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ABSTRACT
Although much research has focused on marine mammal sensory
systems over the last several decades, we still lack basic knowledge
for many of the species within this diverse group of animals. Our
conference workshop allowed all participants to present recent
developments in the field and culminated in discussions on current
knowledge gaps. This report summarizes open questions regarding
marine mammal sensory ecology and will hopefully serve as a
platform for future research.
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Introduction
Marine mammals, including cetaceans, pinnipeds, sirenians, sea
otters, and polar bears (Marine Mammal Commission, 1972), are
secondarily adapted to the aquatic environment. Over the course of
evolution, both the anatomy and physiology of the respective
terrestrial ancestors were extensively modified to adapt to the
requirements of either a semi- or fully aquatic lifestyle (Berta et al.,
2005). These secondary adaptations also resulted in specific
modifications of the sensory systems, which act as the interfaces
between an organism and its environment. They provide
information about the external world necessary for critical tasks
such as foraging, orientation, navigation, threat detection,
conspecific recognition, and reproduction. After decades of
research on marine mammal sensory systems, our understanding
of the behaviors mediated by the sensory systems and the sensory
organs has generally increased albeit mostly in only a few species.
Nevertheless, numerous key questions remain unresolved.
The workshop ‘Marine Mammal Sensory Systems: Recent

Advances and Emerging Technologies’ was held as a hybrid
workshop prior to the Biennial Conference on the Biology of
Marine Mammals of the Society for Marine Mammalogy in Palm
Beach, USA, in July 2022. It focused on recent developments in
marine mammal sensory research, including new methodologies
that have led to new insights into how these sensory systems work
and how they interact with each other. It provided a platform for

early career scientists to present their research in short oral
presentations and fostered discussions with senior experts in the
field, to advance individual projects as well as the field of marine
mammal sensory systems in general. The format of the workshop
resulted in an inspiring atmosphere that gave prominence to four
major directions on which this report is focused.

Sensing in different media
The adaptation of the senses to the aquatic environment involved
several specializations to detect stimuli in this medium. Some
marinemammals such as pinnipeds, sea otters, and polar bears, have
a semi-aquatic or amphibious lifestyle, whereas cetaceans and
sirenians are fully aquatic. While previous research on sensory
systems of semi-aquatic marine mammals has considered challenges
associated with amphibious sensing (see e.g. Reichmuth et al., 2013),
research on fully aquatic marine mammals has largely excluded aerial
sensing (but see e.g. Herman et al., 1975). Nevertheless, when fully
aquatic marine mammals surface (e.g. for breathing, spyhopping, or
performing aerial maneuvers), they likely use their senses in air.
However, as aerial sensing has not been a focus of marine mammal
sensory research with respect to the fully aquatic species to date, it is
largely unknown towhat extent these sensory modalities contribute to
aerial behaviors. Amphibious sensing would provide an entirely new
perspective on sensory systems in fully aquatic marine mammals and
may shed new light on for example smell (olfaction) and taste
(gustation) functions, particularly in cetaceans. Olfaction and
gustation (i.e. chemoreception in general), are largely understudied
and many questions as basic as ‘What (if anything) can cetaceans
smell or taste?’ are still unclear (Bouchard et al., 2019; Bouchard
et al., 2022; for review see Kremers et al., 2016). The proposed
perspective on marine mammal sensing, including aquatic and aerial
sensing, will require examining adaptations that allow for amphibious
sensing in all marine mammal species.

When considering amphibious sensing in marine mammals,
researchers should also rethink the sensory cues that are available as
well as those being used in numerous behavioral contexts. This
aspect has large implications concerning the sizes of the sensory
windows, the range of sensitivity of the senses, to be considered.
These sensory windows might be broader than currently thought or
specific aerial and aquatic sensory windows might exist. Sensory
windows are generally difficult to assess, and some marine
mammals (e.g. echolocating odontocetes) are known to passively
and actively adjust their sensory windows either to protect sensory
organs from excessive stimulation or optimize gain control during
daily activities (see for example Harley et al., 2022; Kloepper et al.,
2014). The adaptability of sensory windows and their relation to the
sensory cues available is an aspect that requires further study.

Valuable insight into sensory cues available in air and
underwater is expected to be gained from deploying state-of-the-
art biologgers such as animal-borne cameras, hydrophones, and
environmental data loggers on marine mammals (e.g. Tyack et al.,
2006). The deployment of such data loggers allows the recording of
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numerous parameters (e.g. ambient light, salinity, depth/pressure,
sound, temperature, velocity, acceleration, orientation), while the
animal is cruising in its habitat as a ‘living environmental sensor’
(Couzin and Heins, 2022; Ropert-Coudert andWilson, 2005). Thus,
developments in the field of data-/biologging, complemented by
ongoing exploration and mapping of the ocean environment, and
also animal-borne cameras will broaden our understanding of
sensory cues available to marine mammals in their environment.
From this, wewill gain insight into the life of these organisms which
is often enigmatic and inaccessible to humans. Information on the
availability of sensory cues provided by biologgers will in return
also allow exploring specific questions about the sensory systems
involved in perceiving these cues and the corresponding sensory
windows to be considered.

Size-related physiological adaptations of the sensory
systems and central processing
Among marine mammals, differences in anatomical scale are
immense. In this group of animals, we can find animals as small
as a vaquita (Phocoena sinus), a female Galapagos fur seal
(Arctocephalus galapagoensis), or a sea otter (Enhydra lutris),
while at the same time, it encompasses among the largest animals
living on earth, such as the blue whale (Balaenoptera musculus, the
largest mysticete) and the sperm whale (Physeter macrocephalus,
the largest odontocete). The physiology of the sensory systems,
from peripheral nerves and sensory receptors to the central nervous
system, is likely to show specific specializations for size, an aspect
that needs to be systematically examined in marine mammals in
future studies. In somatosensation, for example, the distance a signal
must travel from peripheral sensory receptors to the brain is long in
large animals such as in mysticetes, for which somatosensation is
especially under-examined (but see Eldridge et al., 2022). These
large whales likely benefit from axons with high transduction
velocities to avoid delays in sensory perception. Moreover, the
amount of somatosensory information perceived over the large body
surface is expected to exceed the amount of information being
processed by small animals. Unsurprisingly, we find large parts of,
for example, the sirenian brain, to be devoted to somatosensory
processing, including the processing of the input obtained by their
vibrissae (review in Bauer et al., 2018; Sarko et al., 2007; Sarko and
Reep, 2007, 2022).
The physiological costs and benefits might also be balanced

differently in large animals compared with smaller animals. For
example, the largest eyes in the animal kingdom are found in marine
mammals, although the eyes are smaller than expected when
considering their body mass and allometric relations found in other
animals (Harvey, 2019). A larger eye might be advantageous for
vision, but further enlarging a big eye by an absolute amount does
not result in the same improvement as enlarging a small eye by the
same amount according to the law of diminishing returns (Nilson
et al., 2012). Most likely, the improvement brought about by
increasing eye size needs to be balanced with the larger energetic
costs for maintenance arising from the specific increase in size.
It needs to be noted that the large body sizes, as well as sensory

organ sizes, pose challenges to the experimental approaches and
technological equipment to study them. As mysticetes are large,
it is impossible to maintain them in captivity to perform
robust behavioral studies. In this context, it is not surprising
that our knowledge about sensory behavior is limited to smaller
marine mammals such as harbor seals (Phoca vitulina), California
sea lions (Zalophus californianus), and bottlenose dolphins
(Tursiops truncatus; for review see Hanke and Reichmuth, 2022;

Hanke et al., 2021; Hanke and Erdsack, 2015). Our current
limited knowledge of the sensory systems in mysticetes is mainly
deduced from opportunistic anatomical sampling or behavioral
observations of free-ranging animals. Therefore, researchers
are challenged to find novel approaches to get a deeper insight
into mysticetes’ sensory systems, including new state-of-the-art
technologies.

Seemingly vestigial structures might have functions
When comparing sensory systems across marine mammals, some
anatomical structures that were previously classified as vestigial
might serve a biologically important function. To give an example,
most cetaceans are born with vibrissae on their rostrum. While a
vibrissal hair can be observed within these crypts before and shortly
after birth, the hair is lost after a few weeks, at least in most
odontocete species (Gerussi et al., 2021; Ling, 1977; Mynett et al.,
2022). While the vibrissae in neonates most likely serve a still
unidentified mechanosensory function, the remaining crypts were
described as ‘vestigial’ (Ling, 1977; Yablokov and Klevezal, 1969),
but new research reveals that these crypts can function as
electroreceptors (Hüttner, 2022; Hüttner et al., 2022). Similarly,
the remnants of the outer ear canal in all cetaceans studied to date
seem to have transformed the structure from a sound conductor into
a mechanosensory organ that could act as a barometer in these
diving animals (De Vreese et al., 2014, 2020). Considering these
two examples, when studying marine mammal sensory systems,
researchers should not overlook seemingly vestigial anatomical
structures.

Moreover, as sensory systems and modalities can overlap, there
may not be clear boundaries in sensory perception. For example, a
sea quake can be ‘heard’ but equally ‘felt’. This questions the value
of our current classification of marine mammal sensory perception/
senses purely based on anatomy. The field of marine mammal
sensory research might benefit from freeing from the classic
concepts of defining senses by anatomy (compare with the
phenomenological approach described by, for example, Merleau-
Ponty, 1966).

Concerted action of sensory systems
Current research on marine mammal senses typically focuses on a
single sense (but see Bruck et al., 2022; Charrier et al., 2022; Harley
et al., 2003; Pack and Herman, 1995). However, during everyday
activities, the different senses work together to create a multimodal
representation of the environment highlighting the need to
investigate sensory integration in marine mammals and beyond
(Johnsen, 2017). Previous work on terrestrial mammals has
shown for example that the integrated response to a combination
of weak unisensory signals is enhanced when compared to the
response elicited by the unisensory signal (Stein and Meredith,
1993; Stein et al., 1989). The first cross-/multimodal approaches
adopted in marine mammal research (for reviews see Bruck and
Pack, 2022; Charrier et al., 2022) already revealed interesting
insight.

While sensory integration can be approached through behavioral
experiments, these aspects could also be investigated directly by
looking at processes within the brain. Functional brain
measurements in conscious marine mammals could reveal where
and how information from different senses is being integrated (see
first approaches/ideas in McKnight et al., 2021; Ruesch et al.,
2022). For example, the superior colliculi (a brain structure highly
responsible for integrating somatosensory, visual, and auditory
information to initiate motor commands in humans) have been
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heavily studied as a potential model system for multisensory
integration in animals (Stanford et al., 2005; Wallace and Stein,
1996). Brain imaging techniques combined with postmortem
assessments of central sensory processing structures (e.g. Cook
et al., 2018; Orekhova et al., 2022) will most likely contribute
greatly to a comprehensive understanding of how sensory
information of multiple modalities is integrated and used to
perform complex behaviors. Such an approach could also help to
discern adaptations for sensory perception in the three-dimensional
underwater environment allowing movements with all degrees of
freedom (Cook and Berns, 2022).

Conclusions
The workshop helped define key topics for future marine mammal
sensory research, including further investigations of understudied
sensory organs, integrated sensory capabilities and functions in
different media, the effect of size on sensory system performance,
and the utilization of new technologies to study sensory abilities.
The field will benefit from even more interdisciplinary
collaborations, providing platforms for sharing resources,
expertise, data, or even access to samples. A greater
understanding of sensory science is, beyond fundamental science,
the key to correctly identifying and assessing potential risks to
marine mammal populations, and developing long-term
management strategies that protect and conserve marine mammals
and their habitats.
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