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ABSTRACT
The use of marker-less methods to automatically obtain kinematics of movement is expanding but 
validity to high-velocity tasks such as cycling with the presence of the bicycle on the field of view is 
needed when standard video footage is obtained. The purpose of this study was to assess if pre-trained 
neural networks are valid for calculations of lower limb joint kinematics during cycling. Motion of twenty- 
six cyclists pedalling on a cycle trainer was captured by a video camera capturing frames from the sagittal 
plane whilst reflective markers were attached to their lower limb. The marker-tracking method was 
compared to two established deep learning-based approaches (Microsoft Research Asia-MSRA and 
OpenPose) to estimate hip, knee and ankle joint angles. Poor to moderate agreement was found for 
both methods, with OpenPose differing from the criterion by 4–8° for the hip and knee joints. Larger 
errors were observed for the ankle joint (15–22°) but no significant differences between methods 
throughout the crank cycle when assessed using Statistical Parametric Mapping were observed for any 
of the joints. OpenPose presented stronger agreement with marker-tracking (criterion) than the MSRA for 
the hip and knee joints but resulted in poor agreement for the ankle joint.
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Introduction

The assessment of posture on the bicycle has been used exten-
sively with the purpose of reducing injuries and improving 
performance (Holliday & Swart, 2021; R. R. Bini et al., 2011). 
This assessment involves measuring joint angles and mapping 
them against recommended ranges of motion proposed in the 
literature (R. Bini & Priego-Quesada, in press; Swart & Holliday,  
2019). Obtaining joint kinematics data involves using video 
analysis to identify bony landmarks. This process is time con-
suming because it requires accurate palpation of skin land-
marks to ensure that marker position reflects skeletal tracking 
during motion (Szczerbik & Kalinowska, 2011). Therefore, mini-
mizing the time required and errors from marker placement 
could improve the accuracy of measurements.

Marker-less methods have been explored to obtain joint 
kinematics in prior studies (D’antonio et al., 2021; Needham 
et al., 2021; Ong et al., 2017; Pagnon et al., 2022; Serrancolí 
et al., 2020). However, only Serrancolí et al. (2020) and R. R. Bini 
et al. (2022) utilized pre-trained convolution neural networks 
(CNN) based approaches to identify segmental movement and 
joint centres during cycling with the purpose of tracking move-
ment. This is beneficial because, compared to other methods 
such as optoelectronic systems and inertial measurement units 
(IMU), marker-less methods obtained from standard video cam-
era footage could reduce time required in preparing the cyclist 
for the assessment, which facilitates clinical use. As an example, 
changes in body posture on the bicycle (bike fitting) could be 
streamlined using valid mark-less methods. Differently, optoe-
lectronic systems and IMUs require specific sensors for data 

collection whilst CNN can be employed more flexibly in stan-
dard video footage taken from smartphones (e.g., OpenCap – 
Musculoskeletal forces from smartphone videos.). More impor-
tantly, using pre-trained CNN from open-source software could 
enable customisation of outputs tailored to specific needs of 
cyclists. This approach could involve determining key out-
comes from movement (e.g., minimum and maximum flexions 
and extensions) provided to the practitioner for easier use. 
However, comparison with criterion methods (i.e., marker- 
based) is missing for cycling given neural networks use differ-
ent assumptions in determining joint centres. Even though 
prior studies demonstrated strong agreement between marker- 
less methods and movements like running (Johnson et al.,  
2022; Ota et al., 2021), squatting (Ota et al., 2020) and jumping 
(Drazan et al., 2021) in relation to sagittal plane marker tracking, 
these studies utilized high frame rate (i.e., 60–125 fps) obtained 
with relatively high image resolution (e.g., 800 × 600). In addi-
tion, only Drazan et al. (2021) analysed the agreement of wave-
forms with no data on higher velocity tasks such as cycling. 
Finally, the presence of the bicycle in the field of view could be 
an element affecting the accuracy of the CNNs to properly 
identify cyclists’ body segments.

In cycling, performance of two pre-trained CNN methods 
(i.e., Microsoft Research Asia – MSRA and OpenPose) has been 
shown to be promising in determining joint angles at two 
points of the crank cycle (i.e., 3’clock and 6 o’clock; R. R. Bini 
et al., 2022). However, this study was limited to only two time 
points (i.e., no temporal comparison with the marker data) and 
used 120 fps, which limits the application of data to video 
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obtained from lower-cost smartphone cameras and webcams 
(i.e., 30 fps and standard video resolution − 640 × 480 pixels). 
Therefore, employing a statistical parametric mapping method 
(i.e., SPM; Pataky et al., 2013) could provide a temporal compar-
ison between methods to fully determine sections of the crank 
cycle where a given method is less accurate. This is important 
to analyse movement patterns, which are sensitive to exercise 
intensity (Holliday et al., 2019; R. R. Bini & Diefenthaeler, 2010), 
cadence (R. R. Bini, Rossato, et al., 2010), fatigue (R. R. Bini, 
Diefenthaeler, et al., 2010; Sayers & Tweddle, 2012), and body 
position on the bicycle (Ferrer-Roca et al., 2014; R. R. Bini et al.,  
2014) and can contribute to better inform technique training 
strategies.

Thus, this study was conducted to determine the criterion 
validity of two open-source convolutional neural networks 
(MSRA and OpenPose) in determining joint angles during sta-
tionary cycling. Even though both neural networks have not 
been potentially pre-trained using images of people cycling, 
our hypothesis was that both methods would produce good to 
excellent agreement with the criterion in determining joint 
angles during cycling. In order to compare implications for 
traditional zero-dimensional measures (R. R. Bini et al., 2012,  
2016), we also assessed the agreement from these neural net-
works in terms of mean angles and ranges of motion.

Materials and methods

Twenty-six cyclists (22 males and four females, 37 ± 10 years of 
age, 178 ± 9 cm of stature and 80 ± 11 kg of body mass) ranging 
from recreational to competitive were assessed in a single ses-
sion using their own bicycles. Cyclists should not be experien-
cing pain, injury or chronic conditions that would affect their 
exercise regime. Before data collection, all cyclists signed an 
informed consent to participate in the study, which was 

approved by the University Human Ethics Committee 
(AUTEC09/178). The sample size was calculated utilizing an 
ANOVA for repeated measurements (within factors) with an 
effect size of 0.735 (adapted from R. R. Bini et al., 2022) to 
compare three methods (criterion, MSRA and OpenPose) with 
a correlation for repeated measures of 0.30 (Burnie et al., 2020) 
and α < 0.05 and power of 0.80 using G*Power statistical pack-
age (Faul et al., 2007). Because the required sample would be 
only six participants, we expanded the sample to account for 
a larger sample size required to analyse waveforms (Robinson 
et al., 2021).

After measurements of stature and body mass, cyclists per-
formed 2-min of cycling on their own bicycles attached to a cycle 
trainer (Kingcycle, Buckinghamshire, UK) at self-selected 
cadence. Participants were instructed to sustain an intensity 
equivalent to a long duration flat cycling. A digital camera 
(Samsung ES15, Seoul, South Corea) was positioned at the height 
of their saddle, 4-m away from the bicycles to record movement 
in the sagittal plane. Reflective markers were attached by 
a trained investigator to the greater trochanter, lateral femoral 
epicondyle, lateral malleolus and pedal spindle (Figure 1). Videos 
were recorded for 20-s at the end of the 2-min of exercise at 30 
fps (640×480 of frame resolution) using automated quick shutter 
and anti-shake settings to minimize blur. The option for standard 
video rather than high-speed intended to simulate specifications 
of most lower-cost smartphone video cameras.

The results obtained using OpenPose and the MSRA meth-
ods were compared, which are a bottom-up and top-down 
deep learning-based approach designed to estimate human 
pose. These include open-source code with a very large num-
ber of users currently exploring the utility of these CNNs and 
consolidated algorithm with adapted platforms for various 
users (e.g., Windows, Ubunty, Mac, etc.). In addition, the MSRA 
presents a very fast processing CNN with easy implementation 

Figure 1. Illustration of the kinematic model used to calculate hip (θH), knee (θK) and ankle (θA) angles. Inset illustrates model used for measuring the ankle angle 
using OpenPose (OP).

2 R. R. BINI ET AL.



using Matlab of deployable tools (Markless Motion Analyser – 
File Exchange – MATLAB Central (mathworks.com)).

The MSRA method first detects the location of multiple 
people in an image, and then the body parts for each detected 
person. Differently, OpenPose computes a confidence map that 
gives the location of the body parts and a set of vector fields. 
Video files were then imported to a customized program 
adapted from a shared code. This code implements the MSRA 
method (Xiao et al., 2018) in MATLAB (R2021a, MathWorks Inc, 
Natick, MA, USA). For OpenPose, video files were processed in 
Canonical Ubuntu 20.04 LTS (Kernel GNU/Linux 5.4) using 
a customized Docker image (exsidius/openpose) to provide 
a matrix with the image coordinates for each key-point 
detected over time. In this study, OpenPose and the MSRA 
methods used models pre-trained in the COCO Consortium 
(cocodataset.org) (Lin et al., 2014) a markerless-based keypoint 
dataset containing labelled human joints in an uncontrolled 
and challenging environment whose annotations were 
obtained using a crowd labelling strategy on Amazon 
Mechanical Turk. In our study, the predicted joint centres (i.e., 
keypoints) were obtained from both methods and utilized to 
calculate hip, knee and ankle angles, as shown in Figure 1. 
Ankle angles were not calculated for the MSRA because this 
method did not identify the foot. Keypoints were gap filled 
using a 1d-median filter and a 3-samples moving average was 
utilized to reduce noise from the automated digitization prior 
to angular calculations.

As a criterion measure, hip, knee and ankle angles were also 
calculated using reflective markers digitized from each frame. 
Semi-automatic digitization was performed using a motion 
analysis software (Skill Spector, Video4Coach, Denmark). The 
median filter and moving average were also applied to the 
digitised joint centres in order to reduce filtering effects to 
comparisons with the OpenPose and MRSA methods. An offset 
was applied to the OpenPose ankle angles because these 
angles were measured differently to the reference (criterion) 
method, where the ankle was determined using the pedal axle 
(see Figure 1). Data from the two methods and the criterion 
were sectioned into ten consecutive crank cycles (from top 
dead centre to the following top dead centre position), with 
the mean temporal series from each cyclist obtained for further 
analysis. All data was time normalised to 360 points, one sam-
ple for each degree of the crank angle. Mean angle and range of 
motion from each joint was extracted for statistical analysis.

Comparison of temporal patterns was performed between 
methods using statistical parametric analyses within spm1d 
statistical package (www.spm1d.org), in MATLAB. Repeated 
measures ANOVAs were employed to assess the differences 
between methods in joint angles followed by Post Hoc compar-
isons (with Bonferroni corrections), whenever main effects were 
significant (α<0.05), using paired samples t-tests. Intraclass cor-
relation coefficients (ICC) were calculated for each crank angle 
for the “A-1” method (criterion-referenced) using an open- 
source code (https://www.mathworks.com/matlabcentral/ 
fileexchange/22099-intraclass-correlation-coefficient-icc). ICC 
values less than 0.5 were indicative of poor reliability, values 
between 0.5 and 0.75 indicate moderate reliability, 
values between 0.75 and 0.9 indicate good reliability, and 
values greater than 0.90 indicate excellent reliability (Koo & Li,  

2016). Minimum detectable changes (MDC) were calculated 
from the pooled standard error and ICCs, as described in 
(Suriyaamarit & Boonyong, 2018). Finally, Bland and Altman 
plots were produced to examine mean bias and limits of agree-
ment between neural networks and the creation for mean 
angles and ranges of motion from each joint.

Results

No significant differences were observed between the criterion 
and the MSRA method for the hip angle (Figure 2). Largest ICC 
was poor (0.27) and minimum detectable change ranged 
between 14–31°. Comparison between the criterion and 
OpenPose also have not produced significant differences. 
Largest ICC was moderate (0.77) and minimum detectable 
change ranged between 4–8°.

No significant differences were observed between the cri-
terion and the MSRA method for the knee angle (Figure 3). 
Largest ICC was poor (0.05) and minimum detectable change 
ranged between 19–42°. Comparison between the criterion 
and OpenPose also have not produced significant differences. 
Largest ICC was moderate (0.57) and minimum detectable 
change ranged between 4–8°.

No significant differences were observed between the cri-
terion and the OpenPose method for the ankle angle (Figure 4). 
Largest ICC was poor (0.32) and minimum detectable change 
ranged between 15–22°.

No significant differences were observed between the cri-
terion and the OpenPose method for the knee angle (Figure 4). 
Largest ICC was poor (0.32) and minimum detectable change 
ranged between 15–22°.

Bland and Altman’s analyses indicated that the MSRA pre-
sented larger bias and wider confidence intervals than the 
criterion for the mean hip angle (bias = 6°; 95%CI = −16°;30°) 
and mean knee angle (bias = −2°; 95%CI = −41°;36°), as shown 
in Figure 5. OpenPose presented lower bias and tighter con-
fidence intervals than the criterion for the mean hip angle (bias  
= 1°; 95%CI = −4°;7°) and mean knee angle (bias = <-1°; 95%CI  
= −7°;6°), as shown in Figure 5. MSRA presented larger bias and 
wider confidence intervals than the criterion for the hip angle 
range of motion (bias = −14°; 95%CI = −62°;35°) and knee angle 
range of motion (bias = −6°; 95%CI = −57°;45°), as shown in 
Figure 6. OpenPose presented lower bias and tighter confi-
dence intervals than the criterion for the hip angle range of 
motion (bias = <1°; 95%CI = −12°;12°) and knee angle range of 
motion (bias = 3°; 95%CI = −13°;19°), as shown in Figure 6. For 
mean ankle angle, OpenPose presented a mean bias of −3° and 
95%CI between 16° and 23°, as shown in Figure 7. For ankle 
range of motion, OpenPose presented a mean bias of −8° and 
95%CI between −38° and 22°. Mean and standard deviation 
data for all methods is presented in Table 1.

Discussion

Data from this study demonstrates that the OpenPose method 
presented stronger agreement than the MSRA method to cal-
culate angles during cycling. From analysis of the minimum 
detectable change, angles were consistently similar between 
the OpenPose and the criterion (i.e., differences of 4–8°) for the 
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hip and knee joint angles. This finding partially supports our 
hypothesis because only the OpenPose presented moderate to 
poor agreement in relation to the criterion measure for the hip 
and knee joints but not for the ankle joint.

Performance of marker-less systems has been shown to vary 
between<1° (Ong et al., 2017) and 9° (Ota et al., 2021), which is 
comparable to findings from the current study. These findings 
are new because no prior study has analysed waveforms from 

cycling exercise using two-dimensional video analysis to exam-
ine the validity of marker-less methods, which provides 
a broader application to clinical setting and bicycle fitting 
than three-dimensional analysis. Even though no significant 
differences were observed for the MSRA or the OpenPose in 
relation to the criterion, the OpenPose produced greater simi-
larity in relation to the criterion. This is evident from the smaller 
MDC for OpenPose, particularly for the hip and knee joints. For 

Figure 2. Left panel shows hip angle (HA) temporal comparison between criterion (Tracked – black) and MSRA (MSR – red) methods whilst right panel shows 
comparison between criterion (Tracked – black) and OpenPose (OP – red). SPM 1-d statistics is shown at the second level, with alpha (α) value from the Bonferroni 
correction indicated in dashed lines. Solid lines present the t statistic outputs from the post hoc analyses whilst the dashed red lines show the critical t value for 
significant differences. Intraclass correlation coefficients (ICC) across the crank cycle are shown in the third level and minimum detectable change is shown at the fourth 
level.

Figure 3. Left panel shows knee angle (KA) temporal comparison between criterion (Tracked – black) and MSRA (MSR – red) methods whilst right panel shows 
comparison between criterion (Tracked – black) and OpenPose (OP – red). SPM 1-d statistics is shown at the second level with alpha (α) value from the Bonferroni 
correction indicated in dashed lines. Solid lines present the t statistic outputs from the post hoc analyses whilst the dashed red lines show the critical t value for 
significant differences. Intraclass correlation coefficients (ICC) across the crank cycle are shown in the third level and minimum detectable change is shown at the fourth 
level.
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the ankle joint, the OpenPose method demonstrated lower 
performance in comparison to the hip and knee. Visual inspec-
tion of the videos generated by the OpenPose (supplementary 
materials) suggests that the identification of the toes was not 
always consistent, which likely increased the variability of the 
ankle joint. We can speculate that this was potentially due to 

increased blur at the foot from lower frame rate, which chal-
lenged OpenPose in accurately detecting the toes. An 
increased frame rate and image resolution should improve 
the accuracy of OpenPose.

Applications from using a marker-less method could range 
from assessing changes in motion when cyclists increase 

Figure 4. Upper panel shows ankle angle temporal comparison between criterion (Tracked – black) and OpenPose (OP – red). SPM 1-d statistics is shown at the second 
level with alpha (α) value from the Bonferroni correction indicated in dashed lines. Solid lines present the t statistic outputs from the post hoc analyses whilst the 
dashed red lines show the critical t value for significant differences. Intraclass correlation coefficients (ICC) across the crank cycle are shown in the third level and 
minimum detectable change is shown at the fourth level.

Figure 5. Bland and Altman plots illustrating the mean bias (central dashed lines) and 95% confidence intervals (upper and lower dashed lines) for the mean hip and 
knee angles comparing the criterion (Tracked) to the MSRA and the OpenPose (OP) methods.
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exercise intensity, change cadence or develop fatigue. As an 
example, ankle range of motion increases by~4° and mean 
ankle angle reduces by~3° when intensity is increased during 
cycling (R. R. Bini & Diefenthaeler, 2010). Looking at bias and 
95%CI for mean angles and ranges of motion from our study 
suggests that OpenPose may be limited in determining these 
changes. Another example of implications from errors asso-
ciated with the use of marker-less methods involves musculos-
keletal modelling (e.g., OpenCap – Musculoskeletal forces from 
smartphone videos.). Simulating changes in mean knee angle 
of<3° in terms of the moment-arm of the vastus lateralis in 
a public available model (Catelli et al., 2019) would result in 
errors of<0.14 cm, which could be deemed small. However, due 
to poor to moderate agreement in relation to the criterion, 
further research is required to fully determine the magnitude 
of these errors in terms of internal loads. Implications for 
bicycle fitting can also be explored. The first is that, most 
studies recommend a range of knee angles to optimize saddle 
position (e.g., 30–40°.; Millour et al., 2019), which would be 
measurable only using OpenPose. In addition, knee forces 
were not sensitive to changes in knee angle of~10–14° 
(R. R. Bini & Hume, 2014), which suggests that large changes 
in cycling kinematics could be detectable particularly by the 
OpenPose method.

Both marker-less methods have not been extensively pre- 
trained using cycling images or poses taken purely from the 
sagittal plane. In addition, the MRSA network has been trained 
to analyse images with a resolution of 256 × 192 pixels whilst 

the OpenPose network used the whole image (i.e., 640 × 480 of 
frame resolution). Therefore, OpenPose had increased resolu-
tion at each frame to determine joint keypoints, potentially 
explaining its better accuracy. According to Cao et al. (2021), 
the MSRA method outperformed the OpenPose by 12.3%ual 
points, considering the test set of the COCO dataset. This find-
ing contrasts with our study suggesting that it would be ben-
eficial to undertake future training of neural networks using 
cycling related images. This is particularly important for the foot 
markers given larger discrepancies were observed in relation to 
the criterion. It is possible that refining the OpenPose model re- 
training the network to better identify the foot landmarks 
would improve the accuracy of the ankle joint angles. From 
an injury prevention perspective, cyclists with knee pain have 
been shown to present with~5° greater ankle dorsi-flexion 
(Bailey et al., 2003), which may not be detectable from 
OpenPose without refinements in the neural network. It is 
also unclear if the bicycle creates an artefact for the CNN to 
appropriately determine body segments, which may need 
further investigation.

This study had limitations, including the use of two- 
dimensional motion analysis, which is subject to parallax 
errors. The choice for using a two-dimensional model was 
based on a larger uptake of this method by most clinicians 
and bike fitters. It is important though to assume that there 
would be ~ 2.2–10° of error in relation to the true movement 
of cyclists detected using three-dimensional data (Fonda 
et al., 2014; García-López & Del Blanco, 2017; Umberger & 

Figure 6. Bland and Altman plots illustrating the mean bias (central dashed lines) and 95% confidence intervals (upper and lower dashed lines) for the hip and knee 
ranges of motion (ROM) comparing the criterion (Tracked) to the MSRA and the OpenPose (OP) methods.

6 R. R. BINI ET AL.



Martin, 2001). However, this error should be systematic 
across the three methods without an influence in the com-
parison between the criterion and the marker-less methods. 
Our choice for using standard frame rate (i.e., 30 fps) was also 
in line with the fact that most lower cost cameras are limited 
in terms of frame rate, particularly those built-in Android 
devices. Results from OpenPose and MRSA may improve if 
frame rate and image resolution are higher than the currently 
used in this study. In addition, intra- and inter-session repro-
ducibility should also be explored in future research to 

inform minimum detectable changes using marker-less meth-
ods. It is possible that the use of Bonferroni corrections may 
have hindered the detection of true differences between 
methods as this correction is conservative. Supplementing 
this analysis with ICCs and MDCs should have provided 
further clarity on whether agreement was appropriate or 
not with the criterion method.

In summary, the OpenPose method presented increased 
accuracy in determining joint angles compared to the 
MSRA method. Poor correlation though was observed for 

Figure 7. Bland and Altman plots illustrating the mean bias (central dashed lines) and 95% confidence intervals (upper and lower dashed lines) for the mean and range 
of motion (ROM) for the ankle joint comparing the criterion (Tracked) to the OpenPose (OP) method.

Table 1. Means and standard deviations for mean angle and ranges of motion (ROM) for the hip, knee and ankle joints obtained from 
the tracked, MSRA and OpenPose (OP) methods.

Mean Angle ROM

Tracked MSRA OP Tracked MSRA OP

Hip angle (°) 42 ±3 35 ±12 41 ±4 40 ±3 54 ±24 40 ±5
Knee angle (°) 75 ±2 77 ±19 75 ±3 69 ±5 75 ±23 66 ±10
Ankle angle (°) 127 ±5 N/A 130 ±9 19 ±6 N/A 27 ±15

Note: N/A indicates that data has not been calculated for this method.

JOURNAL OF SPORTS SCIENCES 7



the ankle joint, which limits the accuracy of OpenPose to 
track this joint using standard video footage.
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