation (10).
At small distance x, the OBDM can be expanded as a sum of analytic and non-analytic terms [85] and

holding for any value of the interaction strength and temperature:

g1 (x→ 0)

n
= 1+

∞∑
i=1

ci (nx)
i
+ b3 |nx|3 +O

(
|nx|4

)
. (19)
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The coefficients ci of the Taylor expansion of the analytic part of the OBDM are the corresponding moments
of the momentum distribution n(k) [85], they diverge for i> 3 and the odd coefficients vanish
c1 = c3 = · · ·= 0 due to reflection symmetry. From the Hellmann–Feynman theorem [73] one finds:

c2 =−1

2

(
E

N

2m

ℏ2n2
− C

N

1

γn3

)
. (20)

It is easy to show that the second coefficient, equation (20), can be rewritten in terms of the average kinetic
energy ⟨Hkin⟩ [38], see appendix. The non-analytic part of the OBDM expansion starts as |nx|3 with the
coefficient b3 which is related to the high-momentum tail of n(k), as it depends on the Tan’s contact C

b3 =
C
N

1

12n3
. (21)

Both the internal energy and Tan’s contact per particle, E/N and C/N respectively, in equations (20) and (21)
have been evaluated exactly with TBA [13–16]. Equations (19)–(21) for the short-range expansion of the
OBDM have been derived at T= 0 [58] and here they are generalized to a finite temperature whose
dependence enters in E and C.

In higher spatial dimensions, where the BEC emerges below the critical temperature, the presence of
off-diagonal long-range order in homogeneous systems is manifested by a finite value of the OBDM at large
distances, which corresponds to the condensate fraction [38]. In our system instead, the OBDM always
vanishes at large distances, g1 → 0, i.e. there is no Bose–Einstein condensation even at zero temperature.

Within the LL theory, applicable at very low temperature kBT≪ µ0 and for any interaction strength γ,
the OBDM exhibits a power-law decay [33, 38, 84, 86]:

g1 (ξ ≪ |x| ≪ xT)LL
n

=

(
K

πn|x|

) 1
2K

(22)

holding for distances much larger than the healing length ξ = ℏ/(
√
2mv) and smaller than the thermal

correlation radius xT = ℏv/(kBT). The LL parameter K= vF/v can be calculated exactly with Bethe Ansatz
for any interaction strength γ, via the corresponding results of the speed of sound v. The power-law
decay (22) has been shown to be accurate for any value of K by comparison with diffusion Monte Carlo
results at zero temperature [33], where quantum fluctuations depend explicitly on the value of v [38]. The
vanishing asymptotic value of the OBDM at large distances excludes the existence of Bose–Einstein
condensation in infinite systems [87]. However, due to the smallness of the exponent 1/(2K) in the
weakly-interacting GP regime, γ≪ 1, the OBDM does not vanish at macroscopic distances |x| ≫ ξ,
signaling the presence of a quasicondensate exhibiting features of superfluids [88].

In figures 7–9, we show with symbols the PIMC results of the OBDM g1 (x) for different values of the
interaction strength γ and temperature. Solid lines denote the short-range expansion, equation (19),
calculated from TBA quantities. In the upper panel of the sets of results for γ = 10−1 and 1, the black dashed
line denotes the LL quasi long-range decay, equation (22), valid in the limit of zero temperature. Instead, the
power-law decay (22) is not reported for γ= 10 as in this strongly-interacting regime only temperatures
beyond the validity of the LL theory have been explored. The DC regime of high temperatures reported in
the lower panels of figures 7–9 allows a comparison with the Gaussian behavior expected for a classical gas,
equation (18), and the corresponding predictions are shown with black dot-dashed lines. We notice that for
any interaction strength, a better agreement with PIMC results is found at small distances by pointing out
that, in the DC regime, quantum statistics still play a role at large interatomic separation despite the high
temperature. All analytical limits show a fair agreement with the corresponding PIMC results calculated at
the same value of temperature.

In figure 7, we show the OBDM in the weakly-interacting GP regime with γ = 10−1. Each panel
corresponds to different physical thermal regimes in order of increasing temperature values: hole anomaly
(upper), intermediate (middle) and DC regime (lower) [14]. It is worth noticing that although the OBDM
vanishes at large distances, in agreement with the absence of the Bose–Einstein condensation in one
dimension, still the OBDM can be significantly different from zero at low temperatures, even at distances
large compared to the mean interparticle distance x> n−1. In the considered example, the coherence is
preserved at distances of the order of hundreds mean interparticle distances. Such a behavior is often
referenced as a quasicondensation and it is responsible for making the GP and BG theories still applicable in
1D. Instead, as the temperature is increased, thermal fluctuations significantly suppress the coherence,
making it disappear for x∼ n−1 (middle panel) and even smaller distances (lower panel). In the latter case,
the comparison with the MB prediction (black dot-dashed lines in the lower panel) makes it clear that at
high temperatures the coherence is lost at distances of the order of σ.
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Figure 7. One-body density matrix g1 (x)/n as a function of distance x in units of the mean interparticle separation n−1 for the
interaction strength γ = 10−1. Different values of temperature in units of the quantum degeneracy value Td = ℏ2n2/(2mkB) are
reported. Symbols denote exact Path Integral Monte Carlo results. Symbol size is larger than the statistical error bar. Solid lines
represent the expansion at small distances, equation (19), calculated with thermal Bethe Ansatz. In the upper panel, black dashed
line denotes the Luttinger-liquid power-law decay, equation (22), which is independent of temperature. In the lower panel, black
dot-dashed lines correspond to the Maxwell–Boltzmann behavior, equation (18). All curves are reported in an increasing order of
the temperature from low (top) to high (bottom) values in each panel.

The regime of the intermediate interaction strength, γ= 1, is the most difficult one for an analytic
description as there is no separation of scales and the scattering length is of the same order as the mean
interparticle distance a∼ n−1. Furthermore, at low temperature, the kinetic energy is of the same order as
the potential interaction energy. The OBDM in this interaction regime is shown in figure 8. We observe that
at low temperatures the OBDM is significantly different from zero up to distances of the order of tens of the
interparticle distances, making the quasicondensate concept applicable even to this case. The coherence is
instead lost when the temperature becomes comparable with the rest of the equal energy scales, i.e. for
kBT∼ kBTd = ℏ2n2/(2m)∼ ℏ2/(ma2). Thus, τ = T/Td = 1, separates the quantum low-temperature and
DC regimes. In the upper panel of figure 8, we report results at very low temperature and large distances
where the short-distance expansion, equation (19), is not shown.

The regime of large values of the interaction strength γ is very interesting as the Girardeau’s mapping
applies here, that is the wavefunction of bosons with infinite γ equals the absolute value of the wavefunction
of the ideal fermions in 1D [40]. From this mapping, diagonal properties (pair correlation function, static
structure factor, etc) and the energy are the same in the two systems. Instead, the momentum distribution
and the OBDM are manifestly different. Indeed, the momentum distribution of an IFG at zero temperature
is given by the step function, n(k)IFG = (ℏn)−1 for |k|< kF (kF = πn is the Fermi momentum) and zero
elsewhere. The corresponding OBDM is given by its Fourier transform and is an oscillating function,
g1(x)IFG = nℏ

´ +∞
−∞ n(k)IFG cos(kx)dk/(2π) = n sin(kFx)/(kFx), where the maxima of the Friedel oscillations

occur at multiples of k−1
F . Also, the fermionic OBDM changes its sign (for example, for a displacement which

interchanges two nearest fermions, n−1 < x< 2n−1). Obviously, the OBDM for bosons is different, figure 9,
as g1(x) cannot be negative in the bosonic case, and a significant effort has been devoted to the calculation of
the OBDM of the TG gas [58, 87, 89–92]. Eventually, all coefficients of the zero-temperature short-range
expansion, equation (19), have been calculated analytically in [85]. Even at low temperature (upper panel of
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Figure 8. OBDM for the interaction strength γ= 1, similarly as in figure 7. Symbols denote exact PIMC results. Solid lines
represent the expansion at small distances, calculated with TBA, equation (19). Black dashed line denotes the LL power-law decay,
equation (22), while black dot-dashed curves correspond to the MB behavior, equation (18). All the lines are reported in an
increasing order of temperature from low (top) to high (bottom) values in each panel.

figure 9), the coherence is rapidly lost, as g1(x)∝ 1/
√
x. The loss of coherence is exponentially fast at a finite

temperature with the Fermi energy being the only relevant scale in the γ→∞ limit. It is interesting to note,
that the MB regime, equation (18), is reached only when the temperature is of the order of thousands of the
quantum degeneracy temperature, see the lower panel of figure 9.

7. Experimental considerations

Cold atoms provide a powerful and clean platform for studying the physics of correlations in a widely
tunable range of interaction and temperature. One-dimensional geometry can be realized in highly
anisotropic trap configurations, where the confinement in the two radial y and z spatial directions is so
strong that the motion of atoms is restricted to the x-axis. A reliable description of the system is then based
on an effective 1D model, where both the temperature T and the chemical potential µ are much smaller than
the first excited energy level of the trapping potential [93]. This condition can be expressed as kBT,µ≪ ℏω⊥
where ω⊥ = ωy = ωz denotes the harmonic trap frequency in the strongly confined directions.

Highly anisotropic geometries are created in optical dipole traps [82], two-dimensional optical lattices
generating a set of 1D tubes [11, 41–44, 94–97], on an atom chip [81, 93, 98, 99] and with a single optical
tube trap [12]. The latter two setups allow for the realization of a single 1D Bose gas which avoids the issue of
ensemble averaging over many non-identical copies of the system taking place in lattice configurations. In
addition, the exploration of even the classical gas regime of high temperature has been achieved in the optical
tube trap [12], by keeping satisfied the condition kBT,µ≪ ℏω⊥ for the 1D geometry.

An important advantage of the 1D geometry is that three-body losses are strongly suppressed [43],
making it possible to reach the limit of a diverging coupling constant (unitarity). In three dimensions,
unitary Bose gas is instead prone to instability due to the formation of Efimov trimers, which are absent in
one dimension. A spatial uniform density can be achieved in a flatbox potential [100] which can be

14



New J. Phys. 25 (2023) 043002 G De Rosi et al

Figure 9. OBDM for the interaction strength γ= 10, similarly as in figure 7. Symbols denote exact PIMC results. Solid lines
represent the expansion at small distances, calculated with TBA, equation (19). Black dot-dashed curves correspond to the MB
behavior, equation (18). All the lines are reported in an increasing order of temperature from low (top) to high (bottom) values in
each panel.

advantageous as compared to the measurements in the axially trapped configuration where the density is
dependent on the spatial coordinate and, for example, the simple power law of the OBDM in the LL regime
gets totally blurred by the trap. The interaction strength γ ∼ 1/(na) can be tuned at will in experiments by
adjusting the linear density n via the strongly confining potential in the radial directions [37, 42, 44] or by
applying Fano–Feshbach resonances to tune the 3D scattering length, and correspondingly the 1D length a in
the Confinement Induced Resonance [96, 101].

The measurement of temperature (thermometry) of 1D Bose gases can be achieved in various ways,
which are often based on the comparison between experimental measurement statistics and theoretical
predictions. For example, the temperature can be extracted from the pair correlation function of a single
quasicondensate which is released and expands in the time-of-flight experiment along the 1D axis [102, 103].
As a result, many repetitions of the same measurement are needed in order to obtain an accurate comparison
with the theory. Instead, thermometry from a single absorption image measurement during the
time-of-flight expansion has been recently made possible with neural network [104]. Compared to the
standard method based on fitting the pair correlation function, the network can achieve the same precision
needing only half the amount of experimental images.

In a 1D Bose gas, the pair correlation function g2 (x) can be detected using spatially resolved in-situ
single-atom counting as proposed in [9], standard absorption imaging [103] and observing intensity
correlations in the interference pattern of two identical spatially displaced quasicondensates [105, 106]
during time-of-flight expansion. The local value g2 (0) has been measured by photoassociation [44]. The
OBDM g1 (x) has been detected with the matter-wave interferometry of two copies of expanding
quasicondensates [107].

Beyond the implementation in ultracold atoms, the 1D Bose gas has been experimentally realized in
superconducting circuits where the OBDM and the pair correlation functions have been measured [4].
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8. Conclusions

In conclusion, we have carried out a detailed study of correlation functions in a 1D Bose gas with contact
interactions at finite temperatures. The PIMC method is employed to perform exact calculations of the one-
and two-body correlation functions, and the static structure factor. We find a good agreement with the
predictions of a variety of perturbative and effective descriptions, as well as exact theories in regions of their
applicability.

In particular, the short-range correlations have been extracted from several thermodynamic properties
evaluated with TBA. The value of the pair correlation function g2 (0) is related to the probability of two
particles to overlap. It shows a competition of two opposite phenomena, that is the antibunching,
i.e. tendency of two repulsive atoms to avoid each other, and a bunching effect, that is an enhanced
probability of being close to each other due to thermal fluctuations. The short-range expansion of the
OBDM contains both analytic and nonanalytic terms. The analytic contributions (xn) are related to nth
moments of the momentum distribution and have non-vanishing coefficients for even powers, the leading
one (x2) can be expressed in terms of the average kinetic energy. The nonanalytic contributions come as an
expansion of powers of |x|, being the leading one proportional to |x|3 whose coefficient depends on the Tan’s
contact and thus captures the amplitude of the 1/k4-decay of the momentum distribution. By comparison
with PIMC results, we show that the short-range expansion of the OBDM is valid for any value of the
interaction strength and temperature.

At zero temperature, the coherence is lost in a slow long-range power-law decay for the OBDM allowing
for the application of condensate-based theories (GP, BG, etc) in the weakly-repulsive regime. At
temperature higher than the hole-anomaly threshold, the DC perturbative theory well reproduces PIMC
results for the pair correlation function. It captures both the bunching effect, described by a Gaussian term
whose width is provided by the de Broglie thermal wavelength, and the antibunching of strength
proportional to the interaction parameter γ, equation (10). By further increasing the temperature,
correlations are no longer affected by Bose or Fermi statistics but rather are described by the MB Gaussian
decay which is independent on γ.

The low-momentum behavior of the static structure factor is well captured by a SM quasiparticle
approximation below the hole-anomaly temperature. A linear-phonon SM dispersion lies in the base of the
LL theory whose applicability is confirmed for any interaction strength. In the weakly-repulsive regime, the
quasiparticle excitation is provided by the BG spectrum which is linear at small momentum but deviates at
larger momenta. The zero-momentum static structure factor S(0) is related to the isothermal compressibility
and its value can be extracted from the TBA. It quantifies the interplay between the quantum and thermal
fluctuations and shows that the thermal effects are more important for weak interactions.

Our exact PIMC and TBA results do not agree with some known analytical limits of the pair correlation
function g2 (x) [9, 10] and of its local value g2 (0) [8], respectively, the latter of which is a thermodynamic
property. Improved analytical descriptions have been recently developed and they exhibit an excellent
matching with the exact TBA method for several thermodynamic quantities [13, 14, 50].

We expect that our PIMC calculations of the correlation functions will serve as a universal benchmark for
future theories and experimental measurements. Our results may stimulate further theoretical and
experimental investigations aimed at the complete understanding at the microscopic level of 1D Bose gases
through quantum many-body correlations which allow for the identification of different quantum regimes.
The PIMC results for the momentum distribution will be presented in an upcoming publication [108].

Looking forward, interesting perspectives include the calculation of n-body correlations [109] and the
study in optical lattices [110]. Particularly appealing is the extension to the harmonically axially-trapped
configuration [28, 60, 111–115] which is suitable for the investigation of breathing modes [116–118] whose
collective frequencies change by crossing different quantum regimes [119]. Recently, a temperature-induced
hydrodynamic-to-collisionless transition has been predicted with the emergence of the excitation of two
different frequencies in the time-evolution of breathing modes in both the GP and TG limits [120]. Such a
transition may shed light on the absence of thermalization in 1D Bose gases even after thousands of
interatomic collisions [95].

Our results can be extended to systems with positive 1D s-wave scattering length a> 0: (i) gases with
short-range interactions like the strongly correlated metastable state (super TG gas) [78, 80, 121] and the HC
model [39, 122–125], (ii) finite-range interacting systems such as dipolar [126, 127] and Rydberg atoms
[128], 4He liquid [129], 3He gas [130], and a single chain of 4He atoms confined in a nanopore even with
disorder [131]. Other interesting extensions of our work include spin models [132, 133] and
multicomponent systems [134–137]. Our predictions are important for the exploration of the properties of
impurities immersed in helium [138] and in a Bose gas [139, 140] as a function of the interaction strength of
the bath and temperature. Possible extensions of our work also include quantum liquids in binary bosonic
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mixtures at finite temperature and 1D geometry [141] which can be realized in current experiments [142].
Finally, our findings can be also applied to 1D liquids of 4He which have been recently observed [143] in a
wide range of interaction and temperature regimes.
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Appendix. Coefficient c2 of the OBDM at small distances

Simple considerations on scale invariance [64, 65] lead to the exact thermodynamic relation holding for any
value of interaction strength and temperature [13]:

− C
N

ℏ2a
4m

= 2
E

N
− P

n
. (A1)

Equation (A1) relates the Tan’s contact, equation (4), the pressure, equation (2), and the total internal energy
E= ⟨Hkin⟩+ ⟨Hint⟩ where the average interaction contribution can be calculated from the
Hellmann–Feynman theorem [73, 120]:

⟨Hint⟩= g
∂A

∂g
=−C ℏ

2a

4m
, (A2)

and where we have used equation (4). By combining equations (A1) and (A2), one calculates the average
kinetic energy:

⟨Hkin⟩=
N

2

(
P

n
− ⟨Hint⟩

N

)
. (A3)

By using equation (A2) in equation (20) of the main text, one finally finds [38]:

c2 =− m

ℏ2n2
⟨Hkin⟩
N

=−1

2

⟨k2⟩
n2

, (A4)

where the average kinetic energy per particle can be expressed as ⟨Hkin⟩/N= ℏ2⟨k2⟩/(2m) with
⟨k2⟩= N−1ℏ

´ +∞
−∞ dkn(k)k2 calculated from the momentum distribution n(k) which is a function of the

momentum k [38].
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