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†Universitat Politècnica de Catalunya, Barcelona, Spain
E-mail: {peini.liu, jordi.guitart}@bsc.es

Abstract—Containerization technology offers lightweight OS-
level virtualization, and enables portability, reproducibility, and
flexibility by packing applications with low performance over-
head and low effort to maintain and scale them. Moreover,
container orchestrators (e.g., Kubernetes) are widely used in
the Cloud to manage large clusters running many containerized
applications. However, scheduling policies that consider the
performance nuances of containerized High Performance Com-
puting (HPC) workloads have not been well-explored yet. This
paper conducts fine-grained scheduling policies for containerized
HPC workloads in Kubernetes clusters, focusing especially on
partitioning each job into a suitable multi-container deployment
according to the application profile. We implement our schedul-
ing schemes on different layers of management (application and
infrastructure), so that each component has its own focus and
algorithms but still collaborates with others. Our results show
that our fine-grained scheduling policies outperform baseline and
baseline with CPU/memory affinity enabled policies, reducing
the overall response time by 35% and 19%, respectively, and
also improving the makespan by 34% and 11%, respectively.
They also provide better usability and flexibility to specify
HPC workloads than other comparable HPC Cloud frameworks,
while providing better scheduling efficiency thanks to their
multi-layered approach.

Index Terms—Kubernetes, HPC workloads, Deployment
Schemes, Multi-container, Fine-Grained, Task-Group.

I. INTRODUCTION

Modern computing infrastructure is evolving at a fast
pace to Cloud computing services. Containerization, as a
fundamental technology for Cloud computing, allows efficient
utilization and easy maintenance of the infrastructure. So
far, this attractive paradigm has also had an impact on High
Performance Computing (HPC) [1] [2].

Previous works have demonstrated the possibility to enable
HPC workloads on Cloud infrastructure using containers [3],
and have discussed some best practices for HPC workloads
on the Cloud [4] [5]. The deployment of containerized HPC
workloads in the Cloud is done by container orchestrators,
which have the capability to launch and manage containers
and their full life cycles, and leverage resource availability and
the user specifications to decide the placement of containers.
Several orchestrators are available nowadays such as Docker
Swarm [6], Mesos [7], and Kubernetes [8]. Kubernetes has
been widely adopted in commercial production systems , such
as Google Kubernetes Engine [9], and provides a wide and
active toolkit ecosystem.

Currently, Kubernetes is not optimized for the management
of HPC applications, as it was designed to support the au-
tonomous management of loosely-coupled long-lived online
microservices, enabling their self-healing and auto-scaling.
Although it also includes some support for short-lived batch
jobs, the tuning of their specification, scheduling, and man-
agement must rely on other algorithms and tools. For example,
Kubeflow MPI operator [10] provides a specification for MPI
applications through the execution a standalone worker and
Volcano [11] provides some plugins to enable optimized
scheduling for jobs. As the HPC community has important
performance considerations on its workloads, developing new
deployment schemes for different types of HPC workloads
that improve their performance is needed.

Our previous systematical performance studies [12] [13]
have demonstrated through standalone executions that some
types of containerized HPC applications achieve better per-
formance when exploiting multi-container deployments which
partition the processes that belong to each application into
multiple containers in each node and when constraining each
of those containers to a single NUMA (Non-Uniform Memory
Access) domain or pinning them to specific processors. How-
ever, these deployment schemes have not yet been integrated
in multiprogrammed environments for HPC workloads by
current Cloud orchestrators.

In this paper, we look for fine-grained scheduling policies
for allocating containerized HPC workloads through Kuber-
netes. The goal is to introduce our optimized management
framework to inspire HPC community developers and op-
erators on how to deploy their workloads in a fine-grained
way to improve performance and leverage containerization
and orchestration technologies. Our main contributions are:

• We present a two-layer scheduling architecture. In the
application layer, an agent decides the wrapping gran-
ularity of the HPC workload based on the characteris-
tics of the applications. In the infrastructure layer, an
MPI-aware plugin and task-group scheduling scheme
are enabled within a containerized platform scheduler.
The MPI-aware plugin decides each MPI task-container
mapping and the resource requirements/limits of each
container. The task-group scheduling scheme is used to
allocate containers to available nodes.

• We establish a real platform (so-called Scanflow(MPI)-
Kubernetes), implement the algorithms in both layers,
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and evaluate our fine-grained scheduling scheme for
containerized HPC workloads deployments.

II. BACKGROUND AND RELATED WORK

A. Orchestration of Containers in Kubernetes

Containerization is a lightweight virtualization technology
that builds upon resource isolation and limitation features
of the Linux kernel, such as namespaces and cgroups,
respectively. Currently, containerization is widely used to
pack applications because of its portability, isolation, and high
availability. Generally, there are two types of containerized
applications running in the Cloud.

• Long-lived online microservices: loose-coupled services,
each of them being an independent module to be de-
ployed or managed in the long term (e.g., Web services).

• Short-lived batch jobs: batched processing jobs, each of
them comprising a batch of tasks that are executed once
and then terminate (e.g., MapReduce, MPI, and Spark).

Kubernetes supports both types of applications. From the
users’ perspective, they submit their specifications of services
or jobs to Kubernetes, which is responsible for encapsulating
them into containers that are wrapped in Pods to be deployed
in the nodes. From the providers’ perspective, all the nodes
and resources are controlled by Kubernetes. Whenever there
is a request, Kubernetes managers have to generate the Pod
specification for each type of job or service, and select the
node (using a scheduling policy to filter and rank nodes) to
run each Pod, so that the Kubernetes node agent (i.e., Kubelet)
can launch the Pod in the selected node.

B. Enabling HPC Workloads in Kubernetes

HPC workloads are considered as batch jobs in Kubernetes.
An HPC workload is specified as a launcher and one or
multiple workers. Each launcher or worker is a container that
can be executed as a Pod and run in parallel in a Kubernetes
cluster. However, the original Kubernetes batch jobs are not
designed for supporting the HPC applications efficiently. The
specification for HPC applications is limited, thereby relevant
application-related information cannot be considered while
scheduling. Also, the Kubernetes default scheduler does not
schedule jobs but individual Pods. Thus, some add-ons have
been designed by the community to enhance the usability
when specifying and allocating HPC workloads.

Kubeflow MPI operator [10] provides a better specification
for MPI jobs which defines an MPI ’Launcher’ and an MPI
’Worker’. In most cases, all the MPI worker processes will
be launched in this ’Worker’ container. Moreover, Kubeflow
MPI operator mounts the ssh folder for all Pods belonging to
the job through a Kubernetes Secret to establish the commu-
nication. But this operator does not enhance the Kubernetes
default scheduler, thus the allocation of Pods is not considered
at the MPI job level but for each individual Pod.

Volcano [11] is an add-on for running HPC workloads on
Kubernetes. It features batch scheduling capabilities (such
as gang scheduling to make sure that a job will start to
run only when all its tasks are ready to be deployed) that

Kubernetes scheduler does not support, and also integrates
some Big Data/AI frameworks in its controller. Moreover, it
provides ssh/service plugins to deal with the Pods’ connection
and permissions and with the service discovery, and features
a customizable scheduler, so that the system operator can
choose different strategies for job scheduling.

C. Deployment and Scheduling Schemes for Containerized
HPC Workloads

Former works in this area have focused on deploying
containerized HPC workloads in traditional HPC systems.
These systems have batch-oriented workload managers or
resource managers, such as Slurm [14] or Torque, and some of
them have included container support [15]. The convergence
between HPC systems and Cloud environments has been also
explored [16] [17], but these works mainly divide the nodes
into clusters for different usage and enable the access to the
HPC cluster from the Cloud cluster.

Once the HPC workloads are containerized, they could run
on Cloud environments by directly using container orchestra-
tion platforms. Beltre et al. [2] [18] did some performance
analysis on enabling HPC workloads on Cloud infrastructure.
They analyzed the HPC workload performance while using
different container orchestrators like Kubernetes and Docker
Swarm and different networks like InfiniBand. They used the
Kubernetes default scheduler. Misale et al. [19] introduced
KubeFlux, a Kubernetes plugin scheduler that is based on
Flux graph-based scheduler. This plugin translates the Pod
into a Flux job and uses the policy within Fluxion to allocate
jobs. Saha et al. [20] showed how MPI applications can be
scheduled by Mesos using a policy-based approach.

There are also some works focusing on the policies for
scheduling HPC jobs in the Cloud. For instance, Gupta et
al. [5] presented novel heuristics for online application-aware
job scheduling in multi-platform environments. Fu et al. [21]
proposed a progress-based container placement for short-lived
containerized jobs. Aupy et al. [22] provided an optimal job
reservation strategy in scheduling to minimize the cost.

HPC community has important performance considerations
on its workloads. Therefore, trialing new deployment schemes
for different types of HPC workloads to improve their perfor-
mance is necessary. Walkup et al. [4] reported best practices
for running compute-, memory-, and network-intensive HPC
workloads on the Cloud. Medel et al. [23] conducted a
performance analysis over Kubernetes considering the de-
ployment and initialization overhead as well as understanding
the performance of different Pod settings. Moreover, they
provided a rule to decide the number of containers per pod
by considering the characteristics of the application. Our
previous papers [12] [13] demonstrated through standalone
executions that some types of containerized HPC applications
achieve better performance when exploiting multi-container
deployments which partition the processes that belong to each
application into multiple containers in each node, and when
constraining each of those containers to a single NUMA
domain or pinning them to specific processors. These works
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Fig. 1. Scanflow(MPI)-Kubernetes: A practical platform for managing HPC workloads.

show some ways to achieve better performance for HPC
workloads in the Cloud, but those insights have not yet been
integrated and utilized by the current Cloud orchestrators.

III. SYSTEM ARCHITECTURE

Our fine-grained scheduling approach for containerized
HPC workloads is built over the existing Scanflow-Kubernetes
platform [24] [25]. It is implemented both within a Scan-
flow(MPI) extension package in the application layer (see
in Scanflow-Kubernetes github repository1) and an enhanced
Volcano scheduler/controller manager in the infrastructure
layer (see in Volcano github repository2). The whole archi-
tecture of this platform is depicted in Fig. 1.

Target System: The yellow area in the figure shows the
target system focusing on the HPC workloads. From a static
design perspective, HPC workloads are defined as distributed
jobs. Typically, an MPI job in the Cloud is composed of a
launcher and one or several workers, and all the MPI pro-
cesses of the job are executed within the workers [26]. How-
ever, following the idea of using containerized instances to
decouple the processes and considering the potential benefits
of multi-container deployments for HPC workloads [12] [13],
each worker can be split into several finer-grained workers
which hold part of processes and are executed in parallel on
each node. From a dynamic implementation perspective, the
launcher and workers of a job are conducted as containerized
instances (i.e., Kubernetes Pods) executing together in the
Cloud. All the Pods belonging to the job run once for each
time the job is submitted.

1https://github.com/bsc-scanflow/scanflow/tree/mpi
2https://github.com/peiniliu/volcano/tree/peini

Application Manager: Application manager (i.e., Scan-
flow) is used as a controller of the application layer, as shown
in the green area of Fig. 1. To work with HPC workloads,
we implemented a Scanflow(MPI) extension1, which allows
the users to use the Scanflow-client Python library to easily
define and build HPC workloads locally and submit MPI
jobs to Scanflow-server to be deployed. This server can
connect with Scanflow-agents to calculate proper MPI job
granularity (number of workers and nodes to be used) and
also submit jobs to Kubernetes Control Plane to run them in a
Kubernetes cluster. We also added support for HPC workloads
in Scanflow through a granularity-aware planner agent, which
can decide the proper granularity for each user-submitted MPI
job by considering the provided application profile and the
status of the cluster nodes (see Algorithm 1 in Section IV).

Resource Manager: The blue area of Fig. 1 shows the
resource manager (i.e., Kubernetes) on the infrastructure layer.
Thanks to the Scanflow(MPI) extension described above, our
HPC workloads are well-wrapped into containers, thus we
can directly use a container orchestrator (i.e., Kubernetes) as
resource manager to finely manage the job deployment. We
can also take advantage from the wide range of toolkits in the
Kubernetes ecosystem, such as Volcano and Prometheus3.

Kubernetes Control Plane manages the cluster and responds
to cluster events. By default, it includes the API Server, etcd
database, and more relevant to this work, Controller Manager
and Scheduler. Each type of object has its own Controller
Manager to watch its life-cycle, for example, Volcano job
controller manager watches the job object, and create the pods
to run master/workers to completion. Scheduler watches pods

3https://prometheus.io/



without node assigned and selects the best node for each pod
to run on. Node selection has two steps: filtering (to find a
set of nodes that are feasible to place the pod) and scoring
(to rank the nodes to choose the most suitable placement).

Kubernetes is originally used to manage microservices,
thus the default controllers (i.e., Deployment, ReplicaSet)
are intended to manage and scale these applications. Sim-
ilarly, the default scheduler policies are also well-fitted for
deploying this type of long-running microservices. However,
the usability of the default Job controller and scheduler for
deploying HPC workloads is limited. To cope with this, we
leverage Volcano into our platform to evolve default jobs into
Volcano jobs and change the default scheduler into Volcano
scheduler. We also take advantage of the Volcano feature to
support additional scheduling plugins to implement an MPI-
aware plugin inside the Volcano job controller to configure
the hostfile and resource request of each worker. Additionally,
a task-group scheduling plugin is also implemented inside
Volcano scheduler to make scalable and balanced scheduling
for fine-grained Volcano jobs (see Section IV).

After the global scheduling decided by the Kubernetes
Control Plane, pods are stored inside etcd indicating their
assigned node. The next step is to start the pod in the
corresponding node through the Kubelet component, which
is used for maintaining the pods on nodes (e.g., starting, ter-
minating, reporting). By default, the pods could use requested
resources from the whole single node (but not more than their
specified limit). However, to do a finer-grain deployment, a
CPU/memory management policy should be configured.

HPC workloads can move to different CPUs and increase
the context switches if using shared resources, which will
degrade the workload performance. As well, related work has
shown that CPU/memory affinity could help HPC workloads
to gain performance [12] [13]. Consequently, we explore
different Kubelet settings to allocate exclusive CPUs or using
NUMA affinity. This paper evaluates two Kubelet settings:
(1) default: all pods could use shared resources in a node
under the resource limits specification; (2) CPU/memory
affinity: sets --cpu-manager-policy=static and
--topology-manager-policy=best-effort, so
that a pod will be allocated on exclusive CPUs and try
best-effort to use CPUs from a single NUMA node.

IV. FINE-GRAINED SCHEDULING

Fine-grained scheduling for containerized HPC workloads
is composed of several steps which are shown in Fig. 2. The
notations used are explained in Table I. In the master, the
application manager and the resource manager components
use their global views to decide the nodes where to allocate
the pods belonging to the job, while in each node, the resource
manager will decide the resources actually used for each pod
that is allocated on.

A. Application layer granularity selection algorithm

In the application layer, the developer defines the MPI job
(i.e., Job), including Nt, which is fixed as it specifies the
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Fig. 2. Scheduling steps for HPC workloads deployment.

TABLE I
NOTATION TABLE.

Notation Explanation
Job MPI Job metadata.
Nt Number of tasks for the Job (fixed).
Nn Number of nodes for the Job.
Nw Number of workers for the Job.
Ng Number of groups of Pods for the Job.
R(cpu,memory) Resource requirements/limits for the Job.
Pods Units to wrap master/workers of the Job.
Podiw Worker i of the Job.
Podsw Workers of the Job.
Podl Launcher of the Job.
Nodej Node j in the cluster.
Nodes Nodes in the cluster.
Map(Podiw → Nodej ) Mapping of worker i allocated to a node j.

number of MPI processes this application will start (same as
calling ‘mpirun -np 16’), and the profile of the application
(e.g., network, CPU, memory intensive), which implicitly
defines the relevant QoS, and submits it to the Scanflow API
Server. The Scanflow(MPI) planner agent is responsible for
the automatic calculation of other parameters related with the
construct/granularity of the Job according to a predefined
policy set by the admin (see step 1 in Fig. 2), as described in
Algorithm 1. In particular, it calculates Nw, Ng , and Nn. For
that purpose, the planner agent considers Nt, the application
profile, and its resource requirements. If desired, the user can
provide a default value for Nw and the agent can get the
maximum Nn from Prometheus.

We define two policies, ”scale” and ”granularity”, to de-
termine Nw. In both, each network-intensive application will
be packed into a single worker, while the CPU-intensive and
the memory-intensive applications will be split into multiple
workers, with Nw = Nn in the ”scale” policy, and Nw = Nt

in the ”granularity” policy. If no policy is set, the agent will
keep the default Nw specified by the user. Finally, the updated
MPI job with granularity will be submitted to the Scanflow
API Server, which will transmit Job to a Kubernetes cluster
through the Kubernetes Control Plane.

B. Infrastructure layer task-group scheduling

In the infrastructure layer, Kubernetes with enhanced Vol-
cano is used to control the life-cycle of the Job (see step 2 in
Fig. 2) and decide the best nodes to place the Job (see step



Algorithm 1 Granularity Selection (Planner agent)
Input: Job: MPI Job metadata, SystemInfo: System infor-

mation, Policy: Granularity policy, Profile: Job profile
Output: Job: Updated MPI Job metadata with granularity

% Agent Sensor: get job specs and system information
1: Nt, Nw ← Job
2: Nn ← SystemInfo

% Agent Rule: set granularity according to job profile
3: if (Policy = ”scale”) then
4: if (Profile = ”network”) then
5: Nn = 1, Nw = 1, Ng = 1
6: else if (Profile = ”CPU” || ”memory”) then
7: Nn = min(Nn, Nt), Nw = Nn, Ng = Nn

8: end if
9: else if (Policy = ”granularity”) then

10: if (Profile = ”network”) then
11: Nn = 1, Nw = 1, Ng = 1
12: else if (Profile = ”CPU” || ”memory”) then
13: Nn = min(Nn, Nt), Nw = Nt, Ng = Nn

14: end if
15: else
16: Nn = 1, Nw = Nw, Ng = Nn

17: end if
% Agent Actuator: update and submit the job

18: Job ← Update(Nn, Nw, Ng)
19: Submit(Job) to Scanflow API Server

3 in Fig. 2). Volcano job controller manager watches the Job
and creates a Pod for each MPI launcher/worker within the
job. However, Job needs some dynamic configuration while
generating the Pods. Thus, we enhanced Volcano job con-
troller manager with a plugin implementing Algorithm 2 to
make it MPI-aware. This plugin helps Job to allocate Nt into
Nw in a RoundRobin fashion, decide the R(cpu,memory)
for each worker, as well as generate the hostfile for all
the workers to communicate. After the initialization of the
Job, all its launcher/workers are wrapped as Pods that are
registered in Kubernetes API Server and wait for Volcano
scheduler to choose the allocated node.

Pods are the smallest deployable entities in Kubernetes, so
the scheduler decides their placement individually. However,
when enabling granularity, there are various pods that belong
to the same job, and we also aim to scale evenly the job
into multiple nodes. Therefore, we implemented a task-group
plugin inside Volcano (see Algorithm 3). The idea is to
group evenly the workers into multiple groups, enabling node
affinity for the workers within each group and node anti-
affinity among groups. This is done in two steps. First,
building multiple groups for every job and allocating worker
pods into those groups. Then, filtering for each pod the nodes
where it is feasible to schedule it (using Kubernetes default
filter), scoring those nodes (using the procedure described in
Algorithm 4), and selecting the best one.

Algorithm 3 and Algorithm 4 call some auxiliary functions:
‘sortGroupByResourceRequests’ sorts the groups from big to

Algorithm 2 Dynamic MPI-aware Job Controller
Input: Job: Job metadata with granularity
Output: Pods: Updated pods with resources, Hostfile:

Hostfile for MPI application to allocate tasks
% Step 1: get job specification

1: Podl, Podsw, Nt, Nw, Nn, R(cpu/Nt,memory/Nt)←
Job
% Step 2: allocate tasks into workers in RoundRobin

2: nTasksInWorker ← AllocateTasks(Nt, Nw)
% Step 3: set up pod resources and the hostfile according
to the number of tasks allocated

3: for i in 0 to Nw − 1 do
4: nTasks ← GetnTasks(nTasksInWorker, i)
5: Podiw ← Update(Podiw, R(cpu/Nt ·

nTasks,memory/Nt · nTasks))
6: Hostfile ← Add(Hostname(Podiw), slots=nTasks)
7: end for
8: Pods = Podsw + Podl
9: return Pods

Algorithm 3 Task-Group Scheduling
Input: Ng: Number of groups, Podsw: Worker pods, Nodes:

Nodes
Output: Podsw: Worker pods with nodes assigned allocated

% Step 1: build and allocate workers into groups
1: groups ← newGroups(N g)
2: for i in Podsw do
3: groups ← sortGroupByResourceRequests(groups)
4: selected group = groups[0]
5: AddWorkerToGroup(Podiw, selected group)
6: end for

% Step 2: predicate and priority node for worker
7: Podsw ← WorkerOrderFn(groups)
8: for i in Podsw do
9: for j in Nodes do

10: pre nodes ← PredicateFn(Podiw, Nodej)
11: end for
12: for k in pre nodes do
13: node score ← NodeOrderFn(Podiw, pre nodesk)
14: end for
15: best node ← getBestNode(max(node score))
16: Podiw ← Update(Map(Podiw, best node))
17: end for
18: return Podsw

small according to their resource request so that the workers
can be evenly added to the groups and each group has
similar resource requests; ‘WorkerOrderFn’ decides the order
of the workers taking into account that they can belong to
different groups, so it picks up a group and enqueues the
workers within the group instead of ordering the workers
just by using its id; ‘PredicateFn’ filters the nodes available
to allocate some pods by constraints such as node taints or
tolerations; ‘NodeOrderFn’ in Algorithm 4 calls ‘getNodes-



Algorithm 4 NodeOrderFn Node Score Calculation
Input: worker: Worker, node: Node
Output: score: score of worker allocated to node

1: group ← getGroupByWorker(worker)
% Step 1: base score is the number of bound task in the
same group that allocated in the node

2: bound nodes ← getNodesBoundbyGroup(group)
3: for bound node in bound nodes do
4: if bound node = node then
5: score++
6: end if
7: end for

% Step 2: count remaining tasks in the same group
8: score = score+ len(group.worker)

% Step 3: avoid other groups in the node
9: for allocated group in getGroupsInNode(node) do

10: if allocated group ̸= group then
11: score−−
12: end if
13: end for
14: return score

BoundbyGroup’, which returns the node that has been already
assigned to the pods in the group, so that when deciding the
next pod in the group, the bound node has a higher score.

C. Node affinity settings

In each node, Kubelet takes a set of Pods that are provided
through the API Server, and starts the containers described in
those pods (see step 4 in Fig. 2). By default, the containers
could use requested resources from the whole single node (but
not more than the limit), but this paper considers different
Kubelet settings to allocate exclusive CPUs or using NUMA
affinity for containers, as introduced in Section III.

V. EVALUATION

In this section, we evaluate the performance of our pro-
posed fine-grained scheduling policies for containerized HPC
workloads through typical HPC MPI benchmarks.

A. Experimental Platform

Hardware: Our experiments are executed on a five-node
K8s cluster. Each host consists of 2 x Intel 2697v4 CPUs (18
cores each, hyperthreading disabled), 256 GB RAM, 60 TB
GPFS file system, and 1-Gigabit Ethernet network.

Software: All the nodes run CentOS release 7.7.1908
with host kernel 3.10.0-1062.el7.x86 64. The Scanflow(MPI)-
Kubernetes platform is built based on Kubernetes v1.19.16
(with Docker 19.03.11, Etcd 3.4.9, Flannel 0.15.0, CNI 0.8.6,
and CoreDNS 1.7.0). Its corresponding toolkits (as described
in Section III) are Prometheus v14.3.0 and our enhancement
of Volcano2 based on v1.5.0. Additionally, we use Scan-
flow(MPI)1 version with built-in planner agent.

B. Experimental Setup and Metrics

Kubernetes Cluster Settings: Our Kubernetes cluster
comprises five nodes. We dedicate one node to hold the
Control Plane and execute the launcher of MPI applications
while the other four nodes are used to run the workers of
MPI applications. For each node, we reserve four cores for
system and Kubernetes components, thus 32 cores (16 from
each socket) can be used for the allocation of MPI workloads.

As described in Section III, by default Kubelet sets
CPU/memory affinity as none. For those experiments that
require enabling CPU/memory affinity inside Kubelet, we
configure it as --cpu-manager-policy=static and
--topology-manager-policy=best-effort.

Scheduler Settings: We use Volcano as default scheduler
in the baseline experiments. Volcano is configured by default
with the gang plugin enabled, whereas the allocations of all
the workers remain the same as Kubernetes default scheduler.

Our fine-grained scheduling policies use two-level schedul-
ing. In the application layer, the granularity selection algo-
rithm is implemented inside the Scanflow planner agent. In the
infrastructure layer, we use an enhanced version of Volcano
that implements our MPI-aware controller and also features
our task-group scheduling.

Benchmark Settings: We use the HPC Challenge bench-
mark suite4 and the MiniFE proxy application for unstructured
implicit finite element codes5. They are built with Open-
MPI v4.0.3rc3, and run with 16 MPI processes in exactly-
subscribed mode, all of them bound to all the processors
allocated to the application (i.e., 16 cores) in all the scenarios.

The specific MPI profile analysis (used to classify MPI
applications) can be found in Fig. 3 and our paper [12].
EP-DGEMM and EP-STREAM are MPI throughput appli-
cations: the former is CPU intensive and the latter is memory
bandwidth intensive. G-RandomRing Bandwidth and G-FFT
are MPI communication applications where processes need to
communicate (frequently and globally) with each other. For
application MiniFE, we set problem size as nx=ny=nz=512.
As shown in Fig. 3, it contains some MPI Allreduce com-
munications (i.e., global reduce) but they can scale without
introducing much network latency [27]. Thus the application
is categorized as memory and CPU intensive.

Scenario Settings: We consider six scenarios (see Table
II): NONE and CM are two baseline scenarios, the former
with the default settings of Kubernetes, and the latter with the
CPU/memory affinity settings supported by Kubelet. Given
the well-known benefit of tuning the CPU/memory affinity
for HPC MPI applications, we compare our policies on
top of CPU/memory affinity. Scenarios CM S and CM G
use two different strategies for agent granularity selection,
namely ’scale’(S) and ’granularity’(G), which were described
in Algorithm 1. Scenarios CM S TG and CM G TG main-
tain the benefits that the granularity policies apply in the
application layer and also show the effectiveness of using our

4http://icl.cs.utk.edu/hpcc/
5https://github.com/Mantevo/miniFE
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proposed task-group scheduling (TG) (see Algorithms 3-4) in
the infrastructure layer. Summarizing, the settings of the six
scenarios are as shown in Table II:

TABLE II
SCENARIOS SETTINGS.

Scenarios Kubelet Scanflow Volcano
NONE default default(gang)
CM cpu/memory

affinity
default(gang)

CM S cpu/memory
affinity

granularity selec-
tion ’scale’

default(gang)

CM G cpu/memory
affinity

granularity selec-
tion ’granularity’

default(gang)

CM S TG cpu/memory
affinity

granularity selec-
tion ’scale’

default(gang)+task-
group scheduling

CM G TG cpu/memory
affinity

granularity selec-
tion ’granularity’

default(gang)+task-
group scheduling

Metrics: We consider four main metrics in our evaluation:
• Job Running Time (T r

i ): the running performance of
job i.

• Job Response Time (Ti): the total wallclock time from
the instant at which the job i is submitted to the system
until it terminates [28]. It is composed of two parts: the
time Tw

i that job i is waiting and the time T r
i that job i

is actually running in parallel on multi-processing nodes.
Thus, Ti = Tw

i + T r
i .

• Overall Response Time (T ): the total response time
summed from all the jobs. T =

∑
Ti

• Makespan (Tmakespan): the time required for all jobs
to terminate. It is directly linked with utilization and
throughput, and each can be derived from the others [29].

C. Experiment 1: Schedule with one type of MPI workload

Our previous paper [12] showed that EP-DGEMM bench-
mark can improve its performance thanks to a finer-grain
deployment scheme. Thus, firstly we set an experiment with
this single type of application, and we submit 10 MPI EP-
DGEMM jobs with an arrival interval of 60 seconds.

Fig. 4 shows the average performance of the EP-DGEMM
workload in the six scenarios. Scenario CM shows better

cache utilization (less L3 misses), more local memory ac-
cesses, and less remote memory accesses than NONE sce-
nario. When enabling ’scale’ and ’granularity’ policies, we
partition each application within a larger number of con-
tainers, but fewer number of processes per container. Those
scenarios, namely CM S* (i.e., CM S and CM S TG) and
CM G* (i.e., CM G and CM G TG), have considerably less
process migrations and context-switches than NONE and CM
baseline scenarios. Moreover, for CM G* scenarios, as each
container runs a single process, this is essentially a single-
level scheduling (i.e. at the cgroup level), which is simpler
and allows to exploit processor affinity better, in a similar way
to when processes are pinned explicitly, which is an important
factor for the performance of CPU-intensive applications.
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Fig. 4. Average job running time of 10 EP-DGEMM jobs.
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Fig. 5. Overall response time of scheduling 10 EP-DGEMM jobs.

As shown in Fig. 5, the improvements in the running time
of DGEMM in those scenarios cause also an improvement
in the overall response time. In particular, CM S* have 5%
and 26% improvement and CM G* have 15% and 34%
improvement, compared to baseline scenarios CM and NONE,
respectively. Note that TG incurs no significant benefit for
DGEMM because its CPU requirements can be granted in all
cases and thereby it does not suffer imbalance problems.

D. Experiment 2: Schedule with multiple types of MPI work-
loads

In this experiment, we evaluate the effectiveness of our
policies to fit different types of workloads. We randomly
generate a submission time for 20 MPI workloads within the
interval from 0 to 1200 seconds. Workloads come from the
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Fig. 6. Results of experiment 2: the first five graphs show the average job running time of each type of workload; the last graph presents the overall response
time when scheduling 20 jobs of different types.

five benchmarks (i.e., EP-DGEMM, EP-STREAM, G-FFT, G-
RandomRing Bandwidth, and MiniFE), and each benchmark
will be run 4 times, with a random sequence.

Fig. 6 shows the average job running time of several
workloads and the overall response time in the six scenar-
ios. Baseline scenario NONE uses shared resources for all
the running workloads, thus potentially having computation
imbalance as the processes can move among the several CPUs
in the node. The randomness of these processes movement can
incur a variable performance between different executions of
the same type of job, thus impacting the average runtime.
Baseline scenario CM shows better cache utilization (less
L3 misses) and reduces remote memory accesses latency,
but introduces more memory contention for memory-intensive
applications than NONE scenario.

When enabling ’scale’ and ’granularity’ policies in CM S*
and CM G*, we partition CPU- and memory-intensive appli-
cations with more number of containers but less number of
processes per container, while the processes within a network-
intensive application remain in a single container to avoid the
network latency. As shown in Fig. 6, ’scale’ and ’granularity’
policies do not have significant effect on the network-intensive
applications (i.e., RR-B and FFT), but improve considerably
the performance of CPU- and memory-intensive applications
regarding the baseline scenarios. Task-group scheduling (TG)
has an important impact on memory-intensive benchmarks,
for instance, CM S TG can reduce a 33% the running time
of STREAM in relation to CM S. This is because by default
the scheduler randomly chooses the nodes to deploy the
pods within a same job, and some load imbalance could
introduce more memory contention and latency. TG uses even
distribution for jobs to deploy their pods into nodes, thus
maximally guaranteeing the balance of MPI applications.

Fig. 6 shows the overall response time of CM S TG has
16% and 32% improvement, and CM G TG has 19% and
35% improvement, both compared to baseline scenarios CM
and NONE, respectively. These come both from the granular-
ity selection, but also from the task-group scheduling, since
CM S TG and CM G TG have 12% and 10% performance
improvements with respect to CM S and CM G.

To evaluate the effectiveness of our two-level scheduler
for the entire workload, we show the makespan in Fig. 7,
which also presents in detail the scheduling process of each
scenario. Scenario CM S TG has 1% and 26% makespan
reduction, whereas scenario CM G TG has 11% and 34%
makespan reduction, both with respect to baseline scenarios
CM and NONE, respectively, which demonstrate how our
policies could improve overall system throughput.

E. Experiment 3: Schedule Under Different Frameworks

This experiment compares our approach to schedule MPI
workloads with Kubeflow MPI operator [10] and native Vol-
cano [11]. MPI jobs specified by Kubeflow are scheduled by
Kubernetes default scheduler. Volcano specifies jobs through
its own Job Controller and schedules them using Volcano
Scheduler, which features a gang plugin by default. Kubelet
for these two scenarios is set with CPU/memory affinity
enabled. Other settings are the same as experiment 2.

As shown in Table III, which displays the makespan for
single executions under all the evaluated scenarios, Kubeflow
framework has similar makespan to the CM baseline scenario,
because both use CPU/memory affinity settings and use the
default or default-alike scheduler. Volcano framework has an
important slowdown on makespan, because it partitions all the
workloads, even the network-intensive ones, which incur high
latency and contention. Consequently, both frameworks fail to
provide better performance than our fine-grained scheduling.
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Fig. 7. Makespan of experiment 2: scheduling 20 jobs of different types.
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Fig. 8. Job running time with different frameworks.
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Fig. 9. Job response time with different frameworks.

TABLE III
MAKESPAN COMPARISON.

Scenarios Makespan
Kubeflow 0 days, 00:42:00 (2520 s)
Volcano 1 days, 10:10:55 (123055 s)
CM 0 days, 00:42:09 (2529 s)
CM S TG 0 days, 00:41:38 (2498 s)
CM G TG 0 days, 00:37:38 (2258 s)

Fig. 8 shows the job running time of each job. Kubeflow
has a similar job running time as CM, because they do
not partition a job into multiple containers, hence CPU-
and memory-intensive workloads cannot benefit from multi-
container deployments. Contrariwise, Volcano allocates a job
by default as one process per container, and those containers
are randomly submitted to multiple nodes. Consequently,
network-intensive workloads face very important performance
degradation due to an increasing number of communications.
In scenarios CM S TG and CM G TG, some of the CPU-
and memory-intensive workloads show even better perfor-
mance than Volcano because those scenarios enable the task-
group plugin so that the group of fine-grained containers from
a same job can be evenly allocated to the nodes.

Fig. 9 shows the job response time of each job. Our fine-
grained scheduling outperforms the rest, in particular, the
container allocation in CM G TG scenario improves (or at
least equals) the running time of all the jobs, as well as their
waiting time. Volcano is the worst case, as network-intensive
workloads have an important performance degradation, thus
also introducing more waiting time for the following jobs.



VI. CONCLUSION

This paper presented fine-grained scheduling policies for
allocating containerized HPC workloads in a Kubernetes
cluster. We extended the Scanflow-Kubernetes platform to
support HPC MPI workloads and improved its two-layer
scheduling architecture, by creating new policies in both the
application-layer planner agent (i.e., enabling granularity se-
lection), as well as the infrastructure-layer Volcano controller
and scheduler (i.e., adding an MPI-aware controller and a
task-group scheduling plugin).

Our results show that the proposed fine-grained policies
can reduce the response time of HPC workloads up to 35%,
as well as improve the makespan up to 34%. Although
our benchmarks are small-scaled MPI jobs that fit in a
single node, our principles to exploit granularity are also
applicable if applications do not fit in a single node: e.g. for
network applications, one would probably use coarse-grained
granularity within each node to exploit fast shared-memory
communication, whereas CPU-bound applications could use
fine-grained granularity to exploit affinity. In the future, we
will enhance our fine-grained policies for the scheduling of
mixed HPC-AI workloads on Kubernetes, and to consider
other application profiles such as I/O applications. Moreover,
we will evaluate them in larger-scale scenarios.
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