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Abstract 

Background:  One of the main challenges of microbiome analysis is its compositional 
nature that if ignored can lead to spurious results. Addressing the compositional 
structure of microbiome data is particularly critical in longitudinal studies where abun-
dances measured at different times can correspond to different sub-compositions.

Results:  We developed coda4microbiome, a new R package for analyzing microbiome 
data within the Compositional Data Analysis (CoDA) framework in both, cross-sectional 
and longitudinal studies. The aim of coda4microbiome is prediction, more specifi-
cally, the method is designed to identify a model (microbial signature) containing the 
minimum number of features with the maximum predictive power. The algorithm 
relies on the analysis of log-ratios between pairs of components and variable selection 
is addressed through penalized regression on the “all-pairs log-ratio model”, the model 
containing all possible pairwise log-ratios. For longitudinal data, the algorithm infers 
dynamic microbial signatures by performing penalized regression over the summary 
of the log-ratio trajectories (the area under these trajectories). In both, cross-sectional 
and longitudinal studies, the inferred microbial signature is expressed as the (weighted) 
balance between two groups of taxa, those that contribute positively to the microbial 
signature and those that contribute negatively. The package provides several graphi-
cal representations that facilitate the interpretation of the analysis and the identified 
microbial signatures. We illustrate the new method with data from a Crohn’s disease 
study (cross-sectional data) and on the developing microbiome of infants (longitudinal 
data).

Conclusions:  coda4microbiome is a new algorithm for identification of microbial sig-
natures in both, cross-sectional and longitudinal studies. The algorithm is implemented 
as an R package that is available at CRAN (https://​cran.r-​proje​ct.​org/​web/​packa​ges/​
coda4​micro​biome/) and is accompanied with a vignette with a detailed description of 
the functions. The website of the project contains several tutorials: https://​maluc​alle.​
github.​io/​coda4​micro​biome/
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Background
Although there are still many unknowns about the specific mechanisms of action of 
the human microbiome, there is growing evidence of its relevance in human health [24, 
38]. In recent years, much progress has been made in microbiome research thanks to 
high-throughput DNA sequencing technologies that allow precise quantification of 
the composition of the microbiome. The study of the microbiome is considered a great 
opportunity for improving the current treatment of some diseases and for deriving 
microbial biomarkers that could be used as diagnostic or prognostic tools.

Microbiome composition is dynamic and the study of microbiome changes over time 
is of primary importance for understanding the relationship between microbiome and 
human phenotypes. Longitudinal studies are costly, both economically and logistically, 
but there is growing evidence of the limitations of cross-sectional studies for providing a 
full picture of the role of the microbime in human health. Microbiome longitudinal stud-
ies can be very valuable in this context, provided appropriate methods of analysis are 
used [34]. The analysis of microbiome data involves significant experimental and com-
putational challenges [5]. One of them is the compositional nature of the data, which 
requires the use of specific methods of analysis [9, 17–19]. Compositional data refers to 
constraint multivariate non-negative data that carry relative information. Microbiome 
relative abundances (proportions) are constrained by a total sum equal to one. This total 
constraint induces strong dependencies among the observed abundances of the different 
taxa. In fact, the observed abundance of each taxon is not informative and only provide 
a relative measure of abundance when compared to the abundances of other taxa [36]. 
Ignoring the compositional nature of microbiome data can lead to spurious results [28, 
37]. This is particularly critical in the context of microbiome longitudinal studies where 
compositions measured at different times can be affected by distinct batch effects and 
similar quality control or filtering protocols may yield to different sub-compositions at 
each time point.

Aitchison [2] laid the foundations of Compositional Data Analysis (CoDA), which 
relies on extracting the relative information of compositional data by comparing the 
parts of the composition. Logarithms of ratios between components (log-ratios) are the 
fundamental transformation in this framework [20, 31] and is known as the log-ratio 
approach.

Some methods used in microbiome analysis, such as ALDEx2 [13], LinDA [39, 40], 
ANCOM [26], ANCOM-BC [23], fastANCOM [39] and LOOCM [21], perform the log-
ratio approach to identify differential abundant taxa between two study groups. Here we 
introduce coda4microbiome, a new R package for analyzing microbiome data within the 
CoDA framework in both, cross-sectional and longitudinal studies. coda4microbiome is 
an improvement of our previous algorithm, selbal [33], using a more flexible model and 
a more computationally efficient global variable selection method that results in a con-
siderable reduction of computational time. coda4microbiome differs from most differ-
ential abundance (DA) testing methods that aim to characterize microbial communities 
by selecting taxa with significant different abundances between two study groups (e.g., 
controls vs cases). Like selbal, the aim of coda4microbiome is prediction, i.e., the method 
is designed to identify a model (microbial signature) containing the minimum number 
of features with the maximum predictive power. The algorithm relies on the analysis 
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of log-ratios between pairs of components and variable selection is addressed through 
penalized regression on the “all-pairs log-ratio model”, the model containing all possible 
pairwise log-ratios.

For longitudinal data, pairwise log-ratios measured at different time points gives a 
curve profile or trajectory for each sample. A summary of the shape of these individ-
ual trajectories will be the basis for the analysis. More specifically, the algorithm infers 
dynamic microbial signatures by performing penalized regression over the summary of 
the log-ratio trajectories (the area under these trajectories).

In both, cross-sectional and longitudinal studies, after reparameterization of the ini-
tial “all-pairs log-ratio model”, the inferred microbial signature is expressed as a function 
of the (log-transformed) initial variables in the form of a log-contrast model [3], i.e., a 
log-linear model with the constraint that the sum of the coefficients is equal to zero. 
The zero-sum constraint ensures the invariance principle required for compositional 
data analysis. These microbial signatures can be interpreted as the (weighted) balance 
between two groups of taxa, those that contribute positively to the microbial signature 
and those that contribute negatively. For longitudinal data and a binary outcome (e.g. 
disease status), the signature provides two groups of taxa with different log-ratio trajec-
tories for cases and controls.

The algorithm is implemented in the R package “code4microbiome” (https://​cran.r-​
proje​ct.​org/​web/​packa​ges/​coda4​micro​biome/). Several graphical representations of the 
results are provided that facilitate the interpretation of the analysis: plot of the log-ratio 
trajectories, plot of the signature (selected taxa and coefficients) and plot of the pre-
diction accuracy of the model. In fact, coda4microbiome is not just an R package but a 
broader initiative that aims to bridge the gap between compositional data analysis and 
microbiome research. To this end, we are conducting training activities and develop-
ing materials that are available at the website of the project: https://​maluc​alle.​github.​io/​
coda4​micro​biome/

The methodology for cross-sectional data is described in “Microbioal signature based 
on log-ratio analysis: cross-sectional studies” Section and illustrated with data from a 
pediatric Crohn’s disease study (“Cross-sectional data: Crohn’s disease (CD) study” Sec-
tion). The methodology for longitudinal data is described in “Microbial signature based 
on log-ratio analysis: longitudinal studies” Section and illustrated in “Longitudinal data: 
early childhood and the microbiome study” Section with data from the “Early childhood 
and the microbiome (ECAM) study” [7, 8]. We performed a simulation study for bench-
marking of several microbiome analysis algorithms (“Simulation study” and “Simulation 
study results” Section) and applied coda4microbiome in several real datasets (“Real data-
sets analysis” Section).

Materials and methods
Microbioal signature based on log‑ratio analysis: cross‑sectional studies

Assume we have n subjects with phenotype Y = (Y1, . . . ,Yn) and denote by 
Xi = (Xi1,Xi2, . . . ,XiK ) the microbiome composition of subject i for K taxa. X can 
represent either relative abundances (proportions) or raw read counts. We approach 
the identification of those taxa that are associated to the outcome through penalized 

https://cran.r-project.org/web/packages/coda4microbiome/
https://cran.r-project.org/web/packages/coda4microbiome/
https://malucalle.github.io/coda4microbiome/
https://malucalle.github.io/coda4microbiome/
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regression on the “all-pairs log-ratio model”, a generalized linear model containing all 
possible pairwise log-ratios [6]:

The regression coefficients in Eq. (1) are estimated to minimize a loss function L(β) 
subject to an elastic-net penalization term on the regression coefficients:

A common reparameterization of the penalization parameters is �1 = �(1− α)/2 
and �2 = �α where � controls the amount of penalization and α the mixing between 
the two norms.

For the linear regression model the loss function is given by the residual sum of 
squares

where M is the matrix of all pairwise log-ratios and has dimension n by K (K − 1)/2 . The 
expression of the optimization problem (2) for other models, like the logistic regression, 
can be found in Friedman et al. [14]. We use the function cv.glmnet() from the R pack-
age glmnet [14] to solve (2) within a cross-validation process that provides the optimal 
value of � with a default value for α equal to 0.9. Non-compositional covariates are pre-
viously modeled with Y and the fitted values are considered as “offset” in the penalized 
regression.

The result of the penalized optimization provides a set of selected pairs of taxa, 
those with a non-null estimated coefficient. The linear predictor of the generalized 
linear model (2) provides a microbial signature score for each individual, i ∈ {1, . . . , n} , 
Mi =

1≤j<k≤K

β̂jk · log Xij/Xik  , which is associated with the phenotype Yi . Because of 

the linearity of the logarithm, the microbial signature M can be rewritten in terms of 
the selected single taxa which is more interpretable than in terms of pairs of taxa:

where θ̂j =
K
∑

k=j+1

β̂jk −
j−1
∑

k=1

β̂kj , that is, the sum of the coefficients β̂ that correspond to a 

log-ratio that involves component j [6].

It can be proved that 
K
∑

j=1

θ̂j = 0 and thus, the microbial signature M is a log-contrast 

function involving the selected taxa (those with θ̂j �= 0) . This ensures the invariance 
principle required for proper compositional data analysis and it facilitates the inter-

pretation of the microbial signature. Indeed, expression 
K
∑

j=1

θ̂j · log
(

Xj

)

 in (3) can be 

(1)g(E(Y )) = β0 +
∑

1≤j<k≤K

βjk · log
(

Xj/Xk

)

(2)β̂ = argmin
β

{

L(β)+ �1||β||
2
2 + �2||β||1

}

β̂ = argmin
β
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Y −Mβ2
2 + �1||β||
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2 + �2||β||1

}

,

(3)M =
∑

1≤j<k≤K

β̂jk · log
(

Xj/Xk

)

=

K
∑

j=1

θ̂j · log
(

Xj

)
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interpreted as a weighted balance between two groups of taxa, G1 and G2 , the taxa 
with a positive coefficient vs those with a negative coefficient [36].

Microbial signature based on log‑ratio analysis: longitudinal studies

Summary of log‑ratio trajectories

Assume n subjects with fixed phenotype Y = (Y1, . . . ,Yn) . Subject i has been observed in 
Li time points, 

(

ti1, ti2, . . . , tiLi
)

 . We denote by Xi

(

tij
)

=
(

Xi1

(

tij
)

,Xi2

(

tij
)

, . . . ,XiK

(

tij
))

 
the microbiome composition of subject i at time tij , where K is the number of taxa 
which is assumed to be the same for all the individuals and all the time points. Xi

(

tij
)

 
can represent either relative abundances (proportions) or raw counts. We denote by 
logXi

(

tij
)

 the logarithm transformation of microbiome abundances after zero imputa-
tion  [27]. The log-abundance trajectory of component A for individual i is denoted by 
logXiA =

(

logXiA(ti1), logXi2A(ti2), . . . , logXiA

(

tiLi
))

 and the log-ratio trajectory between 
components A and B for individual i is given by:

We summarize the log-ratio trajectory between components A and B for individual i 
within two time points l1 and l2 as the integral of the log-ratio trajectory:

where the values of the log-ratio for t /∈
(

ti1, ti2, . . . , tiLi
)

 are linearly interpolated.
We do not take the absolute value in Eq. (4) because the sign of the integral is informa-

tive: Positive values of si(A,B) correspond to trajectories of component A above trajectories 
of component B, that is, larger relative abundances of A with respect to B, while negative 
values represent the opposite. Values of si(A,B) around zero can represent similar abun-
dances between A and B over time or a non-homogeneous trend between A and B within 
the observed region.

Another advantage of the summary si(A,B) is computational. Since the integral is lin-
ear, si(A,B) is equal to the difference between the integrals of log-transformed microbiome 
abundances of taxa A and taxa B:

Thus, the number of integrals to be calculated is of the order of K, the number of taxa, 
instead of K (K − 1)/2 , the number of pairwise log-ratios.

Microbial signature based on log‑ratio analysis

To identify those log-ratios that are most associated with the outcome Y, we implement glm 
penalized regression on the log-ratio summaries of all pairs of taxa:

logXiA − logXiB =
(

logXiA(ti1)− logXiB(ti1), logXiA(ti2)

−logXiB(ti2), . . . , logXiA

(

tiLi
)

− logXiB

(

tiLi
))

(4)si(A,B) =
l2
∫
l1

(

logXiA(t)− logXiB(t)
)

dt,

si(A,B) =
l2
∫
l1

logXiA(t)dt −
l2
∫
l1

logXiB(t)dt

(5)g(E(Y )) = β0 +
∑

1≤j<k≤K

βjk · s
(

j, k
)
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where s
(

j, k
)

 is the summary of the log-ratio trajectory corresponding to components Xj 
and Xk.

Equation (5) is identical to Eq. (1) for cross-sectional studies except for the change of 
the pairwise log-ratios by the summary of the log-ratios trajectories. Thus, the inference 
and variable selection process is performed similarly with elastic-net penalized regres-
sion within a cross-validation process using cv.glmnet() from the R package glmnet [14].

For each individual, i ∈ {1, . . . , n} , the microbial signature score is given by 
Mi =

∑

1≤j<k≤K

β̂jk · si
(

j, k
)

 . Because of the linearity of the integrals used as summaries of 

the log-ratio trajectories and following the same reparameterization than in Eq. (3), M 
can be rewritten in terms of the selected single taxa which is more interpretable than the 
selected pairs of components:

where θ̂j =
K
∑

k=j+1

β̂jk −
j−1
∑

k=1

β̂kj.

Since 
K
∑

k=1

θ̂k = 0 , the microbial signature M is the integral of the trajectory of a log-

contrast function involving the selected taxa (those with θ̂k �= 0) and, similarly to the 
signatures for cross-sectional data, it can be interpreted as a weighted balance between 
two groups of taxa, G1 and G2 , the taxa with a positive coefficient vs those with a nega-
tive coefficient.

coda4microbiome main functions

The package coda4microbiome [10] contains several functions that implement the pro-
posed algorithms. The method for the identification of microbial signatures in cross-sec-
tional studies (“Microbioal signature based on log-ratio analysis: cross-sectional studies” 
Section) is implemented in function coda_glmnet() and the method for longitudinal data 
(“Microbial signature based on log-ratio analysis: longitudinal studies” Section) is imple-
mented in function coda_glmnet_longitudinal().

The library also contains additional functions like plot_signature_curves() that pro-
vides a plot of the signature trajectories or filter_longitudinal() that filters those indi-
viduals and taxa with enough longitudinal information.

The coda4microbiome methodology is visually described with a pictogram in the sup-
plementary material (Additional file 1: Fig. S1).

(6)

M =
∑

1≤j<k≤K

β̂jk · s
(

j1, j2
)

=
∑

1≤j<k≤K
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=

K
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∫
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(
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Simulation study

We performed a case–control simulation study to evaluate the discrimination (or clas-
sification) performance and computational burden of coda4microbiome in comparison 
to other methods used for microbiome analysis: selbal [33], ANCOM-BC [23], ALDEx2 
[13], DESeq2 [25], edgeR [32], metagenomeSeq [30], and LinDA [40].

Both, coda4microbiome and selbal, provide a classification model (microbial signature) 
that defines how the selected taxa are combined. For the other methods that only pro-
vide a set of differentially abundant taxa, the classification model was obtained by fitting 
a logistic regression model containing the DA taxa. Metagenomic simulated data was 
generated using faecal samples from the “Global Patterns” dataset [11] as template, fol-
lowing the data generation model described by Weiss et al. [37]. This model generates 
true positives taxa so that their relative abundances match their real abundance in the 
environment. As in Weiss et al. [37], some of the simulation parameters were fixed for all 
scenarios: the number of most prevalent taxa to keep in simulation template (2000 taxa), 
the number of true positive taxa (100 taxa), and the sequencing depth (2000 reads). Both 
categories had the same number of samples, being 50 or 100 samples in each group. The 
effect size of the true positive taxa was set to 1.25, 1.5, 2, 5, 10 or 20. This results in 
a total of 12 simulated scenarios, and we considered 10 replicates for each one. After 
simulated metagenomic datasets were generated, taxa with less than 5% of prevalence 
among samples were removed, and 1 count was added to all taxa abundances to over-
come problems with log-transformations.

To evaluate the discrimination accuracy of the different methods, a five-fold cross-val-
idation process was applied. Samples in each simulation set were randomly grouped into 
five different cv-fold groups, ensuring the same number of cases and controls in each 
one. For every cross-validation fold, the train set includes all cv-fold groups except one, 
used for testing the model afterwards. The same cv-fold groups assignment in a simula-
tion set were used for testing all the algorithms. For DA methods, a taxa selection step 
was performed on the train set based on the significance of the Benjamini–Hochberg 
adjusted p-value [4] with a threshold of 0.05. Relative abundances of selected taxa were 
used to fit a logistic regression model able to classify the two groups. coda4microbiome 
and selbal were trained on the train set and the obtained microbial signature was evalu-
ated on the test set. For all methods, the measure of performance was the Area Under 
the ROC Curve (AUC). We also compared the number of taxa selected by each method 
and the computational time.

Results
Cross‑sectional data: Crohn’s disease (CD) study

We illustrate coda4microbiome algorithm for cross-sectional studies with data from a 
pediatric Crohn’s disease (CD) study [16]. The dataset, available at coda4microbiome 
package, includes microbiome compositions of 975 individuals, 662 with CD and 313 
without any symptoms. The abundance table agglomerated at the genus level contains 48 
genera.

We implemented coda4microbiome::coda_glmnet() function to the Crohn’s data-
set. The algorithm identifies that the outcome is binary and implements a penal-
ized logistic regression. The results of the analysis provide a first plot (Fig. 1) showing 
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the cross-validation accuracy (AUC) curve from cv.glmnet(). For the default lambda 
(“lambda.1se”), the algorithm selects 27 pairwise log-ratios that, as we will see later, cor-
respond to 24 different taxa.

The results of coda_glmnet include the number, the name, and the coefficients of the 
selected taxa. These can be visualized in a bar plot where the selected taxa and the cor-
responding coefficients are represented (Fig. 2).

A third plot describes the discrimination capacity of the selected microbial signature 
(Fig. 3). This is accompanied with three classification accuracy measures: the apparent 
AUC, i.e., the AUC of the signature applied to the same data that was used to generate 
the model, and the mean and sd of the cross-validation AUC obtained from the output 
of cv.glmnet(). For this dataset, the apparent AUC is 0.84 and the mean (sd) cross-valida-
tion AUC are 0.82 (0.0081).

Fig. 1  Cross-validation accuracy curve for different degrees of penalization: Log-transformed penalization 
parameter (x axis), cross-validation AUC (y axis), and, on top of the plot, the number of selected variables for 
each penalization value. Highlighted with a vertical line the values of "lambda.min" and "lambda.1se" (default 
penalization value)

Fig. 2  Microbial signature for Crohn’s disease: Taxa composing the microbial signature that best 
discriminates between Crohn’s disease patients and controls. The magnitude of the coefficients represents 
the contribution of each variable to the model. (green: positive coefficient and red: negative coefficient)
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When the outcome is a continuous numerical variable, coda_glmnet() function imple-
ments penalized linear regression and Fig. 3 is a scatter plot between predictions and the 
outcome values.

Longitudinal data: early childhood and the microbiome study

To illustrate coda4microbiome for longitudinal studies we use data from the “Early child-
hood and the microbiome (ECAM) study” that followed a cohort of 43 U.S. infants dur-
ing the first 2 years of life for the study of their microbial development and its association 
with early-life antibiotic exposures, cesarean section, and formula feeding [7, 8].

Metadata and microbiome data were downloaded from https://​github.​com/​capor​aso-​
lab/​longi​tudin​al-​noteb​ooks. Initially the data contained information on 43 child and 445 
taxa at the genus level. We filtered those individuals and taxa with enough information 
for time-course profiling: we removed individuals with only one time-point observation 
and those taxa with less than 30 children (70% of individuals) with at least 3 non-zero 
observations over the follow-up period. After this filtering, the data reduced to 42 chil-
dren and 37 taxa.

Here we focus on the effects of the diet on the early modulation of the microbiome by 
comparing microbiome profiles between children with breastmilk diet (bd) vs. formula 
milk diet (fd) in their first 3 months of life.

Using function coda_glmnet_longitudinal(), we identified a microbial signature 
with maximum discrimination accuracy between the two diet groups. The signature is 
defined by the relative abundances of two groups of taxa, G1 and G2 , where G1 is com-
posed of 6 taxa (those with a positive coefficient in the regression model) and G2 is 

Fig. 3  Box-plot and density plots representing the distribution of predicted values (microbial signature 
scores) for Crohn’s disease patients (orange) and controls (blue)

https://github.com/caporaso-lab/longitudinal-notebooks
https://github.com/caporaso-lab/longitudinal-notebooks
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composed of 2 taxa (those with a negative coefficient) (Table 1 and Fig. 4). Group G1 is 
mainly dominated by three taxa within the order Clostridiales (family Ruminococcaceae 
(2) and gender Blautia) and one taxon within the gender Actinomyces. Two taxa (g_Veil-
lonella and f_Lachnospiraceae) have a coefficient close to zero and will have a very small 

Table 1  Taxa included in the microbial signature that best discriminates between the two diet 
groups

Balance 
group

Coefficient Taxanomic assignment

G1 0.3359 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_1

0.2730 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Blautia

0.2159 p_Actinobacteria;c_Actinobacteria;o_Actinomycetales;f_Actinomycetaceae;g_Actinomyces

0.1358 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_2

0.0337 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Veillonellaceae;g_Veillonella

0.0055 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_

G2  − 0.4327 p_Proteobacteria;c_Gammaproteobacteria;o_Pasteurellales;f_Pasteurellaceae;g_Haemo-
philus

 − 0.5672 p_Firmicutes;c_Bacilli;o_Bacillales;f_Staphylococcaceae;g_Staphylococcus

Fig. 4  Taxa composing the microbial signature that best discriminates between the two diet groups (green: 
positive coefficient and red: negative coefficient)

Fig. 5  Relative abundance between group G1 and G2 during the first three months of life. Highlighted curves 
represent the mean value of the signature for each diet group (orange: breast milk diet, blue: formula milk 
diet)
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contribution to the signature. Group G2 is composed by two taxa within the genders 
Haemophilus and Staphylococcus. 

The trajectories of the microbial signature over the observed period are represented 
in Fig. 5, where the color of the curves corresponds to the diet group. Each trajectory 
represents the relative mean abundances between the two taxa groups for each child. We 
can see that the two groups are clearly separated. Those children under breastmilk diet 
(in orange) usually have trajectories below zero, which means they have more relative 
mean abundance of g_Haemophilus and g_Staphylococcus with respect to the relative 
abundance of taxa in group G1 , while children with formula milk diet (in blue) have more 
relative abundance of taxa in group G1 relative to G2.

Figure  6 displays the distribution of the microbial signature scores for the two diet 
groups and offers a visual assessment of the (apparent) discrimination accuracy of the 
signature. Quantitatively, the apparent discrimination accuracy of the signature (i. e. the 
AUC of the signature applied to the same data that was used to generate the model) is 
0.96 and the mean cross-validation AUC is 0.74 (sd = 0.10).

The results are consistent with previous studies on the association of the infant gut 
microbiome composition and breastmilk feeding practices. In Fehr et al. [12], Haemo-
philus parainfluenzae and Staphylococcus were found to be enriched with exclusive 
breastmilk feeding together with lower prevalence of Actinomyces at 3  months. Lach-
nospiraceae (Blautia) was enriched among infants who were no longer fed breastmilk. 
Similar results are reported in Laursen et al. [22] where the duration of exclusive breast-
feeding was negatively correlated with genera within Lachnospiraceae (e.g., Blautia) and 
genera within Ruminococcaceae. Positive correlations with exclusive breastfeeding were 
observed for g_Bifidobacterium and Pasteurellaceae (Haemophilus).

Simulation study results

Figure 7 show the number of selected taxa by each method for simulated datasets with 
different effect sizes (1.25, 1.5, 2, 5, 10 and 20) and 100 samples per group. Similar results 
are obtained for simulations with 50 samples per group (results not shown). For all 
methods, except for coda4microbiome and selbal, the larger the effect size, the more taxa 

Fig. 6  Box-plot and density plots representing the distribution of predicted values (microbial signature 
scores) for the two diet groups (orange: breast milk diet, blue: formula milk diet)
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are selected, as it is expected since the power of the DA tests increases with larger effect 
sizes. The opposite is true for coda4microbiome and selbal, as the effect size increases, 
less variables are needed in the model to obtain good classifications. Despite the fold 
effect and sample size, coda4microbiome finds a predictive microbial signature with less 
features than selbal, with similar AUCs.

Fig. 7  Mean number of selected taxa of the different methods for simulated datasets with different effect 
sizes (1.25, 1.5, 2, 5, 10 and 20) and 100 samples per group

Fig. 8  Boxplots distribution and line plots of the mean cross-validation AUCs of every methodology for 
different effect sizes (1.25, 1.5, 2, 5, 10 and 20) and 50 samples per group
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Figures 8 provides two different representations of the discrimination accuracy (AUC) 
of each method: a boxplot distribution and a line plot of the mean cv-AUC for the 10 
replicates of each scenario and 50 samples per group. Figure 9 provides the same infor-
mation for the case of 100 samples per group. The numerical results (mean and sd) are 
detailed in Table 2. coda4microbiome and selbal perform similarly in all scenarios. The 
higher classification accuracy of coda4microbiome and selbal is especially remarkable in 
scenarios with low effect size and a small sample size (Fig. 8). For an effect size equal to 
1.25 the mean cv-AUC of these two methods is 0.763 and 0.795, respectively, while all 
the other methods have mean cv-AUC below 0.6. For an effect size of 1.5, coda4micro-
biome and selbal discrimination is 0.943 and 0.912, respectively, and only DESeq2 and 
edgeR have a good performance, though with lower discrimination values (0.851 and 
0.841, respectively). All the other methods methods have mean cv-AUC below 0.6. For 
larger effect sizes the performance of all the methods if good (discrimination around 1) 
except for LinDA that has a poor performance in all the scenarios. Similar results are 
obtained for larger sample sizes (Fig. 9). In this case, DESeq2 and edgeR perform very 
well, with discrimination accuracy still slightly lower than coda4microbiome and selbal 
when the effect size is equal to 1.25 but slightly larger to coda4microbiome when the 
effect size is equal to 1.5. All methods, except LinDA, reach AUCs over 0.9 in simula-
tions with a fold effect of 2, 5 or 10. On scenarios with very high fold effect, such as 20, 
classification performance decreases for most of the methods except for coda4microbi-
ome, selbal and ALDEx2.

Figure  10 show the computational times for each method for different effect sizes 
(1.25, 1.5, 2, 5, 10 and 20) and 100 samples per group. Similar results are obtained for 
simulations with 50 samples per group (results not shown). ANCOM-BC and selbal are 
the two methods that spent more time in the analysis. coda4microbiome is clearly more 
computationally efficient than selbal.

Fig. 9  Boxplots distribution and line plots of the mean cross-validation AUCs of every methodology for 
different effect sizes (1.25, 1.5, 2, 5, 10 and 20) and 100 samples per group
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Real datasets analysis

In order to better compare the computational times of coda4microbiome over selbal, 
we applied both methods to 8 real datasets available at [28]. Table  3 shows the great 
improvement of coda4microbiome in comparison with selbal, especially when using the 
recommended function selbal.cv() that, as coda4microbiome, implements cross-valida-
tion in the analysis and thus, provides more robust results. In fact, because of the com-
putational burden of selbal.cv(), we only could use selbal() function in the simulations. 
Table 3 is ordered according to the number of taxa in each dataset and this allows to 
easily see the high correlation between computational time and the number of features.

Fig. 10  Median computational times for each methodology in simulation datasets with 100 samples per 
group

Table 3  Computational times for coda_glmnet() function from R package coda4microbiome and 
functions selbal() and selbal.cv() from R package selbal 

Dataset Number of taxa Total sample size (N1; N2) coda4microbime 
coda_glmnet()

selbal() selbal.cv()

cdi_schubert 75 237 [84;153] 0.057 0.291 7.591

ob_goodrich 117 613 [428;185] 0.112 0.752 18.841

hiv_noguerajulian 140 170 [28;142] 0.071 0.543 14.962

Ji_WTP_DS 155 59 [30;29] 0.088 0.334 9.427

Office 242 625 [341;284] 0.569 2.742 119.696

ArcticFreshwaters 274 1023 [540;483] 0.781 8.156 145.931

Blueberry 418 63 [24;39] 0.942 2.155 68.607

sw_sed_detender 1025 78 [60;18] 27.841 13.76 463.544
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Discussion
coda4microbiome algorithm represents an improvement of our previous algorithm 
selbal [33]. Both, coda4microbiome and selbal search for two groups of taxa, A and 
B, that are jointly associated with the outcome of interest Y. The main differences 
between both algorithms are (1) the model for combining the relative abundances 
of taxa in group A and B, (2) the process for selecting the taxa that will constitute 
the microbial signature and (3) the type of study that can be approached with each 
method:

(1)	 selbal expresses the microbial signature as an ilr balance between A and B [31], i.e., 
as the log-ratio of the geometric mean abundances of taxa in group A vs taxa in 
group B. Instead, coda4microbiome microbial signature is expressed as a log-con-
trast model where those taxa with a positive coefficient define group A, those with 
a negative coefficient define group B and those with a zero coefficient are not part 
of the microbial signature.

(2)	 selbal performs forward selection and coda4microbime implements elastic-net 
penalized regression variable selection.

(3)	 selbal is only available for cross-sectional studies while coda4microbime is imple-
mented for both cross-sectional and longitudinal studies.

In summary, coda4microbiome improves selbal by considering a more general model 
(an ilr balance is a special log-contrast), a more powerful variable selection process (for-
ward selection does not ensure a global optimum) and can be used in both, cross-sec-
tional and longitudinal studies.

The results of our simulations indicate that when the aim is classification, DA tests fol-
lowed by fitting a regression model with the selected significant taxa perform worse than 
coda4microbiome or selbal, which are methods specifically developed for model predic-
tion. coda4microbiome performs very well even in situations where the fold change of 
the associated taxa is quite low (e.g. 1.25), which is probably the case for most of real 
microbiome associations. Under such small fold effects, other methods such as edgeR, 
DESeq2, ALEDx2, ANCOM-BC, MetagenomeSeq and LinDA perform poorly. Selbal 
instead, performs similarly to coda4microbiome with good discrimination accuracy for 
the same simulation scenarios. Though selbal and coda4microbiome have similar classi-
fication power, the latest requires less computational time which is an important advan-
tage especially for datasets with a large number of features.

Conclusions
We developed an R package for microbiome analysis that deals with the compositional 
nature of microbiome data in both, cross-sectional and longitudinal studies. coda4mi-
crobiome provides a set of functions to explore and study microbiome data within the 
CoDA framework, with a special focus on identification of microbial signatures that 
can serve as biomarkers of disease risk and prognostic. The results are expressed as the 
(weighted) balance between two groups of taxa, those that contribute positively to the 
microbial signature and those that contribute negatively. The interpretability of results 
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is of major importance in this context. The package provides several graphical repre-
sentations that facilitate the interpretation of the analysis and the identified microbial 
signatures.

The main difference between coda4microbiome and other CoDA methods that also 
employ the log-ratio approach, such as ALDEx2 [13], ANCOM-BC [23] or fastAN-
COM [39], is that they perform differential abundance testing while coda4microbiome 
is focused on prediction. coda4microbiome improves our previous algorithm, selbal 
[33]. Both have similar performance but coda4microbiome is more computationally 
efficient.

Longitudinal microbiome studies, especially those focused on the human microbiome, 
have usually low resolution: the number of individuals is small, each individual has few 
observation times, the observations of the different individuals are not made at exactly 
the same time, the data are very variable, the expected behavior of the abundance tra-
jectories is not linear or quadratic, etc. This makes it difficult to justify and implement 
a parametric modeling of trajectories and limits the use of models for longitudinal data 
(time series, mixed models). In this context, a description of the trajectories such as the 
one we propose, although less precise, allows to extract valuable information from the 
data as we have shown in the example. Other longitudinal data modeling strategies [1, 
15, 29, 35] could be used in longitudinal microbiome studies with higher resolution such 
as laboratory or animal experimental studies. Simulation studies should be performed 
to assess the performance of coda4microbiome for longitudinal microbiome data against 
other existing methods.

With this new R package, we aim to enhance microbiome analysis by taking into con-
sideration the compositional nature of microbiome data through the use of composi-
tional data analysis methods.
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