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Abstract
Particle tracking has several important applications for solute transport studies in aquifer systems. Travel time

distribution at observation points, particle coordinates in time and streamlines are some practical results providing
information of expected transport patterns and interaction with boundary conditions. However, flow model
complexity and simultaneous displacement of multiple particle groups leads to rapid increase of computational
requirements. MODPATH is a particle tracking engine for MODFLOW models and source code displays potential
for parallel processing of particles. This article addresses the implementation of this feature with the OpenMP
library. Two synthetic aquifer applications are employed for performance tests on a desktop computer with
increasing number of particles. Speed up analysis shows that dynamic thread scheduling is preferable for highly
heterogeneous flows, providing processing adaptivity to the presence of slow particles. In simulations writing
particles position in time, thread exclusive output files lead to higher speed up factors. Results show that above
a threshold number of particles, simulation runtimes become independent of flow model grid complexity and are
controlled by the large number of particles, then parallel processing reduces simulation runtimes for the particle
tracking model MODPATH.

Introduction
MODPATH is a particle tracking post-processing

program for MODFLOW-based groundwater flow mod-
els developed by the U.S. Geological Survey (Pol-
lock 2016). The program computes three-dimensional
advective displacement of particles following the semi-
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analytical solution of Pollock (1988). Methodology allows
particles to efficiently move toward a cell interface in a
single displacement step, being then transferred to a con-
nected neighbor cell. This process continues until particle
encounters one of several possible stopping conditions,
with displacement of one particle being independent of
the others.

Particle tracking has a variety of applications in stud-
ies of groundwater systems. Different simulation kinds
provide necessary results for construction of travel time
distributions (TTDs) at observation points and for spa-
tiotemporal characterization of particles and streamlines.
These properties are often used to understand flow patterns
in groundwater systems (e.g., Buxton et al. 1991), delin-
eate sources of water to discharging areas (e.g., Eberts
et al. 2012), determine time-dependent capture zones of
wells (e.g., Bair et al. 1991; Riva et al. 2006), and charac-
terize the interplay between chemical reactions, dispersion
and boundary conditions (e.g., Gusyev et al. 2014), among
others. Groundwater flow models with complex distribu-
tion of hydraulic properties or multiple boundary condi-
tions might require simultaneous displacement of a large
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number of particles, and consequently, Central Processing
Unit (CPU) demand. In reactive transport, different sets
of particles are needed (one for each chemical substance),
so computational requirements grow rapidly with increas-
ing complexity of chemical systems. MODPATH source
code (see Pollock and Provost 2017) is written using serial
programming, thus model runs are handled by a single
CPU. Potential for parallelization has been identified in
program stages processing particles due to independent
displacements, which would allow to take advantage of all
available computational resources simultaneously, leading
to faster results. In this regard, a prototype GPU imple-
mentation of MODPATH algorithm has exemplified the
potential for parallelization of this method (Ji et al. 2020).

Objective of this work is to incorporate distributed
processing of particles into MODPATH starting from
the current public version of the program (Pollock and
Provost 2017). Source code is written in Fortran and
parallelization is implemented using the OpenMP library
(OpenMP 2020). Performance of parallel implementation
is compared against single processor runs for two
synthetic test cases: a two-dimensional heterogeneous
aquifer with variable degree of heterogeneity and a three
dimensional layered aquifer with multiple flow boundary
conditions and different levels of grid complexity. Speed
up is discussed for variable number of particles and
processing threads, considering also different OpenMP
library configuration scenarios.

The paper is organized as follows. Methods section
presents a discussion of MODPATH flowchart, fol-
lowed by a summary of considerations regarding possible
OpenMP configurations and presentation of synthetic test
cases. Results and discussions elaborate from the speed
up quantification of endpoint and timeseries simulations
of test cases. Conclusions summarize results from imple-
mentation, revisiting interaction between aquifer model
characteristics and parallel library configuration.

Methods

MODPATH
Current version of the software is implemented

in Fortran following an object oriented programming
paradigm and works as a module independent of MOD-
FLOW (Pollock 2016), thus the particle tracking process
is decoupled from the groundwater flow model. It pro-
vides compatibility for models based on MODFLOW-
2005 (Harbaugh 2005) and MODFLOW-6 (Langevin
et al. 2017), for both structured and rectangular unstruc-
tured grids (see Pollock 2015).

MODPATH displaces particles through flow model
cells until an stopping condition is met. These include
for example encountering a boundary face, reaching the
maximum tracking time, or landing in a cell with sink
flows. The latter depends on the specific configuration of
the particle tracking model because in some scenarios,
mostly while considering flow models with coarse reso-
lution, particles might be still allowed to displace inside

these cells, in which case these are known as weak sinks.
Different approaches for modeling weak sink cells have
been addressed in literature (Visser et al. 2009; Abrams
et al. 2012). Since the displacement of one individual
particle is independent of the others, there is signifi-
cant potential for parallelization, in particular, for parti-
cle tracking models with high computation requirements.
For example, a transient groundwater flow model of an
aquifer with a complex distribution of hydraulic proper-
ties, multiple flow boundary conditions and simultaneous
displacement of several particle groups, is an scenario eas-
ily found in reactive transport analysis of hydrogeologic
units.

Program initializes reading a configuration file that
specifies data related to MODFLOW model and particle
tracking process (Figure 1). Depending on the type of sim-
ulation (endpoint, timeseries, pathline) and configuration
parameters, a simulation stop time T stop is determined.
The program has three relevant nested loop structures. The
outermost structure is the time step loop, which runs over
the MODFLOW time steps individually, defined from all
of the flow stress periods. For each loop, MODPATH com-
putes the maximum time for the current flow conditions
tsmax and once this limit is reached, flow related arrays are
updated. The middle loop structure is the tracking loop,
which sets the maximum tracking time tmax, depending on
the simulation type. This time is not necessarily the same
as tsmax. For example, in a timeseries simulation it is pos-
sible that the user defines smaller output time steps than
the time step of the flow model. In this case, the program

stop

max

max

max max

stop

No

Yes

No

No

Figure 1. MODPATH simplified flowchart. Particles loop is
parallelized with OpenMP.
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will perform several tracking stages until tsmax is reached.
The innermost loop runs over particles, where each one
is displaced individually and this is the stage with highest
potential for parallelization. At this point, it is impor-
tant to remark that algorithm for particles displacement
and determination of stopping conditions while consider-
ing the parallel implementation, remains exactly the same
as the original MODPATH. For more details about these
procedures the reader is referred to Pollock (1988, 2016).

In MODPATH, timeseries simulations can be chosen
to visualize the temporal evolution of particle clouds. This
is often used to understand, for instance, the interaction
between transport and flow patterns in groundwater
systems. Usually, these type of simulations are configured
in such a way that particles positions are written to
output files at user defined times or equispaced by a
given time interval. These simulations are particularly
challenging when considering multiprocessing because the
writing to output files is performed within the particles
loop. This and other related aspects when considering
multiprocessing for the program are discussed in the
following.

Multiprocessing
Practical considerations have arisen from integrat-

ing multiprocessing into MODPATH due to the interac-
tions between the program structure and the OpenMP
library configurations. Before discussing these in detail,
some concepts related to OpenMP need to be introduced.
Specifically, sections of the code executed in parallel are
known as parallel regions and a single process within
these sections is known as a thread (OpenMP 2020).
Throughout this article, multiprocessing and parallel pro-
cessing are used indistinctively to indicate that tasks are
distributed among several threads on a single computer,
with the concept of threads closely related to computing
cores.

In MODPATH, particles are displaced by a tracking
engine represented in source code by an object class that
manages the displacement procedure between flow cells
and verifies stopping conditions. Current implementation
of tracking engine contains flow related arrays as class
properties used for the initialization of flow cell velocities.
In order to parallelize MODPATH, the tracking engine
needs to be independent for each processing thread
to avoid memory inconsistencies. That is, each thread
has to manage a different particle history and current
flow model cell. OpenMP library allows defining thread
private objects by creating independent copies managed
by each thread. Replication of the tracking engine in its
current form would also mean that flow related arrays are
replicated unnecessarily inside the parallel region. Since
flow models may be composed of millions of cells, this
can be memory demanding. To overcome this problem, the
implementation of particles multiprocessing considers the
introduction of an intermediate object that handles flow
model information, which is stored centrally. The latter
is accessed from the tracking engine through a pointer

which can be easily replicated without significant impacts
on system memory.

Similarly, some considerations should be taken into
account for timeseries and pathline simulations. For these,
MODPATH writes output records while being inside the
particles loop. As each processing thread operates inde-
pendently, it is possible that more than one thread tries to
write a record to an output unit, which may generate data
corruption if not handled appropriately. For such situa-
tions, OpenMP library provides thread exclusive clauses
that block a portion of code execution for other threads if
one is performing such instructions. Nevertheless, when
thread exclusive operations are performed with high fre-
quency, blocking clauses may reduce the efficiency of
parallel implementation. For comparison purposes, three
different output procedures are discussed for timeseries
simulations: (1) all threads write exclusively to a sin-
gle output unit using OpenMP critical directive; (2)
threads write to specific binary output units which are then
consolidated into a text-plain file at the end of timeseries
step; and (3) thread exclusive text-plain output units are
not consolidated. In the case of the consolidated proto-
col, the output of thread specific units is recollected after
each timeseries step in order to preserve sorting of time
indexes.

Another important aspect to consider for multipro-
cessing is the workload distribution protocol while MOD-
PATH is executing the parallel loop. This is known as
scheduling and specifies the distribution of loop indexes
(particles) to be processed by each thread. In this article,
two scheduling strategies are discussed. The first one is the
static scheduling with balanced distribution of parti-
cles. In this case, the number of iterations is approximately
the same for each thread and particles to be processed are
specified only once before entering the parallel region. It
is a good approach for models where simulation time is
approximately the same for all particles. The latter how-
ever, is not necessarily true in real groundwater systems.

Particles are displaced sequentially between flow
model cells, involving a cell initialization stage before
computing displacements. This means that the computa-
tional time required for processing the trajectory of par-
ticles can be different, most notably, in scenarios with
non-uniform flow where the length of streamlines is influ-
enced by the spatial variability of hydraulic properties. To
exemplify this, consider a timeseries simulation writing
particles position at regular time intervals, using a model
aquifer with non-uniform velocity distribution. A parti-
cle moving along a streamline of relatively high velocity
will travel through a higher number of cells compared
to slower particles for the same simulation time interval.
Consequently, faster particles will require the initialization
of a higher number of flow cells. Differences in loop time
for each particle may be further influenced by outflow
boundaries that also act as stop conditions.

Different processing times for particles motivate
the analysis of dynamic scheduling, which distributes
particles to be processed by each thread during runtime.
A new particle is assigned after the completion of the
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Figure 2. OpenMP specification for parallel particles loop in MODPATH. Memory state for all loop variables is explicitly
declared as shared, private or firstprivate. Counters are declared with a summation reduction clause.

current. The advantage of this approach is that it reduces
the likelihood of threads being idle. A thread processing
a slow particle, at the end of the simulation, might have
processed a smaller total amount of particles than others,
without necessarily delaying the total simulation time.
The possibility of unbalanced distribution of processed
particles, gives to the program some adaptivity to the
particles TTD. This can favor some hydrogeological
settings, like for example a highly heterogeneous system.
The distribution of particles during runtime in dynamic
scheduling introduces some overhead in comparison to
static scheduling. The impact that this effect might
have in MODPATH simulation times is discussed in the
following sections.

An additional aspect to consider for multiprocessing
is that MODPATH stores the particles in a list, assigning
particles’ indexes according to the position in which they
appear in this list. In the serial implementation particles
are processed sequentially, which means that output files
will present sorted particles indexes. With the parallel
implementation the list of particles is not necessarily
processed in order, hence output files will not display
sorted particles indexes regardless of the scheduling
protocol. Because particles are displaced independently,
this does not cause issues in the context of the program,
however leads to visible differences in output files, so
attention should be paid in cases where post-processing
tools rely on sorted particles indexes while reading output
files from parallel model runs. At this point, it is important
to remark that output results from single thread and
parallel runs of models discussed in the following sections
were verified to be equivalent in value. For reference,
OpenMP specification enabling parallel particles loop is
shown in Figure 2. By default OpenMP library considers
that all variables within parallel loops are shared
between threads, except the loop index. However, in some
cases this may lead to memory inconsistencies specially
in complex loop structures. To avoid this issue, memory
state of all loop variables is forced to be explicitly

defined with the clause default(none). Depending
on their functionality, memory states are declared as
shared, thread private or initialized with the same
values for all threads and then private (firstprivate).
Similarly, counters increasing their values within the
parallel loop should be declared with a reduction
clause for consistent results.

Synthetic Test Cases
This section presents synthetic test cases aimed at

evaluating the performance of MODPATH parallelization
under different scenarios. Simulations are performed on
a desktop computer with an Intel® Core™ i7-9700 CPU
@ 3.00GHz processor. For each test case, the number
of processing threads N is modified in integer powers
of 2 between 1 and 8, and parallel MODPATH code
is compiled with gfortran@9.2.1 (Free Software
Foundation 2020) on a linux system. CPU performance
is compared considering the elapsed time reported by
MODPATH, which measures the time employed by the
outermost loop (Time Step Loop in Figure 1), including
the writing to output files in the case of timeseries and
pathline runs, but not the reading of input configuration
and MODFLOW files. In this regard, an additional
variable that could influence overall performance is the
kind of disk where data is being written (Solid State
Drive, SSD; or Hard Disk Drive, HDD). This would not
be the case however for the time reported in endpoint
simulations, because output files in this case are written
after the outermost loop. For the simulations of this article,
observed speed up due to parallelization was in general
similar while writing to SSD or HDD, with the exception
of one scenario addressed with more detail in results and
discussion.

The first test case (TC1) consists of a two-
dimensional heterogeneous aquifer under steady-state flow
conditions (Figure 3). Objective of this test is to evaluate
performance of parallel MODPATH under different sce-
narios of heterogeneity, and hence, spatial variability of
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y(m)

x(m)

Figure 3. Synthetic two-dimensional heterogeneous aquifer
(TC1). Vertical black line near the origin marks particles
injection and white lines show reference streamlines for
σ 2
Y

= 2.5.

Table 1
Parameters for Synthetic Test Case TC1

Parameter Value Unit

Cell size �x , y 1 m
Correlation length I Y 10 m
Aquifer length Lx 1500 m
Aquifer width Ly 300 m
Inlet constant head C

in
h

1510 m
Outlet constant head C

out
h

10 m
Aquifer variance σ 2

Y
0.1–5 —

flow velocities. For these purposes, a domain discretized
in 1500 × 300 cells of size �x = �y = 1[m] is con-
sidered (Table 1), with a spatial distribution of hydraulic
conductivity constructed from one realization of a sequen-
tial Gaussian simulation, denoted as Y (x), characterized
by an isotropic exponential variogram with correlation
length of I Y = 10[m], zero mean, and unit variance. The
hydraulic conductivity is determined according to K(x) =
exp(σY Y (x)). The degree of heterogeneity is therefore
controlled by the variance σ 2

Y , while preserving the under-
lying conductivity patterns across test runs. Groundwater
flow is induced by a unit mean pressure gradient oriented
along the x -axis. Models are solved with MODFLOW-6
and convergence is verified for each simulation. Particles
are injected near the aquifer inlet, uniformly distributed
at xo = 10[m]. The number of injected particles N p is
increased between 103 –107. A set of endpoint simula-
tions for different values of σ 2

Y are used to compare thread
scheduling strategies. Simulations are configured to dis-
place all particles until reaching the aquifer outlet.

The second synthetic test case (TC2), considers a
layered three-dimensional aquifer subject to several flow
boundary conditions. The objective of this test case is
to analyze the improvement due to parallelization in
more practical and complete groundwater model scenar-
ios, involving recharge, pumping wells, river and drain
boundary conditions. The problem is based on one of
the examples provided in the current MODPATH repos-
itory (ex03_mf6 in Pollock and Provost 2017), with
model parameters reinterpreted in SI units (Table 2). The
example has been modified with grid refinement near rele-
vant boundary conditions to also consider an unstructured

Table 2
Parameters for Synthetic Test Case TC2

Parameter Value Unit

Flow rate W1 QW 1 −7.5 × 104 m3/d
Flow rate W3 QW 3 −1 × 105 m3/d
Hydr. cond. Kxx , yy {50, 0.01, 200} m/d
Hydr. cond. K zz {10, 0.01, 20} m/d
Layer height �z {130, 20, 200} m
Spec. yield S y 0.1 —
Spec. storage S s 1 × 10−4 1/m
Recharge qR 5 × 10−3 m/d
River stage Rs 320 m
River bot. Rb 317 m
River cond. CR 1 × 105 m2/d
Drain elev. De 322.5 m
Drain cond. CD 1 × 105 m2/d

Layered properties are shown in curly brackets from top to bottom layer.

quadtree grid (Figure 4). The domain is composed of three
homogeneous layers that represent two aquifers separated
by an aquitard. Hydraulic conductivity for both top and
bottom aquifers present vertical anisotropy (K zz <Kxx ,
Kyy ), while the two horizontal values are considered to
be the same. The original structured grid was composed
of N str

cpl
= 420 cells per layer, but after refinement this

number has grown to N
usg

cpl
= 1464. The system is sub-

jected to homogeneous recharge with an east-side river
boundary condition. The problem analyzes trajectories of
particles released from the surface layer, influenced by
two pumping wells acting individually on the top and
bottom aquifer (W1 and W3 respectively). The default
test case configuration allows particles to pass through
weak sink cells. MODPATH simulation considers time-
series runs with 5 and 30 time snapshots of particles
location (TS5 and TS30 respectively) to quantify perfor-
mance improvements under different output conditions.
Snapshots are homogeneously distributed along the time-
series simulation time. Unstructured grid simulations are
also performed considering the same output conditions.
Like previous test case, the total number of injected par-
ticles is systematically increased. Particles are uniformly
released from the uppermost face of four cells in the top
aquifer, injected in 10 stages every 20 days of simulation
time. The final injection time is small compared to the
final timeseries time (T ts = 60,000[d ], T inj /T ts ≈ 0.3% ).
This test considers 3 flow stress periods, although val-
ues for boundary conditions remain the same during the
simulation: an initial steady-state, a second transient flow
with 10 time steps, and a final stress period also at steady-
state. This means that for TC2, MODPATH will employ
some simulation time in updating the flow model arrays,
which is currently performed in serial. This reduces the
potential speed up factor due to parallelization of the par-
ticles loop because in the total elapsed time used for
comparison, there is a higher proportion of mandatory
serial operations in comparison to a fully steady-state flow
model.
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(a) (b)

y(m)
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Figure 4. Synthetic three-dimensional layered aquifer (TC2). a) Original structured grid, b) modified unstructured grid. In
both panels, scatter points indicate the particles release area.

Results and Discussion

Thread Scheduling
Runtimes from TC1 simulations obtained with differ-

ent thread scheduling strategies are used to determine the
best protocol for parallelizing MODPATH under different
scenarios of heterogeneity. Regions of low and high pixel
values of the aquifer realization Y (x) will have lower and
larger hydraulic conductivity values, respectively, when
increasing the aquifer variance σ 2

Y . For a fixed pres-
sure gradient, this means that minimum and maximum
flow velocities are also influenced by this parameter.
MODPATH will displace all particles until reaching the
aquifer outlet. So, increasing the variance leads to longer
simulation times, as shown in Figure 5a. This occurs con-
sistently for both static and dynamic thread schedul-
ing protocols. Simulation times with the latter are lower
for all scenarios of heterogeneity, indicating that improve-
ments in time due to dynamic scheduling are able to
compensate the expected overhead from the assignment
of particles during runtime.

Increasing the number of processing threads leads
to significant differences in the runtime obtained with
different threading protocol. The ratio between simulation
times Tdyn /T sta for a fixed number of particles is shown
in Figure 5b. In runs with 1 or 2 threads, the ratio
is close to 1, and the impact of scheduling strategy
is not noticeable, even for large aquifer variances.
However, simulations with 4 and 8 threads exhibit an
important reduction of the computational time when
dynamic scheduling is used. For higher values of aquifer
variability and N = 8, the simulated ratio indicates that
dynamic simulations require up to 25% less runtime
than the corresponding static simulation for the
variances investigated, illustrating the interplay between
the threading protocol (a parallel library configuration)
and aquifer heterogeneity on the total simulation time.

(a)

(b)

Figure 5. Performance of endpoint simulations with
N p = 107 particles as a function of aquifer variability
and different number of threads N . (a) Computational
time for static (solid, squares) and dynamic (dashed,
circles) scheduling with 4 and 8 threads; (b) measured ratio
Tdyn /Tsta for all thread configurations.

The speed up factor relating simulation times between
runs with single thread and parallel simulations T 1/TN
provides a complementary picture of the parallelization
performance. Results show (Figure 6a and 6b) that for
a given aquifer variance, speed up factor is limited by
the number of particles. Above N p = 105, the speed up
approaches an asymptotic value, which occurs for both
scheduling protocols. However, the speed up displays
higher values when employing dynamic scheduling for
simulations with number of particles above N p = 105.
For this number of particles, σ 2

Y = 2.5, and maximum
number of threads, the speed up of the static and
dynamic scheduling protocols were T 1/T 8 = 5.09
and T 1/T 8 = 6.63, respectively. Notice that expected
speed up values from this implementation of parallel

6 R. Pérez-Illanes and D. Fernàndez-Garcia Groundwater NGWA.org
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(a) (b)

(c) (d)

Figure 6. Speed up for each threading protocol. (a, b) As a function of the number of particles with aquifer variance of
σ 2
Y

= 2.5, (c, d) as a function of aquifer variance with number of particles N p = 107.

MODPATH, will not be as high as those observed in
prototypical GPU codes (e.g., Ji et al. 2020), where the
hardware can provide thousands of processing threads,
in contrast to classical desktop CPU hardware. Still,
the development here presented comes with the inherent
advantage that is integrated into MODPATH source code,
without any change to current input files, then adoption is
straightforward.

Another interesting aspect of the speed up factor
and the threading protocol is its dependence on the
degree of heterogeneity σ 2

Y (Figure 6c and 6d). When
using static scheduling and maximum threads, the
speed up factor decreases consistently with the degree of
heterogeneity, which is explained by both larger travel
times to aquifer outlet and the even distribution of
particles to be processed. Under this scenario of workload
distribution, consider a simplified case of only one slow
particle and all the rest moving at the same velocity, then
it is evident that threads will be waiting for completion of
the slow particle. In contrast, speed up factors achieved
with dynamic scheduling are essentially independent of
aquifer variance for a given number of particles in test
case TC1.

Timeseries
Performance of endpoint simulations provided a base

line for discussion of timeseries, given that in some cases,
endpoint runs can be seen as timeseries with no output
stage. Still, printing out particle positions on runtime
requires some considerations in order to preserve parallel
speed ups seen in the corresponding endpoint simulations.

The obtained speed up factors are different depending
on the output protocol. To exemplify this, a timeseries
simulation with dynamic scheduling is performed using
TC1 considering σ 2

Y = 2.5 and 10 writing stages. Results
show (Figure 7a, 7c, and 7e) that parallel output leads

to higher values of speed up in comparison to the
other output protocols, with magnitudes close to those
obtained in endpoint runs. Employing the blocking clause
(critical) leads to smaller speed up factors, however,
without much impact in comparison to the case of parallel
output files. In constrast, the consolidated protocol is the
slowest due to the time required to load thread specific
data and write it back to the consolidated file after each
timeseries snapshot.

From timeseries runs using test case TC2 with
unstructured grid, considering 5 and 30 writing stages,
different performance is observed (Figure 7b, 7d, and
7f). Specifically, employing critical or consolidated output
formats leads to a significant decrease in the speed up
factor relative to parallel output. Moreover, in some
cases of consolidated output protocol and TS30, the
performance decreases in comparison to single thread
runs. Parallel output preserves the magnitude of speed
up observed in previous numerical tests. Notably for this
case, changes in speed up factor with respect to the
number of particles exhibit a peak value when employing
the maximum number of threads, with the number of
particles of maximum performance depending on the
timeseries output frequency. Smaller frequency (TS5)
leads to maximum speed up factor with a higher number of
particles (N p = 106) than the obtained for the simulation
with high frequency (TS30). In this case the number of
particles of maximum speed up is N p = 105. This effect
could be explained by differences on disk writing speeds.
Simulations with high output frequency and high number
of particles are expected to generate large output volumes.
When writing in parallel, all threads write large volumes
of data simultaneously generating simulation output faster
than single thread runs. Simulations with parallel output
protocol shown in Figure 7f were performed writing to
HDD hardware, and the decreasing speed up for high
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Speed up factors for parallel output protocols. Panels (a, c, e) (first column) present results for timeseries in test
case TC1 with 10 writing stages considering σ 2

Y
= 2.5. Panels (b, d, f) (second column) display results for test case TC2 with

5 (solid, TS5) and 30 (dashed, TS30) writing stages. Corresponding output protocol is indicated in each panel.

number of particles may be explained by limitations on
output writing speed. For comparison, TC2 runs with
the highest output frequency (TS30) and parallel output
protocol were also configured to write to output files in
SSD hardware. Speed up factors where similar to those
obtained from HDD, excepting the case with highest
number of particles (N p = 107) and N = 8 threads. In this
scenario, speed up when writing to HDD was T 1/T 8 = 3.8
(Figure 7f), whereas when writing to SSD reached a value
of T 1/T 8 = 5.1. A similar analysis was performed for the
other two output protocols in TC2, with small influence
of disk hardware on speed up results, although in general
faster simulations with SSD.

There are significant differences in timeseries per-
formance between the two test cases while employing
the blocking directive for output files. Besides the time
required in TC2 for updating flow model arrays due to
the transient stress period, this difference in speed up is
explained by the influence that heterogeneity in TC1 has
on the simulation time required for a particle to reach the
timeseries output time. As seen previously, non-uniform
flow leads to differences in the processing time for each
particle, depending on the characteristics of the streamline
and influenced by the number of cells initialized during
displacement. This means that particles traveling through
streamlines with different velocities, will arrive to the
instant where the output is required at different times.
This decreases the likelihood of the output file being busy
because another thread is writing. To remark this point,
the opposite case of a fully homogeneous domain can be
considered, which is closer to the conditions in TC2. The
processing time needed to reach the timeseries writing
stage for all particles (traveling in horizontal streamlines

with the same velocity) will be always almost the same.
As a result, all threads will try to write simultaneously to
the output unit, and the blocking clause will force some
threads to wait.

In any case, results from both test cases show that
parallel output with thread exclusive units is by far the
fastest approach and provides significant speed ups for
increasing number of threads and particles. Thus, in
general, writing to thread specific output units reduces the
simulation runtime, however, this format requires reading
thread specific output files during post-processing stages.
These files have been configured to preserve the same data
structure used in the original MODPATH program.

Grid Complexity
An interesting result is obtained when comparing the

computational time of simulations from test case TC2 with
unstructured grid versus the regular structured Tusg /T str
with increasing number of particles. Runs are performed
with dynamic scheduling and increasing the number
of particles leads to almost the same computational time
for the regular and unstructured grids (Figure 8). These
results confirm that above a threshold number of particles,
the runtime of the particle tracking model appears to be
independent of groundwater flow complexity or the num-
ber of cells. It is rather controlled by the total number of
particles in concordance with results from both endpoint
and timeseries simulations discussed in previous sections.

Overall, results from this test case show that there
are scenarios in which better grid model resolutions can
be achieved without sacrificing runtime. Notice that when
employing the parallel output protocol some difference in
runtimes between different flow model grids is preserved

8 R. Pérez-Illanes and D. Fernàndez-Garcia Groundwater NGWA.org
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(a) (b)

(c) (d)

Figure 8. Relative time of simulations with unstructured grid in comparison to structured in test case TC2, for different
number of particles and output protocols.

for the case with smaller output frequency (TS5). Still,
the ratio Tusg /T str is close to one, and above N p = 105

remains practically constant for all number of threads. In
particle tracking problems with large number of particles,
the runtime is controlled by this quantity rather than
specific features of the flow model grid, at least for
the conditions presented in test case TC2. The extent of
parameters up to which these observations remain valid
should be further evaluated in future research.

Conclusions
In this article, the integration of parallel particles pro-

cessing into the semi-analytical particle tracking program
MODPATH has been presented and discussed. Potential
for parallel computing was identified from an initial diag-
nostic of the source code and flow diagram of the program.
The parallel particles loop is achieved by integrating the
OpenMP library into the Fortran source code, allowing
the management of a large number of particles in a desk-
top computer with efficient runtimes compared to serial
processing of particles. Besides OpenMP directives, the
implementation required the introduction of an intermedi-
ate object class to manage groundwater flow model data
that avoids unnecessary replication of arrays when enter-
ing the parallel region.

Two synthetic test cases were used to quantify the
improvements in computational times. Results show that
speed up factors are limited by the number of particles,
meaning that these approach an asymptotic value while
increasing total particles for a given number of threads.
Endpoint simulations in heterogeneous aquifers of varying
degrees of heterogeneity where used to determine an
efficient thread scheduling strategy. Analyses showed that
dynamic scheduling is convenient for MODPATH in
practical groundwater applications, as the time required
for displacing each particle naturally adapts to streamline
velocities. The influence of the scheduling protocol is not

that important in simulations with low spatial variability
of groundwater velocity and low number of particles.
However, as aquifer heterogeneity and the number of
particles increases, the chosen scheduling protocol clearly
impacts the overall program performance, most noticeably
when employing a number of threads equal to the
maximum number of cores of the benchmark system.

For timeseries simulations, three output protocols
compatible for parallel computing were discussed. Model
runs using thread specific output units where significantly
faster than other approaches writing to a single output
unit. Moreover, depending on the number of timeseries
snapshots, consolidating data from thread specific units
into a single file introduces an important computational
overhead that ultimately could degrade the advantages
provided by parallel processing. Thread specific output
files preserves parallelization speed ups, but requires
adapting post-processing tools to load data from different
files, and if necessary, sorting particles indexes. Output
protocols for timeseries were configured to preserve the
order of time indexes. The main difference in output files
of the parallel implementation in comparison to previous
serial models is the sorting of particles indexes. Compari-
son of simulation runtimes for unstructured and structured
grids from second synthetic test case showed that above
a certain number of particles, the total simulation time is
similar for both grid types. That is, it is possible to obtain
a higher spatiotemporal resolution from particle tracking
models without significantly sacrificing runtimes.

As MODPATH already provides code infrastruc-
ture for managing MODFLOW models, it is a good
starting point for the development of particle-based
transport models that aim to be integrated with this
program. In this regard, it is of relevance to improve
the performance of MODPATH base code with parallel
particles processing. Parallelization has been implemented
minimizing interventions to the current public version
of the source code. Future developments may consider
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further applications of the OpenMP library to other serial
stages within the program outside the particles loop, and
the integration of additional parallelization methodologies
like the Message Passing Interface (MPI) which could
be justified for high performance computing architectures
simulating several particle groups, each of them with a
large number of particles.
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Eberts, S.M., J.K. Böhlke, L.J. Kauffman, and B.C. Jur-
gens. 2012. Comparison of particle-tracking and lumped-
parameter age-distribution models for evaluating vulnera-
bility of production wells to contamination. Hydrogeology
Journal 20, no. 2: 263–282.

Free Software Foundation. 2020. GNU Fortran Compiler, https://
gcc.gnu.org/fortran/. (accessed January 10, 2020).

Gusyev, M.A., D. Abrams, M.W. Toews, U. Morgenstern, and
M.K. Stewart. 2014. A comparison of particle-tracking
and solute transport methods for simulation of tritium
concentrations and groundwater transit times in river
water. Hydrology and Earth System Sciences 18, no. 8:
3109–3119.

Harbaugh, A.W. 2005. MODFLOW-2005, the U.S. Geological
Survey modular ground-water model: the ground-water
flow process, U.S. Geological Survey Techniques and
Methods 6-A16.

Ji, X., M. Luo, and X. Wang. 2020. Accelerating streamline
tracking in groundwater flow modeling on GPUs. Ground-
water 58, no. 4: 638–644.

Langevin, C.D., J.D. Hughes, E.R. Banta, R.G. Niswonger,
S. Panday, and A.M. Provost. 2017. Documentation for the
MODFLOW 6 Groundwater Flow Model, U.S. Geological
Survey Techniques and Methods 6-A55.

OpenMP. 2020. OpenMP Application Programming Interface,
Version 5.1, November 2020.

Pollock, D.W., and A.M. Provost. 2017. MODPATH Version
7 public repository, https://github.com/MODFLOW-USGS/
modpath-v7 (accessed August 28, 2020).

Pollock, D.W. 2016. User guide for MODPATH Version 7—A
particle-tracking model for MODFLOW, U.S. Geological
Survey Open-File Report 2016-1086.

Pollock, D.W. 2015. Extending the MODPATH algorithm to
rectangular unstructured grids. Groundwater 54, no. 1:
121–125.

Pollock, D.W. 1988. Semianalytical computation of path lines
for finite-difference models. Groundwater 26, no. 6:
743–750.

Riva, M., L. Guadagnini, A. Guadagnini, T. Ptak, and E. Martac.
2006. Probabilistic study of well capture zones distribution
at the Lauswiesen field site. Journal of Contaminant

Hydrology 88, no. 1–2: 92–118.
Visser, A., R. Heerdink, H.P. Broers, and M.F.P. Bierkens. 2009.

Travel time distributions derived from particle tracking in
models containing weak sinks. Groundwater 47, no. 2:
237–245.
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