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A B S T R A C T   

The increasing demand for Lithium-ion batteries for Electric Vehicle calls for the adoption of sustainable prac-
tices and a switch towards a circular economy-based system to ensure that the electrification of transportation 
does not come at a high environmental cost. While driving patterns have not changed much over the years, the 
current Electric Vehicle market is evolving towards models with higher battery capacities. In addition, these 
batteries are considered to reach the End of Life at 70–80% State of Health, regardless of their capacity and 
application requirements. These issues may cause an underuse of the batteries and, therefore, hinder the sus-
tainability of the Electric Vehicle. The goal of this study is to review and compare the circular processes available 
around Electric Vehicle batteries. The review highlights the importance of prioritizing the first-life of the battery 
onboard, starting with reducing the nominal capacity of the models. In cases where the battery is in risk of 
reaching the End of Life with additional value, Vehicle to Grid is encouraged over the deployment of second-life 
applications, which are being strongly promoted through institutional fundings in Europe. As a result of the 
identified research gaps, the methodological framework for the estimation of a functional End of Life is proposed, 
which constitutes a valuable tool for sustainable decision-making and allows to identify a more accurate End of 
Life, rather than considering the fixed threshold assumed in the literature.   

1. Introduction 

The adoption of the Electric Vehicle (EV) is being promoted world-
wide through sustained policy support with the aim of reducing the 
environmental impact of the transportation sector. After a decade of 
rapid growth, the number of EVs on the road has reached 16.5 million in 
2021, triple the amount in 2018 (International Energy Agency (IEA), 
2022). This value is expected to grow even faster in the upcoming years, 
as EVs take a central position in the market share (Lowell and Hun-
tington, 2021). 

At the heart of the current EV lies the Lithium-ion (Li-ion) battery. Li- 
ion batteries dominate the EV market over other types (Lead-acid, 
Lithium-Sulphur or Nickel Metal Hydride) due to their higher energy 
density, a crucial aspect in mobility, along with other benefits such as 
longer service lives (Sopha et al., 2022), high efficiencies (Stan et al., 
2014) and a very limited self-discharge rate (Chen et al., 2012). 

Market trends show an important evolution over the years. Early EV 
models had batteries with 16 or 24 kW h of capacity. Considering the 

limited capacity, the low range was one of the biggest arguments against 
EV adoption, generating the so-called range anxiety (Riezenman, 1992) 
and, since then, battery capacities have experienced a constant increase 
over the years. Looking at the worldwide market, in 2021, the most sold 
EV was the Tesla Model Y with 75 kW h and higher capacity EVs keep 
launching on the market (e.g. Ford Mustang Mach-E with 98.8 kW h or 
Audi e-tron with 95 kW h). Fig. 1 shows the evolution of the average 
capacity of the EVs from the top 10 most-selling brands in the UK (UK 
Department for Transport, n.d.). 

However, batteries represent an important part of the cost and car-
bon footprint of the vehicle (Bauer et al., 2015; Kawamoto et al., 2019). 
Moreover, besides the emissions related to the manufacturing of Li-ion 
batteries, some of the materials required in this process (Cobalt, 
Nickel, Manganese, Lithium and Copper) are considered scarce and their 
reserves are expected to be depleted in the not-so-far future with the 
current demand trends of the market (Simon et al., 2015; Weil et al., 
2018). 

This fast EV market growth, coupled with the increased capacity of 
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recent EV models, raises fair concerns over the sustainability of EVs. The 
extensive use of resources for manufacturing large-capacity batteries 
should be backed by a need to satisfy the requirements imposed by EV 
drivers. However, considering that driving trips have not changed over 
recent years (Dalla Chiara et al., 2019), it is worth questioning whether 
the capacity increase is justified or whether it may lead to an underuse of 
the battery. 

Considering the environmental issues mentioned, some voices sug-
gest that other technologies will replace the battery EV as the central 
element in the transportation sector. Among EVs, other alternatives 
include Hybrid EVs (HEV) or Fuel Cell EVs (FCEV). A recent study 
compared, using different criteria, gasoline Internal Combustion Vehi-
cles (ICVs) with battery EVs, FCEVs and HEVs (Cremades and Canals 
Casals, 2022) stating that only when environmental aspects gain weight, 
FCEVs and battery EVs are best positioned. According to the study, 
battery EVs seem to be a transitory alternative until FCEVs reach tech-
nological maturity. Alternative fuel ICVs (hydrogen or biofuels like 
methanol) are also investigated by researchers. A recent LCA analysed 
conventional ICVs, alternative-fuelled ICVs and EVs and showed that the 
hydrogen ICV was the most environmentally friendly option in all 
impact categories (Bicer and Dincer, 2018). Nevertheless, when 
compared to FCVs, hydrogen ICVs have lower efficiencies and a higher 
environmental impact (Acar and Dincer, 2020). 

After all, whether the Li-ion battery EV is the most sustainable and 
adequate form of transportation remains under discussion. It is quite 
likely that not a single technology will dominate the market and that 
different ones will coexist (Wanitschke and Hoffmann, 2020). Never-
theless, it is clear that Li-ion EVs are going to hold an important market 
share in the upcoming years. Therefore, current trends should be 
reviewed to find gaps for improvement and, in this sense, a data-driven 
and circular economy-based treatment of the batteries should be pushed 
to make sure that the resources are used optimally and that batteries 
reach the recycling process with no residual value (Kurdve et al., 2019; 
Olsson et al., 2018). 

When discussing sustainability practices in a growing market like 
that of EVs, the circular economy provides a valuable guideline. The 
circular economy is considered a solution for harmonizing economic 
growth and environmental protection by avoiding natural resource 
depletion and environmental degradation (Lieder and Rashid, 2016). 
The circular model challenges the dominant linear one of “take, make 
and dispose” by promoting actions to maintain the value of products, 
materials and resources in the economy for as long as possible while 
minimizing the generation of waste (European Commission, 2015). 

The practices supported in this framework are related to closing, 
narrowing and slowing the resource loops (Bocken et al., 2016). Closing 
the loop refers to the recycling activities that minimize the use of new 
resources for manufacturing. Narrowing resource flows aims to use 
fewer resources per product and improve efficiency. Slowing the loop is 
related to the extension of the lifetime of a product, which defines its 

replacement speed and thus the consumption of natural resources 
required for their manufacture and the amount of waste they create 
(Stahel, 2013). 

Previous reviews are available in the literature that have considered 
the circular economy framework applied to EV batteries. Four potential 
circular economy strategies were proposed in a recent work: reduction 
or elimination of Cobalt in the batteries, reuse and recycling (Baars 
et al., 2021). All strategies allowed reducing the demand for imported 
Cobalt in Europe. However, other environmental implications such as 
demand for other materials or Green House Gas (GHG) emissions were 
not considered in the study. A different work briefly reviewed each of 
the steps in the battery lifecycle, but then focused on recycling tech-
nologies and waste preparation and pre-treatment processes (Mossali, 
2020). Other circular economy studies focus on comparing End of Life 
(EoL) processes (i.e. reuse vs recycling) of EV batteries (Ali et al., 2021; 
Pagliaro and Meneguzzo, 2019). 

All of the referenced reviews miss important circular processes and 
focus only on a few of them, leaving aside other essential aspects like 
first-life usage maximization, which is what the present study focuses 
on. In fact, according to the circular economy, first-life-related actions 
(e.g. extending the use of the battery) should be the priority and not later 
stages like reusing, repurposing or recycling. 

Consequently, this work aims to analyse the current use of the EV 
batteries and review the possible practices that can help to maximize the 
value of EV batteries. The main research questions addressed are.  

• Which are the potential causes for current battery underuse?  
• Which actions should be prioritized to avoid underuse and better use 

of resources?  
• Is the battery End of Life correctly predicted? How should it be 

defined to provide a realistic estimation of health at retirement? 

Therefore, the novelty of this study comes from: i) the potential 
underuse of the battery is analysed and highlighted as a major drawback 
to consider the EV as a sustainable form of transportation; ii) unlike 
existing reviews on circular economy applied to EV batteries, this review 
gives more weight to the first stages of the lifecycle; iii) Finally, as a 
result and key contribution, this study proposes a framework to fill an 
existing research gap related to providing an accurate estimation of the 
EoL. 

This paper is structured as follows. Section 2 analyses the current 
usage of EV batteries to evaluate their potential underuse. The different 
circular economy-based alternatives are reviewed in Section 3. Section 4 
reviews the state-of-the-art algorithms for the State of Health (SoH) 
estimation and Remaining Useful Life (RUL) prediction, highlighting 
their limitations. A framework to overcome these limitations is pre-
sented in Section 5 by presenting the State of Function (SoF) and its use 
to estimate a functional EoL. Section 6 presents the discussion and 
Section 7 finalizes the document presenting the conclusions extracted. 

2. Underuse of the batteries: driving requirements among the 
entire first-life 

This section aims to assess the actual driving requirements to eval-
uate whether batteries have the risk of being underused. Several pub-
lications have analysed the common driving distances of the European 
population. A recent study analysed data from more than one thousand 
vehicles over more than one year in different European countries (Dalla 
Chiara et al., 2019). In an urban context, the obtained results showed 
that 50% of the daily driving distances were below 5 km and 99.9% 
below 50 km. These values were significantly different for highway 
roads, where on 60% of the days less than 50 km were driven and less 
than 400 km for 99% of the days. A different study analysed values from 
German and Swedish datasets and concluded that for 75% of the days, 
the distance covered was 65 km and 72.3 km for Germany and Sweden 
respectively. (Plötz et al., 2017). This last study proposed that the daily 

Fig. 1. Evolution of the EV battery capacity over time (2016–2021).  
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driving distances can be represented using a Weibull distribution, ac-
cording to which 50% of the population drives less than 34 km and 95% 
less than 89 km. 

Finding the battery capacity requires translating the driving dis-
tances into energy consumption, for which different factors must be 
considered. The specific energy consumption of different EVs is 
commonly given by the measured consumption under the World 
Harmonized Light-duty Vehicle Test Procedure (WLTP) cycle at specific 
conditions. The authors have considered different EV models grouped by 
battery capacity to evaluate their consumption range. Other aspects, 
such as the ambient temperature or the driving style that will be dis-
cussed later in this work, increase the specific energy consumption of 
EVs. As a conservative estimation, an increase of 60% in consumption 
has been considered to account for high consumption cases (Laurikko 
et al., 2013). 

Considering the previous values and a useful battery capacity of 90% 
of the nominal one, which is the average of the EV models analysed, the 
driving ranges that different batteries can cover are presented in Fig. 2. 
The vertical lines correspond to the daily driving distances of 50% and 
95% of the population according to the Weibull distribution referenced 
previously. It can be seen how the average daily distances, considering 
the high consumption case, can be covered with the smallest 24 kWh 
battery and the 95% case with the 40 kWh one. 

A recent interview-based study showed that, even though some ex-
perts argue that to fully avoid range anxiety in users EVs should compete 
with diesel vehicles, others suggest that a 41 kWh could be enough to 
meet 95% of the driving requirements in a cold environment like 
Denmark, which is in line with Fig. 2 (Noel et al., 2020). A different 
study simulated driving trips from Switzerland and Finland and 
concluded that 90% and 85% of the driver needs in each country could 
be covered with existing EVs in 2018 (Melliger et al., 2018). According 
to Fig. 1, in 2018 the average battery capacity was between 30 and 40 
kW h. 

Therefore, it seems that battery capacities would not pose a barrier 
and that lower capacities than those appearing on the market nowadays 
are sufficient for the majority of the population in Europe. Conse-
quently, the increase in battery capacity can lead to an important unused 
battery capacity in the Beginning of Life (BoL) for many drivers. 

Nevertheless, the battery should not only be designed to meet the 
driving requirements at BoL but also to consider the entire lifetime of the 
EV until they reach the EoL. Several issues can lead to the end of the 
battery’s first life. If the vehicle suffers from a crash, is damaged or has 
reached the EoL for any other reason, the EV battery must be taken out 
of the vehicle. 

The battery might also reach the EoL when it is no longer able to 
provide the required functionalities for a specific driver, even before the 

EV has reached its EoL. Both as a consequence of time and driving, 
batteries suffer from an irreversible loss of functionalities known as 
degradation (Barré et al., 2013). The two main effects of battery 
degradation are the capacity fade and the internal resistance increase 
(Vetter et al., 2005). 

The capacity fade directly reduces the distance that the EV can cover. 
The internal resistance is related to the power that the battery can 
provide or receive without reaching its operating limits and to the self- 
heating process (Zhuo Yang et al., 2017b). In terms of power, an increase 
in the internal resistance can reduce the ability of the EV to accelerate 
and drive uphill. The increased resistance also limits the maximum 
charging power that the battery can accept, which reduces regenerative 
braking capabilities and increases charging times (Saxena et al., 2015). 
In addition, a higher internal resistance increases the heat generation in 
the battery (Wang et al., 2018), following the Joules equation, which 
entails higher losses and reduced efficiency. The additional energy 
needed to cool the battery increases the energy consumption (Lu et al., 
2010) and, if heat cannot be properly evacuated, safety issues may arise 
(Zhang et al., 2018). 

Therefore, depending on the requirements imposed by the driver, 
after a certain level of degradation, the battery may not be safe to use or 
may not be able to provide the necessary range or power. At this point, 
the battery should reach EoL and be retired from the vehicle. However, 
this is not the case when looking at the research around EV batteries, as 
the literature defines the EoL assuming a universal SoH value for all 
cases. 

Currently, the EoL criteria used for EV batteries defines that when 
the SoH falls to 70–80% the battery is no longer useful for automotive 
purposes (E. Martinez-Laserna et al., 2018a). This EoL threshold has 
been present since the development of the first low-capacity EV models. 
Setting the fixed threshold was done to avoid customers from noticing 
important losses of performance in their EV and it is useful when 
defining battery warranties. 

The first authors to question the definition of the EoL threshold were 
Saxena et al. who analysed both capacity and power requirements based 
on an EV simulation (Saxena et al., 2015). Neither the capacity fade nor 
the internal resistance increase was seen as an important impediment for 
driving with batteries below the 70–80% SoH threshold. However, their 
analysis relied on a simulation and the use of standard driving cycles, 
which are not strictly representative of real stochastic patterns (Baure 
and Dubarry, 2019). 

Later, another study on real driving trips from different European 
countries analysed statistically the energy requirements to fulfil the 
daily mobility needs (Canals Casals et al., 2019). It was concluded that 
lower values of SoH would still allow meeting the majority of the driving 
trips, which were seen to be on average 5 kWh and only occasionally 

Fig. 2. Estimated range for different battery capacities.  
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exceeded 10 kWh. It was already highlighted that the increase of the 
internal resistance and the possible start of the ageing knee should be 
further analysed to validate the hypothesis of defining the EoL at higher 
levels of degradation. 

The fixed EoL threshold is present in many research areas, such as 
those developing RUL algorithms (Catelani et al., 2021; Chen et al., 
2022), which seems to be an oversimplification, considering that this 
threshold does not follow functional criteria. 

In addition, studies that analyse the possibility of reusing EoL bat-
teries are done taking as a premise that the retired batteries will still 
have an SoH of 70–80% (Bobba et al., 2019; Janota et al., 2020). In 
many cases, especially considering large battery capacities, the battery 
may still be functional at higher levels of degradation. Therefore, if their 
first life is pushed to this functional limit, the lifespan and the func-
tionalities of the battery will be poorer, which directly affects the 
technical and economical assessment of battery reuse. 

Therefore, two critical aspects have been highlighted that hinder the 
sustainability of EVs.  

• Current battery capacities are, in many cases, significantly larger 
than the actual range needs of many drivers.  

• A universal threshold for EoL is considered in the literature, which 
does not represent a functional value. Few studies suggest that the 
value of SoH at the EoL could be lower than the currently assumed 
one. 

The increased capacity and the restrictive EoL threshold imply a 
potential underuse of the EV battery which calls for larger efforts into 
prioritizing strategies to avoid it. However, the lack of knowledge on the 
real SoH at the EoL caused by assuming a fixed threshold generates 
uncertainty around the assessment of what actions to promote. The 
following sections address these issues by first reviewing the existing 
circular practices that can be used to maximize the usage of the EV 
batteries and then by proposing a framework to estimate the functional 
EoL. 

3. Alternatives for a sustainable treatment of EV batteries 

A common representation of the circular economy is provided by the 
butterfly diagram developed by the Ellen MacArthur Foundation. The 
butterfly diagram, represented on the left side of Fig. 3, shows the 
different technical cycles that aim to maintain the materials, compo-
nents and products at their highest value at all times. The size of the 
circles represents the additional resource use that implementing each 
action entails. 

Tighter circles are those with the lowest resource leakage and envi-
ronmental impact (Ellen MacArthur Foundation, 2013). Therefore, the 
most effective cycle is to prolong the use of a product for as long as 
possible by maintaining the product in use without replacement or by 
repairing it. Similarly, the value of a product can be maintained by 
directly reusing it or redistributing it to a new user or sharing the 
product among different consumers. In this way, instead of 
manufacturing a new product, the one that already exists can serve 
several users or applications. If the product cannot be directly used, 
refurbishing or remanufacturing allows to maintain the value of the 
materials by building new products using the components and materials 
from the original one. Finally, if the product cannot be remanufactured, 
recycling allows to close the resource loop and minimize the extraction 
of new materials for the manufacturing processes. 

Referring back to the butterfly diagram, the right side of Fig. 3 shows 
the different cycles for EVs, matching the theoretical ones, which will be 
reviewed later in this section. It should be highlighted that two of the 
cycles, namely Vehicle to Grid (V2G) and functional EoL definition, are 
not considered when discussing the circular economy and EV batteries 
and thus represent a novelty of this review. 

A circular economy starts at the beginning of a product’s life cycle 
through an adequate design and efficient production avoiding carbon- 
intensive energy sources. Therefore, before analysing the processes 
represented in Fig. 3, the first step is to look at the manufacturing of Li- 
ion batteries for EVs. 

Better design can make products more durable or easier to repair, 
upgrade or remanufacture and can improve the disassembly process for 

Fig. 3. Butterfly diagram for EV batteries.  
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recycling and reuse (European Commission, 2015). Standardization of 
the battery design at all levels (Beaudet et al., 2020), battery labelling 
(Gaines et al., 2018) and design for an easy opening and disassembly of 
the battery (Erythropel et al., 2018) are examples of current lines of 
improvements. These actions would enable the automation of the 
disassembly process, which is expected to improve the profitability of 
recycling and reduce the risk associated with EoL batteries (Harper 
et al., 2019). 

An important part of EV battery research in the first stage of the 
battery lifecycle is led to developing new battery chemistries with more 
abundant materials, especially for the cathode composition (Fujita et al., 
2021). High efforts are put into reducing the dependency on Cobalt, 
which is considered to be the most critical element both for environ-
mental issues and for unethical sourcing practices (Harper et al., 2019). 
The dominant chemistries for the Li-ion cathode for EV batteries are 
NMC and LCO. However, Cobalt-free chemistries are expected to gain a 
high market share in the future. Besides Cobalt, Lithium which is used in 
all commercial chemistries is also considered critical (Weil et al., 2018) 
and its extraction requires the use of large amounts of water in regions 
where reserves are limited (Harper et al., 2019). Modifying the battery 
chemistries would reduce the supply risk of key materials while recy-
cling processes advance. 

However, regardless of the chemistry, a direct way of reducing the 
materials for manufacturing a single battery is to optimize its size. It has 
been discussed in Section 2 that most driving needs can be covered with 
lower capacities than those currently appearing in the market. The op-
tion of reducing the battery capacity can be a straightforward way of 
narrowing the resource loop and delaying the shortage of materials 
while reducing the weight of the EV, which improves its consumption. 
The minimum battery capacity needed should be further evaluated by an 
in-depth analysis of the driving needs of the population. 

Meeting driving range needs with a low-capacity battery goes hand 
in hand with the development of other parallel actions (Shi et al., 2019). 
For most drivers, large trips are sporadic and only represent a small 
share of the total ones (Plötz and Sprei, 2021). Therefore, those trips 
could be accommodated using other resources instead of increasing the 
EV range, which would remain underused most of the time. One of those 
options is counting on a properly planned network of fast chargers along 
main driving routes (Bonges and Lusk, 2016). In this way, the users 
could perform a full charge of the battery making use of a stop that is 
made anyways for long-distance travel. Alternatively, instead of using 
the EV for long-distance travel, public transport or even renting an ICV 
could be considered. 

Nevertheless, even if lower-capacity batteries could provide the 
functionalities required by most drivers, it is likely that market trends 
will not take this direction, as high autonomies are attractive to cus-
tomers. Therefore, for those cases where the battery capacity may lead 
to an underuse of the battery, new circular processes should be pursued. 
Out of the ones represented in Fig. 3, recycling was the first concept to be 
developed and is often considered the pillar to improve the sustain-
ability of the EV battery. 

3.1. Recycling 

One of the key concepts of the circular economy is closing the 
resource loop, for which recycling is the only alternative. Recycling is so 
relevant and has been so widely studied because it is a necessary stage 
that all EV batteries should reach no matter what they do before 
reaching this point. Recycling enables to decouple battery 
manufacturing from raw resource extraction. As discussed in the intro-
duction, a shortage of key materials for battery production is expected in 
the upcoming future. To tackle this issue large efforts are being put into 
the development of efficient recycling technologies. The number of 
initiatives and projects in the field has been increasing over the years. 
For example, in 2022 Hydrovolt became operative, which is Europe’s 
largest electric vehicle battery recycling plant with the ability to process 

12,000 tonnes of battery packs or around 25,000 EV batteries yearly. 
In addition, the New EU regulatory framework for batteries, pro-

posed in December 2020, considers recycling as a strategic element for 
sustainable battery development and production (European Commis-
sion, 2020). According to the regulation’s Measure 5, the recycling ef-
ficiency for Li-ion batteries targets 65% by 2025 and material recovery 
rates for Co, Ni, Li and Cu are defined for 2025. Measure 9 intends to set 
mandatory targets for the recycled content of Li, Co, Ni and Pb for new 
batteries put on the market in 2030 and 2035. Another important 
measurement (Measure 10) is establishing extended producer re-
sponsibility for batteries, which would incentivize sustainable practices 
along the entire life cycle of the product. These measures intend to 
promote the development of recycling technologies that would other-
wise not advance due to the high costs. 

Even though the technology for battery recycling has seen im-
provements in recent years, the recycling processes still do not provide a 
cost-effective alternative against raw material extraction (Beaudet et al., 
2020) and, as some studies argue, current recycling technologies in 
many cases do not achieve a reduction in the life-cycle GHG emissions 
(Ciez and Whitacre, 2019). This is a consequence of the several issues 
and limitations that EV battery recycling must face.  

• Impacts related to collection and transportation  
• Energy-intensive processes: current state-of-the-art technologies (i.e 

pyrometallurgy) use high temperatures and do not yield useful re-
sults for low Cobalt chemistries like LFP or LMO (Fujita et al., 2021).  

• Diversity of battery design: the lack of standardization, even for a 
single EV manufacturer (Gaines et al., 2018), hinders the scaling up 
of the recycling processes (Harper et al., 2019).  

• Difficulty of disassembly: the design of battery packs is not optimized 
for easy disassembly (Harper et al., 2019) as adhesives and binders 
are used to build the EV battery (Erythropel et al., 2018).  

• Low recovery rates, which hinder large-scale recycling (Gaines et al., 
2018). 

Overcoming the previous discussed limitations would enable to 
develop sustainable processes and economies of scale to boost interest in 
recycling. However, as mentioned previously, recycling comes only after 
the rest of the circular cycles are not feasible and strategies to narrow 
and slow loops should be prioritized, even if the ultimate step in the 
battery lifetime is recycling. This is especially important considering the 
lack of maturity of the commercial recycling processes. 

Consequently, before recycling, a different alternative is encouraged 
by the circular economy, which is reuse. Reuse takes the form of giving 
the retired battery a second-life in a new application before sending the 
battery to the recycling facilities. 

3.2. Second-life applications 

Considering the assumed threshold of 70–80% SoH, especially with a 
large battery capacity, an important residual value is expected when the 
battery is retired from the EV. For this reason, since the last decade, 
second-life applications have gained attention in research and business 
models, as a way to generate revenue, extend the use of the battery and 
delay the recycling process. In fact, the interest in second-life applica-
tions rose considering the burden that EoL batteries represented for 
Original Equipment Manufacturers (OEM) (Olsson et al., 2018). 

Besides recycling, battery reuse is the other key action promoted by 
European policies. The most ambitious measurement in the Battery 
Directive defines that retired batteries from EVs may not be considered 
waste if they meet the specific end-of-waste criteria, which includes an 
SoH check. The increased funding that second-life-related activities have 
received in recent years manifests this push from institutions. For 
example, the H2020 Advanced Light-weight BATteRy systems Opti-
mized for fast charging, Safety, and Second-life applications (ALBA-
TROSS) project aims to design new batteries, optimized for second-life 
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applications. 
Batteries and, in general, storage systems can be employed in a broad 

number of applications. The most common applications for second-life 
batteries are time-shifting (energy arbitrage), peak shaving, grid ser-
vices, integrations of renewables, EV charge support and capacity 
reserve (Asian Development Bank, 2018). 

Retired EV batteries can be configured in different ways for a second- 
life application. One of the options is to directly reuse the whole EV 
pack, individually or stacking several units. This strategy is more 
accepted by car manufacturers as their product is less manipulated, thus 
having less risk of failure. Stacking batteries have lower costs than other 
strategies that imply disassembling the pack and all internal components 
of the battery packs are used; thus, no waste is generated in the transi-
tion to this new life. An important issue of this strategy is related to 
communications since the EV BMS is not designed for second life and 
access to the BMS specifications is restricted by the manufacturer. In 
addition, the size and design of the system are not customizable, as the 
EV battery imposes it. Another major disadvantage of direct reuse is that 
the behaviour of the whole system depends on the worst module or cell 
that could not be changed in the transition between first and second life 
like in other possible configurations. 

Instead of using the entire battery, single modules or even cells can 
be extracted and reconfigured to create a new pack optimized for the 
new application. This configuration offers great flexibility to design the 
storage system and offers better performance as the best cells or modules 
of the pack are selected, reducing the possibility of introducing a dam-
age cell or module. On the other hand, the new modules with second-life 
cells have to be built from zero. This implies that a new module structure 
has to be designed, new components must be manufactured (new case, 
connections, sensors and BMS) and additional assembly is needed. In 
addition, as highlighted in Section 3.1, the design of current EV batteries 
makes the disassembly process complicated, relatively expensive and 
unsafe (Rallo et al., 2020). 

Being a relatively new business model, second-life applications pre-
sent several uncertainties that put into question their performance, 
economic profitability and environmental interest. 

From the performance point of view, a source of uncertainty is their 
state after retirement from the vehicle. The EV market is still in the early 
stages and therefore, few EoL batteries can provide an understanding of 
the actual degradation level at their retirement. As mentioned in Section 
2, second-life studies rely on a fixed threshold of 70–80% SoH for their 
assessment and, likely, many batteries will not have this value at EoL 
(Canals Casals et al., 2022). If the degradation level is higher, the 
technical feasibility of the second-life is reduced (Egoitz 
Martinez-Laserna et al., 2018b). 

On the economic side, it is unclear whether these applications are as 
profitable as some authors have suggested due to the cost of repurposing 
the batteries (Haram et al., 2021). Discrepancies remain between studies 
that analyse the cost of battery repurposing. A recent review concluded 
that, depending on the estimation, the repurposing costs range between 
1.29 and 55.38 €/kWh (Hossain et al., 2019). However, other studies are 
less optimistic. For example, a different publication showed that 
repurposing could cost between 87 and 360 €/kWh (Canals Casals et al., 
2014). 

In terms of the environmental impact, most studies conclude that the 
use of second-life batteries carries an associated carbon footprint 
reduction, compared to the use of new batteries for the same purpose. In 
a recent publication, a reduction in emissions of 7–31% was estimated 
(Kamath et al., 2020). Similarly, a 25% improvement in emissions was 
obtained from a Life Cycle Assessment (LCA) (Cicconi et al., 2012). 
Nevertheless, the environmental impact of second-life batteries is 
strongly linked to the expected lifetime and ageing behaviour, which is 
still uncertain (E. Martinez-Laserna et al., 2018a). Furthermore, these 
studies are based on the assumption that the second-life battery replaces 
a new one when in reality, this application would have not been 
deployed in the first place due to the high cost of the new battery (Kotak 

et al., 2021). Therefore, the reduction in emissions cannot be associated 
with the second-life battery. 

In addition, the growth of EV sales also means that the same amount 
of batteries will be reaching EoL at some point. Considering the fore-
casted demand for energy storage, several sources point out that the 
needs of this market will be saturated with second-life batteries close to 
2030–2035 (IEA, 2020; Zhao et al., 2021). Therefore, many of the 
retired batteries will have no place for a second life. 

Besides the previous uncertainties that question the feasibility of 
second-life at a large scale, as represented in Fig. 3, reusing implies 
higher resource loops, which generally creates higher leakage and 
environmental impact. Therefore, the discussion on circular economy 
alternatives should give higher weight to the battery’s first life. An 
alternative to second-life applications is V2G, which can extend the use 
of the battery while also providing similar grid services. 

3.3. V2G 

The integration of EVs into the distribution network poses several 
challenges for grid operators. EV charges can affect the load profile, 
distribution system component capacity, voltage and frequency imbal-
ances, excessive harmonic injection, power losses and the stability of the 
distribution grid (Das et al., 2020). However, the growing number of EVs 
also opens an opportunity to develop advance power management 
strategies to ease these problems (Pieltain Fernandez et al., 2011). This 
was one of the key motivations to develop smart charging algorithms 
and the so-called V2G services. 

Smart charging, sometimes also referred to as V1G, enables to con-
trol the charging of the battery to adapt it to the existing grid conditions. 
In the case of smart charging, the battery does not experience additional 
cycling, only the time and conditions of the charging process are 
modified. Smart charging can be deployed to benefit the grid by shifting 
the load demand, to the consumers by reducing the charge cost or to 
third party aggregators who trade the flexibility of the EV batteries to 
obtain economic benefit (Q. Wang et al., 2016b). 

V2G represents a step further in the control of the EV battery and it 
implies additional cycling of the battery to provide grid services. 
Considering that EVs spend most of their time parked, around 96% of the 
time (Kempton and Tomic, 2005), V2G enables EV batteries to act as 
energy storage units, rather than a pure source of energy for the vehicle 
engine. In this way, the parked EV can be used to provide the same 
services intended for second-life businesses, such as peak shaving, en-
ergy arbitrage or frequency regulation. V2G adds a new tool for value 
extraction during the entire life of the EV and can help reduce the impact 
of the integration of the EVs on the distribution grids (Pieltain Fernandez 
et al., 2011), all while generating economic revenue for EV owners (Ma 
et al., 2012). 

Even though V2G was born as a way to increase the system flexibility 
and generate new economic streams, it can also be positioned in the 
circular economy framework as a way of sharing the use of the battery 
between two applications: the primary automotive purpose and the 
secondary grid service provision. The objective of the sharing concept is 
to minimize the number of products required to meet the existing needs 
(Suárez-Eiroa et al., 2019). 

There are still a few limitations to implementing V2G in real life, 
including the additional battery degradation, energy losses, the need for 
developing robust communication protocols to support V2G and the 
additional infrastructure needed (Noel et al., 2019). To provide V2G 
services, the EV needs to support and be connected to a bidirectional 
charger supported by a communication standard that allows a bidirec-
tional power flow, which is more complex and represents an important 
investment cost (Shariff et al., 2019). 

In addition, EVs cannot access the flexibility markets individually; 
they must do it in an aggregated form to meet the minimum required bid 
sizes imposed by these markets. A key stakeholder that allows this 
operation is the Demand Aggregator (DA). Following the nomenclature 
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of Fig. 3, DAs are the service providers that have the tools to aggregate 
different assets to trade efficiently in the market. The market integration 
of the DAs, which is still limited in many cases due to legislative con-
straints (Barbero et al., 2020), is a key enabler to deploy V2G. 

Nevertheless, a big challenge of V2G is often said to be the degra-
dation caused by the additional battery use, which is highly dependent 
on the type and frequency of the service considered (Noel et al., 2019). 
Some studies suggested that V2G causes a relevant degradation of the 
battery, reducing its lifetime to 2–5 years depending on the service and 
creating the need for replacement over the lifetime of the EV (Bishop 
et al., 2013). 

However, most works are more optimistic about the feasibility of 
V2G. A study on battery degradation caused by V2G concluded that 
extreme frequency regulation and peak load shaving (providing services 
every day) created an additional capacity fade of 3.62% and 5.6% 
respectively over 10 years. If these services were provided only occa-
sionally, the degradation was reduced to 0.4–1.2% (D. Wang et al., 
2016a). Another study developed an experimental demonstration of 
V2G and argued that the additional degradation caused by the services is 
almost negligible (Shinzaki et al., 2015). 

Considering that providing driving range is the original purpose of 
the battery, V2G should not force an early replacement of the battery or 
compromise meeting the driving requirements. However, based on the 
premise that the EV battery can be used more intensively, this increased 
degradation caused by V2G (less than 6% in the studies reviewed) does 
not come as a limitation, but as an opportunity to deplete the value of 
the battery during the first life. 

Until now, the circular practices reviewed are related to developing 
new cycles to extend the use of the battery. However, a straightforward 
way to increase the sustainability of EV batteries is to extend their first 
life as far as possible, delaying the end of the first life. 

3.4. End of first life 

An important part of the research in this area is aimed at finding the 
working conditions of the battery that minimize degradation and 
therefore extend their first life. For example, several studies propose 
algorithms for optimizing the charging process (Chung et al., 2020; 
Hoke et al., 2014). 

As another alternative to extend the value of the EV battery, the 
option of redefining the EoL criteria for the first-life can be considered. 
As discussed in the introduction, currently, the functional retirement 
point of the battery is not estimated and the only available criterion is 
the 70–80% threshold. An accurate determination of the EoL can allow 
to extend the first life as much as possible until the battery should be 
retired for functional limitations and provide valuable knowledge on the 
state of the battery at the EoL. This action does not imply any additional 
investments and for that reason, this line of research has been located as 
the smallest circular cycle in Fig. 3. 

In a recent publication, Arrinda et al. presented a methodology to 
calculate the EoL threshold depending on the application, for two 
particular use cases, a high-energy application and a high-power one 
(Arrinda et al., 2021). However, to the author’s knowledge, no work has 
been developed to evaluate the driving requirements of a specific driver 
and estimate the functional EoL of their battery. The general framework 
for this estimation will be presented in this work in Section 5. To be able 
to estimate the functional EoL, an accurate estimation of the degradation 
is key. For that reason, the following section reviews existing algorithms 
for battery degradation estimation and prognosis. 

4. Battery degradation estimation and prognosis 

The ageing phenomenon is an unavoidable process that takes place 
when a battery is cycled or just stored. Degradation is a complex com-
bination of different ageing mechanisms that create an irreversible loss 
of capacities in the battery (Barré et al., 2013). Among these 

mechanisms, the thickening of the solid electrolyte interface layer at the 
anode is viewed as the main cause of Li-ion battery ageing (Han et al., 
2019). Other relevant degradation mechanisms in the anode include 
metallic lithium plating and the loss of active material (Woody et al., 
2020). 

Degradation is commonly divided into calendar and cycling ageing, 
depending on the mechanism that causes it, which can be time and the 
operation of the battery, respectively. While calendar ageing is mainly 
affected by the storage temperature and the State of Charge (SoC) 
(Dubarry et al., 2018b; Kassem et al., 2012; Wikner and Thiringer, 
2018), in cycling ageing more variables play a role. In this case, low or 
high values of the average SoC, high charge and discharge currents, high 
Depth of Discharge (DoD) and high or low temperatures are detrimental 
to the battery health (Han et al., 2019; Jaguemont et al., 2016; 
Schmalstieg et al., 2014; Vidal et al., 2019). 

One of the first challenges to estimating the degradation comes when 
looking at real operation conditions. The previously listed stress factors 
can be studied individually to understand how each one affects the 
degradation. However, this controlled operation is far from the real 
world conditions. The physical environment (temperature and humidi-
ty), where the vehicle is being used and the user’s driving pattern add 
complexity to the degradation process (Basia et al., 2021). In addition, 
battery degradation is a non-linear process, with a slower degradation at 
the beginning of life. As the degradation increases and the battery gets 
closer to EoL, the battery suffers a sudden increase in ageing where the 
main degradation mechanism changes (this point is often referred to as 
the ageing knee) (Fermín-Cueto et al., 2020). Another source of 
complexity is the so-called path-dependency of the degradation, mean-
ing that depending on the previous usage, even for the same stress fac-
tors, the degradation might follow a different trend (Dubarry et al., 
2018a; Raj et al., 2020; Su et al., 2016). With all of this in mind, it is clear 
that obtaining an accurate measurement of battery degradation, espe-
cially on-board in the BMS, is a challenging task. 

A common way to track the battery degradation is by estimating the 
SoH which is often defined as the battery capacity (QC) over the nominal 
one (Qnom) as shown in Eq. (1). In some cases, often for hybrid appli-
cations where the power has a relevant impact, the SoH is alternatively 
defined based on the current value of the internal resistance (RC), 
considering the EoL value (REoL) and the nominal one (Rnom), as shown 
in Eq. (2). 

SoH =
Qc

Qnom
(1)  

SoH =
REoL − Rc

REoL − Rnom
(2) 

However, these definitions individually do not give an accurate 
description of the state of the battery. For this reason, some authors have 
proposed a combination of both factors when defining the SoH (Knap 
et al., 2018; Lee et al., 2016). Instead of a single feature, other authors 
suggested using a matrix of several parameters to evaluate SoH (Yang 
et al., 2021). 

Degradation, however, should be understood in the context of the 
current application, knowing that each one has its own requirements. A 
degradation level that might be acceptable for one case could cause 
another one to reach EoL. For example, a taxi driver that requires a very 
high range is more sensitive to a 10% capacity fade than a user who only 
uses the EV for short distances. However, in both cases the SoH value 
would be 90% (using Eq. (1)). For this reason, a new indicator called SoF 
has been proposed in the literature. The SoF measures the ability of the 
battery to serve a particular application in its current state (SoC, SoH 
and temperature) (Balagopal and Chow, 2015). The SoF definitions 
found are limited to considering the power capability of the battery and 
often define the SoF as a 1/0 indicator (1 when it can serve the appli-
cation, 0 when it cannot) (Juang et al., 2012). Taking a 1/0 approach 
does not give a good picture of how far the battery is from not being 

M. Etxandi-Santolaya et al.                                                                                                                                                                                                                  



Journal of Environmental Management 338 (2023) 117814

8

functional or reaching the EoL. In this sense, an SoF definition going 
from 100% (at BoL) to 0% (at EoL) would allow for better management 
strategies. This approach is similar to the definition of the SoH given by 
Eq. (2), where EoL values are considered. However, the SoF should 
include other performance-related aspects and consider power, energy 
and safety-related issues. 

To be able to define the SoF and predict the functional EoL, existing 
algorithms for SoH and RUL should be coupled with the application 
requirements. For that reason, the next sections review the state-of-the- 
art algorithms for battery state estimation and prediction. 

4.1. State of Health estimation algorithms 

The current battery capacity can only be measured in laboratories, 
under specific conditions and performing a full battery discharge/ 
charge. Since this is not possible on-board, to obtain the SoH while the 
battery is inside the vehicle, algorithms must be developed. Current BMS 
estimations struggle to accurately predict the SoH of a battery, making it 
an open problem in research (Balasingam et al., 2020). In fact, many EV 
models require an external tool for estimating the SoH (e.g. Nissan’s 
LeafSpy). 

The first step for developing SoH algorithms is to find features or 
Health Indicators (HI) that can be measured or calculated from online 
data. The different HIs can be classified, based on their origin, into 
model-based, raw or analytically obtained ones (Basia et al., 2021). 
Model-based features require building a battery model, with more or less 
complexity. Among the different models proposed in the literature, 
Equivalent Circuit Models (ECM) are the most commonly employed ones 
for EVs (Zhang et al., 2014). The value of different ECM model param-
eters, such as the Open Circuit Voltage (OCV) (Fan et al., 2019), internal 
resistance (L. Chen et al., 2018a; Dai et al., 2009; Lee et al., 2016), 
diffusion resistance (Kim and Cho, 2011; Lee et al., 2016) or the diffu-
sion time constant (Attidekou et al., 2017), have been used to build SoH 
algorithms. Another work proposed to use the three parameters of an 
ECM model, along with the value of the SoC, to evaluate the SoH (Yang 
et al., 2017a). 

Raw values from the BMS can be directly inputted to build a SoH 
algorithm. A recent study considered the voltage, current and ambient 
temperature profiles to estimate the degradation level (Chaoui and 
Ibe-Ekeocha, 2017). Another algorithm was built based on the full-cycle 
battery discharge voltage profile (Lee and Lee, 2021). The voltage re-
covery, that is, the change in voltage after the EV is turned off, can be 
measured directly and has also been used as a HI of the battery (Bagh-
dadi et al., 2016). 

Analytically obtained HIs are derived from the data coming from the 
BMS. A common method to estimate the SoH is through the Incremental 
Capacity (IC) or Differential Voltage (DV) analysis. The voltage plateau 
of the discharge and charge curves turns into identifiable peaks on the IC 
and DV curves (Dubarry et al., 2006). Several features from these curves 
can be used to estimate the battery SoH, including the values and 
location of the different peaks (Ansean et al., 2019; Berecibar et al., 
2016; Wang et al., 2017; Weng et al., 2016). Other authors have built 
SoH algorithms based on the Coulombic Efficiency, calculated from the 
discharged capacity over the charged capacity for the same cycle (Yang 
et al., 2018). Other possible HIs are obtained from the CC-CV (Constant 
Current – Constant Voltage) charge. These HIs include the initial/final 
voltage and currents, the charge capacity at the CC or CV periods and the 
CC or CV time (Z. Chen et al., 2018b; Eddahech et al., 2014; Hu et al., 
2014; Zhou and Huang, 2018). Regarding discharge phases, the 
so-called excitation response level (Yu et al., 2020) or the changing rate 
of temperature (Yang et al., 2016) have been proposed as possible HIs. 

When selecting HIs different factors should be considered. Firstly, 
the HIs should be able to correlate to the SoH accurately. A study ranked 
different HIs depending on how accurately they reflected the SoH based 
on laboratory experiments, highlighting that the best correlation was 
found through a HI that measured the energy discharged at constant 

current (Li et al., 2021). However, this situation is impossible under 
driving conditions. For on-board SoH estimation, the conditions for 
which the HIs were measured in the laboratory should be reproducible 
in real-world conditions. For this reason, it was suggested that HIs ob-
tained during the CC-CV charge hold higher interest, due to the 
repeatability and stability of this process (Li et al., 2021; Liu and Xu, 
2019). Finally, considering that laboratory degradation experiments are 
costly and time-consuming, the selected HIs should try to minimize the 
test requirements. 

Once the desired HI, or combination of them is selected, a correlation 
with the SoH must be found. The algorithms that can be implemented in 
a BMS require low computational power, often taking the form of a 
lookup table or simple analytical expression. However, with the growth 
of cloud services, a new world of opportunities has arisen for battery 
management and analytics (Baumann et al., 2018; Li et al., 2020). 
Computational cost, which is one of the biggest constraints for algorithm 
implementation in the BMS, is now of reduced importance due to these 
cloud services, opening the way for more complex, Artificial Intelligence 
(AI) based methods to be used. Among these methods, Neural Networks 
(Chaoui and Ibe-Ekeocha, 2017; Yang et al., 2017a), Gaussian Process 
Regression (GPR) (Wang et al., 2017), Relevance Vector Machine (RVM) 
(Zhou and Huang, 2018) or Support Vector Regression (Z. Chen et al., 
2018b; Weng et al., 2016) are found in the literature. Employing these 
AI-based methods, combined with an adequate selection of HIs, allows 
obtaining more accurate estimations of the SoH compared to traditional 
algorithms. 

4.2. Remaining Useful Life (RUL) estimation 

Based on the knowledge built from the SoH execution, RUL algo-
rithms are designed to estimate the time before the batteries reach the 
EoL. If a robust SoH algorithm is developed, throughout the cycling of 
the EV battery, the degradation trends found can be correlated with the 
operating conditions that the battery has been subject to. In this way, the 
degradation can be projected into the future until reaching the EoL 
threshold. 

Among the different algorithms for RUL estimation, Machine 
Learning methods have gained attention in recent years, as a way of 
learning complex degradation trends from on-board data (Li et al., 
2019). A review of the different algorithms highlighted GPR and RVM as 
promising alternatives due to their nonparametric character, ability to 
perform probabilistic predictions and the good trade-off between accu-
racy and computational cost (Lucu et al., 2018). Using a probabilistic 
prediction, the RUL is not defined as a point but as a probability dis-
tribution of when the EoL event will take place. 

However, many of the existing RUL algorithms lack essential inputs 
related to the future load. Some of the proposed algorithms only include 
the cycle number, or equivalently, the charge throughput (Chen et al., 
2022; Liu and Chen, 2019). Other works include features like the tem-
perature or the DoD. For example, a cycling ageing prediction is pro-
posed using the temperature, charge and discharge c-rates, the average 
SoC and the DoD (Lucu et al., 2020). Nevertheless, this type of forecast 
does not consider the variable operating conditions of the battery during 
its lifetime. As highlighted by a recent review, the variability of opera-
tional conditions should be captured through the use of distributional 
information (von Bülow and Meisen, 2023). Up to date, only a few works 
have proposed the use of inputs contained in histograms to forecast the 
SoH. One of these works trained a GPR model with, along with other 
inputs, the time elapsed during which certain conditions are met (spe-
cific temperature, voltage and current ranges) (Richardson et al., 2019). 
Another recent study used histograms to extract relevant and indepen-
dent features and to train different Machine Learning models (Zhang 
et al., 2022). A different approach is presented in a study that obtains 
some of the inputs from applying the Rainflow Counting algorithm, 
which is commonly used in fatigue analysis (Nuhic et al., 2018). 

Although the latter histogram-based studies allow capturing, to some 
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extent, the complexity of the operational conditions, all the existing RUL 
algorithms have something in common: they consider the EoL threshold 
of 70–80% SoH, which oversimplifies the estimation. To overcome this 
limitation, in the following section the authors propose a framework to 
estimate the functional EoL and, therefore, a more realistic RUL. 

5. Results 

As a result of the performed review, the authors have highlighted an 
important gap in the literature: the functional EoL point of the battery is 
not estimated based on the use of the battery. The result of this study is 
precisely to provide the methodological framework to fill this gap. The 
authors, henceforth, highlight the issues that should be further investi-
gated and propose a methodology to define the battery EoL based on 
functional requirements. The opportunities for using the proposed 
methodology are discussed at the end of this section. 

The first step is to analyse the main limitations that could force a 
battery to reach the EoL for different use cases. This line of research 
needs to be supported by evidence from an extensive analysis of the first- 
life requirements and battery performance under different conditions to 
determine whether the commonly assumed threshold could be redefined 
for each user. Fig. 4 (Analysis and modelling), presents the different real 
driving patterns of users that must be analysed for this assessment. 
Considering that access to BMS data is often restricted due to confi-
dentiality issues, the use of synthetic cycles can be considered. These 
cycles, in combination with battery modelling and additional laboratory 
data, can be used to understand the functional limitations of the batte-
ries during driving. If access to a large dataset of driving data is acces-
sible, the steps marked as preliminary in the figure can be omitted. In 
particular, the following aspects must be further addressed, which have 
been represented in green in Fig. 4.  

• Capacity requirements: different driving patterns, representative of 
the population, should be analysed to evaluate the feasibility of 
reducing the EoL SoH threshold. Depending on the driving style, EV 
model and environmental the specific energy consumption changes. 
First of all, the road type and driving style should be considered. 
High speeds common in highway driving (Wager et al., 2016) and 
stop-start conditions of urban driving can increase the specific en-
ergy consumption (Al-Wreikat et al., 2021). In addition, the need for 
auxiliary vehicle services changes depending on the ambient tem-
perature. In this sense, in extreme temperature environments, the 
specific energy consumption increases significantly (Al-Wreikat 

et al., 2022). Finally, the efficiency of the traction system should also 
be considered. Aspects like the weight (largely affected by the bat-
tery capacity), the EV design that affects the aerodynamic or the 
on-board power electronics efficiency influence the efficiency of the 
system. Depending on these aspects, the minimum capacity re-
quirements until the EoL can be obtained.  

• Power requirements: knowing that the internal resistance increase 
reduces the available power, a highly degraded battery could not be 
able to cover the required driving needs. Higher currents can force to 
reach the operating limits of the battery faster if the current peaks 
take place at low operating voltages. In addition, under cold tem-
peratures the internal resistance increases even more and therefore, 
until the battery does not self-heat up, the power limitation may be a 
key factor to evaluate. An additional consequence of the internal 
resistance increase is the increased heat generation, following the 
Joules effect. The power of the cooling system of the EV, if it has one, 
directly defines the amount of heat that can be evacuated to maintain 
the battery in a safe operating area. If the heat generation is excessive 
additional power limitations may be imposed by the BMS. Therefore, 
the temperature, current and common DoD of the driving trips, along 
with the characteristics of the cooling system, should be understood 
to translate the power requirements into the internal resistance EoL 
value. 

• Safety requirements: Besides the previously discussed power limi-
tation related to the increased heat generation, other safety issues 
should be considered. As the internal resistance increases, a lack of 
effective cooling may cause high operating temperatures, which can 
lead to the exothermic decomposition of electrodes and electrolyte 
materials and separator shrinkage that can induce an internal short 
circuit (Zhang et al., 2018). Several events caused by degradation 
mechanisms (e.g. dendrite growth or lithium loss side reactions) and 
unbalances can lead to EV fire (Hu et al., 2021). These aspects are 
especially relevant once the battery reaches a critical point in 
degradation: the ageing knee. Studies have confirmed that the bat-
tery eventually suffers a change in the dominant ageing process, 
which drastically increases the degradation rate. At this point, 
safety-related issues, such as short circuits, are more common (Braco 
et al., 2020). Several experimental studies argue that the ageing knee 
occurs before 80% SoH (Egoitz Martinez-Laserna et al., 2018b) and 
others show that, depending on the usage and chemistry, the ageing 
knee occurs after 80% (Attia et al., 2022). Nevertheless, most studies 
use non-automotive cells which show different ageing characteristics 
than automotive ones (Braco et al., 2020). This last reference tested 

Fig. 4. Methodological framework for the driving requirements.  
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actual EV modules to evaluate the nonlinear ageing behaviour and 
found that it took place well below 80% SoH, even at 40–50% in 
some cases. Therefore, safety-related aspects should be studied as the 
battery ages to evaluate when they can force the battery EoL. 

Evaluating the previous points allows assessing whether the fixed 
EoL criterion is indeed restrictive and whether the battery EoL SoH 
could fall below 70–80% while still being functional and safe. It also can 
serve to define the issues that the SoF should include so that it accurately 
represents the functionality of the battery. 

Unlike having a universal fixed threshold for all battery sizes and 
driving requirements, the optimum EoL should be individually defined 
based on the functional limitations of each driver and the characteristics 
of the vehicle. An individual analysis should be made to evaluate, on one 
hand, the requirements that the driver expects from the battery until its 
EoL and, on the other hand, the degradation caused by their driving 
pattern and environmental conditions. With this in mind, the authors 
propose a methodology to determine the functional EoL for each case, 
based on information that is logged on the BMS. The EoL definition 
framework, represented in Fig. 5, is composed of five steps.  

1. EoL requirements: the first step is to analyse the functionalities that 
the driver requests from the battery. The historical data from the 
BMS can be used to estimate the driving range and power that the 
battery should provide until its EoL. The power needs to be trans-
lated into the threshold internal resistance value that cannot be 
surpassed, considering that the battery should work on the defined 
voltage and temperature operation range. Therefore, the output of 
this step is the functional EoL threshold in terms of capacity and 
internal resistance.  

2. SoH estimation: HIs extracted from the BMS measurements should 
be correlated to the current capacity and internal resistance, based 

on degradation models obtained from experimental data. The output 
of this step is the current capacity and internal resistance.  

3. Safety evaluation: in the BMS, safety-related indicators should be 
obtained to evaluate potential faults in the battery. These indicators 
can be obtained whenever the EV starts operating, before corrective 
actions, such as cooling, are put into place. It is out of the scope of 
this study to define the indicators that should be obtained. However, 
the reader can refer to the literature for further information, for 
example, up to 14 indicators to evaluate the safety of the battery, 
including lithium dendrite resistance or separator ageing have been 
proposed for this purpose (Yu Wen et al., 2015). However, other safe 
operation indicators can be directly obtained from the BMS cell/pack 
voltage, temperature, current, and SoC (Rezvanizaniani et al., 2014). 
The outputs of this step are the safety indicators. 

4. SoF estimation: the SoF provides an indicator for how far the bat-
tery is from the functional EoL threshold. Therefore SoF will relate 
the current state of the battery to the defined EoL threshold values. 
At BoL, the SoF has a value of 1, which decreases as the battery 
degrades. The SoF will be set to 0 whenever one of the constraints is 
met (capacity, internal resistance or safety), meaning that the battery 
has reached EoL. A possible definition for the SoF is given below 
(Eqs. (3)–(6)). Eqs. (4) and (5) relate the current health of the battery 
(step 2) to the defined threshold values (step 1). Eq. (6) considers 
safety-related aspects by comparing the current value of the safety 
indicators (Xi) to the threshold values, which are inputs to the 
analysis. 

SoF =min
(
SoFCapacity, SoFRi, SoFSafety

)
(3)  

SoFCapacity =
C − CEoL

CBoL − CEoL
(4)  

Fig. 5. Methodological framework for the functional EoL definition.  
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SoFRi =
RiEoL − Ri

RiEoL − RiBoL
(5)  

SoFsafety = min
i=1…n

(
Xi − Xi,EoL

Xi.BoL − Xi,EoL

)

(6)    

5. RUL estimation: the trends found through the SoH algorithm allow 
to project the degradation until it reaches the flexible EoL defined in 
step 1 (the SoF reaches 0), which represents the functional RUL. 

Implementing the previous methodology as a software service on- 
board can be a useful tool for EV drivers and other relevant stake-
holders. It can be useful to make a preliminary study on the technical 
and economical feasibility of different second-life alternatives, while the 
battery is still inside the EV. Tracking the SoF can also give insight into 
the intensity of the V2G services that can be provided to avoid an early 
retirement or the underuse of the battery and to estimate the require-
ment for battery replacement. Fig. 6 shows how the functional EoL 
estimation could be used to maximize the usage of a particular battery. 

After the BMS has received sufficient data to analyse the usage 
pattern of the EV driver, a first estimation of the functional RUL can be 
performed. This prediction can be contrasted with the expected lifetime 
of the vehicle. If a residual value in the battery is anticipated, V2G, to a 
lower or higher degree, can be promoted to intensify the battery usage. 

If V2G is performed, a second estimation of the functional RUL can be 
carried out to analyse whether the battery will still hold value at the EoL 
under this new working pattern. In this case, the residual value after the 
first life can be extracted through a second-life application, as long as it 
is technically and economically feasible. 

This preliminary assessment for the second-life could be performed 
while the battery is still in the EV. The possibility of performing the 

assessment on board will depend on the confidentiality of the data that 
car manufacturers may not be willing to share. However, if this is not the 
case, or if the own car manufacturer is the one responsible for the 
second-life application, this early assessment can provide several ben-
efits too. On the one hand, obtaining early information, before the EV 
EoL, could be used for planning purposes. And, on the other hand, the 
historical usage pattern and estimated SoH at EoL could be used to 
reduce the need for testing the EoL battery, which is a costly and time- 
consuming process (Hossain et al., 2019). 

6. Discussion 

This work has reviewed different processes that can be encompassed 
in the circular economy framework. Some of these processes are 
extensively presented in the literature as an opportunity for environ-
mental impact reduction (reuse and recycling). Other processes, 
although technically understood, are often omitted in this assessment 
(V2G and capacity reduction). Finally, the result of the review has been 
the exploration of a new process necessary for sustainable decision- 
making (functional EoL definition). 

Understanding which process should be prioritized requires a deeper 
and case-specific analysis. However, some generalizations can be made 
considering key criteria.  

• Criteria 1: reduction of the pressure on raw material extraction  
• Criteria 2: reduction of the costs for the battery owner  
• Criteria 3: provision of additional value (i.e. grid services) 

Table 1 shows the circular processes considered along with the 
criteria proposed indicating whether they produce a positive effect (+), 
a negative one (− ) or no effect (blank), compared with the baseline 
scenario where the battery is manufactured, used to 70–80% SoH in the 
EV and then disposed of. 

Fig. 6. Battery use decision diagram.  
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Strategies that favour the first stages of the battery lifecycle seem 
more compelling. Choosing to reduce the battery’s nominal capacity to 
lower values, reduces the cost and the use of raw materials for 
manufacturing the battery. However, it has already been discussed that 
market trends are difficult to shift, which has motivated the analysis of 
the other circular processes. 

The proposed process of defining a functional EoL helps to avoid an 
early retirement of the battery, which delays the manufacturing of a new 
battery for the same driver. In this way, throughout its lifetime the de-
mand for batteries from the same driver would be reduced, generating a 
positive impact on the cost and raw material extraction. 

Both V2G and the second life allow providing grid services and 
generate no impact on the raw material extraction, with the assumption 
that the services provided do not require an additional product in the 
baseline scenario. However, V2G can be more cost beneficial than the 
second-life, considering that, as discussed previously, V2G only requires 
the purchase of a bidirectional charger. 

Recycling appears to be the least interesting process according to the 
criteria defined. Nevertheless, although recycling currently does not 
hold an economic interest, it is a necessary action to guarantee a circular 
economy and therefore, a key element for investment and research 
efforts. 

Therefore, this review suggests putting further effort into the vehi-
cle’s first life. This idea, although well aligned with the circular economy 
guidelines presented at the beginning of Section 2, differs from other 
circular economy reviews. As highlighted in the introduction, existing 
reviews for EV batteries remain mainly focused on the last stages of the 
battery lifetime (reuse and recycling). 

The same tendency to promote recycling and second-life applications 
is also found in European policies (i.e. Battery Directive). Although in-
vestment and policy efforts should still consider these processes, 
following the idea of this study, efforts should be put into defining a 
stronger case for V2G. This includes defining safe communication pro-
tocols, legislation around demand aggregators, improvements of the 
electricity grid, technical developments of control algorithms, business 
models and a communication network between all actors (Guille and 
Gross, 2009; Uddin et al., 2018). 

7. Conclusions 

The increase in EV sales forces to adopt sustainable practices to 
reduce the environmental impact of their Li-ion batteries, especially 
considering the current trend of increased battery capacity. This work 
highlighted an important environmental problem related to the under-
use of the battery and analysed the existing and promising sources of 
circularity that could best overcome it. 

The study has shown how current EV batteries are, in most cases, far 
larger than the current driving requirements. In addition, the EoL of 
these batteries is inadequately determined and assumed to be at 70–80% 
SoH for all cases, regardless of the user requirements or their nominal 
capacity. These two factors are translated into the underuse of the bat-
tery and lack of correct information for decision-making that hinder the 
sustainability of EVs. 

The literature often considers battery reuse and recycling as the key 
elements to promote sustainability. However, this review highlights, in 

accordance with circular economy guidelines, that further effort should 
be put into the first stages of the battery lifetime. The first solution to 
avoid underuse would be to reduce the nominal capacity of the batteries, 
which are in most cases oversized considering usual range needs. 
Alternatively, V2G provides a valuable tool to increase the usage of the 
battery and provide grid services while delivering higher economic 
profit than second-life batteries. Finally, recycling, although currently 
not economically profitable, is the unavoidable last step of the lifetime 
to guarantee a circular economy. 

The possibility of extending the battery’s first life until a functional 
point has been highlighted as an under looked alternative that holds a 
high potential to improve the sustainability of EVs. To do so, the 70–80% 
SoH EoL criteria currently applied should be revised and a functional 
threshold should be defined for each EV, making sure that the battery is 
used for as long as possible in the EV while ensuring that it meets 
functional and safety aspects. In this sense, the result of the study is a 
framework that aims to estimate a functional EoL. To do so, the use of 
the SoF is proposed, which provides a better indicator of the usability of 
the battery than the SoH, by relating the current state of the battery to 
the functional requirements of each driver. 

Further work is needed to confirm in which cases the battery ca-
pacity can be reduced and the EoL postponed below 70–80% SoH. This 
study presents future lines of research, which include the evaluation of 
the capacity needs of several drivers under different environmental 
conditions, the study of the increase in internal resistance that limits the 
battery power and safety-related aspects. Nevertheless, previous studies 
are optimistic regarding the functionality of EV batteries below the fixed 
threshold and, if confirmed, this line of research can provide an 
important tool for appropriate decision-making to extract all the value of 
the battery during the first-life, avoid underuse and reduce their envi-
ronmental impact. Future work should include the evaluation of the EoL 
requirements and the application of the proposed framework to different 
EV users. 

Considering the results of the review, research, investment and 
policy efforts supporting the maximization of the battery’s first life 
should be prioritized. In this sense, reducing battery capacities should be 
pursued, V2G should be encouraged over promoting battery reuse and 
further effort should be put into extending the battery’s first life as much 
as possible. These actions are key to guarante that the electrification of 
the transportation system does not pose a larger environmental problem 
than what it aims to solve. 
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Table 1 
Comparison of circular processes.   

1. 
Costs 

2. Raw 
materials 

3. Additional 
value 

Reduction of the battery 
capacity 

+ +

Functional EoL definition + +

V2G + +

Second life   +

Recycling – +
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