
February 27, 2023 10:6 ws-rv9x6 Book Title output page 1

Chapter 1
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Department of Physics, Universitat Politecnica de Catalunya

s.alonso@upc.edu

A system composed by coupled reaction-diffusion equations is one of

the most classical scenarios of pattern formation. There are also other

mechanisms of pattern formation,1 however, all have in common the in-

terplay between a mechanism of transport and the non-linearities of the

system.2 Probably, the simplest example of pattern formation involving

reaction-diffusion equations is a bistable front moving with constant ve-

locity. A certain concentration U experiences an autocatalytic non-linear

growth and the corresponding increase of U travels along the media by

diffusion.3 Such process is simply modelled by a single reaction-diffusion

equation:

∂U

∂t
= D∇2U + F (U), (1)

where F (U) is a nonlinear function, typically a cubic function on U , giv-

ing rise to two stable solutions, i.e. bistable system. Under an adequate

initial condition a front changes the stability from the metastable to the

more stable solution. In such case, the concentration U activates his own

production and can be noted as activator. Such activation propagates by

diffusion through the medium forming a travelling front with a fix velocity

which depends of the parameters on Eq.(1). The resulting fronts are robust

and very stable waves which propagate through the system

We can change the stability of the stable solutions by the addition of

an extra variable V which inhibits the production of U . The new variable

V is usually noted as inhibitor. Such extra variable is produced due to the

presence of U , and it gives rise to a typical activator-inhibitor system4 of

1
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two coupled equations:

∂U

∂t
= D∇2U + F (U)− V, (2)

∂V

∂t
= Dv∇2V + ε(U − V ),

The effect of the inhibitor is to return to the initial stable state after the

increase due to the autocatalytic part of the activator, resulting in an exci-

tation, a large excursion in the variable space, instead of a definitive change

on the variable value. This type of dynamics corresponds to excitable me-

dia.5 This effect produces the generation of a travelling wave6,7 instead

of the travelling front typical in bistable media. The perturbation of the

neighbouring corresponds to an excitation which propagates forming the

wave. The temporal scale of the return to the rest state is given by the

parameter ε in Eqs.(2). While the velocity and curvature are designed by

the dynamics of the activator U , the inhibitor V outlines the thickness and

shape of the wave.

In two dimensions, the breakup of the travelling wave generates a free

end. The resulting wave rotates around this free end, giving rise to a ro-

tating spiral wave, see an example in Fig.1. The beauty of spirals is out

of discussion, it has been a typical motive for human ornaments forever

and ever. Spiral waves in excitable media have been observed in chemical

systems like the Belousov-Zhabotinsky reaction,8 and CO Oxidation in cat-

alytic surfaces;9 and in biological systems like calcium waves inside Xenopus

laevis oocytes10 and action potential propagation in cardiac tissue.11

Under random initial condition excitable media can produce multiple

spiral waves, see Fig.2, a set of interacting rotating spiral waves which keep

the relative distances among the centres of rotation.

The complexity of the spatio-temporal patterns produced in excitable

media is increased with additional inhibitors. Following the structure of

Eqs.(2) we add an additional inhibitor:

∂U

∂t
= D∇2U + F (U, V,W )− V −W,

∂V

∂t
= Dv∇2V + ε1G1(U, V ), (3)

∂W

∂t
= Dw∇2W + ε2G2(U,W ),

where ε1 and ε2 are two temporal scales which may be very different.12

Therefore, each inhibitor controls the dynamics at different temporal scales.
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The two temporal scales of the inhibitors in Eqs.(3) can be tunned to pro-

duce very different patterns. The inclusion of such second inhibitor pro-

duces complex excitable media, which have been employed in the context of

computational modeling of cardiac tissue13 and on the modeling of chemical

reactions in microemulsions.12,14

The interaction between consecutive waves of a rotating spiral wave can

induce an alternation among the thickness of the waves. Finally, it gives rise

to unstable spiral waves and produces a turbulence of waves which reminds

the cardiac fibrillation,15 see Fig.3. On the other hand, spiral waves can be

unstable and produce multiple spiral waves due to interaction with other

kind of instabilities typical of reaction-diffusion systems, see in Fig.4 the

interplay between the rotating spiral waves, for example see Fig.2 and a

Turing instability, see Fig.5. Turing patterns result from large values of the

diffusion coefficient of one of the inhibitors in comparison with the diffusion

coefficient of the activator.4

The dynamics is more complex in three-dimensional systems. Scroll

waves are the three-dimensional equivalents to spiral waves.16 In its cross

section, a scroll wave has the shape of a spiral.17 Such spirals are stacked

one upon another and rotate around a filament that occupies the centre of

the scroll.18 The scroll may be straight, see Fig.6, or it may also be closed

into a ring, form knots or even generate a complex turbulent state,19,20 see

an example in Fig.7.

Finally, there are several computational tools to solve the reaction-

diffusion equations in a restricted region of the space. The use of a phase

field facilitates the reconstruction of the borders of the irregular domains

in the heart18 or the cylindrical shape of a three-dimensional chemical re-

actor.21 For example, we can fit the complex dynamics depicted by the

excitable waves inside regular or irregular domains, see, for example, the

turbulent waves inside two neighboring spheres in Fig.8.

In summary, several pretty patterns obtained in complex excitable me-

dia have been shown in this chapter. While the activator marks the direc-

tion of the propagation and even the velocity, the inhibitor can produce

important interactions responsible of the formation of complex patterns.

The increase of the number of inhibitors can directly increase the complex-

ity of the patterns. We have also shown that the pass to three dimensions

unveils hidden instabilities.

I hope the reader will enjoy the beauty of the patterns obtained in

complex excitable media as much as I have enjoyed with their production.
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Fig. 1. Rotating spiral wave in a generic model of excitable media. A rotating
spiral wave is the most typical spatio-temporal structure appearing in excitable media. It

rotates with constant velocity around the free end of the spiral giving rise to a continuous

emision of traveling waves. The spiral wave is obtained using a FitzHugh-Nagumo6,7

model consisting in an activator and an inhibitor, see Eqs.(2). We plot the value of the

variable U but a similar pattern is obtained if we plot the variable V .
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Fig. 3. Spatio-temporal chaos from an alternan instability in a model of
action potential propagation in cardiac tissue. Single spiral waves may be unstable

and may breakup because the interaction between consecutive waves. The rotation of

the spiral wave naturaly produces a periodic pacing of the tissue which can produce
a bifurcation to long-short waves. If the interaction is strong enough, it produces the

local decay of the wave, conduction block and the production of two new spiral waves.
Repeating the same mechanism and due to interaction among spirals, complex wave
patterns are found.
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Fig. 4. Spatio-temporal chaos from an interaction of Turing and wave insta-
bilities a model of chemical waves in microemulsions. The use of two inhibitors

permits the simulateneous induction of two different instabilities which under certain

window of parameters permits the cohexistence of spiral waves with Turing patterns.
The resulting pattern is a complex mix of spatio-temporal structures.
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Fig. 5. Turing patterns in reaction-diffusion systems. The increase of the
diffusion of the inhibitor in two coupled reaction-diffusion equations like Eqs.(2) can

produce the formation of stable and static patterns. It is actually not a typical pattern

for excitable media, however, its formation together with the presence of spiral waves
in more complex systems, for example Eqs.(3), can give rise to the patterns obtained in

Fig.4.
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Fig. 6. Rotating scroll wave in a generic model of excitable media. Scroll waves
are the three dimensional analogous to the two dimensional spiral waves. They rotate

around a filament analogously as the spiral waves typically rotate around a circular core.

Somehow, a scroll wave can be considered as a stack of rotating spiral waves that are
organized by the filament, a line connecting the cores. A straight scroll wave is stable if

the filament has positive tension and there are no strong interaction among consecutive

waves.
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Fig. 7. Negative filament tension of the filament of scroll waves in a generic
model of excitable media. If the filament tension of the scroll wave is negative, then

the filament will tend to increase its length and the straight scroll wave shown in Fig.6

becomes unstable. The filament tends to stretch, bend, loop, and produce an expanding
tangle that fills up the volume. Through the process of local stretching and bending of a

filament, very complex and potentially chaotic wave patterns were expected to develop.
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Fig. 8. Negative filament tension of the filament of scroll waves in a generic

model of excitable media under spatial confinement in two spheres. We

employ a phase field model which is an additional variable which value goes from 1 in
the interior of a certain domain to 0 outside. The reaction-diffusion variables U and V are

multiplied by the additional phase field. The transition between the two values is smooth

and keep the non-flux boundary conditions in the irregular border. Two disconnected
spheres are generated by the phase field and the dynamics of the turbulent behaviour

computed in their interior.
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