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We present direct numerical simulations of the Taylor–
Couette flow of a dilute polymer solution when only
the inner cylinder rotates and the curvature of the
system is moderate (η= 0.77). The finitely extensible
nonlinear elastic-Peterlin (FENE-P) closure is used
to model the polymer dynamics. The simulations
have revealed the existence of a novel elasto-
inertial rotating wave characterized by arrow-shaped
structures of the polymer stretch field aligned with
the streamwise direction. This rotating wave pattern is
comprehensively characterized, including an analysis
of its dependence on the dimensionless Reynolds
and Weissenberg numbers. Other flow states having
arrow-shaped structures coexisting with other types
of structures have also been identified for the first time
in this study and are briefly discussed.
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1. Introduction
In the century that has elapsed since the pioneering work of G. I. Taylor [1], the Taylor–Couette
flow (TCF), i.e. the fluid flow contained in the annular gap between two vertical concentric
cylinders, has become one of the most prominent models for investigating flow pattern formation,
instabilities, and turbulence in rotating shear flows [3–5,12]. This popularity has been partly
motivated by the fact that, in many configurations of this system, the transition to the turbulence
is supercritical, i.e. it occurs through a well-defined sequence of linear instabilities to flow
patterns of increasing spatio-temporal complexity eventually leading to turbulence. The specific
characteristics of these flow patterns depend crucially on the geometry of the apparatus (the
curvature and the length-to-gap aspect ratio), the container boundaries and the relative rotation of
the cylinders. However, it is frequently observed that the transition from axisymmetric to three-
dimensional flow gives rise to waves that propagate in the azimuthal direction while keeping
a constant shape. These flow states are known as rotating waves and appear when the system
undergoes a Hopf bifurcation that breaks its SO(2) symmetry. The best-known example of a
rotating wave pattern is the so-called wavy vortex flow, which emerges from the Taylor vortices as
the inner cylinder rotation speed increases for a wide range of curvatures and aspect ratios [6–11].
Another well-studied example of rotating waves in pure hydrodynamic TCF is the Ribbons
pattern (RB), which emerges when the cylinders counter-rotate [12].

While TCF has traditionally been studied using Newtonian fluids, a growing interest has been
shown recently in investigating Non-Newtonian cases, especially when the working fluid is a
dilute polymer solution. Due to their viscoelastic properties, long-chain polymers (even in small
amounts) may substantially change the stability and spatio-temporal characteristics of the flow
with respect to those in the Newtonian case. First observations of such phenomenon date back
to about thirty years, with the detection of flow instability in the absence of inertia [18–20].
These studies were followed by a number of experimental works that explored in detail the
formation of flow patterns depending on the relative importance between inertial and elastic
effects [21,22,26–28]. A wide range of flow patterns was discovered, in many cases coexisting for
the same values of the control parameters (the Reynolds and Weissenberg numbers), and it was
concluded that observing one or more flow states was highly sensitive to polymer properties,
initial conditions, and experimental protocol. One of the most typical states reported in these
studies was the RB pattern, a rotating wave formed by two (symmetry degenerated) spiral
waves that propagate axially in opposite senses [21,22]. As for Newtonian cases, viscoelastic
RB arise from a supercritical Hopf bifurcation of the Circular Couette flow (CCF), but unlike
Newtonian fluids, it is not necessary that the cylinders counter-rotate (they are observed even
in the classical setup, where only the inner cylinder rotates). Depending on the flow’s elasticity,
they may occur at rotation speeds one order of magnitude smaller than those at which rotating
waves exist in isothermal Newtonian TCF, and they have been found to play a major role in
several transition routes to elasto-inertial turbulence (EIT) [17,25]. Other coherent states which are
frequently encountered in experiments on TCF of a dilute polymer solution are diwhirls (DW),
oscillatory strips (OS), disordered oscillations (DO) or flames (FL) [21,22,26–28]. However, unlike
RB, the transition to these flow states, which may occur either from CCF or RB, is abrupt and
highly hysteretic.

These coherent states could not be replicated in simulations until the late 2000s [23,24]. The use
of the FENE-P (Finite extensibility nonlinear elastic-Peterlin) closure was critical to the success
of these simulations because it included important effects of the polymer’s finite extensibility
that had been previously overlooked in numerical works. In addition to demonstrating the
ability of the FENE-P model to accurately simulate polymer dynamics, the authors detailed
the spatio-temporal characteristics of the flow states they discovered. However, because the
parameter space was not thoroughly explored, there could be many more coherent states than
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those reported in these studies. Since then, there has been a growing interest in studies aimed at
characterizing elasto-inertial turbulence (EIT) [29–31] and no further studies (both numerical and
experimental) on flow pattern formation and transition to the EIT have been performed until very
recently [13–17,42]. Given the problem’s large parameter space, the large number of states that
can coexist for the same values of the control parameters, and the scarcity of numerical studies
on viscoelastic flow patterns, it is reasonable to expect previously unreported states to emerge in
numerical studies on these flows.

Whereas for TCF, coherent elasto-inertial flow patterns have been studied for nearly three
decades, for parallel shear flows, only recently the first coherent viscoelastic structure has been
found in simulations of a two-dimensional channel flow [32,33]. These structures are travelling
waves (the analogue of the rotating waves in parallel flows) that propagate downstream at a
speed close to the centreline velocity. The hallmark of these viscoelastic travelling waves is
the existence of arrowhead structures in the polymer stretch field which are oriented in the
streamwise direction. It has been speculated that these structures may be caused by an increase
in the elongational viscosity of the fluid due to polymer stretching in the flow direction [33].
This characteristic suggests that these arrow-shaped structures of polymer stretch may not be
exclusive to parallel shear flows, but a universal feature of flow systems where polymers are
subjected to elongational flow. In TCF, for instance, polymers are stretched by the primary flow
in the azimuthal direction. Hence, an increase in the fluid’s elongational viscosity might result in
arrow-shaped structures aligned with the azimuthal direction. However, as far as we are aware,
no evidence of these structures in flows with curved streamlines has been reported yet.

In this paper, using direct numerical simulations of the TCF of a dilute polymer solution,
where the FENE-P closure is used to model the polymer dynamics, we show that arrow-shaped
structures of polymer stretch aligned with the streamwise direction (in this case the azimuthal
direction) also exist in TCF. These structures are identified in elasto-inertial rotating waves that
propagate with a very slow frequency and in chaotic states. We determine the range of existence
of the rotating wave solutions in the parameter space defined by the dimensionless Reynolds and
Weissenberg numbers and show how the characteristics of the arrow-shaped structures change as
these parameters are varied. We also briefly discuss other solution branches found in our study.

2. Problem formulation and methodology

(a) Governing equations and dimensionless parameters
We consider the flow of a dilute polymer solution driven in the annular gap between two
vertical, rigid, and independently rotating cylinders of height h. The inner cylinder of radius
ri rotates at angular speed Ωi and the outer cylinder of radius ro is kept at rest, i.e. Ωo = 0.
The fluid is incompressible and the dynamics is governed by the Navier-Stokes and continuity
equations. An additional equation is needed to describe the temporal evolution of a polymer
conformation tensor, C, which contains the ensemble average elongation and orientation of all
polymer molecules in the flow. Each polymer molecule is modeled by a finitely extensible elastic
dumbbell [38]. The dimensionless equations read

∇ · v= 0,

∂tv + v · ∇v=−∇P +
β

Re
∇2v +

(1− β)

Re
∇ ·T,

∂tC+ v · ∇C=C∇v + (∇v)TC−T,

(2.1)

where v= (u, v, w) is the velocity vector field in cylindrical coordinates (r, θ, z), P is the pressure,
β = νs/ν indicates the relative importance between the solvent viscosity, νs, and the viscosity of
the solution at zero shear rate, ν. The length scale of the system is normalized with the gap width,
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d= ro − ri, the velocity with the inner cylinder velocity, Ωiri, the pressure with the dynamic
pressure, ρ(Ωiri)

2, where ρ is the fluid’s density, and the polymer conformation tensor with
kBTe/H , where kB denotes the Boltzmann constant, Te is the absolute temperature and H is
the spring constant.
The coupling between the polymers and the Navier-Stokes equations is realized through the
polymer stress tensor T, which is calculated using the FENE-P model [38],

T=
1

Wi

(
C

1− tr(C)
L2

− I

)
, (2.2)

where I is the unit tensor, tr(C) is the trace of the polymer conformation tensor, L denotes the
maximum polymer extension parameter and Wi is the Weissenberg number (defined below).
Periodic boundary conditions are imposed in the z and θ directions, whereas the boundary
conditions at the cylinders are

v(ri, θ, z) = (0, 1, 0), v(ro, θ, z) = (0, 0, 0). (2.3)

The system is governed by the following independent non-dimensional parameters:

Reynolds number: Re =Ωirid/ν,

Weissenberg number: Wi = λ/[d/(Ωiri)]

Radius ratio: η= ri/ro,

Aspect ratio: Γ = h/d,

(2.4)

where λ is the polymer relaxation time and d/(Ωiri) is the advective time scale.
In this paper, the radius ratio and aspect ratio are fixed to η= 0.77 and Γ = 2π, respectively.
A constant polymer concentration β = 0.871 is used and the maximum polymer extension
parameter L is set to 100, in accordance with recent studies of elasto-inertial turbulence on
viscoelastic TCF [16,39–41]. The flow’s elasticity level, quantified by the elasticity number
El=Re/Wi, ranges from 0.01 to 1. The parameter space is explored by either fixing Re and varying
Wi or vice versa, and consequently, the value of El changes among simulations. This protocol
differs from that in [23,24], the only numerical study on flow pattern formation in viscoelastic
TCF conducted to date, where the simulations were performed at a constant El for five different
El values (El= 0.33, El= 0.50, El= 0.75, El= 1 and El= 30). Another difference with respect
to this study is the polymer concentration. The polymer solution used in our simulations is nearly
10% more diluted than that used in [23,24] (β = 0.8 in these references).

(b) Numerical methods
The governing equations (2.1) are solved with the open source code nsCouette [43]. The code is
a combination of high-order central finite differences on a Gauss-Lobatto-Chebyshev grid in r

and Fourier-Galerkin expansions in z and θ. Decoupling between pressure and velocity field is
realized by a Pressure Poisson Equation formulation. The free divergence condition is enforced
by using an influence matrix technique, so that this condition is satisfied up to machine error. A
second-order accurate predictor-corrector scheme based on the Crank-Nicolson method is used
to carry out the time integration (see references [44,45] for further details about the timestepper).
Following the customary approach in numerical simulations of viscoelastic flows using pseudo-
spectral codes, a small amount of artificial diffusion is added to stabilize the integration. The
reason to include this diffusion is the hyperbolic nature of the time evolution equation for C. In
the absence of diffusion, integration of this equation often results in an accumulation of numerical
error, which in many cases produce numerical breakdown. This issue can be overcome by adding
a Laplacian term, 1

ReSc
∇2C, to the right-hand side of this hyperbolic equation, where the Schmidt

number, Sc = ν/κ, quantifies the ratio between the viscous and artificial diffusivities. In the
simulations presented here, Sc has been varied between 50 and 100, so that the artificial diffusion
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coefficient, 1
ReSc

, is of the order of 10−4. Several tests using larger Sc values (Sc up to 200 were
tested) have been conducted to verify that further reduction in the diffusion coefficient does not
alter significantly the results of the simulations. The number of radial nodes and Fourier modes
used in the computations were mr = 64, mθ = 33 and mz = 256, whereas the time step size was
set to 5× 10−3.

3. Arrow shaped structures of polymer stretch
To probe whether arrow-shaped structures of polymer stretch exist in viscoelastic TCF, we have
conducted simulations at low Re values (Re≤ 100) while keeping Wi = 15. The elasticity number,
El= Wi/Re, in these simulations falls within the range 0.15≤El≤ 0.75, which is consistent
with the elasticity levels at which arrowhead structures have been observed in channels. The
simulations were started from the laminar state, previously computed, which was perturbed by
a disturbance of the form,

u=A(r − ri)(r − ro)cos(θ + kz) (3.1)

w=−A
(r − ri)(r − ro)

r
(5r2 − 3(ri + ro)r + riro)

sin(θ + kz)

k
, (3.2)

where k is the axial wavenumber and A denotes the amplitude of the perturbation. If the
value of A is sufficiently large, the simulations converge to a rotating wave with azimuthal
wavenumber m=1. The amplitude threshold required to cause the instability is small (it can be
as small as A∼O(10−8) at the largest Re investigated), yet below this threshold the energy of the
perturbation decays and the laminar state persists. This indicates that these rotating wave patterns
are driven by nonlinear effects. We note that the existence of subcritical instabilities triggered by
very low amplitude thresholds is consistent with recent findings in other studies on viscoelastic
flows at low Reynolds numbers [47,48]. Depending on the value of k used in the initial condition,
flow patterns with three or four pairs of counter-rotating vortices were obtained. In the following,
we will restrict the discussion to the case where the flow pattern has four vortex pairs.

The upper panels of figure 1 show colour maps of the trace of the polymer conformation tensor,
tr(C), normalized with the maximum elongation of the polymers, L2, in a cylindrical section
(θ,z) at three different radial locations (indicated on top of each panel) for a simulation conducted
at Re= 90. This quantity indicates the degree of stretching of the polymer chains. High values
of tr(C)/L2 (dark regions) denote highly stretched polymers, whereas low values of tr(C)/L2

(lighter regions) indicate that polymers are weakly stretched. As is evident from the figure, the
most distinctive feature of this flow state is the existence of regions of highly stretched polymers
in the shape of an arrow. Due to this characteristic, it will be hereafter referred to as arrow-shaped
rotating wave (ArrowRW). These arrow-shaped structures are observed across the radial gap,
except for the regions very close to the cylinders, but their shapes differ depending on the radial
location. As one moves from the outer to the inner cylinder (from right to left in the figure), the
body of the arrow progressively shortens, and the axial extent of the arrowhead increases.

To illustrate the correspondence between polymer stretch and flow velocity, the lower panels of
the figure 1 show colour maps of the radial velocity in the same section and at the same time
instant as the upper panels. Positive velocity (red areas) denotes fluid motion from the inner to
the outer cylinder, i.e outflows, whereas negative velocity (blue areas) indicates fluid moving
from the outer to the inner cylinder, i.e. inflows. When the upper and lower rows of the figure
are compared, it becomes evident that the arrow-shaped structures of highly stretched polymers
are associated with inflow regions, whereas outflows occur in areas where the polymer stretch
is lower (less than 25% of L2). The wake of the arrows, on the other hand, corresponds to the
vicinity of the boundaries between inflows and outflows, where the radial velocity is close to
zero. As seen, the velocity in the inflows is higher than that of the outflows. This characteristic
is caused by the elastic force created by the stretched polymers. This force acts radially inward
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2π

2π

2π

0

0

0

tr
(C

)/
L
2

u

θ

z

z

r − ri = 0.25 r − ri = 0.50 r − ri = 0.75

Figure 1. (Color online) The upper panels show colour maps of the trace of the polymer conformation tensor, tr(C),

normalized with the maximum polymer extension, L2, in cylindrical sections (θ, z) at three different radial locations. Dark

(light) regions indicate regions where polymers are highly (slightly) stretched. The lower panels display colour maps

of the radial velocity, u, at the same time instant and in the same cylindrical sections as the upper panels. Red (blue)

areas indicate outflows (inflows). The example shown corresponds to a snapshot of a simulation with Re= 90, L= 100,

β = 0.871, and Wi= 15. Eight contours evenly spaced across the entire range of values (indicated in the colorbar) are

shown in each case. The flow direction is from left to right.

and hence enhances fluid motion through the inflows while slowing down the motion through
the outflows. This creates an asymmetry between inflows and outflows (the axial extent of the
outflows is larger than that of the inflows) which has been discussed in detail in [46] and [16].
The highest degree of asymmetry occurs near the outer cylinder, where the elastic force exhibits
strong localized peaks that result in strong localized inflow jets (note that the axial extent of the
outflow regions here is more than twice that of the inflow regions, see panel corresponding to
r − ri = 0.75). However, as we move towards the inner cylinder, the magnitude of the elastic force
decays gradually, and consequently, the degree of asymmetry between inflows and outflows also
diminishes (see panels for r − ri = 0.50 and r − ri = 0.25). The changes observed in the arrow-
shaped structures when these are plotted at distinct radial locations (upper panels) can thus be
ascribed to the radial dependence of the elastic force and how this modifies the axial extent of the
inward motion.

To provide a simpler quantitative characterization of the polymer stretch, we show in figure 2
the variation of tr(C)/L2 along the azimuthal direction at fixed radial (mid-gap) and axial
(z = 2.25) locations for the same snapshot shown in figure 1 (i.e. along the purple dashed line
shown in that figure). We note that the same plot is obtained if tr(C)/L2 is plotted as a function
time at a fixed azimuthal location (time is shown in the upper abscissa of the figure). This happens
because in rotating waves the variation in θ is commensurate with the temporal evolution of the
flow pattern. Figure 2 shows that the emergence of the arrow-shaped structures is associated with
an abrupt local increase of tr(C)/L2. The maximum value of tr(C)/L2 is achieved in the head of
the arrow, shortly after the sudden increase takes place, and it can be as large as 0.75 (i.e. 75% of
the maximum polymer elongation) for the largest values of Re and Wi simulated in this study.
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A B C D E

θ

time

tr
(C

)/
L
2

Figure 2. Trace of the polymer conformation tensor, normalized by L2, obtained at the mid-gap (r − ri = 0.5 )and

z/d= 2.25 as a function of θ (lower abscissa) and time (upper abscissa). The values of θ for which meridional sections

are shown in figure 3 are represented as green dashed lines.

The decay of tr(C)/L2 exhibits two phases: a slow decay that coincides with the body of the
arrow and a sharper decay that occurs in the wake behind the arrow (2< θ < 3.5). The minimum
value of tr(C)/L2 is reached in the latter region and it is in all simulations lower than 10% of the
maximum polymer elongation. After the minimum, tr(C)/L2 increases gradually until it reaches
a value of nearly 0.2 which remains constant before the emergence of the arrow-shaped structure.

We finally show in figure 3 the radial dependence of the polymer stretch (upper row) and flow
streamlines (lower row) as a function of θ. The values of θ at which snapshots are displayed are
shown as dashed lines in figure 2. The leftmost panels (A, θ= 0.25) illustrate the flow upstream
of the arrow-shaped structure, far from the arrowhead. Polymers here are more stretched in
the region near the inner cylinder. This circumstance appears to be related to the emergence
of flow recirculation zones near the inner cylinder (see the leftmost panel of the lower row),
which displace the main vortices towards the outer cylinder. As the arrowhead is approached,
the intensity of the vortices increases and the recirculating vortices near the inner cylinder
weaken. As a result, polymers get increasingly more stretched near the outer cylinder (see
panels B, for θ= 0.5). Jets of highly stretched polymers emanate then from the outer cylinder
and move towards the inner cylinder through the inflows (see panels C, which corresponds to
the arrowhead, θ= 1). Vigorous counter-rotating vortex pairs, with a clear asymmetry between
inflows and outflows, as described above, extend across the entire radial gap (lower C panel). This
situation continues as one moves toward the bottom end of the arrow-shaped structure. When
the jet of highly stretched polymers meets the inner cylinder, it begins to spread along the wall
(see panel D, for θ= 2), and polymers get progressively more stretched in this region. The initial
situation where the recirculations zones appear near the inner cylinder and the vortices move
towards the outer cylinder is eventually recovered (see panel E, for θ= 3.5) and the cycle starts
again (with the vortices and regions of highly stretched polymers shifted by half a wavelength
with respect to the first half of the rotation period).

4. Re and Wi parameter dependence
To establish the range of existence of the ArrowRW solution in the Wi-Re parameter space and
how the characteristics of the arrow-shaped structures change with varying these parameters,
we have conducted natural continuation of this flow state. The black line in figure 4 (a) shows
the deviation of the volume averaged kinetic energy, ke, with respect to its laminar value, for
the ArrowRW state at the Re values at which this solution is found when Wi= 15. We note that
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tr
(C

)/
L
2

z/d

0

2π

0 1
(r − ri)/d

A (θ = 0.25) B (θ = 0.50) C (θ = 1.00) D (θ = 2.00) E (θ = 3.50)

ψ

Figure 3. (Color online) Colour maps of polymer stretch (upper row) and flow streamlines ψ (lower row) shown in

meridional sections (r, z) obtained at the values of θ indicated at the top of each panel (and shown as dashed (green)

lines in the figure 1). Eight contours evenly spaced across the full range of values have been added to each panel.

for this Wi value, the base flow is linearly stable. The ArrowRW solution vanishes at a saddle-
node bifurcation that takes place at Re≈ 20. It should be noted that this value of Re is well below
that at which Taylor vortices appear in the Newtonian case (Re≈ 90), clearly showing that the
instability relies on the interplay between inertia and elasticity. The lower branch solution that
continues at lower energy towards larger Re values is unstable, but it could be detected by using
the bisection method introduced by [49] (see black dashed line in figure 4 (a)). Only a few points
of this solution branch have been computed, as flow states here are characterized by very weakly
stretched polymers and arrow-shaped structures are no longer observed. To follow the ArrowRW
solution branch near the saddle-node, it is necessary to vary Re in very small steps. If the change
in Re is too large, the simulations converge to a different flow state, labeled LArrowRW in the
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Figure 4. (Color online) Variation of the deviation of the volume average kinetic energy in the flow states found in the

present study as the Re and Wi numbers are varied. Note that the volume average kinetic energy corresponding to the

laminar state has been subtracted. (a) Re number dependence when Wi= 15 and (b) Wi number dependence when

Re= 100, except for the LArrowRW state where Re= 30. The acronyms shown in the legend stand for: arrow shaped

rotating wave (ArrowRW), localized arrow-shaped rotating wave (LArrowRW), asymmetric arrow-shaped rotating wave

(AArrowRW), spirals (SP), diwhirls (DW), ribbons (RB) and disordered oscillations (DO).

figure, which is characterized by azimuthally localized arrow-shaped structures (This state is
illustrated in figure 7 (c) and described in more detail in section 5). The LArrowRW coexists with
the ArrowRW for 20⪅Re⪅ 45, and it could be followed up to Re≈ 16.5, a value slightly lower
than that at which the ArrowRW disappears. Below this threshold, the flow laminarises.
The highest Re value at which the ArrowRW exists for Wi= 15 is Re= 100. With further increase
in Re, the flow pattern begins to exhibit additional modulations and complex spatio temporal
dynamics set in. These states are, however, outside the scope of this paper and will be discussed
elsewhere. As expected, polymer stretch increases with increasing Re due to the increase in the
magnitude of the mean azimuthal velocity, reaching a maximum value of 75% of L2 for Re= 100.
The upper row of the figure 5 shows colour maps of the polymer stretch in a cylindrical section at
the mid-gap for the simulations performed at Re= 25 and Re= 50. Along with the middle panel
in the upper row of figure 1, for Re= 90, these figures illustrate the variation of the structures
of polymer stretch as the Re number increases along the upper branch solution while holding
the Wi number constant. For Re values near the saddle-node bifurcation (see panel for Re= 25),
the arrow-shaped structures are not yet evident. The maximum polymer stretch here is still
rather moderate (less than 50% of the maximum polymer extension) and this results in oval-
shaped structures, where the azimuthal extent is only slightly larger than the axial extent (see
darker zones). As Re increases and the stretching of the polymers increases, the structures become
increasingly more elongated in the azimuthal direction and the arrow shape emerges. The right
upper panel of the figure 5 shows that for Re= 50, the arrow-shaped structures can be already
clearly distinguished, even though the highest polymer stretch is still not too large (only slightly
above half of L2).

The black line in figure 4 (b) illustrates the variation of the ArrowRW state when Re= 100

and Wi is varied. The minimum Wi number at which the solution could be followed is Wi= 4.25.
Below this threshold, the ArrowRW becomes unstable and simulations converge to either RB or
Spirals (SP). Two distinct trends are observed in the energy of the ArrowRW. It remains nearly
constant when 4.25≤Wi≤ 9 and increases with increasing Wi when Wi> 9. Despite the transition
between the two regimes appearing to be rather smooth, the flow structures are qualitatively
and quantitatively very different. Whereas for large Wi numbers, the arrow-shaped structures of
highly stretched polymers shown in the figure 1 are observed, in the regime where the energy
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Figure 5. (Color online) Variation of the structures of polymer stretch as the Re (upper row) and Wi (lower) numbers are

varied. Cylindrical sections (θ,z) obtained at the mid-gap are shown. Eight contours evenly spaced across the full range

of values have been added to each panel.

is almost constant, the structures of polymer stretch take the form of a fork oriented in the flow
direction (see left panel of figure 5 for Wi= 6). Interestingly, the amount of polymer stretch in these
structures is surprisingly low (below 10% of L2). It must be noted that the simulation for Wi= 4.25

was run for nearly 10000 advective time units. The solution persisted for this time and there was
not any sign that there could be a change in the flow pattern with further simulation time. Hence,
this surprising solution appears to be stable. As Wi increases, the forked-shaped structures are
gradually replaced by arrow-shaped structures. The lower right panel shows the structures for
the simulation conducted at Wi= 9, which marks the transition between the regimes of constant
and increasing energy. As seen, arrow-shaped structures of moderately stretched polymers can
already be identified at this Wi value. The largest Wi at which the ArrowRW state was found
is Wi= 19. Above this value, the solution becomes unstable and the simulations converge to a
stationary pattern of elastically induced vortices known as diwhirls (DW, brown line in figure 4
(b)). The dynamics of the DW have been recently shown in detail in [16] and thus will not be
discussed here. Other solution branches, labeled as AArrowRW and DO in the figure, were also
found at large Wi numbers and will be discussed in section 5.

All the arrow-shaped rotating waves found in this study propagate very slowly, with a rotation
frequency (calculated from fast Fourier transform of a time series of the radial velocity) of the
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Figure 6. Variation of the inertial (P), viscous (ϵ) and polymeric (Πe) contributions to the integral energy balance (i.e.

kinetic energy budgets) in (a) upper branch solution of the ArrowRW for Wi = 15, (b) lower branch solution of the

ArrowRW for Wi = 15 and (c) ArrowRw for Re= 100 and varying Wi. In each panel, P , ϵ and Πe are shown as

solid, dash-dotted and dotted lines, respectively.

order of f ∼ 10−3(Ωiri)/d. Moreover, it is observed that the rotation frequency decreases as
Re or Wi increases.
We finally investigate the relationship between the changes observed in the volume averaged
kinetic energy as Re and Wi are varied and the physical mechanisms governing the physics of this
problem (i.e. inertial, viscous, and elastic effects). To that extent, we have calculated the inertial
(P), viscous (ϵ), and polymeric (Πe) contributions to the integral energy balance of the ArrowRW
solution. For viscoelastic flows, the integral energy balance reads [50],∫

V
PdV −

∫
V
ϵdV −

∫
V
ΠedV = 0, (4.1)

and P , ϵ and Πe are calculated as,

P =−u′v′
∂v

∂r
+ u′v′

v

r
, (4.2)

ϵ=
2β

Re
S′ : S′, (4.3)

Πe =
1− β

Re
S′ : T ′. (4.4)

Here, the overline denotes mean quantities, S′ = (∇v′ +∇v′T )/2 indicates the rate of strain
tensor and the prime symbol denotes deviations of the velocity or polymer stress tensor from
their mean values. It must be noted that P and ϵ always act as a source and a sink of energy,
respectively. However, Πe can be either a source or a sink depending on whether the sign of
the integral is negative or positive (note that there is a minus sign in front of the integral). In
panel (a) of figure 6, it is shown how the values of these three integrals (including the sign in
front of them) vary with Re along the upper branch solution curve. As seen, for all Re numbers,
the polymeric contribution is the dominant energy source (polymers are injecting energy into
the flow), reflecting again the elastic nature of the ArrowRW solution. At the lowest values of
Re (near the turning point), the contribution of Πe is larger than that of P by two orders of
magnitude. However, as Re increases, the contribution of P increases, and the contribution of Πe

decreases, so that at the largest Re values where the ArrowRW solution exists, they are similar
in magnitude. This behaviour was expected, as in this analysis we keep Wi = 15, and so, as Re

increases, the relative importance of inertial effects against elastic effects increases. In panel (b),
the variation of the contributions of P , ϵ, and Πe is shown for the lower branch solution curve
when Wi = 15. While the contribution of Πe continues to be the dominant energy source near
the turning point, its magnitude decays fast as Re increases and it becomes of the same order
of magnitude as the inertial contribution at Re≈ 30. These analyses show that, at this Wi value,
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steady ArrowRW states appear only when the flow is entirely dominated by elasticity, and that
these solutions become unstable as the inertial effects become comparable to elastic effects. Finally,
panel (c) of 6 illustrates the same analysis for the case in which Re= 100 and Wi is varied. It
is observed that, at low Wi numbers, inertia is the dominant energy source. Although the net
polymeric contribution at these Wi is positive and hence polymers also act as an energy source,
its magnitude is very small when compared to the inertial contribution. Interestingly, this low
contribution of the polymers to the integral energy balance persists until Wi≈ 9 is achieved, and
it is thus consistent with the regime where the volume averaged kinetic energy is constant and
stable forked-like structures are observed. Beyond this threshold, the contribution of Πe grows
quickly with increasing Wi , and this, along with the gradual decrease in the inertial contribution,
results in a flow regime similar to that described in panel (a), where the polymeric contribution is
the main energy source. It is when this happens that arrow-shaped structures of highly stretched
polymers are observed.

5. Other solution branches
Having presented the ArrowRW solution in detail, we next focus on other solution branches
where arrow-shaped structures of polymer stretch are also present. The first of these solutions,
which has been dubbed asymmetric arrow rotating wave (AArrowRW), emerges at Wi≈ 17.3 (for
Re= 100) when the ArrowRW undergoes a symmetry-breaking bifurcation that breaks the axial
symmetry of the structures. This characteristic becomes clear when figure 7 (a), which illustrates
the AArrowRW state at Re= 100 and Wi= 18, is compared with figure 1 (middle panels). Whereas
for the ArrowRW, the arrow-shaped structures (including the wake) are symmetric with respect to
the horizontal plane passing through the axis of the arrow, this symmetry is not preserved by the
AArrowRW. In this latter state, there is an increase of the polymer stretch in the lower half of the
structures (see that the colour intensity in this region right after the arrowhead is slightly darker
than in the upper half), which results in the wake extending over a larger azimuthal distance
than in the upper half. This asymmetry is, of course, also reflected in the structures of the radial
velocity. By comparing the left and right panels in figure 7 (a), it can be seen that the increase in
polymer stretch taking place in the lower half of the arrows is associated with shear layers that
form in the boundaries between inflows and outflows. These shear layers are readily identified in
the figure as regions where the contours of radial velocity are closely spaced, thereby indicating
strong velocity gradients.

The AArrowRW is stable in a narrow range of Wi numbers, 17.3⪅Wi⪅ 18.4 for Re= 100 (see
blue diamonds in figure 4 (b)). Within this range, the symmetrically related state, AArrowRW∗ =

KzAArrowRW, has also been found (not shown). It has the same characteristics as the AArrowRW
state, but shear layers and higher polymer stretch are in this case observed in the upper half
of the arrow-shaped structures. It should also be noted that, unlike the ArrowRW state, the
kinetic energy of the AArrowRW decreases monotonically as Wi increases. Following the solution
beyond Wi⪆ 18.4, the flow becomes chaotic and the kinetic energy decreases markedly (see states
denoted by (orange) cross marks in figure 4 (b)). Irregular arrow-shaped structures are transiently
observed in the polymer stretch field, coexisting with strips of highly stretched polymers that
extend over the entire azimuthal length (see figure 7 (b)). Unlike the flow states described above,
arrow-shaped structures appear at random θ and z locations and their azimuthal extent is highly
variable. Due to this randomness, the property that the structures are shifted by half a wavelength
every half a rotation period is evidently absent. This chaotic flow is consistent with a state of
disordered oscillations (DO), which is the term used in viscoelastic Taylor–Couette flow to denote
chaotic flow patterns characterized by large-scale irregular flow structures [21,23–25,39]. This is,
however, the first time that a DO state with arrow-shaped structures is reported.

Another flow state where arrow-shaped structures also appear is found at low Re values, near
the saddle-node bifurcation point of the ArrowRW (see (red) squares in 4 (a)). Such state, which
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is presented in figure 7 (c) for Re= 30 and Wi= 15, exhibits axially symmetric arrow-shaped
structures of polymer stretch which are similar in length and magnitude to those of the ArrowRW.
However, they appear only in one half of the system, i.e. over half a rotation period. We have
dubbed this flow state as localised arrow shaped rotating wave (LArrowRW). We would like
to note that localisation of structures in TCF usually happens in the axial direction or in both
axial and azimuthal directions, resulting in patches. The azimuthal localisation observed in this
viscoelastic flow state is thus quite unusual and the mechanism behind it is still not understood.
The parameter range in which the LArrowRW state exists is smaller than that for the ArrowRW
state, for both Re and Wi numbers (see (red) squares in figure 4). When Wi= 15, the minimum
Re value up to which the LArrowRW can be followed is Re≈ 16.5, where the flow recovers its
laminarity, whereas the highest Re value at which this state exists is Re≈ 45. Beyond this value,
this solution branch becomes unstable and the simulations converge to the ArrowRW state. When
the flow pattern is continued in Wi, while keeping Re= 30, the flow laminarises below Wi≈ 11.5.
The kinetic energy of the LArrowRW increases monotonically with increasing Wi (states with
nearly constant energy have not been found for this solution) until at Wi≈ 23, this solution loses
stability to the ArrowRW.

Flow structures which do not exhibit arrow-shaped structures have also been found at low
Wi numbers. These are well-known structures of TCF, the so-called spirals (SP) and ribbons (RB)
states [3,12]. SP are found to exist when 0.5⪅Wi⪅ 6.5, whereas RB exist in a narrower region,
1.5≲Wi≲ 3.5 (see figure 4 (b)). These flow patterns have been widely analysed in the literature
and will not be further discussed here.

6. Conclusion
Using direct numerical simulations of the governing equations, we have demonstrated the
existence of axially localized, arrow-shaped structures of polymer stretch in the TCF of a dilute
polymer solution. These structures have been identified in both rotating waves and in disordered
flow patterns. An analysis of the integral energy balance has revealed that stable arrow-shaped
rotating waves occur when the energy input associated with elastic mechanisms is the leading
order term. In contrast, when the elastic and inertial contributions are comparable, these solutions
become unstable.

Recently, arrow-shaped regions of highly stretched polymers have also been identified in
viscoelastic channel flow at elasticity levels similar to those investigated here. Despite these
structures being qualitatively distinct from those we report, it is interesting to note that in both
cases they are aligned with the mean flow direction (the azimuthal direction in TCF and the axial
direction in channels). This observation appears to support the hypothesis in [33] that arrow-
shaped structures are caused by an increase in the elongational viscosity of the flow due to
polymer stretching in the primary flow direction, and it suggests that they could exist in any
viscoelastic fluid flow where there is a dominant velocity component.

Among the rotating waves found in the study, it is particularly interesting the LArrowRW state,
where the arrow-shaped structures are only found in half of the system. Further research is
needed to understand the mechanism behind this surprising feature. It also remains to see if
these rotating waves persist in a real TCF system, where the assumption of axial periodicity
adopted in our study is not fulfilled. Simulations with axial boundary conditions mimicking the
experimental end-plates and/or laboratory experiments will be needed to answer this question. It
should be noted that although the polymer stretch field cannot be easily measured in experiments,
we have shown that another distinctive feature of these rotating waves is that the radial velocity
structures are also arrow headed and point in the flow direction. Since the temporal evolution of
the rotating wave pattern is equivalent to its azimuthal dependence, a space time plot of the radial
velocity obtained at the mid-gap and at constant θ, over a rotation period, would be identical to
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Figure 7. (Color online) Colour maps of the polymer stretch field (left panels) and radial velocity (right panels) illustrating

other flow states where arrow-shaped structures of polymer stretch are also observed. (a) AArrowRW for Re= 100 and

Wi= 18, (b) DO for Re= 100 and Wi= 20 and (c) LArrowRW for Re= 30, and Wi= 15. As in the previous figures, a

cylindrical section (θ, z) obtained at the mid-gap is shown in each panel. Eight contours evenly spaced across the entire

range of values (indicated in the colorbar) are shown in each case. The flow direction is from left to right.
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the cylindrical sections presented in this paper. This characteristic could hence be used to detect
these structures in experiments.

Despite its age and extensive research, the classical TCF setup (inner cylinder rotating and outer
cylinder at rest) offers a great opportunity to detect previously unknown states. This is especially
true when non-Newtonian fluids, such as viscoelastic fluids, are used as working fluids, further
expanding the problem’s already large parameter space.
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1. Introduction
In the century that has elapsed since the pioneering work of G. I. Taylor [1], the Taylor–Couette
flow (TCF), i.e. the fluid flow contained in the annular gap between two vertical concentric
cylinders, has become one of the most prominent models for investigating flow pattern formation,
instabilities, and turbulence in rotating shear flows [3–5,12]. This popularity has been partly
motivated by the fact that, in many configurations of this system, the transition to the turbulence
is supercritical, i.e. it occurs through a well-defined sequence of linear instabilities to flow
patterns of increasing spatio-temporal complexity eventually leading to turbulence. The specific
characteristics of these flow patterns depend crucially on the geometry of the apparatus (the
curvature and the length-to-gap aspect ratio), the container boundaries and the relative rotation of
the cylinders. However, it is frequently observed that the transition from axisymmetric to three-
dimensional flow gives rise to waves that propagate in the azimuthal direction while keeping
a constant shape. These flow states are known as rotating waves and appear when the system
undergoes a Hopf bifurcation that breaks its SO(2) symmetry. The best-known example of a
rotating wave pattern is the so-called wavy vortex flow, which emerges from the Taylor vortices as
the inner cylinder rotation speed increases for a wide range of curvatures and aspect ratios [6–11].
Another well-studied example of rotating waves in pure hydrodynamic TCF is the Ribbons
pattern (RB), which emerges when the cylinders counter-rotate [12].

While TCF has traditionally been studied using Newtonian fluids, a growing interest has been
shown recently in investigating Non-Newtonian cases, especially when the working fluid is a
dilute polymer solution. Due to their viscoelastic properties, long-chain polymers (even in small
amounts) may substantially change the stability and spatio-temporal characteristics of the flow
with respect to those in the Newtonian case. First observations of such phenomenon date back
to about thirty years, with the detection of flow instability in the absence of inertia [18–20].
These studies were followed by a number of experimental works that explored in detail the
formation of flow patterns depending on the relative importance between inertial and elastic
effects [21,22,26–28]. A wide range of flow patterns was discovered, in many cases coexisting for
the same values of the control parameters (the Reynolds and Weissenberg numbers), and it was
concluded that observing one or more flow states was highly sensitive to polymer properties,
initial conditions, and experimental protocol. One of the most typical states reported in these
studies was the RB pattern, a rotating wave formed by two (symmetry degenerated) spiral
waves that propagate axially in opposite senses [21,22]. As for Newtonian cases, viscoelastic
RB arise from a supercritical Hopf bifurcation of the Circular Couette flow (CCF), but unlike
Newtonian fluids, it is not necessary that the cylinders counter-rotate (they are observed even
in the classical setup, where only the inner cylinder rotates). Depending on the flow’s elasticity,
they may occur at rotation speeds one order of magnitude smaller than those at which rotating
waves exist in isothermal Newtonian TCF, and they have been found to play a major role in
several transition routes to elasto-inertial turbulence (EIT) [17,25]. Other coherent states which are
frequently encountered in experiments on TCF of a dilute polymer solution are diwhirls (DW),
oscillatory strips (OS), disordered oscillations (DO) or flames (FL) [21,22,26–28]. However, unlike
RB, the transition to these flow states, which may occur either from CCF or RB, is abrupt and
highly hysteretic.

These coherent states could not be replicated in simulations until the late 2000s [23,24]. The use
of the FENE-P (Finite extensibility nonlinear elastic-Peterlin) closure was critical to the success
of these simulations because it included important effects of the polymer’s finite extensibility
that had been previously overlooked in numerical works. In addition to demonstrating the
ability of the FENE-P model to accurately simulate polymer dynamics, the authors detailed
the spatio-temporal characteristics of the flow states they discovered. However, because the
parameter space was not thoroughly explored, there could be many more coherent states than
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those reported in these studies. Since then, there has been a growing interest in studies aimed at
characterizing elasto-inertial turbulence (EIT) [29–31] and no further studies (both numerical and
experimental) on flow pattern formation and transition to the EIT have been performed until very
recently [13–17,42]. Given the problem’s large parameter space, the large number of states that
can coexist for the same values of the control parameters, and the scarcity of numerical studies
on viscoelastic flow patterns, it is reasonable to expect previously unreported states to emerge in
numerical studies on these flows.

Whereas for TCF, coherent elasto-inertial flow patterns have been studied for nearly three
decades, for parallel shear flows, only recently the first coherent viscoelastic structure has been
found in simulations of a two-dimensional channel flow [32,33]. These structures are travelling
waves (the analogue of the rotating waves in parallel flows) that propagate downstream at a
speed close to the centreline velocity. The hallmark of these viscoelastic travelling waves is
the existence of arrowhead structures in the polymer stretch field which are oriented in the
streamwise direction. It has been speculated that these structures may be caused by an increase
in the elongational viscosity of the fluid due to polymer stretching in the flow direction [33].
This characteristic suggests that these arrow-shaped structures of polymer stretch may not be
exclusive to parallel shear flows, but a universal feature of flow systems where polymers are
subjected to elongational flow. In TCF, for instance, polymers are stretched by the primary flow
in the azimuthal direction. Hence, an increase in the fluid’s elongational viscosity might result in
arrow-shaped structures aligned with the azimuthal direction. However, as far as we are aware,
no evidence of these structures in flows with curved streamlines has been reported yet.

In this paper, using direct numerical simulations of the TCF of a dilute polymer solution,
where the FENE-P closure is used to model the polymer dynamics, we show that arrow-shaped
structures of polymer stretch aligned with the streamwise direction (in this case the azimuthal
direction) also exist in TCF. These structures are identified in elasto-inertial rotating waves that
propagate with a very slow frequency and in chaotic states. We determine the range of existence
of the rotating wave solutions in the parameter space defined by the dimensionless Reynolds and
Weissenberg numbers and show how the characteristics of the arrow-shaped structures change as
these parameters are varied. We also briefly discuss other solution branches found in our study.

2. Problem formulation and methodology

(a) Governing equations and dimensionless parameters
We consider the flow of a dilute polymer solution driven in the annular gap between two
vertical, rigid, and independently rotating cylinders of height h. The inner cylinder of radius
ri rotates at angular speed Ωi and the outer cylinder of radius ro is kept at rest, i.e. Ωo = 0.
The fluid is incompressible and the dynamics is governed by the Navier-Stokes and continuity
equations. An additional equation is needed to describe the temporal evolution of a polymer
conformation tensor, C, which contains the ensemble average elongation and orientation of all
polymer molecules in the flow. Each polymer molecule is modeled by a finitely extensible elastic
dumbbell [38]. The dimensionless equations read

∇ · v= 0,

∂tv + v · ∇v=−∇P +
β

Re
∇2v +

(1− β)
Re

∇ ·T,

∂tC+ v · ∇C=C∇v + (∇v)TC−T,

(2.1)

where v= (u, v, w) is the velocity vector field in cylindrical coordinates (r, θ, z), P is the pressure,
β = νs/ν indicates the relative importance between the solvent viscosity, νs, and the viscosity of
the solution at zero shear rate, ν. The length scale of the system is normalized with the gap width,
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d= ro − ri, the velocity with the inner cylinder velocity, Ωiri, the pressure with the dynamic
pressure, ρ(Ωiri)2, where ρ is the fluid’s density, and the polymer conformation tensor with
kBTe/H , where kB denotes the Boltzmann constant, Te is the absolute temperature and H is
the spring constant.
The coupling between the polymers and the Navier-Stokes equations is realized through the
polymer stress tensor T, which is calculated using the FENE-P model [38],

T=
1

Wi

(
C

1− tr(C)
L2

− I

)
, (2.2)

where I is the unit tensor, tr(C) is the trace of the polymer conformation tensor, L denotes the
maximum polymer extension parameter and Wi is the Weissenberg number (defined below).
Periodic boundary conditions are imposed in the z and θ directions, whereas the boundary
conditions at the cylinders are

v(ri, θ, z) = (0, 1, 0), v(ro, θ, z) = (0, 0, 0). (2.3)

The system is governed by the following independent non-dimensional parameters:

Reynolds number: Re =Ωirid/ν,

Weissenberg number: Wi = λ/[d/(Ωiri)]

Radius ratio: η= ri/ro,

Aspect ratio: Γ = h/d,

(2.4)

where λ is the polymer relaxation time and d/(Ωiri) is the advective time scale.
In this paper, the radius ratio and aspect ratio are fixed to η= 0.77 and Γ = 2π, respectively.
A constant polymer concentration β = 0.871 is used and the maximum polymer extension
parameter L is set to 100, in accordance with recent studies of elasto-inertial turbulence on
viscoelastic TCF [16,39–41]. The flow’s elasticity level, quantified by the elasticity number
El=Re/Wi, ranges from 0.01 to 1. The parameter space is explored by either fixing Re and varying
Wi or vice versa, and consequently, the value of El changes among simulations. This protocol
differs from that in [23,24], the only numerical study on flow pattern formation in viscoelastic
TCF conducted to date, where the simulations were performed at a constant El for five different
El values (El= 0.33, El= 0.50, El= 0.75, El= 1 and El= 30). Another difference with respect
to this study is the polymer concentration. The polymer solution used in our simulations is nearly
10% more diluted than that used in [23,24] (β = 0.8 in these references).

(b) Numerical methods
The governing equations (2.1) are solved with the open source code nsCouette [43]. The code is
a combination of high-order central finite differences on a Gauss-Lobatto-Chebyshev grid in r

and Fourier-Galerkin expansions in z and θ. Decoupling between pressure and velocity field is
realized by a Pressure Poisson Equation formulation. The free divergence condition is enforced
by using an influence matrix technique, so that this condition is satisfied up to machine error. A
second-order accurate predictor-corrector scheme based on the Crank-Nicolson method is used
to carry out the time integration (see references [44,45] for further details about the timestepper).
Following the customary approach in numerical simulations of viscoelastic flows using pseudo-
spectral codes, a small amount of artificial diffusion is added to stabilize the integration. The
reason to include this diffusion is the hyperbolic nature of the time evolution equation for C. In
the absence of diffusion, integration of this equation often results in an accumulation of numerical
error, which in many cases produce numerical breakdown. This issue can be overcome by adding
a Laplacian term, 1

ReSc
∇2C, to the right-hand side of this hyperbolic equation, where the Schmidt

number, Sc = ν/κ, quantifies the ratio between the viscous and artificial diffusivities. In the
simulations presented here, Sc has been varied between 50 and 100, so that the artificial diffusion
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coefficient, 1
ReSc

, is of the order of 10−4. Several tests using larger Sc values (Sc up to 200 were
tested) have been conducted to verify that further reduction in the diffusion coefficient does not
alter significantly the results of the simulations. The number of radial nodes and Fourier modes
used in the computations were mr = 64, mθ = 33 and mz = 256, whereas the time step size was
set to 5× 10−3.

3. Arrow shaped structures of polymer stretch
To probe whether arrow-shaped structures of polymer stretch exist in viscoelastic TCF, we have
conducted simulations at lowRe values (Re≤ 100) while keeping Wi = 15. The elasticity number,
El= Wi/Re, in these simulations falls within the range 0.15≤El≤ 0.75, which is consistent
with the elasticity levels at which arrowhead structures have been observed in channels. The
simulations were started from the laminar state, previously computed, which was perturbed by
a disturbance of the form,

u=A(r − ri)(r − ro)cos(θ + kz) (3.1)

w=−A (r − ri)(r − ro)
r

(5r2 − 3(ri + ro)r + riro)
sin(θ + kz)

k
, (3.2)

where k is the axial wavenumber and A denotes the amplitude of the perturbation. If the
value of A is sufficiently large, the simulations converge to a rotating wave with azimuthal
wavenumber m=1. The amplitude threshold required to cause the instability is small (it can be
as small as A∼O(10−8) at the largest Re investigated), yet below this threshold the energy of the
perturbation decays and the laminar state persists. This indicates that these rotating wave patterns
are driven by nonlinear effects. We note that the existence of subcritical instabilities triggered by
very low amplitude thresholds is consistent with recent findings in other studies on viscoelastic
flows at low Reynolds numbers [47,48]. Depending on the value of k used in the initial condition,
flow patterns with three or four pairs of counter-rotating vortices were obtained. In the following,
we will restrict the discussion to the case where the flow pattern has four vortex pairs.

The upper panels of figure 1 show colour maps of the trace of the polymer conformation tensor,
tr(C), normalized with the maximum elongation of the polymers, L2, in a cylindrical section
(θ,z) at three different radial locations (indicated on top of each panel) for a simulation conducted
at Re= 90. This quantity indicates the degree of stretching of the polymer chains. High values
of tr(C)/L2 (dark regions) denote highly stretched polymers, whereas low values of tr(C)/L2

(lighter regions) indicate that polymers are weakly stretched. As is evident from the figure, the
most distinctive feature of this flow state is the existence of regions of highly stretched polymers
in the shape of an arrow. Due to this characteristic, it will be hereafter referred to as arrow-shaped
rotating wave (ArrowRW). These arrow-shaped structures are observed across the radial gap,
except for the regions very close to the cylinders, but their shapes differ depending on the radial
location. As one moves from the outer to the inner cylinder (from right to left in the figure), the
body of the arrow progressively shortens, and the axial extent of the arrowhead increases.

To illustrate the correspondence between polymer stretch and flow velocity, the lower panels of
the figure 1 show colour maps of the radial velocity in the same section and at the same time
instant as the upper panels. Positive velocity (red areas) denotes fluid motion from the inner to
the outer cylinder, i.e outflows, whereas negative velocity (blue areas) indicates fluid moving
from the outer to the inner cylinder, i.e. inflows. When the upper and lower rows of the figure
are compared, it becomes evident that the arrow-shaped structures of highly stretched polymers
are associated with inflow regions, whereas outflows occur in areas where the polymer stretch
is lower (less than 25% of L2). The wake of the arrows, on the other hand, corresponds to the
vicinity of the boundaries between inflows and outflows, where the radial velocity is close to
zero. As seen, the velocity in the inflows is higher than that of the outflows. This characteristic
is caused by the elastic force created by the stretched polymers. This force acts radially inward
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Figure 1. (Color online) The upper panels show colour maps of the trace of the polymer conformation tensor, tr(C),

normalized with the maximum polymer extension, L2, in cylindrical sections (θ, z) at three different radial locations. Dark

(light) regions indicate regions where polymers are highly (slightly) stretched. The lower panels display colour maps

of the radial velocity, u, at the same time instant and in the same cylindrical sections as the upper panels. Red (blue)

areas indicate outflows (inflows). The example shown corresponds to a snapshot of a simulation with Re= 90, L= 100,

β = 0.871, and Wi= 15. Eight contours evenly spaced across the entire range of values (indicated in the colorbar) are

shown in each case. The flow direction is from left to right.

and hence enhances fluid motion through the inflows while slowing down the motion through
the outflows. This creates an asymmetry between inflows and outflows (the axial extent of the
outflows is larger than that of the inflows) which has been discussed in detail in [46] and [16].
The highest degree of asymmetry occurs near the outer cylinder, where the elastic force exhibits
strong localized peaks that result in strong localized inflow jets (note that the axial extent of the
outflow regions here is more than twice that of the inflow regions, see panel corresponding to
r − ri = 0.75). However, as we move towards the inner cylinder, the magnitude of the elastic force
decays gradually, and consequently, the degree of asymmetry between inflows and outflows also
diminishes (see panels for r − ri = 0.50 and r − ri = 0.25). The changes observed in the arrow-
shaped structures when these are plotted at distinct radial locations (upper panels) can thus be
ascribed to the radial dependence of the elastic force and how this modifies the axial extent of the
inward motion.

To provide a simpler quantitative characterization of the polymer stretch, we show in figure 2
the variation of tr(C)/L2 along the azimuthal direction at fixed radial (mid-gap) and axial
(z = 2.25) locations for the same snapshot shown in figure 1 (i.e. along the purple dashed line
shown in that figure). We note that the same plot is obtained if tr(C)/L2 is plotted as a function
time at a fixed azimuthal location (time is shown in the upper abscissa of the figure). This happens
because in rotating waves the variation in θ is commensurate with the temporal evolution of the
flow pattern. Figure 2 shows that the emergence of the arrow-shaped structures is associated with
an abrupt local increase of tr(C)/L2. The maximum value of tr(C)/L2 is achieved in the head of
the arrow, shortly after the sudden increase takes place, and it can be as large as 0.75 (i.e. 75% of
the maximum polymer elongation) for the largest values of Re and Wi simulated in this study.
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Figure 2. Trace of the polymer conformation tensor, normalized by L2, obtained at the mid-gap (r − ri = 0.5 )and

z/d= 2.25 as a function of θ (lower abscissa) and time (upper abscissa). The values of θ for which meridional sections

are shown in figure 3 are represented as green dashed lines.

The decay of tr(C)/L2 exhibits two phases: a slow decay that coincides with the body of the
arrow and a sharper decay that occurs in the wake behind the arrow (2< θ < 3.5). The minimum
value of tr(C)/L2 is reached in the latter region and it is in all simulations lower than 10% of the
maximum polymer elongation. After the minimum, tr(C)/L2 increases gradually until it reaches
a value of nearly 0.2 which remains constant before the emergence of the arrow-shaped structure.

We finally show in figure 3 the radial dependence of the polymer stretch (upper row) and flow
streamlines (lower row) as a function of θ. The values of θ at which snapshots are displayed are
shown as dashed lines in figure 2. The leftmost panels (A, θ= 0.25) illustrate the flow upstream
of the arrow-shaped structure, far from the arrowhead. Polymers here are more stretched in
the region near the inner cylinder. This circumstance appears to be related to the emergence
of flow recirculation zones near the inner cylinder (see the leftmost panel of the lower row),
which displace the main vortices towards the outer cylinder. As the arrowhead is approached,
the intensity of the vortices increases and the recirculating vortices near the inner cylinder
weaken. As a result, polymers get increasingly more stretched near the outer cylinder (see
panels B, for θ= 0.5). Jets of highly stretched polymers emanate then from the outer cylinder
and move towards the inner cylinder through the inflows (see panels C, which corresponds to
the arrowhead, θ= 1). Vigorous counter-rotating vortex pairs, with a clear asymmetry between
inflows and outflows, as described above, extend across the entire radial gap (lower C panel). This
situation continues as one moves toward the bottom end of the arrow-shaped structure. When
the jet of highly stretched polymers meets the inner cylinder, it begins to spread along the wall
(see panel D, for θ= 2), and polymers get progressively more stretched in this region. The initial
situation where the recirculations zones appear near the inner cylinder and the vortices move
towards the outer cylinder is eventually recovered (see panel E, for θ= 3.5) and the cycle starts
again (with the vortices and regions of highly stretched polymers shifted by half a wavelength
with respect to the first half of the rotation period).

4. Re and Wi parameter dependence
To establish the range of existence of the ArrowRW solution in the Wi-Re parameter space and
how the characteristics of the arrow-shaped structures change with varying these parameters,
we have conducted natural continuation of this flow state. The black line in figure 4 (a) shows
the deviation of the volume averaged kinetic energy, ke, with respect to its laminar value, for
the ArrowRW state at the Re values at which this solution is found when Wi= 15. We note that
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Figure 3. (Color online) Colour maps of polymer stretch (upper row) and flow streamlines ψ (lower row) shown in

meridional sections (r, z) obtained at the values of θ indicated at the top of each panel (and shown as dashed (green)

lines in the figure 1). Eight contours evenly spaced across the full range of values have been added to each panel.

for this Wi value, the base flow is linearly stable. The ArrowRW solution vanishes at a saddle-
node bifurcation that takes place at Re≈ 20. It should be noted that this value of Re is well below
that at which Taylor vortices appear in the Newtonian case (Re≈ 90), clearly showing that the
instability relies on the interplay between inertia and elasticity. The lower branch solution that
continues at lower energy towards larger Re values is unstable, but it could be detected by using
the bisection method introduced by [49] (see black dashed line in figure 4 (a)). Only a few points
of this solution branch have been computed, as flow states here are characterized by very weakly
stretched polymers and arrow-shaped structures are no longer observed. To follow the ArrowRW
solution branch near the saddle-node, it is necessary to vary Re in very small steps. If the change
in Re is too large, the simulations converge to a different flow state, labeled LArrowRW in the
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Figure 4. (Color online) Variation of the deviation of the volume average kinetic energy in the flow states found in the

present study as the Re and Wi numbers are varied. Note that the volume average kinetic energy corresponding to the

laminar state has been subtracted. (a) Re number dependence when Wi= 15 and (b) Wi number dependence when

Re= 100, except for the LArrowRW state where Re= 30. The acronyms shown in the legend stand for: arrow shaped

rotating wave (ArrowRW), localized arrow-shaped rotating wave (LArrowRW), asymmetric arrow-shaped rotating wave

(AArrowRW), spirals (SP), diwhirls (DW), ribbons (RB) and disordered oscillations (DO).

figure, which is characterized by azimuthally localized arrow-shaped structures (This state is
illustrated in figure 7 (c) and described in more detail in section 5). The LArrowRW coexists with
the ArrowRW for 20/Re/ 45, and it could be followed up to Re≈ 16.5, a value slightly lower
than that at which the ArrowRW disappears. Below this threshold, the flow laminarises.
The highest Re value at which the ArrowRW exists for Wi= 15 is Re= 100. With further increase
in Re, the flow pattern begins to exhibit additional modulations and complex spatio temporal
dynamics set in. These states are, however, outside the scope of this paper and will be discussed
elsewhere. As expected, polymer stretch increases with increasing Re due to the increase in the
magnitude of the mean azimuthal velocity, reaching a maximum value of 75% of L2 for Re= 100.
The upper row of the figure 5 shows colour maps of the polymer stretch in a cylindrical section at
the mid-gap for the simulations performed at Re= 25 and Re= 50. Along with the middle panel
in the upper row of figure 1, for Re= 90, these figures illustrate the variation of the structures
of polymer stretch as the Re number increases along the upper branch solution while holding
the Wi number constant. For Re values near the saddle-node bifurcation (see panel for Re= 25),
the arrow-shaped structures are not yet evident. The maximum polymer stretch here is still
rather moderate (less than 50% of the maximum polymer extension) and this results in oval-
shaped structures, where the azimuthal extent is only slightly larger than the axial extent (see
darker zones). As Re increases and the stretching of the polymers increases, the structures become
increasingly more elongated in the azimuthal direction and the arrow shape emerges. The right
upper panel of the figure 5 shows that for Re= 50, the arrow-shaped structures can be already
clearly distinguished, even though the highest polymer stretch is still not too large (only slightly
above half of L2).

The black line in figure 4 (b) illustrates the variation of the ArrowRW state when Re= 100

and Wi is varied. The minimum Wi number at which the solution could be followed is Wi= 4.25.
Below this threshold, the ArrowRW becomes unstable and simulations converge to either RB or
Spirals (SP). Two distinct trends are observed in the energy of the ArrowRW. It remains nearly
constant when 4.25≤Wi≤ 9 and increases with increasing Wi when Wi> 9. Despite the transition
between the two regimes appearing to be rather smooth, the flow structures are qualitatively
and quantitatively very different. Whereas for large Wi numbers, the arrow-shaped structures of
highly stretched polymers shown in the figure 1 are observed, in the regime where the energy
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Figure 5. (Color online) Variation of the structures of polymer stretch as the Re (upper row) and Wi (lower) numbers are

varied. Cylindrical sections (θ,z) obtained at the mid-gap are shown. Eight contours evenly spaced across the full range

of values have been added to each panel.

is almost constant, the structures of polymer stretch take the form of a fork oriented in the flow
direction (see left panel of figure 5 for Wi= 6). Interestingly, the amount of polymer stretch in these
structures is surprisingly low (below 10% ofL2). It must be noted that the simulation for Wi= 4.25

was run for nearly 10000 advective time units. The solution persisted for this time and there was
not any sign that there could be a change in the flow pattern with further simulation time. Hence,
this surprising solution appears to be stable. As Wi increases, the forked-shaped structures are
gradually replaced by arrow-shaped structures. The lower right panel shows the structures for
the simulation conducted at Wi= 9, which marks the transition between the regimes of constant
and increasing energy. As seen, arrow-shaped structures of moderately stretched polymers can
already be identified at this Wi value. The largest Wi at which the ArrowRW state was found
is Wi= 19. Above this value, the solution becomes unstable and the simulations converge to a
stationary pattern of elastically induced vortices known as diwhirls (DW, brown line in figure 4
(b)). The dynamics of the DW have been recently shown in detail in [16] and thus will not be
discussed here. Other solution branches, labeled as AArrowRW and DO in the figure, were also
found at large Wi numbers and will be discussed in section 5.

All the arrow-shaped rotating waves found in this study propagate very slowly, with a rotation
frequency (calculated from fast Fourier transform of a time series of the radial velocity) of the
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Figure 6. Variation of the inertial (P), viscous (ε) and polymeric (Πe) contributions to the integral energy balance (i.e.

kinetic energy budgets) in (a) upper branch solution of the ArrowRW for Wi = 15, (b) lower branch solution of the

ArrowRW for Wi = 15 and (c) ArrowRw for Re= 100 and varying Wi. In each panel, P , ε and Πe are shown as

solid, dash-dotted and dotted lines, respectively.

order of f ∼ 10−3(Ωiri)/d. Moreover, it is observed that the rotation frequency decreases as
Re or Wi increases.
We finally investigate the relationship between the changes observed in the volume averaged
kinetic energy asRe and Wi are varied and the physical mechanisms governing the physics of this
problem (i.e. inertial, viscous, and elastic effects). To that extent, we have calculated the inertial
(P), viscous (ε), and polymeric (Πe) contributions to the integral energy balance of the ArrowRW
solution. For viscoelastic flows, the integral energy balance reads [50],∫

V
PdV −

∫
V
εdV −

∫
V
ΠedV = 0, (4.1)

and P , ε and Πe are calculated as,

P =−u′v′ ∂v
∂r

+ u′v′
v

r
, (4.2)

ε=
2β

Re
S′ : S′, (4.3)

Πe =
1− β
Re

S′ : T ′. (4.4)

Here, the overline denotes mean quantities, S′ = (∇v′ +∇v′T )/2 indicates the rate of strain
tensor and the prime symbol denotes deviations of the velocity or polymer stress tensor from
their mean values. It must be noted that P and ε always act as a source and a sink of energy,
respectively. However, Πe can be either a source or a sink depending on whether the sign of
the integral is negative or positive (note that there is a minus sign in front of the integral). In
panel (a) of figure 6, it is shown how the values of these three integrals (including the sign in
front of them) vary with Re along the upper branch solution curve. As seen, for all Re numbers,
the polymeric contribution is the dominant energy source (polymers are injecting energy into
the flow), reflecting again the elastic nature of the ArrowRW solution. At the lowest values of
Re (near the turning point), the contribution of Πe is larger than that of P by two orders of
magnitude. However, as Re increases, the contribution of P increases, and the contribution of Πe
decreases, so that at the largest Re values where the ArrowRW solution exists, they are similar
in magnitude. This behaviour was expected, as in this analysis we keep Wi = 15, and so, as Re
increases, the relative importance of inertial effects against elastic effects increases. In panel (b),
the variation of the contributions of P , ε, and Πe is shown for the lower branch solution curve
when Wi = 15. While the contribution of Πe continues to be the dominant energy source near
the turning point, its magnitude decays fast as Re increases and it becomes of the same order
of magnitude as the inertial contribution at Re≈ 30. These analyses show that, at this Wi value,
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steady ArrowRW states appear only when the flow is entirely dominated by elasticity, and that
these solutions become unstable as the inertial effects become comparable to elastic effects. Finally,
panel (c) of 6 illustrates the same analysis for the case in which Re= 100 and Wi is varied. It
is observed that, at low Wi numbers, inertia is the dominant energy source. Although the net
polymeric contribution at these Wi is positive and hence polymers also act as an energy source,
its magnitude is very small when compared to the inertial contribution. Interestingly, this low
contribution of the polymers to the integral energy balance persists until Wi≈ 9 is achieved, and
it is thus consistent with the regime where the volume averaged kinetic energy is constant and
stable forked-like structures are observed. Beyond this threshold, the contribution of Πe grows
quickly with increasing Wi , and this, along with the gradual decrease in the inertial contribution,
results in a flow regime similar to that described in panel (a), where the polymeric contribution is
the main energy source. It is when this happens that arrow-shaped structures of highly stretched
polymers are observed.

5. Other solution branches
Having presented the ArrowRW solution in detail, we next focus on other solution branches
where arrow-shaped structures of polymer stretch are also present. The first of these solutions,
which has been dubbed asymmetric arrow rotating wave (AArrowRW), emerges at Wi≈ 17.3 (for
Re= 100) when the ArrowRW undergoes a symmetry-breaking bifurcation that breaks the axial
symmetry of the structures. This characteristic becomes clear when figure 7 (a), which illustrates
the AArrowRW state at Re= 100 and Wi= 18, is compared with figure 1 (middle panels). Whereas
for the ArrowRW, the arrow-shaped structures (including the wake) are symmetric with respect to
the horizontal plane passing through the axis of the arrow, this symmetry is not preserved by the
AArrowRW. In this latter state, there is an increase of the polymer stretch in the lower half of the
structures (see that the colour intensity in this region right after the arrowhead is slightly darker
than in the upper half), which results in the wake extending over a larger azimuthal distance
than in the upper half. This asymmetry is, of course, also reflected in the structures of the radial
velocity. By comparing the left and right panels in figure 7 (a), it can be seen that the increase in
polymer stretch taking place in the lower half of the arrows is associated with shear layers that
form in the boundaries between inflows and outflows. These shear layers are readily identified in
the figure as regions where the contours of radial velocity are closely spaced, thereby indicating
strong velocity gradients.

The AArrowRW is stable in a narrow range of Wi numbers, 17.3/Wi/ 18.4 for Re= 100 (see
blue diamonds in figure 4 (b)). Within this range, the symmetrically related state, AArrowRW∗ =
KzAArrowRW, has also been found (not shown). It has the same characteristics as the AArrowRW
state, but shear layers and higher polymer stretch are in this case observed in the upper half
of the arrow-shaped structures. It should also be noted that, unlike the ArrowRW state, the
kinetic energy of the AArrowRW decreases monotonically as Wi increases. Following the solution
beyond Wi' 18.4, the flow becomes chaotic and the kinetic energy decreases markedly (see states
denoted by (orange) cross marks in figure 4 (b)). Irregular arrow-shaped structures are transiently
observed in the polymer stretch field, coexisting with strips of highly stretched polymers that
extend over the entire azimuthal length (see figure 7 (b)). Unlike the flow states described above,
arrow-shaped structures appear at random θ and z locations and their azimuthal extent is highly
variable. Due to this randomness, the property that the structures are shifted by half a wavelength
every half a rotation period is evidently absent. This chaotic flow is consistent with a state of
disordered oscillations (DO), which is the term used in viscoelastic Taylor–Couette flow to denote
chaotic flow patterns characterized by large-scale irregular flow structures [21,23–25,39]. This is,
however, the first time that a DO state with arrow-shaped structures is reported.

Another flow state where arrow-shaped structures also appear is found at low Re values, near
the saddle-node bifurcation point of the ArrowRW (see (red) squares in 4 (a)). Such state, which
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is presented in figure 7 (c) for Re= 30 and Wi= 15, exhibits axially symmetric arrow-shaped
structures of polymer stretch which are similar in length and magnitude to those of the ArrowRW.
However, they appear only in one half of the system, i.e. over half a rotation period. We have
dubbed this flow state as localised arrow shaped rotating wave (LArrowRW). We would like
to note that localisation of structures in TCF usually happens in the axial direction or in both
axial and azimuthal directions, resulting in patches. The azimuthal localisation observed in this
viscoelastic flow state is thus quite unusual and the mechanism behind it is still not understood.
The parameter range in which the LArrowRW state exists is smaller than that for the ArrowRW
state, for both Re and Wi numbers (see (red) squares in figure 4). When Wi= 15, the minimum
Re value up to which the LArrowRW can be followed is Re≈ 16.5, where the flow recovers its
laminarity, whereas the highest Re value at which this state exists is Re≈ 45. Beyond this value,
this solution branch becomes unstable and the simulations converge to the ArrowRW state. When
the flow pattern is continued in Wi, while keeping Re= 30, the flow laminarises below Wi≈ 11.5.
The kinetic energy of the LArrowRW increases monotonically with increasing Wi (states with
nearly constant energy have not been found for this solution) until at Wi≈ 23, this solution loses
stability to the ArrowRW.

Flow structures which do not exhibit arrow-shaped structures have also been found at low
Wi numbers. These are well-known structures of TCF, the so-called spirals (SP) and ribbons (RB)
states [3,12]. SP are found to exist when 0.5/Wi/ 6.5, whereas RB exist in a narrower region,
1.5.Wi. 3.5 (see figure 4 (b)). These flow patterns have been widely analysed in the literature
and will not be further discussed here.

6. Conclusion
Using direct numerical simulations of the governing equations, we have demonstrated the
existence of axially localized, arrow-shaped structures of polymer stretch in the TCF of a dilute
polymer solution. These structures have been identified in both rotating waves and in disordered
flow patterns. An analysis of the integral energy balance has revealed that stable arrow-shaped
rotating waves occur when the energy input associated with elastic mechanisms is the leading
order term. In contrast, when the elastic and inertial contributions are comparable, these solutions
become unstable.

Recently, arrow-shaped regions of highly stretched polymers have also been identified in
viscoelastic channel flow at elasticity levels similar to those investigated here. Despite these
structures being qualitatively distinct from those we report, it is interesting to note that in both
cases they are aligned with the mean flow direction (the azimuthal direction in TCF and the axial
direction in channels). This observation appears to support the hypothesis in [33] that arrow-
shaped structures are caused by an increase in the elongational viscosity of the flow due to
polymer stretching in the primary flow direction, and it suggests that they could exist in any
viscoelastic fluid flow where there is a dominant velocity component.

Among the rotating waves found in the study, it is particularly interesting the LArrowRW state,
where the arrow-shaped structures are only found in half of the system. Further research is
needed to understand the mechanism behind this surprising feature. It also remains to see if
these rotating waves persist in a real TCF system, where the assumption of axial periodicity
adopted in our study is not fulfilled. Simulations with axial boundary conditions mimicking the
experimental end-plates and/or laboratory experiments will be needed to answer this question. It
should be noted that although the polymer stretch field cannot be easily measured in experiments,
we have shown that another distinctive feature of these rotating waves is that the radial velocity
structures are also arrow headed and point in the flow direction. Since the temporal evolution of
the rotating wave pattern is equivalent to its azimuthal dependence, a space time plot of the radial
velocity obtained at the mid-gap and at constant θ, over a rotation period, would be identical to
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Figure 7. (Color online) Colour maps of the polymer stretch field (left panels) and radial velocity (right panels) illustrating

other flow states where arrow-shaped structures of polymer stretch are also observed. (a) AArrowRW for Re= 100 and

Wi= 18, (b) DO for Re= 100 and Wi= 20 and (c) LArrowRW for Re= 30, and Wi= 15. As in the previous figures, a

cylindrical section (θ, z) obtained at the mid-gap is shown in each panel. Eight contours evenly spaced across the entire

range of values (indicated in the colorbar) are shown in each case. The flow direction is from left to right.
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the cylindrical sections presented in this paper. This characteristic could hence be used to detect
these structures in experiments.

Despite its age and extensive research, the classical TCF setup (inner cylinder rotating and outer
cylinder at rest) offers a great opportunity to detect previously unknown states. This is especially
true when non-Newtonian fluids, such as viscoelastic fluids, are used as working fluids, further
expanding the problem’s already large parameter space.
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8. King, G. P., Lee, Y. Li, W., Swinney, H. L. and Marcus, P. S. 1984. Wave speeds in wavy Taylor-

vortex flow. J. Fluid Mech. 141, 365âĂŞ390.
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47. Buza, G., Page, J. and Kerswell, R. 2022. Weakly nonlinear analysis of the viscoelastic

instability in channel flow for finite and vanishing Reynolds numbers. J. Fluid Mech., 940, A11

Page 34 of 34

http://mc.manuscriptcentral.com/issue-ptrsa

Submitted to Phil. Trans. R. Soc. A - Issue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

17

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

48. Choueiri, G. H., Lopez, J. M., Varshney, A., Sankar, S. and Hof, B. 2021. Experimental
observation of the origin and structure of elastoinertial turbulence. Proc. Natl. Acad. Sci. U.S.A.,
118 (45), e2102350118.

49. Itano, T. and Toh, S. 2001 The dynamics of bursting process in wall turbulence. J. Phys. Soc.
Japan 70 (3), 703âĂŞ716.
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