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ABSTRACT 

Background: Active (new/enlarging) T2 lesion counts are routinely used in the 

clinical management of multiple sclerosis (MS). Thus, automated tools able to 

accurately identify active T2 lesions would be of high interest to neuroradiologists 

for assisting in their clinical activity.  

Objective: To compare the accuracy in detecting active T2 lesions and of 

radiologically active patients based on different visual and automated methods. 

Methods: One hundred multiple sclerosis patients underwent two magnetic 

resonance imaging examinations within 12 months. Four approaches were 

assessed for detecting active T2 lesions: 1) conventional neuroradiological reports; 

2) prospective visual analyses performed by an expert; 3) automated unsupervised 

tool; and 4) supervised convolutional neural network. As a gold standard, a 

reference outcome was created by the consensus of two observers. 

Results. The automated methods detected a higher number of active T2 lesions, 

and a higher number of active patients, but a higher number of false-positive active 

patients than visual methods. The convolutional neural network model was more 

sensitive in detecting active T2 lesions and active patients than the other 

automated method. 

Conclusion. Automated convolutional neural network models show potential as 

an aid to neuroradiological assessment in clinical practice, although visual 

supervision of the outcomes is still required.  

 

Keywords: Multiple sclerosis, new lesions, disease activity, convolutional neural 

network, automatic new lesion detection, magnetic resonance imaging. 
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Abbreviations: MS = multiple sclerosis; DSS = decision-support system; CNN = 

convolutional neural networks; NEDA = no evidence of disease activity; MEDA = 

minimal evidence of disease activity; RONL = reference outcome of a active lesion. 
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INTRODUCTION 

Multiple sclerosis is characterized by the presence of demyelinating lesions 

scattered throughout the central nervous system (CNS). 1 Magnetic resonance 

imaging (MRI) has an established role in diagnosis, in assessing disease activity, 

and in predicting and monitoring treatment efficacy and is commonly used to 

determine outcome measures in clinical trials. 2,3 The presence of new/enlarging 

demyelinating lesions as visually detected on serial T2-weighted images is used to 

assess disease activity. 4,5 However, visual identification is challenging, particularly 

in studies with repositioning deficiencies or in the presence of diffuse and 

confluent chronic MS lesions, and is usually accompanied by low sensitivity and 

high variability across raters. 6 Moreover, visual assessment, which requires a 

certain degree of expertise, is a time-consuming task that slows down the 

reporting process and, therefore, radiologists’ productivity. 7 Different research 

groups have developed automated software packages to help neuroradiologists 

identify and count new/enlarging T2 lesions. 8–13 Our group has developed a 

decision-support system (DSS) based on an unsupervised approach that uses 

intensity-derived features from subtraction images together with deformation 

field information obtained from the nonrigid registration between two MR scans 

acquired at different time points. 14 More recently, we proposed another DSS, a 

supervised approach based on the application of convolutional neural networks 

(CNNs) to basal and follow-up input modalities previously trained to detect the 

presence of new/enlarging T2 lesions. 15 

To introduce these automated DSSs in clinical practice, it is necessary to evaluate 

their performance and compare it with that of visual methods. Thus, the objective 

of our study was to analyze new/enlarging T2 lesion detection using the two 
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automated DSSs previously described and compare this performance with that of 

two visual methods. As a second objective, we compared these tools in terms of 

their identification of radiologically active patients. 

 

MATERIAL AND METHODS 

Patients 

A single-center cohort of 100 MS patients (61 women) with a mean age of 

39.6±10.7 years (range 18-69 years) participated in this observational, 

retrospective study. We recruited patients who had undergone two MRI 

examinations on the same device and using the same MRI protocol as part of their 

routine clinical assessment at our institution between December 2016 and 

September 2019 (mean time between MRI examinations 12 months, range 3-27 

months). Fifteen percent of these patients had clinical relapses during the interval 

between the two MRI scans. 

All procedures performed were in accordance with the ethical standards of the 

institutional and/or national research committee and with the 1964 Helsinki 

declaration and its later amendments or comparable ethical standards. The 

protocol was approved by the hospital research and ethics committee, and 

informed consent was obtained from each participant. 

 

MRI exams 

MRI was performed on a 3 T scanner (MAGNETOM Trio A Tim System, Siemens 

Healthcare, Erlangen, Germany) equipped with a 12-channel head matrix receiver 

coil, with the body coil acting as a transmitter. 
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The standardized protocol included the following pulse sequences: 1) a 3D sagittal 

T1-weighted magnetization-prepared rapid gradient echo (MPRAGE) sequence 

(repetition time [TR]=2300 ms, echo time [TE]=2.98 ms, inversion time [TI]=900 

ms, voxel size=1.0 × 1.0 × 1.0 mm3); 2) a 2D transverse proton density and T2-

weighted turbo spin-echo (TSE) sequence (TR = 2500 ms; TE = 16/91 ms; voxel 

size = 0.78 × 0.78 × 3.0 mm3; and 3) a 3D sagittal fast fluid-attenuated inversion 

recovery (FLAIR) sequence (TR = 5000 ms, TE = 394 ms, TI = 1800 ms, flip angle = 

120°, voxel size = 1.0 × 1.0 × 1.0 mm3). 

 

MRI analysis 

Four different methods were used to determine the number of new/enlarging T2 

lesions. These methods included 1) Visual analysis 1 (V1), in which the number of 

new/enlarging T2 (assessed on non-processed FLAIR and dual echo T2-weighted 

sequences) lesions was obtained as described in the radiological report performed 

under routine conditions (nonblinded to clinical information) by full-time 

academic radiologist at our institution; 2) Visual analysis 2 (V2), in which the 

number of new/enlarging T2 lesions (also assessed on non-processed FLAIR and 

dual echo T2-weighted images) was obtained after a new review of the MRI scans 

by an expert observer (a technician with more than 15 years of experience in 

assessing new T2 lesions in MS under neuroradiologist supervision) nonblinded to 

the number and topography of new/enlarging T2 lesions described in the 

radiological report; 3) Automated tool 1 (A1), in which the number of 

new/enlarging T2 lesions was found by an unsupervised approach that used 

intensity-derived features from T1-weighted and FLAIR subtraction images 

together with deformation field information obtained from the nonrigid 
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registration between the two MRI scans14; and 4) Automated tool 2 (A2), in which 

the number of active T2 lesions was found by a supervised approach based on the 

application of a CNN trained on the 4 available input sequences to detect the 

presence of new T2 lesions in the follow-up scan15. The CNN model was trained 

from MRI data acquired in an independent cohort of 35 MS patients using the same 

scanner, imaging protocol and preprocessing steps. 

MR images for both automated approaches (A1) and (A2) were processed 

following the same procedure: for each subject, the brain mask was first identified 

on the T1-w image using ROBEX16 and then applied to the rest of input sequences. 

Then, the four image sequences (T1, FLAIR, T2 and proton density) underwent 

bias field correction using the N4 algorithm.17 Afterwards, all baseline images co-

registered and warped to the follow-up space. To do so, each image sequence was 

first linearly registered to its correspondent proton density sequence using 

NiftyREG package18. Then, the baseline proton density sequence was linearly 

registered to the proton density follow-up while the T1 weighted, T2 and FLAIR 

baseline sequences were warped to the follow-up space using the combined affine 

transformation to avoid unnecessary interpolations. Finally, for each patient and 

image sequence, image intensities across baseline and the follow-up sequences 

were normalized using a histogram matching approach 19. 

A new T2 lesion was visually defined as an area of high signal intensity that arises 

in an area of previously normal brain tissue signal, and an enlarged T2 lesion was 

defined as an area of high signal intensity that has increased in diameter by at least 

100% or increased in size on at least two consecutive slices. 

Radiologically active patients were defined in two ways. The first was the presence 

of ≥ 1 active T2 lesion based on the no evidence of disease activity (NEDA) 
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concept20-22, and the second was the presence of > 2 new/enlarging T2 lesions 

based on the less stringent concept of minimal evidence of disease activity 

(MEDA), which represents a more realistic treatment goal in clinical practice 22,23. 

Both groups of radiologically active patients were evaluated. 

Finally, to evaluate the accuracy of the different methods, a “reference outcome of 

a active lesion” (RONL) was created as a “gold standard” by the consensus of two 

observers (the technician that performed the V2 analysis and a neuroradiologist) 

with more than 15 years of experience. In detail, RONL was created by comparing 

both automated methods with V2 results, using the non-processed source MR 

images as reference. We then identified all detected new T2 lesions with the 

automated tools and confirmed their presence on the source images with the help 

of the mask created on V2. Finally, we also verified if all lesions marked with V2 

were identified with the automated methods. 

 

Statistical analysis 

Data analysis was performed with the Statistical Package for the Social Sciences 

(SPSS), version 25.0 (IBM Corp., USA). The number of new/enlarging T2 lesions 

detected by each method is expressed as the mean ± SD. Significant differences 

between lesion counts obtained by the different methods were evaluated with 

repeated-measures one-way ANOVA followed by a post hoc test (Bonferroni test) 

to evaluate pairwise differences. Significant differences between volume of true 

positive and false lesions were evaluated with Mann–Whitney U-test. For all 

analyses, p < 0.05 was considered significant. RONL information was used to define 

a truly radiologically active patient. Sensitivity, specificity, and accuracy were 

determined with MedCalc (https://www.medcalc.org/calc/diagnostic_test.php, 
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MedCalc Software, Ostend, Belgium). Confidence intervals for sensitivity, 

specificity, and accuracy are “exact” Clopper-Pearson confidence intervals. The 

sensitivity and accuracy with 95% confidence intervals in detecting new/enlarged 

lesions were calculated only for the automated methods but not for the visual 

methods, as active T2 lesions were only individually digitally identified with the 

former. However, the sensitivity, specificity, and accuracy with 95% confidence 

intervals in detecting the number of active patients were determined for all four 

methods. 

 

RESULTS 

The RONL technique identified 104 new/enlarging T2 lesions in 38 of the 100 

patients included in the study that showed at least one truly new/enlarging T2 

lesion, while V1 detected 59 lesions, V2 detected 73 lesions, A1 125 lesions, and A2 

119 lesions. The automated tools counted approximately double the number of 

lesions that the visual methods identified. Table 1 and Figure 1 show the mean 

number of lesions per patient for the entire cohort, for the cohort of 53 patients 

among whom at least one of the methods identified at least one new/enlarging 

lesion, and for the 38 patients with at least one true new/enlarging T2 lesion. 

The V2 and A1 methods showed slightly larger numbers of new/enlarged T2 

lesions than the V1 and A2 methods, respectively, although these differences were 

not significant (Figure 1). However, the differences between both visual methods 

and the automated tools were significant. A2 provided a number of new/enlarging 

T2 lesions (total positive cases) more similar to the RONL than all other methods. 

Figure 2 shows examples of the performance of the different methods. 
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The performance of A2 was better than that of A1, with a lower number of false 

negative and false positive results and a higher number of true positive lesions 

(Table 2). Accordingly, the sensitivity and accuracy of A2 were higher than those of 

A1. 

The combined assessment of both V1 and A2 showed 89 new lesions (Table 1) 

with 15 false-negative lesions but no false-positive lesions, achieving higher 

sensitivity for detecting new T2 lesions than any of the both automated methods 

tested (Table 2). 

The volume of new T2 lesions was significantly lower for false-negative lesions 

compared to true-positive lesions for each of the four methods assessed (Table 3), 

but there were no differences in the topography (periventricular, juxtacortical, 

subcortical, infratentorial) of true-positive and false-negative lesions in each of the 

four methods assessed. 

Thirty-eight patients were defined as active according to the presence of at least 

one truly new/enlarging T2 lesion in the RONL. As shown in Table 4, the visual 

methods identified more true-negative patients than the automated tools. 

Furthermore, the automated tools produced a higher number of false-positive 

patients and a smaller number of false-negative patients than the visual methods. 

A comparison of the visual methods showed that V2 correctly identified more 

active patients than V1. Similarly, a comparison of the automated methods showed 

that A2 correctly identified more active patients and fewer false-negative patients 

than A1. The specificity in identifying radiologically active patients was higher for 

the visual methods than for the automated methods. In contrast, the automated 

tools achieved a higher sensitivity than the visual methods, with A2 exhibiting the 

highest sensitivity. When comparing the automated methods, A2 presented higher 
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sensitivity and specificity. Accuracy was highest for V2, followed by V1 and A2, and 

A1 exhibited the lowest accuracy. When combining the V1 and A2 assessment, we 

achieved 100% specificity, a slight decrease in sensitivity than the A2 method, but 

the highest accuracy of all methods. 

When the cutoff used to define active patients was increased to >2 truly 

new/enlarging T2 lesions, the number of true-positive patients according to the 

RONL decreased to 15 (a 60% reduction with respect to the 38 patients found with 

the previously used criteria). All methods subsequently reported a low number of 

true-positive patients. The findings were similar to those previously described, but 

the differences between the visual and automated methods were smaller. The 

sensitivity decreased for all the methods, with automated methods still providing 

the highest values. However, the specificity was approximately the same for the 

visual methods and increased for the automated methods. Finally, the accuracy 

was more similar among the different methods than when using the previous 

cutoff criterion. When combining the V1 and A2 assessment, we achieved 100% 

specificity, a slight decrease in sensitivity than the A2 method, but the highest 

accuracy of all methods (Table 5). 

 

DISCUSSION 

New/enlarging T2 lesion detection is one of the most relevant MRI biomarkers for 

evaluating disease activity and for monitoring and predicting treatment response 

in MS 3,24,25, although it is a time-consuming task requiring observer expertise 

6,26,27. Different research groups have dedicated various efforts to develop 

automated tools to obtain this information rapidly and accurately. In this study, we 

analyzed and compared two of these tools14,15, previously developed by our 
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research group, and further compared them to visual assessments using a 

generated RONL as the gold standard. The results showed significant differences in 

the number of new/enlarging T2 lesions detected by each method and in the 

number of radiologically active patients. 

As expected, false-negative lesions had significant smaller volume than true-

positive lesions, indicating the limitation of both visual assessments and 

automated tools for detecting new small lesions. 

The number of new/enlarging T2 lesions detected by each method revealed that 

none of the methods is perfect, as all of them were prone to different errors. The 

evaluation of the visual methods showed that conventional radiological reports 

(V1) found a lower number of active T2 lesions than the analysis performed by an 

expert observer under optimized conditions (V2). This is not unexpected, as the 

expert observer used the information included in the radiological report, and his 

sole objective was to focus on the identification of new/enlarging T2 lesions, 

without the time pressure found in reporting tasks in clinical practice. 

Although there were no significant differences between the DSS methods or 

between either DSS and the RONL, the supervised CNN approach (A2) produced a 

lower number of false negative and false positive results than the unsupervised 

approach (A1). Since the number of true positive results yielded by A2 was more 

similar to RONL than that obtained by A1, and that the number of false negative 

results yielded by A2 was smaller than that obtained by A1, we can hypothesize 

that the supervised CNN approach is very well suited to evaluate new/enlarging T2 

lesions. This is also supported by the quantitative analysis, showing that A2 

yielded better scores than A1 in false positive, true positive and, most importantly, 

false negative lesion detection. A recent study28 also highlighted the value of a CNN 
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approach in the evaluation of new/enlarging T2 lesions over other already 

available tools, such as the open-source Lesion Segmentation Toolbox. 

Finally, the combined assessment of both V1 and A2, which is the most realistic 

approach in clinical practice, achieved a higher sensitivity compared to any of the 

both automated methods tested, supporting their value in assessing disease 

activity. 

We also assessed the accuracy of the different methods in identifying active 

patients using two different definitions, one based on the NEDA concept20-22 and 

the other on the less stringent MEDA concept22,23. The results showed that the 

neuroradiologist correctly identified radiologically active patients by eye without 

false positives. This high specificity was obtained at the cost of missing a 

substantial number of active patients. In clinical practice, this could be of concern, 

as we would miss disease activity in a relevant percentage of patients, which may 

negatively impact their proper treatment management. In contrast, the automated 

methods detected nearly all true positive patients but included a larger number of 

false positive patients than the visual methods. This means that these automated 

tools identified some truly radiologically inactive patients as radiologically active. 

Our results show that fully automated tools are well suited to detect the presence 

of disease activity in MS patients. Nevertheless, their suboptimal specificity and 

sensitivity preclude their use in clinical practice without visual supervision of the 

outcomes by an expert observer. In addition, these results encourage further 

research with the main objective of improving their performance by decreasing the 

number of false negatives and false positives to reach sufficiently good accuracy to 

avoid the need for expert visual supervision. Increasing the MRI data set used to 

train the CNN model, could certainly improve its performance.  
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A2 exhibited a slightly better sensitivity and specificity than A1 under the NEDA 

concept. However, under the MEDA concept, A2 exhibited a better sensitivity and 

better identification of patients with active disease but at the cost of a lower 

specificity than A1. In light of these results and given the previously revealed 

finding that the number of new/enlarging T2 lesions yielded by A2 was more 

similar to the RONL than that yielded by A1, we can hypothesize that the 

supervised CNN approach is well suited not only to evaluate new/enlarging T2 

lesions but also to identify active patients. These results are in agreement with a 

previous work that noted improved results when using a supervised classification 

model instead of an unsupervised rule-based approach15. 

There is increasing pressure for neuroradiologists to include quantitative 

information in their reports, which could certainly increase their clinical value. 

This leads to an increasing need for robust and available tools that require minimal 

or no human supervision, such as those provided by automated DSS. 

New/enlarging T2 lesions are usually assessed visually, although with suboptimal 

sensitivity and interrater and intrarater concordance6,24. This is of particular 

concern for patients with a high lesion load or when the MRI scans are poorly 

repositioned, leading to an underestimation of the number of new/enlarging T2 

lesions, especially of small lesions. The use of a DSS method can, at least partially, 

solve these problems despite requiring an expert observer to review the outcomes. 

However, this is a much easier task than the complete visual detection of 

new/enlarged T2 lesions. Moreover, and probably more importantly, the number 

of false negatives obtained with both automated methods is lower than that 

obtained with the visual methods. 
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As a limitation of the present study, we note that we studied a relatively small 

cohort of 100 patients, and consequently, the number of radiologically active 

patients was not high (38% and 15% with the NEDA and MEDA concepts, 

respectively). Therefore, the specificity and sensitivity obtained in this work may 

be affected by the small number of active patients. Moreover, we think that 

generalization of the performance results between visual and automated methods 

is limited by the fact that we used the same MRI scanner and the same 

standardized MRI protocol across all the studies. The performance may therefore 

differ with different input data due to MR system and pulse sequence differences. 

Finally, it is not possible to have a true active T2 lesion “gold standard” for defining 

the diagnostic properties of any test. To minimize the effects of this problem, we 

defined an RONL by the consensus of two expert observers based on the combined 

visual assessment of all MR images, the radiological report, and the outcomes of 

the automated methods. We also must acknowledge that the RONL may contain 

false-negative results as the set of potential false negatives is restricted to those 

detected by at least one of the four methods, which might result in an 

overestimation of the sensitivity of the automated methods tested. 

 

CONCLUSIONS 

In summary, the results of this study show that the automated methods have 

greater sensitivity but slightly lower specificity in detecting new/enlarging T2 

lesions and active MS patients than conventional neuroradiological reports and 

expert visual analysis. This indicates that the automated tools should be further 

developed to allow their fully unsupervised use in clinical practice. From the 

comparison of both DSSs, we show that the DSS based on the application of a CNN 
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model, even when trained with a small number of cases, is more promising than 

automated unsupervised approaches in detecting MR disease activity. Finally, 

although not specifically assessed in this study, visually supervised automated 

tools likely provide a higher level of confidence in the detection of radiological 

activity than the standard radiological report and show potential as an aid to 

neuroradiological visual assessment in clinical practice. 
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Tables 

 

TABLE 1. Comparison of the number of active T2 lesions and the mean number of active T2 lesions per patient for the different methods 

and the reference outcome of active lesions (RONL) 

 

 V1 V2 A1 A2 V1A2 RONL 

New lesions 59 73 125 119 89 104 

New lesion/patient 0.59±1.15a,b,c,d 0.73±1.29a,c,d 1.25±2.32 1.19±1.95b 0.89±1.62a,c 1.04±1.85 

New lesion/patiente 1.11±1.38a,b,c,d 1.38±1.51a,c,d 2.36±2.75 2.25±2.20b 1.68±1.91a,c 1.96±2.17 

New lesion/patientf 1.55±1.41a,b,c,d 1.92±1.46a,c 3.00±3.00 2.82±2.28 2.34±1.88a 2.74±2.10 

 

RONL: reference outcome of new/enlarging lesions; V1: standard radiological report method; V2: visual review of the MR scans by an 
expert nonblinded to the radiological report; A1: automated unsupervised approach; A2: automated supervised convolutional neural 
network-based approach; V1A2: A2 method corrected with the report information. 
a Significantly different with respect to RONL. 
b Significantly different with respect to V1A2. 
c Significantly different with respect to A2. 
d Significantly different with respect to A1. 
e Representing the 53 patients for whom at least one new/enlarging T2 lesion was detected by one method. 
f Representing the 38 patients with truly new/enlarging T2 lesions.  



22 

 

TABLE 2. Performance of the visual and automated tools in lesion detection. 

 

 V1 V2 A1 A2 V1A2 

False negatives 47a 31 a 27 a 17 a 15 a 

True positives 56 a 70 a 77 a 87 a 89 a 

False positives 3 a 3 a 48 a 32 a 30 a 

Sensitivity (CI) 
54.37 

(44.26-64.22) 

69.31 

(59.34–78.10) 

74.04 

(64.52-82.14) 

83.65 

(75.12-90.18) 

85.58 

(77.33–91.70) 

Accuracy (CI) 
52.83 

(42.89–62.60) 

67.31 

(57.41–76.19) 

50.66 

(42.44-58.85) 

63.97 

(55.30-72.02) 

NA 

 

V1: standard radiological report method; V2: visual review of the MR scans by an expert nonblinded to the radiological report; A1: 

automated unsupervised approach; A2: automated supervised convolutional neural network-based approach; V1A2: A2 method 

corrected with the report information; CI: confidence interval; NA: not applicable. Sensitivity and accuracy values are provided with 95% 

interval of confidence. 

a Numbers represent new/enlarging T2 lesions. 
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Table 3.  Volume of true positive and false negative lesions for the different methods. 

 V1 V2 A1 A2 

False negative 55.0 ± 60.8 # 51.2 ± 44.9 # 58.9 ± 106.5 # 40.1 ± 40.1 # 

True positive 142.7 ± 189.2 122.9 ± 150.8 123.3 ± 165.5 117.8 ± 162.9 

 

V1: standard radiological report method; V2: visual review of the MRIs by an expert nonblinded to the radiological report; A1: 

automated unsupervised approach; A2: automated supervised convolutional neural network-based approach. 

All values are expressed in mm 3 as the mean ± standard deviation. 

# Significant difference between false negative and true positive (p < 0.05). 
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TABLE 4. Performance of the different methods in identifying radiologically active patients when using the presence of at least one 

new/enlarging T2 lesion in the RONL as the cutoff criterion (NEDA criteria). 

 

 V1 V2 A1 A2 V1A2 

True negatives 62a 62a 52a 54a 62a 

False negatives 9a 4a 3a 1a 2a 

True positives 29a 34a 35a 37a 36a 

False positives 0a 0a 10a 8a 0a 

Sensitivity (CI) 
76.32 

(59.76-88.56) 

89.47 

(75.20-97.06) 

92.11 

(78.62-98.34) 

97.37 

(86.19-99.93) 

94.74 

(85.25-99.36) 

Specificity (CI) 
100.00 

(94.22-100.00) 

100.00 

(94.22-100.00) 

83.87 

(72.33-91.98) 

87.10 

(76.15-94.26) 

100.00 

(94.22-100.00) 

Accuracy (CI) 
91.00 

(83.60-95.80) 

96.00 

(90.07-98.90) 

87.00 

(78.80-92.89) 

91.00 

(83.60-95.80) 

98.00 

(92.96-99.76) 

 

NEDA, no evidence of disease activity; V1, standard radiological report method; V2, visual review of the MRIs by an expert nonblinded to 

the radiological report; A1, automated unsupervised approach; A2, automated supervised convolutional neural network-based 

approach; CI, confidence interval. 

Sensitivity, specificity and accuracy values are provided with 95% interval of confidence. 

a Numbers represent patients with at least one new/enlarging T2 lesions.  
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TABLE 4.- Performance of the different methods in identifying radiologically active patients when using the presence of more than two 

active T2 lesions as the cutoff criterion (MEDA criteria). 

 

 V1 V2 A1 A2 V1A2 

True negatives 84a 85a 82a 79a 85a 

False 

negatives 
8a 5a 4a 3a 4a 

True positives 7a 10a 11a 12a 11a 

False positives 1a 0a 3a 6a 0a 

Sensitivity (CI) 
46.67 

(21.27-73.41) 

66.67 

(38.38-88.18) 

73.33 

(44.90-92.21) 

80.00 

(51.91-95.67) 

73.33 

(44.90-92.21) 

Specificity (CI) 
98.82 

(93.62-99.97) 

100.00 

(95.75-100.00) 

96.47 

(90.03-99.27) 

92.94 

(85.27-97.37) 

100.00 

(95.75-100.00) 

Accuracy (CI) 
91.00 

(83.60-95.80) 

95.00 

(88.72-98.36) 

93.00 

(86.11-97.14) 

91.00 

(83.60-95.80) 

96.00 

(90.07-98.90) 

MEDA, minimal evidence of disease activity; V1, standard radiological report method; V2, visual review of the MRIs by an expert 

nonblinded to the radiological report; A1, automated unsupervised approach; A2, automated supervised convolutional neural network-

based approach; CI, confidence interval. 

Sensitivity, specificity and accuracy values are provided with 95% interval of confidence. 

a numbers represent patients with more than two active T2 lesions.  
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Figure 1.  Boxplots comparing the mean number of new/enlarging T2 lesions per 

patient for the different methods and the reference outcome of new/enlarging 

lesions (RONL). Left: Number of new/enlarging T2 lesions for the different 

methods and the reference outcome of new/enlarging lesions (RONL). Right: 

Comparison of the new/enlarging T2 lesions per patient for the different methods 

considering the whole cohort (group 1), the 53 patients for whom at least one 

new/enlarging T2 lesion was detected by one method (group 2) and the 38 

patients with truly new/enlarging T2 lesion (group 3). 

V1: standard radiological report method; V2: visual review of the MR scans by an 

expert nonblinded to the radiological report; A1: automated unsupervised 

approach; A2: automated supervised convolutional neural network-based 

approach; V1A2: A2 method corrected with the report information; RONL: 

reference outcome of new/enlarging lesions. 

a Significantly different with respect to RONL. 

b Significantly different with respect to V1A2. 

c Significantly different with respect to A2. 

d Significantly different with respect to A1. 
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Figure2. Examples of the numbers of new/enlarging T2 lesions detected using the 

different methods. From left to right, the columns show baseline MRIs, follow-up 

MRIs, the reference outcome of new/enlarging T2 lesion (RONL) images, the 

results derived from the standard radiological report method (V1), the results 

derived from visual review by an expert nonblinded to the radiological report (V2), 

the results derived from the application of an automated unsupervised approach 

(A1), and the results derived from the application of an automated supervised 

convolutional neural network-based approach (A2). The detected lesions are 

marked with dots. The upper row shows a new lesion in the right occipital white 

matter missed with the V1 and V2 assessments but identified with the A1 and A2 

tools (arrow in the RONL image). The middle row shows one new lesion located in 

the right frontal white matter that was identified by all methods (arrow in the 

RONL image) and a false positive lesion detected in the left periventricular white 

matter with A2 (arrow in the A2 image) but ignored with all other assessments. 

Finally, the bottom row shows a new lesion located in the posterior limb of the left 

internal capsule correctly identified with A2 but missed with all other assessments 

(arrow in the RONL and A2 images). 

 

 


