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Automatic seizure detection

based on Machine Learning and EEG

Zhensheng Chen

Abstract

The diagnosis and treatment of epilepsy depend on accurate seizure detection. In clinical
practice, the evaluation of seizures is done by visual inspection of an electroencephalo
gram (EEG). it is very timeconsuming and requires trained experts. Automatic seizure
detection is important. Machine learning approaches are intensely being applied to this
problem due to their ability to classify seizure conditions from a large amount of data, and
provide prescreened results for neurologists.

This work proposes a variety of experiments with different machinelearning archi
tectures (support vector machine SVM, K nearest neighbour KNN, random forest RF,
feef forward neural network FFNN and convolutional neural network CNN) for the detec
tion of epileptic seizures using multichannel EEG signals from the CHBTMIT Scalp EEG
Database. The best model built in this work contains a combination of a feedforward
neural network (FFNN) and a convolutional neural network (CNN). CNN input images are
constructed by applying shorttime Fourier transform (STFT) to electroencephalography
(EEG) signals and then merged with statistical metrics into a FFNN. The best model of
this project showed an outstanding performance of 98.615% accuracy, 98.737% sensitiv
ity and 98.425% specificity. This work also includes a discussion of other exciting ideas
that could lead to future research investigations.
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1 Introduction
Epilepsy is a serious disorder of the central nervous system, which affects 1% of the

world’s populations. Approximately 30% of epilepsy patients are not helped effectively by
medication. Due to loss of control and consciousness, patients often experience serious
injuries. The unpredictable occurrences and consequences of seizures deeply impact
patients’ quality of life. Moreover, each year there is about SUDEP (Sudden Unexpected
Death in Epilepsy) for every 1,000 people with epilepsy.

The electroencephalogram (EEG) is one of the most popular methods for studying
epilepsy and detecting changes in electrical brain activity that may suggest an impending
seizure. An epileptic seizure is a serious clinical issue. Manual EEG inspection is required
for the diagnosis of epilepsy, which takes time and is prone to inaccuracy. According to
Elger and Hoppe’s research, more than half of the seizures seen during longterm video
EEG monitoring were unreported [1], whereas fewer than half of the epileptic seizures
that patients document can record precisely. The creation of a workable and trustworthy
intelligent diagnostic method for automated seizure detection is crucial.

1.1 Related work
Studies about automatic seizure detection started in the 1970s and different algo

rithms to solve this problem were presented. Back then, automated seizure detection
methods may rely on the identification of different patterns such as increasing ampli
tude[2], maintaining rhythmic activity [3], or flattening the EEG [4]. Several algorithms
have been developed based on spectral [5] or wavelet characteristics [6], amplitude ver
sus background activity and spatial context [7]. There are also several approaches using
chaotic features such as correlation dimension [7], Lyapunov exponents [8] and entropies
[9]. These characteristics can then be used for the classification of EEG signals using
statistical methods(e.g. nearest neighbour classifiers [10], decision trees [11], ANNs [6],
support vector machines (SVMs) [12], random forest [13]...) Seizure detection systems
must be highly sensitive, even if this results in a large number of false detections. Such
systems can then be used significantly reduce the amount of data required for examina
tion; Neurophysiologists can then easily rule out false findings.

Seizure detection systems can also be used to create warning systems since early
seizure detection can alert the patient to an incoming seizure. Additionally, they notify
medical personnel and inform them to conduct behaviour tests to better determine which
particular tasks may be hampered by a seizure and aid them in determining the cause of
the seizure activity.

Patients’ seizures can be prevented by taking antiepileptic drugs, however, the con
sumption of these drugs can lead to several side effects (e.g. aplastic anemia, fatal liver
toxicity, irreversible visual field defects)[14]. Techniques used to forecast seizures (e.g. e
timedomain analysis [15], frequencybased methods [16], nonlinear dynamics and chaos
[17], and intelligent systems [18].) can change drug infusion to give on demand and might
eliminate side effects in some patients by consuming less amount of antiepileptic drugs.

Automatic seizure detection 1



1.2 Project Description
This project aims to develop an automated seizure detection system using machine

learning architectures. The system will be trained on a dataset of EEG recordings that
have been manually annotated by an expert with the location of seizures. The goal of the
system is to accurately identify seizures in new EEG recordings, thus supporting clinicians
in their evaluation of seizures and making the process more efficient.

The performance of the system will be evaluated by comparing the seizure detection
times identified by the model to those identified by the expert. The project will investigate
different machine learning architectures and compare their results.

The objectives of this project are to gain experience working with EEG data Fig
ure 1.1, gain an understanding of epileptic seizures, and explore the use of machine
learning techniques for automated seizure detection. This research aims to contribute to
the field by developing a reliable and efficient automated seizure detection system that
can be used in a clinical setting to aid in the diagnosis of epilepsy.

This project builds upon the extensive research that has already been conducted in
the field of automated seizure detection using machine learning and deep learning tech
niques. Many studies have achieved impressive results, however, this project aims to
take a novel approach by combining different techniques and architectures to find new
and improved methods for seizure detection. This research may bring fresh perspectives
and insights to the field by investigating new combinations of methods and techniques
that have not yet been explored. The ultimate goal of this project is to develop a differ
ent automated seizure detection system that can aid in the diagnosis and treatment of
epilepsy and hopefully this work can contribute to investigations in this field and further
advance the understanding and treatment of epilepsy.

Figure 1.1: Sample of EEG displayed with Python MNE library, red section belongs to
seizure



2 Background
In this section, context is explained in order to provide a better understanding of the

entire project.

2.1 Epilepsy
Epilepsy is a chronic neurological dis

order characterized by recurrent seizures
caused by abnormal electrical activity in the
brain. It is one of the most common neuro
logical disorders, affecting around 1% of the
world population[19, 20]. The seizures can
manifest in different ways, frommild convul
sions to severe convulsive seizures and can
vary in frequency from once in a lifetime to
several per day[21].

Epileptic seizures are classified into
two main categories: focal seizures, which
originate from a specific area of the brain,
and generalized seizures, which involve the
entire brain [22]. The cause of epilepsy
is not always known, but it can be caused
by a variety of factors such as head injury,
brain infections, brain tumours, genetic fac

tors and developmental disorders [23].

The diagnosis of epilepsy is based on
the patient’s history and a clinical exami
nation, including a detailed description of
the seizures and their characteristics [24].
Electroencephalography (EEG) is a valu
able tool in the diagnosis and management
of epilepsy, as it allows the detection of ab
normal electrical activity in the brain [25].

Treatment of epilepsy includes med
ication, surgery, and lifestyle changes.
Antiepileptic drugs are the first line of treat
ment for most patients with epilepsy [26].
In some cases, surgical treatment may
be considered when seizures are not con
trolled by medication or when the seizures
are caused by a lesion in a specific area of
the brain [27].

2.2 Electroencephalography
Electroencephalography (EEG) is a

noninvasive method for measuring the
electrical activity of the brain. It involves
the recording of electrical signals from the
scalp using electrodes placed on the head
Figure 2.1 [25]. EEG is widely used in the
diagnosis and management of neurological
disorders, particularly epilepsy, as it allows
the detection of abnormal electrical activity
in the brain [28].

EEG signals are composed of dif
ferent frequency bands [25]. Each fre
quency band is associated with different
brain states, such as sleep, wakefulness
and attention [25].

Figure 2.1: Scalp electrodes placement in
human head
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2.3 Shorttime Fourier transform
By considering previous works as referents, it is highly recommended to work with

frequency domain data since it can provide a more detailed view of the EEG signal by
breaking it down into its different frequency components, which can reveal important in
formation about brain activity related to seizures.

Previous studies mentioned that using only information from the frequency domain
will lose of spatial information, to prevent this from happening, I am dividing the entire time
domain data into small epochs of 2 seconds with 1 second of overlapping, this method
can also be called shorttime Fourier transform (STFT).

The shorttime Fourier transform (STFT) is used to analyze how the frequency con
tent of a nonstationary signal changes over time. the procedure for computing STFTs is
to divide a longer time signal into shorter segments of equal length and then compute the
Fourier transform separately on each shorter segment. This reveals the Fourier spectrum
on each shorter segment. Mathematically, this is written as: Equation (2.1)

STFT{x(t)}(τ, ω) ≡ X(τ, ω) =

∫ ∞

−∞
x(t)w(t− τ)e−iωtdt (2.1)

2.4 Standarization
Standardization eq. (2.4) is a method of feature scaling in which data values are

rescaled to fit the distribution between 0 and 1 usingmean eq. (2.2) and standard deviation
eq. (2.3) as the base to find specific values.

µ =
1

n

(
n∑

i=1

xi

)
=

x1 + x2 + · · ·+ xn
n

(2.2)

σ =

√∑n
i=1 (xi − µ)2

N
(2.3) Z =

x− µ

σ
(2.4)

Standardization of data is an important preprocessing step before training a machine
learning neural network for several reasons:

• Scale invariance: Neural networks assume that the data is in a standard scale.
Without standardization, it may be sensitive to the scale of the data, which can
affect the performance of the model.

• Faster convergence: Standardizing the data can help speed up the convergence of
the optimization algorithm used to train the model. This is because the optimization
algorithm may be able to converge faster when the data is on a standard scale.

• Improved performance: Standardizing the data can also improve the performance
of the model it can help the model better learn the underlying patterns in the data.

Since I’ve all features stored in Pandas dataframe, the standardization can be applied
with executing instruction Listing 1 from appendix.



2.5 Neural Network
Neural Network is a type of machinelearning model that is inspired by the structure

and function of the human brain. It is composed of layers of interconnected nodes, also
known as artificial neurons. These neurons are organized in layers, and they process and
transmit information by means of weighted connections between them. Neural networks
can be trained to perform a wide range of tasks, such as image classification, speech
recognition, and natural language processing.

Activation function
An activation function is a mathemati

cal function that is applied to the output of a
neuron in an artificial neural network. The
purpose of the activation function is to intro
duce nonlinearity into the output of the neu
ron, allowing the network to learn complex,
nonlinear relationships between inputs and
outputs.

There are several commonly used ac
tivation functions, such as sigmoid, ReLU,
and tanh. For our model, we are choosing
Leaky ReLU, which is a variant of the ReLU
activation function that addresses the prob
lem of ”dying ReLU” which occurs when a
neuron’s output is zero, and the gradient of
the activation function is also zero, so the
weights will not be updated, and the neu
ron will stop working. Leaky ReLU solves
this problem by introducing a small positive
slope (or ”leak”) to the negative part of the
ReLU function, which allows the gradients
to flow through the neuron even when the
output is close to zero.

R(z) =

{
z z > 0
αz z <= 0

}
(2.5)

The reason to choose Leaky ReLU over
other activation functions is that it has been
found to be more effective in training deep
neural networks. In comparison to other
activation functions like ReLU, it has been
found to produce better results in terms of
the convergence of the training process and
the final accuracy of the model. The α
from the formula() is the hyperparameter
that controls the angle of the negative slope,
since we don’t exactly need any specific be
haviour to the activation function, well keep
the default value of 0.01.

Loss function
A loss function, also known as a cost

function, is a mathematical function that
measures the difference between the pre
dicted output(p) and the true output(y) of a
neural network. The goal of training a neu
ral network is to minimize the value of the
loss function.

There are several commonly used loss
functions, such as mean squared error
(MSE), mean absolute error (MAE) and
crossentropy loss.

Crossentropy loss eq. (2.6) is a pop
ular loss function for classification prob
lems, it is often used for problems where
the goal is to predict a probability distribu
tion over a set of discrete classes. In the
case of seizure prediction, where the goal is
to classify an EEG signal as either a seizure
or nonseizure, crossentropy loss is a suit
able choice.

− (y log(p) + (1− y) log(1− p)) (2.6)

Crossentropy loss is a measure of the dis
similarity between the predicted probability
distribution and the true distribution. It pe
nalizes the model more for predictions that
are further away from the true labels. It also
has the advantage of providing a probabilis
tic interpretation of the output, which will be
discussed in ?? about how to use this value
as a level of confidence.



Optimizers
An optimizer is an algorithm used to adjust the parameters of a neural network during

training, in order to minimize the cost function. The cost function represents the difference
between the predicted output of the network and the true output. The goal of training a
neural network is to find the set of parameters that minimize this cost function.

Adam eq. (2.7) is a popular optimization algorithm that combines the advantages
of two other optimization algorithms, Adaptive Gradient Algorithm (AdaGrad) and Root
Mean Square Propagation (RMSProp) [29]. It uses a combination of gradient information
and moving averages of the gradient and squared gradient to adapt the learning rate on
a perparameter basis.

mn = E [Xn] (2.7)

Adam is an adaptive optimization algorithm, which means that it modifies the learning
rate during training. It uses a combination of gradient information and historical gradient
information to adjust the learning rate for each parameter. This allows Adam to converge
faster and with more stable results, compared to traditional optimization algorithms such
as stochastic gradient descent (SGD) [29].

2.5.1 Feed Forward Neural Network
Feed Forward Neural Network consists of layers of interconnected artificial neurons,

or nodes, which process and transmit information through the network.

The information flows in one direction, from the input layer through one or more hid
den layers and to the output layer, without looping back fig. 2.2. This architecture is called
feedforward because the information flows in one direction, from the input layer to the
output layer without looping back [30].

The input layer receives the input data, and the output layer produces the predic
tions. The hidden layers process the information by applying mathematical operations
(also called activation functions) Section 2.5 to the input data and passing the results to
the next layer. The number of hidden layers, and the number of neurons in each layer,
can be adjusted to optimize the performance of the network.

Figure 2.2: Data loaded from input goes throw several hidden layers before reaching the
output



2.5.2 Convolutional Neural Network
Convolutional Neural Network (CNN) is a type of neural network algorithm that is

particularly wellsuited for image and signal processing tasks. CNNs are inspired by the
structure of the human visual cortex, which is composed of small, locally connected re
gions called receptive fields [30]. A CNN consists of multiple layers, including convolu
tional layers, pooling layers, and fully connected layers.

The convolutional layers are responsible for learning local patterns in the input data
by applying a set of learnable filters to the input. These filters slide across the input,
computing dot products between the filter weights and the input at each position. These
dot products are then passed through a nonlinear activation function, such as Leaky
ReLU Section 2.5, to introduce nonlinearity into the model.

Pooling layers are used to downsample the feature maps outputted by the convolu
tional layers. This helps to reduce the spatial size of the feature maps, while also retaining
the most important features [31].

Figure 2.3: Data loaded from input goes throw convolution and pooling layers before
reaching the output

2.6 Performance metrics
In the context of classification problems, three commonly used performance metrics

are accuracy, specificity, and sensitivity. Variables needed to calculate each metric are
true positive (TP), true negative (TN), false positive (FP) and false negative (FN).

• Accuracy refers to the proportion of correctly classified instances in the entire dataset.
Mathematically, it is defined as the ratio of the number of true positive (TP) and true
negative (TN) predictions to the total number of observations.

Accuracy =
TP+ TN

TN+ FP+ TP+ FN
× 100 (2.8)

• Specificity measures the proportion of
correctly classified negative instances
out of all negative instances. It is de
fined as the ratio of the number of true
negative predictions to the total number
of negative observations.

Specificity =
TN

TN+ FP
× 100 (2.9)

• Sensitivity measures the proportion of
correctly classified positive instances out
of all positive instances. It is defined as
the ratio of the number of true positive
predictions to the total number of positive
observations.

Sensitivity =
TP

TP+ FN
× 100 (2.10)



3 Methodology
In this chapter, I will describe the steps

taken to implement my seizure detection
model, including data cleaning and prepro
cessing and the process of building and
training machine learning models.

3.1 Dataset
CHBMIT Scalp EEG Database Ta

ble 3.1, compiled by Children’s Hospital
Boston, contains EEG recordings from child
patients suffering from intractable seizures.
Subjects were observed for many days af
ter discontinuing antiseizure medication to
define their seizures. This dataset is really
clean and I am using this dataset to train
and test my seizure detection model.

In this database, all EEG recordings
are made at a sample rate of 256Hz, and
each case has many files including sepa
rate sessions. Each recording session con
tains numerous channels Figure 2.1; how
ever, not all of the channels from each in
stance are equal, which can lead to a signif
icant inconsistency problem; hence, chan
nel selection and data filtering are neces
sary before using this data to train each
model.

Case Gender Age

chb01 F 11
chb02 M 11
chb03 F 14
chb04 M 22
chb05 F 7
chb06 F 1.5
chb07 F 14.5
chb08 M 3.5
chb09 F 10
chb10 M 3
chb11 F 12
chb12 F 2
chb13 F 3
chb14 F 9
chb15 M 16
chb16 F 7
chb17 F 12
chb18 F 18
chb19 F 19
chb20 F 6
chb21 F 13
chb22 F 9
chb23 F 6

Table 3.1: Summary of CHBMIT Scalp
database content CHBMIT Scalp EEG
Database

Figure 3.1: Sample of seizure and nonseizure in the time domain from CHBMIT Scalp
database

8 Automatic seizure detection
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3.2 Preprocessing
Preprocessing is an important step before training a model to predict seizures be

cause it helps to improve the quality and reliability of the data. This can help to improve
the accuracy and performance of your model while also ensuring that the model is able to
generalize to new, unseen cases. Additionally, preprocessing the data can also reduce
the data’s dimensionality, which can improve the computational efficiency of training the
model. A flow chart from my source code Listing 2 in appendix, Listing 3 in the following
flow chart Figure 3.2.

3.2.1 Data inspection
CHBMIT Scalp is encoded as Euro

pean Data Format (EDF) which is a stan
dard file format designed for the exchange
and storage of medical time series. In or
der to extract all the encoded information,
MNE library support is needed in order to
provide the right toolkit to read the data and
integrate it into python.

MNE is an opensource Python pack
age for exploring, visualizing, and analyz
ing human neurophysiology. This library is
huge but only really specific methods are
being used Listing 2 (in appendix) in order
to extract our data.

Mne also provides support for inspect
ing data from different channels, however,
seizure annotations aren’t located in the raw
data, manual seizure annotations are being
assigned in the raw data in order to visualize
seizures in the EEG visualization Listing 3
from appendix.

3.2.2 Features selection
Channel selection

Cases from CHBMIT Scalp are not
recorded in the same way, since some
of their recordings provide more channels
than others. The goal is to keep the max
imum amount of patients in order to gen
eralize better the model, so instead of dis
carding patients, I am discarding channels
that aren’t available in every case. Getting
the intersection of channels from all cases,
channels to be included in the prediction
will be the following 17: ”P8O2”, ”C4
P4”, ”FP1F3”, ”FP2F8”, ”CZPZ”, ”FP1
F7”, ”T7P7”, ”C3P3”, ”FP2F4”, ”P4O2”,
”F8T8”, ”F7T7”, ”F3C3”, ”FZCZ”, ”P3
O1”, ”P7O1”, ”F4C4”. A clear display of
the channel selection can be seen in Fig
ure 1.

Figure 3.2: flow chart of preprocessing’s
code implementation



Dealing with unbalanced data
Unbalanced data is a frequent problem in machine learning, especially when working

with EEG datasets. Oversampling the minority class or undersampling the majority class
is a typical strategy for dealing with uneven data. In this scenario, there are many more
interictal intervals than ictal intervals. The strategy taken to produce balanced data is to
have the same number of interictal and ictal intervals Figure 3.2. This may be accom
plished by randomly picking segments of interictal periods to match the same amount of
ictal duration.

Statistical metrics
Common statistical metrics are being used to describe the attributes of a dataset.

The advantage of using statistical measures instead of raw data is that it reduces the
dimensionality of the data, which can increase the computing efficiency of your model.

In order to choose the right metrics, it’s important to only choose the feature with a
higher correlation with the target. Table of correlation Figure 3.3 is a table showing the
correlation coefficients between multiple variables. It can be used to identify relationships
between variables: By looking at the correlation coefficients, variables that are positively
or negatively correlated with each other can be identified. This can help understand the
relationships between different variables and how they may affect each other. By looking
at the correlation coefficients, highly correlated with the target variables can be identified,
the main point of doing this is to identify and select the most relevant features for the
model.

Figure 3.3: Seizure correlation with features as a heat map

A higher correlation means more representative in order to classifying each epoch.
Regarding the image, features like maximum, standard deviation and variation seem
more relevant than skewness, kurtosis, minimum and average.

To sum up, I want to obtain features from each epoch before and after applying STFT
Section 2.3 (which means I am using both time and frequency domain) to each epoch
of the data. By combining 3 of the most relevant statistical metrics and the previously
mentioned.

3.2.3 Data cleaning
Preparing data for training

In order to prepare the dataset for training, everything is stored in Pandas dataframe.
Pandas is a Python library for data manipulation and analysis. It provides data structures
and functions for working with structured data, such as data tables and time series data.
The main reason to use pandas for machine learning is that it is easy to clean, preprocess,
and transform datasets, which is often a critical step in the machine learning pipeline.



Train test split
Training and test sets are used to evaluate the performance of a machinelearning

model. The idea is to split the available data into two sets: one set is used to train the
model and the other set is used to evaluate the performance of the trained model.

The training set is used to fit the model
and the test set is used to evaluate the per
formance of the model. By using a separate
test set, I can get an unbiased estimate of
the model’s performance on unseen data.
This is important because it allows us to un
derstand how well the model is likely to per
form on new, unseen data, which is critical
for realworld applications.

Since our data works with cases and
each case is an independent patient. These
patients are randomly selected into the train
or test sets, to better generalize the result
without compromising the size of the train
ing set. 21 patients are being chosen for
training the model and 3 are being chosen
for the testing and validation see Figure 3.4.

Figure 3.4: Representation of train and test
balance. Red means test set and black
means train set

3.3 1dimensional data model training
In this section, I will use several machinelearning approaches to train a model with

the test set and evaluate its correctness. There are 102 different features and 1 binary
target for each named epoch, which can be true or false depending on whether the epoch
target is a seizure or not.

3.3.1 Feed forward neural network model architecture
For this model, I am using PyTorch. PyTorch is an opensource machinelearning

library for Python. It contains a variety of builtin tools and functions to accelerate the
process of building a neural network. The entire code of the Neural network is written
with the following code Listing 4 from appendix and the following graph Figure 3.5 notice
that it uses the activation function mentioned in section 2.5.

Figure 3.5: FFNN structure from Listing 4 from appendix



3.3.2 Feed forward neural network model training
In order to train my FFNN model, I first separated the training set into batches of 50

samples each. This is a common practice when training neural networks as it allows the
model to learn from the data in smaller chunks, which can improve the stability and speed
of the training process.

Next, I applied crossentropy loss as the cost function Section 2.5 and used the
Adam optimizer to adjust the weights of the network during training. Adam is an adap
tive optimization algorithm that uses a combination of gradient information and historical
gradient information to adjust the learning rate on a perparameter basis. It is well suited
for training neural networks and is known to converge faster and more stable than other
optimization algorithms.

I set the learning rate to 0.0001 which is a common value for the Adam optimizer.
This means that the optimizer will make small updates to the weights at each step. This
value was chosen after trying different learning rates and evaluating the results.

Figure 3.6: Neural network model training performance, left: reduction of the loss function
from each iteration, right: increase of the accuracy from each iteration. Lower loss function
and higher accuracy mean better training performance, but always following values from
the valid set to avoid overfitting.

After training the model on the training set, I evaluated its performance by measuring
its accuracy on the test set. The final accuracy of the model was 83.778%, which means
that the model was able to correctly classify 83.778% of the samples in the test set. This
accuracy can be considered as a good result, considering the tradeoff between specificity.
However, we can clearly see in Figure 3.6, there is still a huge gap for the training accuracy
to reach 100%. So most probably there is still room for improvement.

Some possible solution to identify the problem is by changing the model architecture
by adding more layers or changing their size. However, this can also lead to an overfitting
problem, this happens because themodel has learned the noise in the training data, rather
than the underlying pattern, and as a result, it becomes highly sensitive to small variations
in the input data. So as an alternative, it is possible to check the quality of the model by
comparing it with others. If other models cannot outperform the FFNN means the real
bottleneck is not the architecture, then we can look into improving the dataset again.



3.3.3 Comparing with other Machine learning models
I am using three different machine learning tools, Support Vector Machine (SVM), K

Nearest Neighbours (KNN) and Random Forest (RF) to compare their performance with
the FFNN model using the same dataset.

SVM is a linear model that finds the best boundary between different classes, KNN is
a nonparametric method that finds the kneighbours of each sample and assigns the class
that is most common among them. RF is an ensemble learning method that constructs
multiple decision trees and combines their predictions to make a final prediction. They
are all supervised

By using these different machine learning tools, I will be able to compare their perfor
mance with the FFNN model and determine which one is the most accurate and suitable
for the seizure detection task. By doing this, I can conclude whether the limitation of the
FFNN model is caused by the architecture or the dataset and if there is any room for
improvement.

This specific code can be found in Listing 13, Listing 5 and Listing 6 from appendix.
After evaluating their performance with accuracy, specificity and sensitivity Section 2.6
the following table is generated:

Model Accuracy Specificity Sensitivity
Support Vector Machine (SVM) 87.554% 87.339% 87.768%
K Nearest Neighbour (KNN) 87.446% 87.339% 87.554%
Random Forest (RF) 87.554% 91.631% 83.476%
Feed Forward Neural Network (FFNN) 83.778% 86.683% 81.314%

Table 3.2: Metrics table of testing set comparison from different machine learning models

According to Table 3.2, most of the models have similar scores in each metric, which
means our model architecture is not particularly bad. We can keep trying other machine
learning algorithms like naive Bayes, Logistic regression or decision trees. However,
considering that scores from accuracy in all of the tested models can’t reach over >88%,
probably is not the problem of the model. In this case, we may assume that the bottleneck
of the training resides in the dataset that is not generating enough relevant features to
detect seizures with precision.

3.4 2dimensional data model training
According to Section 3.3, our main problem is to achieve higher accuracy on the

model relays on which features we selected before the training. Using statistical metrics
as features was a wise choice in terms of performance, however, it may be not enough.
This new approach consists of generating 2D data and taking advantage of Convolu
tional Neural Network Section 2.5.2 to provide the extra features missing for the FFNN to
achieve higher accuracy.



3.4.1 2dimensional data extraction
Since the entire frequency domain is segmented, boundaries have to be set, Jour

nal of Clinical Neurophysiology [32] mentioned that frequencies above 40 Hz are poorly
visualized on conventional EEG scalp recordings. We are also considering this idea and
applying a low pass filter in the frequency domain before generating the 2dimensional
dataset.
Low pass filtering

Lowpass filtering is a technique used to remove highfrequency components from a
signal while preserving the lowfrequency components. It is often used in signal process
ing to remove unwanted noise or to isolate specific frequency bands of interest.

In the case of EEG signals, low pass filtering is beneficial for seizure detection be
cause seizures are generally characterized by lowfrequency changes in the EEG signal.
By setting a low pass filter at 40 Hz, you are removing the highfrequency components
of the signal that are not relevant to the seizure detection task and focusing on the low
frequency components that are more likely to contain information about seizures. This
can help to improve the performance of the seizure detection model by reducing noise
and highlighting the relevant features of the signal.
Heat map generation

A heat map is a graphical representation of data where individual values are repre
sented as colours. It is used to visualize the distribution of a dataset, highlighting areas of
high and low density. The colours in a heat map are typically chosen to represent different
levels of a variable, such as a temperature or density, with warm colours indicating high
values and cool colours indicating low values.

Since we have several channels for each EEG epoch, after applying STFT, an image
of a heat map can be generated. To simplify the amount of data from the heat map, I am
separating the frequency domain into 41 chunks calculated by computing the average
between segments of 1Hz (E.G. 0Hz0.99Hz, 1Hz1.99Hz, 2Hz2.99Hz...) Figure 3.7. A
good reason to use this technique is that it can remove any noise and make the model
cleaner and smoother in each chunk.

Figure 3.7: Sample of STFT to a seizure and nonseizure reduction after applying reduc
tion



3.4.2 convolutional model
architecture

Data extracted from reduced STFT and
combined channels can be used as input
for a CNN, neural network. The proposed
model architecture Figure 3.8 is a combina
tion of the architecture from Section 3.3.1
but adding output extracted from a CNN.

Notice that in Figure 3.8 we have a flat
ten layer, this does the job of transforming
2D data back into a vector of 1D data. Ac
tivation function Section 2.5, loss function
Section 2.5 remains the same as in Sec
tion 3.3.1.

3.4.3 convolutional model training
Since thismodel is deeper than the pre

vious one, training this model will definitely
be harder. I am using also the technique of
separating the training set into batches of
50, the learning rate of 0.001 and Adam op
timizer like Section 3.3.2 since the purpose
of this model is the same as the previous
one.

After looking into the performance of
this model, an outstanding learning perfor
mance is being shown. Considering the
valid set (orange line) is not inside the train
ing set, it is surprisingly good to see how it is
still reaching almost the 100%of accuracy.

Figure 3.8: FFNN structure from Listing 8
from appendix

Figure 3.9: Neural network model training performance from CNN+FFNN



4 Results

I this chapter I will be discussing how I evaluated the performance of the model and
analyzed the results. The evaluation process should also consider the tradeoff between
specificity and sensitivity and how I can balance it to provide the best results.

4.1 2dimensional data visulization
Image Figure 4.1 is generated by combining 17 channels after applying STFT to each

epoch. This is an example of input loaded in the convolutional neural network where each
epoch can generate matrices of 17 channels x 41 chunks.

Figure 4.1: Heat map generated after STFT and reduction

We can clearly differentiate seizure and nonseizure from Figure 4.1. Since these
images can be converted into the matrix and loaded into convolutions layers.

4.2 Models comparison
Each model was evaluated with the testing set, with is completely isolated from the

training phase to avoid any kind of overfitting. The performance of each model was eval
uated by comparing the seizure detection times to the reference times obtained by an
expert with annotated data from CHBMIT Scalp EEG Database, and the evaluation met
rics used were sensitivity, specificity, and accuracy section 2.6. It is important to mention
that the final model should not only have high accuracy but also a good balance between
sensitivity and specificity, as it guarantees better and more accurate results.
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Model Accuracy Specificity Sensitivity
Support Vector Machine (SVM) 87.554% 87.339% 87.768%
K Nearest Neighbour (KNN) 87.446% 87.339% 87.554%
Random Forest (RF) 87.554% 91.631% 83.476%
Feed Forward Neural Network (FFNN) 83.778% 86.683% 81.314%
Convolutional + FFNN (CNN+FFNN) 98.615% 98.737% 98.425%

Table 4.1: Metrics table of testing set comparison from different machine learning models

From Table 4.1 we can see how the CNN+FNN model outperformed all the others,
mainly due to its larger amount of data and deeper architecture of the neural network.

4.3 Testing with unbalanced data
Testing the model with unbalanced data can be used in order to simulate realworld

scenarios. In practice, the distribution of seizure and nonseizure cases in EEG record
ings is often unbalanced, with many more nonseizure cases than seizure cases. This is
because seizures are relatively rare events, and it is difficult to collect a large number of
seizure cases for training and testing the model.

In this case, MNE library from python is being used to visualize the results. In order
to annotate seizures detected from the CNN+FNN model, an entire session is loaded into
the model without any kind of processing as a real case experiment. Code can be found
in Listing 16 from the appendix.

Figure 4.2: Comparison of seizures detected by an expert (above) and ML (below)

By looking into Figure 4.2, It’s true that machine learning is detecting somehow the
seizures, however, there are still a lot of noise. The model is detecting seizures but since
it is trained with balanced data it is not working properly with unbalanced data. Figure 4.2
is detected by the CNN+FNN model, which means there is still a gap for this model to
work with unbalanced data.



5 Discussion

In this project different machinelearning models have been built in order to detect
seizures. In the near future is more likely to combine different methods and techniques to
improve the seizure detection process. In this chapter some general ideas and compar
isons.

It’s known in the medical field that sensitivity is more important than specificity since
we want to avoid missing any true positives and not relevant getting some false positives.
Experts can do the minimum effort to reject false positives. Since we have been working
with Cross Entropy Loss Section 2.5, a threshold can be used to evaluate the confidence,
which means how confident is the model with its prediction. We can modify the threshold
from 0 to 1 in order to assign seizures upon a boundary of its confidence. As a result in
Figure 5.1, it is possible to see that specificity increases when decreasing the threshold
and sensitivity increases when increases the threshold is. In future works, this could be
an interesting approach to increase precision in medical diagnosis by combining experts’
knowledge with artificial intelligence.

Figure 5.1: Plot generated calculating sensitivity, accuracy and specificity with a different
threshold value.
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While testing with unbalanced data this new dataset from Section 3.4 have been
treated wrongly by computing the standardization of the seizures and nonseizures sepa
rately. This means the model is clearly overfitted to the standardization, which shouldn’t
be done since new and unknown data should be standardized with the same values of
standard deviation and average. Therefore the accuracy shown in Table 4.1 about the
CNN+FNN model might be biased.

It is imperative to address this issue in future work and ensure that the data is properly
standardized before training the model. This highlights the importance of proper data pre
processing and handling in machine learning, as even small errors in this step can lead
to significant inaccuracies in the final model. Additionally, this issue also highlights the
importance of testing models with new and unseen data to ensure that they generalize
well to realworld scenarios.

One limitation of this project is that the EEG recordings used in this study were col
lected from a single hospital and may not represent the diverse range of EEG record
ings from different environments. This can limit the generalizability of the results to other
populations and settings. Additionally, the dataset used in this study only includes EEG
recordings from children patients from 2 to 22 years Table 3.1, which means the model
may not be suitable for adults.

Another limitation of this project is the size of the dataset. The dataset used in this
study is relatively small, which can limit the ability of the model to generalize to new and
unseen data. Furthermore, the dataset used in this study is composed of recordings from
a single type of EEG device, and the results may not generalize to recordings from other
devices.

A limitation of this study is the use of a single expert’s annotation of seizures, which
may limit the generalization of the results to other experts. Furthermore, the model is not
able to predict seizures, it can only detect them in the provided dataset. Therefore, in
future work, it would be beneficial to expand the dataset to include a more diverse range
of patients, ages, and EEG recording environments, as well as to explore the possibility
of using forecasting models for seizure prediction.

Additionally, this study uses a binary classification approach, where the goal is to
classify a given EEG segment as either seizure or nonseizure. However, the reality of
seizures is more complex and there are other types of seizures and seizurelike events
that are not captured by this approach. Therefore, in future work, it would be beneficial to
explore multiclass classification approaches that could capture this complexity.



6 Conclusion
In conclusion, this thesis presented a study on the use of machine learning techniques

for the automated detection of seizures in EEG recordings. The goal of this research was
to develop a model that could accurately detect seizures in EEG data and to evaluate its
performance using a dataset of EEG recordings with seizures highlighted by an expert.
The proposed model was a neural network that combined frequency features with a CNN
and time features with an FFNN. The results of the evaluation showed that the proposed
model was able to accurately detect seizures with an accuracy of 98.615%.

Furthermore, the study also compared the performance of different machine learn
ing algorithms, such as Support Vector Machine (SVM), KNearest Neighbors (KNN) and
Random Forest (RF) with the proposed model, and found that the proposed neural net
work model performed better. The study also explored the use of unbalanced data in the
dataset, where the major problem resides in those models.

This study contributes to the ongoing research in the field of automated seizure detec
tion by demonstrating the potential of using machine learning techniques for this task. The
results of this research have the potential to support clinicians in the evaluation of seizures
and to make the process more accurate and less timeconsuming. However, there are
still some limitations that need to be addressed in future work, such as increasing the
sample size of the dataset and incorporating more advanced techniques to improve the
performance of the model.
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Appendix
Codes

1 # df is Pandas.dataframe with all stored features
2 df = (df - df.mean()) / df.std()

Listing 1: Standardization of dataframe

1 import mne
2 #it is important to activate the flag preload, otherwise , time series data won

't be stored in the environment
3 edf_data = mne.io.read_raw_edf("filePath.edf", preload=True)

Listing 2: mne library support to extract the data

1 # seizure_start is a list of seizure starting time
2 # duration is a list of their duration
3 ictal_information = mne.Annotations(
4 onset=seizure_start ,
5 duration=seizure_duration ,
6 description="bad"
7 )
8 edf_data.set_annotations(ictal_information)
9 # reject_by_annotation will remove any segment with an annotation of "bad"

10 non_seizure = mne.make_fixed_length_epochs(
11 edf_data,
12 seizure_duration ,
13 reject_by_annotation=True)
14 seizure = mne.concatenate_raws(edf_data.crop_by_annotations())

Listing 3: annotating and splitting seizure from nonseizure

1 class FFNN(nn.Module):
2 def __init__(self, input_dim , output_dim):
3 super(FFNN, self).__init__()
4 # define layers
5 self.lin1 = nn.Linear(input_dim , 64)
6 self.norm1 = nn.BatchNorm1d(64)
7 self.lrelu = nn.LeakyReLU()
8 self.drop = nn.Dropout(0.2)
9

10 self.lin2 = nn.Linear(64, 32)
11 self.norm2 = nn.BatchNorm1d(32)
12 self.lrelu = nn.LeakyReLU()
13
14 self.lin3 = nn.Linear(32, 16)
15 self.norm3 = nn.BatchNorm1d(16)
16 self.lout = nn.Linear(16, output_dim)
17
18 def forward(self, x):
19 y_pred = self.lin1(x)
20 y_pred = self.norm1(y_pred)
21 y_pred = self.lrelu(y_pred)
22 y_pred = self.drop(y_pred)
23
24 y_pred = self.lin2(y_pred)
25 y_pred = self.norm2(y_pred)
26 y_pred = self.lrelu(y_pred)
27 y_pred = self.drop(y_pred)
28
29 y_pred = self.lin3(y_pred)
30 y_pred = self.norm3(y_pred)



31 y_pred = self.lrelu(y_pred)
32
33 y_pred = self.lout(y_pred)
34 return y_pred.squeeze()

Listing 4: FFNN model architecture code with Pytorch

1 from sklearn.svm import SVC
2 svm=SVC(kernel='linear')
3 svm.fit(X_train.values, y_train)
4 y_pred = svm.predict(X_test.values)

Listing 5: SVM training and prediction with sklearn

1 from sklearn.ensemble import RandomForestClassifier
2 rf=RandomForestClassifier(n_estimators=100)
3 rf.fit(X_train.values, y_train)
4 y_pred = rf.predict(X_test.values)

Listing 6: RF training and prediction with sklearn

1 from sklearn.neighbors import KNeighborsClassifier
2 knn=KNeighborsClassifier(n_neighbors=60, n_jobs=-1)
3 knn.fit(X_train.values, y_train)
4 y_pred = knn.predict(X_test.values)

Listing 7: KNN training and prediction with sklearn

1 input_size = X_train.shape[1] - 1 + 495
2 output_size = 1
3
4 class FFNN(nn.Module):
5 def __init__(self, input_dim , output_dim):
6 super(FFNN, self).__init__()
7 # define layers
8 self.conv1 = nn.Conv2d(1, 3, 3, padding=1, stride=2)
9 self.relu = nn.ReLU()

10 # 3x9x5
11 self.conv2 = nn.Conv2d(3, 9, 3, padding=1, stride=2)
12 # 9x5x3
13 self.lin1 = nn.Linear(input_dim , 256)
14 self.norm1 = nn.BatchNorm1d(256)
15 self.lrelu = nn.LeakyReLU()
16 self.drop = nn.Dropout(0.2)
17
18 self.lin2 = nn.Linear(256, 64)
19 self.norm2 = nn.BatchNorm1d(64)
20 self.lrelu = nn.LeakyReLU()
21
22 self.lin3 = nn.Linear(64, 8)
23 self.norm3 = nn.BatchNorm1d(8)
24 self.lout = nn.Linear(8, output_dim)
25
26 def forward(self, time, freq):
27 freq = self.conv1(freq)
28 freq = self.relu(freq)
29 freq = self.drop(freq)
30
31 freq = self.conv2(freq)
32 freq = self.relu(freq)
33



34 freq = freq.contiguous().view(freq.shape[0],freq.shape[1]*freq.
shape[2]*freq.shape[3])

35 features = torch.cat((freq, time), dim=1)
36
37 y_pred = self.lin1(features)
38 y_pred = self.norm1(y_pred)
39 y_pred = self.lrelu(y_pred)
40 y_pred = self.drop(y_pred)
41
42 y_pred = self.lin2(y_pred)
43 y_pred = self.norm2(y_pred)
44 y_pred = self.lrelu(y_pred)
45 y_pred = self.drop(y_pred)
46
47 y_pred = self.lin3(y_pred)
48 y_pred = self.norm3(y_pred)
49 y_pred = self.lrelu(y_pred)
50
51 y_pred = self.lout(y_pred)
52 return y_pred.squeeze()
53
54 model = FFNN(input_size , output_size)

Listing 8: CNN + FFNN model architecture code with Pytorch

1 import numpy as np
2 import pandas as pd
3 from scipy.fft import rfft, rfftfreq
4 from scipy.stats import skew, kurtosis
5 import csv, mne, math, pickle, json
6 from IPython.display import clear_output
7
8 # constants
9 EPOCH_DURATION = 2

10 OVERLAP_DURATION = 1
11
12 # randomly selected patients to be train or test
13 train = [
14 "chb01",
15 "chb02",
16 "chb03",
17 "chb04",
18 "chb05",
19 "chb06",
20 "chb10",
21 "chb11",
22 "chb13",
23 "chb14",
24 "chb15",
25 "chb16",
26 "chb17",
27 "chb18",
28 "chb19",
29 "chb20",
30 "chb21",
31 "chb22",
32 "chb23",
33 "chb24",
34 ]
35
36 test = ["chb07", "chb08", "chb09"]
37



38 # drive path to the dataset (should change it if you want to try the code)
39 drive_path = "C:/Users/Eugene Chen/Desktop/UNI/Project/Data/"
40 seizure_pointers = pd.read_excel(drive_path + "seizure data.xlsx", index_col

=0)
41 seizure_pointers["index"] = (
42 seizure_pointers["seizure_file"]
43 + " "
44 + seizure_pointers["seizure_number"].astype(str)
45 )
46
47 # channels to be selected
48 seizure_pointers = seizure_pointers.set_index("index")
49 channels = [
50 "P8-O2",
51 "C4-P4",
52 "FP1-F3",
53 "FP2-F8",
54 "CZ-PZ",
55 "FP1-F7",
56 "T7-P7",
57 "C3-P3",
58 "FP2-F4",
59 "P4-O2",
60 "F8-T8",
61 "F7-T7",
62 "F3-C3",
63 "FZ-CZ",
64 "P3-O1",
65 "P7-O1",
66 "F4-C4",
67 ]
68
69 # labels to identify the features of output dataset
70 label_std = [n + "-std" for n in channels]
71 label_var = [n + "-var" for n in channels]
72 label_max = [n + "-max" for n in channels]
73 label_std_rfft = [n + "-std_rfft" for n in channels]
74 label_var_rfft = [n + "-var_rfft" for n in channels]
75 label_max_rfft = [n + "-max_rfft" for n in channels]
76
77
78 # only for a loading bar can be ignored
79 DONE = 1
80 TOTAL = 0
81 for t in train + test:
82 TOTAL += seizure_pointers[seizure_pointers.case == t].shape[0]
83
84 # loading bar
85 def progress_bar():
86 percent = 100 * (DONE / float(TOTAL))
87 bar = "�" * int(percent) + "-" * (100 - int(percent))
88 print(f"\r|{bar}| {percent: .2f}%", end="\r")
89
90 def diff(lst1, lst2):
91 '''
92 input:
93 lst1 -> list
94 lst2 -> list
95 output:
96 return intersection of lst1 with lst2
97 '''
98 return list(set(lst1) - set(lst2))



99
100 def get_reduced_freq(target, batch_size , sampling_rate):
101 '''
102 input:
103 target -> sample to apply the tranformation
104 batch_size -> lenght of the signal reduction (int)
105 sampling_rate -> sampling rate of the signal (int)
106 output:
107 return target applied reduction and fourier tranformation
108 '''
109 result = []
110 for channel in target:
111 layer = []
112 batch=[]
113 target_ft = abs(rfft(channel))
114 target_ft = [ x.real for x in target_ft]
115 for i in target_ft[0:(sampling_rate*40)+2]:
116 batch.append(i)
117 if len(batch)==batch_size:
118 batch_mean = sum(batch)/batch_size
119 layer.append(batch_mean)
120 batch=[]
121 result.append(layer)
122 return result
123
124 def get_packed_stft(target, batch_size , sampling_rate , i):
125 '''
126 input:
127 target -> sample to apply the tranformation
128 batch_size -> lenght of the signal reduction (int)
129 sampling_rate -> sampling rate of the signal (int)
130 i -> index starting number
131 output:
132 return pandas series with the label 'stft'
133 starting with index i ready to be concatenated to a pandas dataframe
134 '''
135 fft_X = {}
136 for x in [get_reduced_freq(x, batch_size , sampling_rate) for x in target]:
137 fft_X[i] = x
138 i+=1
139 return pd.Series(fft_X).rename('stft')
140
141 def standarize(key,vector):
142 '''
143 input:
144 key -> feature category to standarize (string)
145 vector -> numpy array to apply standarization
146 output:
147 return standarized numpy array
148 '''
149 # there need to be a json file with standarization values
150 with open('standarization_values.json') as json_file:
151 standarization = json.load(json_file)
152 metrics = standarization[key]
153 return (vector - metrics["mean"]) / metrics["std"]
154
155 def create_df_file_from_patient(patient, file):
156 '''
157 input:
158 patient -> dictionary with patient information extracted from a csv
159 file -> path oto store the output dataset
160 output:



161 void but generated a .pikle file of the pandas dataframe
162 '''
163 global DONE
164 first = True
165 record = pd.DataFrame()
166 for i, sesion in patient.groupby("seizure_file"):
167 seizure_start = list(sesion.seizure_start.values)
168 seizure_duration = list(sesion.seizure_duration.values)
169 edf_data = mne.io.read_raw_edf(
170 drive_path
171 + "chb-mit-scalp-eeg-database -1.0.0/"
172 + sesion["case"][0]
173 + "/"
174 + sesion["seizure_file"][0]
175 + ".edf/",
176 verbose=50,
177 )
178 if len(diff(channels , edf_data.ch_names)) == 0:
179 clear_output(wait=True)
180 progress_bar()
181 edf_data.drop_channels(diff(edf_data.ch_names , channels))
182
183 # locate and anotate seizures
184 seizures = mne.Annotations(
185 onset=seizure_start , duration=seizure_duration , description="

bad"
186 )
187 edf_data.set_annotations(seizures)
188
189 # get seizures and split into epochs
190 raw_seizures = mne.concatenate_raws(
191 edf_data.crop_by_annotations(), verbose=50
192 )
193 seizures = mne.make_fixed_length_epochs(
194 raw_seizures ,
195 EPOCH_DURATION ,
196 overlap=OVERLAP_DURATION ,
197 reject_by_annotation=False,
198 verbose=50,
199 )
200
201 # get non-seizures and split into epochs
202 non_seizures = mne.make_fixed_length_epochs(
203 edf_data, EPOCH_DURATION , reject_by_annotation=True, verbose

=50
204 )
205
206 # computing features for non-seizure
207 X = non_seizures._get_data(verbose=50)
208 Y = seizures._get_data(verbose=50)
209 std_X = standarize("time-std",np.std(X, axis=2))
210 var_X = standarize("time-var",np.var(X, axis=2))
211 max_X = standarize("time-max",np.max(X, axis=2))
212 X_rfft = np.real(rfft(X, axis=2))
213 std_X_rfft = standarize("freq-std",np.std(X_rfft, axis=2))
214 var_X_rfft = standarize("freq-var",np.var(X_rfft, axis=2))
215 max_X_rfft = standarize("freq-max",np.max(X_rfft, axis=2))
216 index_X = list(range(len(X)))
217
218 # computing convolutions for non-seizure
219 fft_X = get_packed_stft(X, 6, 14, 0)
220



221 # computing features for seizure
222 std_Y = standarize("time-std",np.std(Y, axis=2))
223 var_Y = standarize("time-var",np.var(Y, axis=2))
224 max_Y = standarize("time-max",np.max(Y, axis=2))
225 Y_rfft = np.real(rfft(Y, axis=2))
226 std_Y_rfft = standarize("freq-std",np.std(Y_rfft, axis=2))
227 var_Y_rfft = standarize("freq-var",np.var(Y_rfft, axis=2))
228 max_Y_rfft = standarize("freq-max",np.max(Y_rfft, axis=2))
229 fft_Y = get_packed_stft(Y, 6, 14, len(X))
230 index_Y = list(range(len(X), len(X) + len(Y)))
231
232 # computing features for seizure
233 df_X = pd.DataFrame(data=std_X, index=index_X, columns=label_std)
234 df_X = df_X.join(pd.DataFrame(data=var_X, index=index_X, columns=

label_var))
235 df_X = df_X.join(pd.DataFrame(data=max_X, index=index_X, columns=

label_max))
236 df_X = df_X.join(pd.DataFrame(data=std_X_rfft , index=index_X,

columns=label_std_rfft))
237 df_X = df_X.join(pd.DataFrame(data=var_X_rfft , index=index_X,

columns=label_var_rfft))
238 df_X = df_X.join(pd.DataFrame(data=max_X_rfft , index=index_X,

columns=label_max_rfft))
239 df_X = df_X.join(fft_X)
240
241 df_Y = pd.DataFrame(data=std_Y, index=index_Y, columns=label_std)
242 df_Y = df_Y.join(pd.DataFrame(data=var_Y, index=index_Y, columns=

label_var))
243 df_Y = df_Y.join(pd.DataFrame(data=max_Y, index=index_Y, columns=

label_max))
244 df_Y = df_Y.join(pd.DataFrame(data=std_Y_rfft , index=index_Y,

columns=label_std_rfft))
245 df_Y = df_Y.join(pd.DataFrame(data=var_Y_rfft , index=index_Y,

columns=label_var_rfft))
246 df_Y = df_Y.join(pd.DataFrame(data=max_Y_rfft , index=index_Y,

columns=label_max_rfft))
247 df_Y = df_Y.join(fft_Y)
248 df = pd.concat([df_X, df_Y])
249
250 # merge seizure and non-seizure
251 aux = pd.concat(
252 [
253 pd.DataFrame(data=0, index=index_X, columns=["seizure"]),
254 pd.DataFrame(data=1, index=index_Y, columns=["seizure"]),
255 ]
256 )
257 df = df.join(aux)
258 if record.empty:
259 record = df
260 else:
261 record = pd.concat([record, df])
262 else:
263 print(diff(channels , edf_data.ch_names))
264 print(sesion["seizure_file"], "no channels")
265 DONE += 1
266
267 # save file
268 pickle.dump(df, file)
269 file.close()
270
271
272 # loop per patient



273 for target in train:
274 patient = seizure_pointers[seizure_pointers["case"] == target]
275 create_df_file_from_patient(
276 patient, open("data/train/" + target + ".pickle", "wb")
277 )
278
279 for target in test:
280 patient = seizure_pointers[seizure_pointers["case"] == target]
281 create_df_file_from_patient(
282 patient, open("data/test/" + target + ".pickle", "wb")
283 )
284 print("compleated")

Listing 9: Complete code to extract features

1 import csv
2 import pandas as pd
3 import os, pickle
4
5 #train
6 dataframes = []
7 directory = 'data\\train'
8 for filename in os.listdir(directory):
9 with open(os.path.join(directory , filename), 'rb') as f:

10 data = pickle.load(f)
11 seizure = data[data.seizure == 1]
12 non_seizure = data[data.seizure == 0]
13 non_seizure = non_seizure.sample(seizure.shape[0])
14 data = pd.concat([seizure, non_seizure]).sample(frac=1)
15 dataframes.append(data)
16
17 dataframes = pd.concat(dataframes).reset_index().drop(columns=["index"])
18 with open('data\\train.pickle', 'wb') as f:
19 pickle.dump(dataframes , f)
20
21 #test
22 dataframes = []
23 directory = 'data\\test'
24 for filename in os.listdir(directory):
25 with open(os.path.join(directory , filename), 'rb') as f:
26 data = pickle.load(f)
27 seizure = data[data.seizure == 1]
28 non_seizure = data[data.seizure == 0]
29 non_seizure = non_seizure.sample(seizure.shape[0])
30 data = pd.concat([seizure, non_seizure]).sample(frac=1)
31 dataframes.append(data)
32
33 dataframes = pd.concat(dataframes).reset_index().drop(columns=["index"])
34 with open('data\\test.pickle', 'wb') as f:
35 pickle.dump(dataframes , f)

Listing 10: merge datasets from files

1 class SeizureData(torch.utils.data.Dataset):
2 def __init__(self, x_val, y_val):
3 self.freq_features = torch.tensor([[x] for x in x_val.stft],

requires_grad=True, dtype=torch.float32)
4 x_val = x_val.drop(columns=['stft'])
5 self.n_samples = x_val.shape[0]
6 self.y_data = torch.tensor(y_val.values.astype(np.float32),

requires_grad=False)



7 self.time_features = torch.tensor(x_val.values.astype(np.float32),
requires_grad=True)

8
9 # support indexing such that dataset[i] can be used to get i-th sample

10 def __getitem__(self, index):
11 return self.time_features[index], self.freq_features[index], self.

y_data[index]
12
13 # we can call len(dataset) to return the size
14 def __len__(self):
15 return self.n_samples
16
17 dataset = SeizureData(X_train, y_train)
18 train_loader = torch.utils.data.DataLoader(dataset=dataset,
19 batch_size=50,
20 shuffle=True,
21 drop_last=True)
22 dataset = SeizureData(X_test, y_test)
23 test_loader = torch.utils.data.DataLoader(dataset=dataset,
24 batch_size=50,
25 shuffle=True,
26 drop_last=True)

Listing 11: batch loader of the dataset

1 learning_rate = 0.0001
2 criterion = nn.CrossEntropyLoss()
3 optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

Listing 12: training loop

1 num_epochs = 20
2 num_total_steps = len(train_loader)
3
4 # Train the model
5 model.train()
6 for epoch in range(num_epochs):
7
8 with torch.no_grad():
9 val_losses , val_accs , val_lengths = 0, 0, 0

10 for valid_time ,valid_freq ,valid_label in test_loader:
11 outputs = model(valid_time ,valid_freq)
12 predicted = (outputs >0.5).float()
13 val_losses += criterion(outputs, valid_label)
14 val_accs += ((predicted == valid_label).sum().item())/valid_label.

size(0)
15 val_lengths += 1
16 valid_accs.append(val_accs / val_lengths)
17 valid_loss.append(val_losses / val_lengths)
18 valid_iter.append(iter_num)
19
20 for i, (time,freq,label) in enumerate(train_loader):
21
22 #forward
23 output = model(time, freq)
24 loss = criterion(output, label)
25 #plot
26 train_accs.append(float(accuracy(output, label).data.numpy()))
27 train_loss.append(float(loss.data.numpy()))
28 train_iter.append(iter_num)
29 iter_num += 1
30 #backward



31 optimizer.zero_grad()
32 loss.backward()
33 optimizer.step()
34 if best is None:
35 best = model
36 best_loss = loss
37 elif loss < best_loss:
38 best = model
39 best_loss = loss
40
41
42 fig = plt.figure(figsize=(12,4))
43 plt.subplot(1, 2, 1)
44 plt.plot(train_iter , train_loss , label='train_loss')
45 plt.plot(valid_iter , valid_loss , label='valid_loss')
46 plt.xlabel("#iteration")
47 plt.ylabel("loss")
48 plt.legend()
49
50 plt.subplot(1, 2, 2)
51 plt.plot(train_iter , train_accs , label='train_accs')
52 plt.plot(valid_iter , valid_accs , label='valid_accs')
53 plt.xlabel("#iteration")
54 plt.ylabel("accuracy")
55 plt.legend()
56 plt.show()
57 print(f"Train, it: {iter_num} loss: {train_loss[-1]:.2f} accuracy: {

train_accs[-1]:.2f}")
58 print(f"Valid, it: {iter_num} loss: {valid_loss[-1]:.2f} accuracy: {

valid_accs[-1]:.2f}")
59 clear_output(wait=True)
60 model = best

Listing 13: CNN + FFNN training loop

1 # Test the model
2 with torch.no_grad():
3 all_predicted = torch.tensor([])
4 all_label = torch.tensor([])
5 for time, freq, labels in test_loader:
6 outputs = model(time, freq)
7 # outputs >0.5 means output set threshold to 0.5
8 all_predicted = torch.cat([all_predicted , (outputs >0.5).float()])
9 all_label = torch.cat([all_label , labels])

10 metrics(all_predicted , all_label).style.hide(axis="index")

Listing 14: detect seizures from the testing set and compute the metrics

1 # distance of between each threshold to be tested
2 step = 0.05
3 # list of threshold to test
4 threshold = np.arange(0, 1+step, step)
5
6 #dicctionary to store the values of the metrics
7 values = {}
8 for i in threshold:
9 values[i] = {'snst': [], 'spcf': [], 'accr': []}

10
11 with torch.no_grad():
12 for time, freq, labels in test_loader:
13 outputs = model(time, freq)
14 for t in threshold:



15 predicted = (outputs>t).float()
16 tn, fp, fn, tp = confusion_matrix(predicted , labels, labels=[0, 1]

).ravel()
17 if tp+tn == 0:
18 values[t]['snst'].append(0)
19 else:
20 values[t]['snst'].append((tp/(tp+fn))*100)
21 if tp+tn == 0:
22 values[t]['spcf'].append(0)
23 else:
24 values[t]['spcf'].append((tn/(fp+tn))*100)
25 values[t]['accr'].append(((tp+tn)/(tn+fp+fn+tp))*100)
26
27 sensitivity = []
28 specificity = []
29 accuracy = []
30 for _,v in values.items():
31 sensitivity.append(sum(v['snst'])/len(v['snst']))
32 specificity.append(sum(v['spcf'])/len(v['spcf']))
33 accuracy.append(sum(v['accr'])/len(v['accr']))
34
35 #plot values from the dictionary of results
36 plt.plot(threshold , sensitivity , label='sensitivity')
37 plt.plot(threshold , accuracy , label='accuracy')
38 plt.plot(threshold , specificity , label='specificity')
39 plt.ylabel('Percentage')
40 plt.xlabel('Confidence threshold')
41 plt.legend()
42 plt.show()

Listing 15: Modifying the threshold variable to see the variation of the metrics

1 import mne
2 from scipy.fft import rfft
3 import json
4
5 # using the line below can open a separated window to see the results
6 %matplotlib qt
7
8 def standarize(vector):
9 return vector - vector.mean() / vector.std()

10 def get_reduced_freq(target, batch_size , sampling_rate):
11 result = []
12 for channel in target:
13 layer = []
14 batch=[]
15 target_ft = abs(rfft(channel))
16 target_ft = [ x.real for x in target_ft]
17 for i in target_ft[0:(sampling_rate*40)+2]:
18 batch.append(i)
19 if len(batch)==batch_size:
20 batch_mean = sum(batch)/batch_size
21 layer.append(batch_mean)
22 batch=[]
23 result.append(layer)
24 return result
25
26 def get_packed_stft(target, batch_size , sampling_rate , i):
27 fft_X = {}
28 for x in [get_reduced_freq(x, batch_size , sampling_rate) for x in target]:
29 fft_X[i] = x
30 i+=1



31 return pd.Series(fft_X).rename('stft')
32
33 target = "chb10"
34 file = "chb10_27.edf"
35 drive_path = "C:/Users/Eugene Chen/Desktop/UNI/Project/Data/"
36 seizure_pointers = pd.read_excel(drive_path + "seizure data.xlsx", index_col

=0)
37 seizure_pointers["index"] = (
38 seizure_pointers["seizure_file"]
39 + " "
40 + seizure_pointers["seizure_number"].astype(str)
41 )
42 record_path = drive_path+"/"+target+file
43 channels = [
44 "P8-O2",
45 "C4-P4",
46 "FP1-F3",
47 "FP2-F8",
48 "CZ-PZ",
49 "FP1-F7",
50 "T7-P7",
51 "C3-P3",
52 "FP2-F4",
53 "P4-O2",
54 "F8-T8",
55 "F7-T7",
56 "F3-C3",
57 "FZ-CZ",
58 "P3-O1",
59 "P7-O1",
60 "F4-C4",
61 ]
62 label_std = [n + "-std" for n in channels]
63 label_var = [n + "-var" for n in channels]
64 label_max = [n + "-max" for n in channels]
65 label_std_rfft = [n + "-std_rfft" for n in channels]
66 label_var_rfft = [n + "-var_rfft" for n in channels]
67 label_max_rfft = [n + "-max_rfft" for n in channels]
68 patient = seizure_pointers[seizure_pointers["index"] == "chb10_27 1"]
69 seizure_start = patient.seizure_start.values[0]
70 seizure_duration = patient.seizure_duration.values[0]
71 edf_data = mne.io.read_raw_edf(
72 drive_path
73 + "chb-mit-scalp-eeg-database -1.0.0/"
74 + patient.case.values[0]
75 + "/"
76 + patient.seizure_file.values[0]
77 + ".edf/",
78 preload=True,
79 verbose=50
80 )
81 edf_data.drop_channels(list(set(edf_data.ch_names) - set(channels)))
82 seizures = mne.Annotations(
83 onset=seizure_start , duration=seizure_duration , description="

ground true"
84 )
85 edf_data.set_annotations(seizures)
86 EPOCH_DURATION = 2
87 OVERLAP_DURATION = 1
88 samples = mne.make_fixed_length_epochs(edf_data , EPOCH_DURATION , overlap=

OVERLAP_DURATION , reject_by_annotation=False, verbose=50)
89 samples = samples._get_data(verbose=50)



90
91 # plot seizures annotated by an expert
92 edf_data.plot()
93
94 def standarize(key,vector):
95 with open('standarization_values.json') as json_file:
96 standarization = json.load(json_file)
97 metrics = standarization[key]
98 return (vector - metrics["mean"]) / metrics["std"]
99

100 #extract features from the unbalances dataset
101 std_X = standarize("time-std",np.std(samples, axis=2))
102 var_X = standarize("time-var",np.var(samples, axis=2))
103 max_X = standarize("time-max",np.max(samples, axis=2))
104 X_rfft = np.real(rfft(samples, axis=2))
105 std_X_rfft = standarize("freq-std",np.std(X_rfft, axis=2))
106 var_X_rfft = standarize("freq-var",np.var(X_rfft, axis=2))
107 max_X_rfft = standarize("freq-max",np.max(X_rfft, axis=2))
108 fft_X = get_packed_stft(samples, 6, 14, 0)
109 index_X = list(range(len(samples)))
110 df = pd.DataFrame(data=std_X, index=index_X, columns=label_std)
111 df = df.join(pd.DataFrame(data=var_X, index=index_X, columns=label_var))
112 df = df.join(pd.DataFrame(data=max_X, index=index_X, columns=label_max))
113 df = df.join(pd.DataFrame(data=std_X_rfft , index=index_X, columns=

label_std_rfft))
114 df = df.join(pd.DataFrame(data=var_X_rfft , index=index_X, columns=

label_var_rfft))
115 df = df.join(pd.DataFrame(data=max_X_rfft , index=index_X, columns=

label_max_rfft))
116 df = df.join(fft_X)
117
118 model.eval()
119 detected = []
120 with torch.no_grad():
121 for index, item in df.iterrows():
122 freq = item.pop("stft")
123 freq = torch.tensor([[[x] for x in freq]], requires_grad=False, dtype=

torch.float32).permute(0,2,1,3)
124 time = torch.tensor([item.values.astype(np.float32)], requires_grad=

False)
125 outputs = model(time, freq)
126 predicted = (outputs >1).float()
127 if predicted == 1:
128 detected.append(index)
129
130 # this method is to reduce the amount of noice by ignoring seizures detected

of 1s lenght
131 def remove_no_neighbor_numbers(numbers):
132 result = []
133 for i in range(len(numbers)):
134 if (i > 0 and i < len(numbers) - 1) or (len(numbers) == 1):
135 result.append(numbers[i])
136 return result
137 detected = remove_no_neighbor_numbers(detected))
138
139 # Anotate detected seizures and plot in a separated window
140 seizures_pred = mne.Annotations(
141 onset=detected , duration=[1]*len(detected), description="

predicted"
142 )
143 edf_data.set_annotations(seizures_pred)
144 edf_data.plot()



Listing 16: Testing the model with unbalanced data

1 import mne
2 import matplotlib
3 import numpy as np
4 import pandas as pd
5 from sklearn import preprocessing
6 import seaborn
7 import matplotlib.pyplot as plt
8 import scipy
9 from scipy.fft import rfft, rfftfreq

10 import random
11 import pickle
12 import csv
13
14 def random_sample(arr: np.array, size: int) -> np.array:
15 return arr[np.random.choice(len(arr), size=size, replace=False)]
16 def diff(lst1, lst2):
17 return list(set(lst1) - set(lst2))
18
19 # path to the dataset
20 drive_path = "C:/Users/Eugene Chen/Desktop/UNI/Project/Data/"
21
22 seizure_pointers = pd.read_excel(drive_path+'seizure data.xlsx', index_col=0)
23 seizure_pointers['index'] = seizure_pointers['seizure_file'] +" "+

seizure_pointers['seizure_number'].astype(str)
24 seizure_pointers=seizure_pointers.set_index('index')
25 channels = ['P8-O2', 'C4-P4', 'FP1-F3', 'FP2-F8', 'CZ-PZ', 'FP1-F7', 'T7-P7',

'C3-P3', 'FP2-F4', 'P4-O2', 'F8-T8', 'F7-T7', 'F3-C3', 'FZ-CZ', 'P3-O1', '
P7-O1', 'F4-C4']

26
27 # constants
28 EPOCH_DURATION = 2
29 OVERLAP_DURATION = 1
30
31 edf_data = mne.io.read_raw_edf(drive_path+'chb-mit-scalp-eeg-database -1.0.0/'+

sesion['case'][0]+'/'+sesion['seizure_file'][0]+'.edf/', preload=True,
verbose=40)

32 if len(diff(channels , edf_data.ch_names))==0:
33 edf_data.filter(h_freq=40, l_freq=1, verbose=False)
34 edf_data.drop_channels(diff(edf_data.ch_names , channels))
35 seizures = mne.Annotations(onset=seizure_start , duration=seizure_duration ,

description='bad')
36 edf_data.set_annotations(seizures)
37 raw_seizures = mne.concatenate_raws(edf_data.crop_by_annotations(),

verbose=False)
38 seizures = mne.make_fixed_length_epochs(raw_seizures ,EPOCH_DURATION ,

overlap=OVERLAP_DURATION ,reject_by_annotation=False, verbose=False)
39 non_seizures = mne.make_fixed_length_epochs(edf_data,EPOCH_DURATION ,

reject_by_annotation=True, preload = 'fast', verbose=False)
40
41 ictal_ft = rfft(seizure)
42 N = len(ictal_ft)
43 n = np.arange(N)
44 T = 2
45 freq = n/T
46
47 last_read = ""
48 seizures_array = np.array([]).reshape(0,17,512)
49 num = 0



50 epoch_list = []
51
52 for i, row in seizure_pointers.iterrows():
53 clear_output(wait=True)
54 print(str(num)+"/"+str(seizure_pointers.shape[0]-1))
55 print(i)
56 num+=1
57
58 if last_read != row['seizure_file']:
59 file_name = row['seizure_file']+'.edf/'
60 folder_name = row['case']+'/'
61 edf_data = mne.io.read_raw_edf(drive_path+'chb-mit-scalp-eeg-database

-1.0.0/'+folder_name+file_name , verbose=40)
62 print('current channels:', edf_data.ch_names)
63 print('dropping channels:', diff(edf_data.ch_names, channels))
64 print('not contains channels:', diff(channels, edf_data.ch_names))
65 if len(diff(channels , edf_data.ch_names))!=0:
66 continue
67 edf_data.drop_channels(diff(edf_data.ch_names , channels))
68
69 seizures = mne.Annotations(onset=row['seizure_start'], duration=row['

seizure_duration'], description='bad')
70 edf_data.set_annotations(seizures)
71
72 if last_read != row['seizure_file'] or i == seizure_pointers.shape[0]-1:
73 last_read = row['seizure_file']
74 raw_seizures = mne.concatenate_raws(edf_data.crop_by_annotations(),

verbose=False)
75 seizures = mne.make_fixed_length_epochs(raw_seizures ,EPOCH_DURATION ,

reject_by_annotation=False, verbose=False)
76 seizures_array = np.concatenate((seizures_array ,seizures.get_data()),

axis=0)
77 non_seizures = mne.make_fixed_length_epochs(edf_data,EPOCH_DURATION ,

reject_by_annotation=True, preload = 'fast', verbose=False)
78 epoch_list.append(non_seizures)
79
80
81 label_std = [n + '-std' for n in channels]
82 label_var = [n + '-var' for n in channels]
83 label_max = [n + '-max' for n in channels]
84 label_skw = [n + '-skw' for n in channels]
85 label_krt = [n + '-krt' for n in channels]
86 label_min = [n + '-min' for n in channels]
87 label_avg = [n + '-avg' for n in channels]
88 label_std_rfft = [n + '-std_rfft' for n in channels]
89 label_var_rfft = [n + '-var_rfft' for n in channels]
90 label_max_rfft = [n + '-max_rfft' for n in channels]
91 label_skw_rfft = [n + '-skw_rfft' for n in channels]
92 label_krt_rfft = [n + '-krt_rfft' for n in channels]
93 label_min_rfft = [n + '-min_rfft' for n in channels]
94 label_avg_rfft = [n + '-avg_rfft' for n in channels]
95
96 X = non_seizures_array
97 Y = seizures_array
98
99 label=lst:correlation_matrix]

100 std_X = np.std(X, axis=2)
101 var_X = np.var(X, axis=2)
102 max_X = np.max(X, axis=2)
103 avg_X = np.average(X, axis=2)
104 min_X = np.min(X, axis=2)
105 skw_X = scipy.stats.skew(X, axis=2)



106 krt_X = scipy.stats.kurtosis(X, axis=2)
107 X_rfft = np.real(rfft(X, axis=2))
108 std_X_rfft = np.std(X_rfft, axis=2)
109 var_X_rfft = np.var(X_rfft, axis=2)
110 max_X_rfft = np.max(X_rfft, axis=2)
111 avg_X_rfft = np.average(X_rfft, axis=2)
112 min_X_rfft = np.min(X_rfft, axis=2)
113 skw_X_rfft = scipy.stats.skew(X_rfft, axis=2)
114 krt_X_rfft = scipy.stats.kurtosis(X_rfft, axis=2)
115 index_X = list(range(len(X)))
116
117 std_Y = np.std(Y, axis=2)
118 var_Y = np.var(Y, axis=2)
119 max_Y = np.max(Y, axis=2)
120 avg_Y = np.average(Y, axis=2)
121 min_Y = np.min(Y, axis=2)
122 skw_Y = scipy.stats.skew(Y, axis=2)
123 krt_Y = scipy.stats.kurtosis(Y, axis=2)
124 Y_rfft = np.real(rfft(Y, axis=2))
125 std_Y_rfft = np.std(Y_rfft, axis=2)
126 var_Y_rfft = np.var(Y_rfft, axis=2)
127 max_Y_rfft = np.max(Y_rfft, axis=2)
128 avg_Y_rfft = np.average(Y_rfft, axis=2)
129 min_Y_rfft = np.min(Y_rfft, axis=2)
130 skw_Y_rfft = scipy.stats.skew(Y_rfft, axis=2)
131 krt_Y_rfft = scipy.stats.kurtosis(Y_rfft, axis=2)
132 index_Y = list(range(len(X),len(X)+len(Y)))
133
134 df_X = pd.DataFrame(data=std_X, index=index_X, columns=label_std)
135 df_X = df_X.join(pd.DataFrame(data=var_X, index=index_X, columns=label_var))
136 df_X = df_X.join(pd.DataFrame(data=max_X, index=index_X, columns=label_max))
137 df_X = df_X.join(pd.DataFrame(data=avg_X, index=index_X, columns=label_avg))
138 df_X = df_X.join(pd.DataFrame(data=min_X, index=index_X, columns=label_min))
139 df_X = df_X.join(pd.DataFrame(data=skw_X, index=index_X, columns=label_skw))
140 df_X = df_X.join(pd.DataFrame(data=krt_X, index=index_X, columns=label_krt))
141 df_X = df_X.join(pd.DataFrame(data=std_X_rfft , index=index_X, columns=

label_std_rfft))
142 df_X = df_X.join(pd.DataFrame(data=var_X_rfft , index=index_X, columns=

label_var_rfft))
143 df_X = df_X.join(pd.DataFrame(data=max_X_rfft , index=index_X, columns=

label_max_rfft))
144 df_X = df_X.join(pd.DataFrame(data=avg_X_rfft , index=index_X, columns=

label_avg_rfft))
145 df_X = df_X.join(pd.DataFrame(data=min_X_rfft , index=index_X, columns=

label_min_rfft))
146 df_X = df_X.join(pd.DataFrame(data=skw_X_rfft , index=index_X, columns=

label_skw_rfft))
147 df_X = df_X.join(pd.DataFrame(data=krt_X_rfft , index=index_X, columns=

label_krt_rfft))
148
149
150 df_Y = pd.DataFrame(data=std_Y, index=index_Y, columns=label_std)
151 df_Y = df_Y.join(pd.DataFrame(data=var_Y, index=index_Y, columns=label_var))
152 df_Y = df_Y.join(pd.DataFrame(data=max_Y, index=index_Y, columns=label_max))
153 df_Y = df_Y.join(pd.DataFrame(data=avg_Y, index=index_Y, columns=label_avg))
154 df_Y = df_Y.join(pd.DataFrame(data=min_Y, index=index_Y, columns=label_min))
155 df_Y = df_Y.join(pd.DataFrame(data=skw_Y, index=index_Y, columns=label_skw))
156 df_Y = df_Y.join(pd.DataFrame(data=krt_Y, index=index_Y, columns=label_krt))
157 df_Y = df_Y.join(pd.DataFrame(data=std_Y_rfft , index=index_Y, columns=

label_std_rfft))
158 df_Y = df_Y.join(pd.DataFrame(data=var_Y_rfft , index=index_Y, columns=

label_var_rfft))



159 df_Y = df_Y.join(pd.DataFrame(data=max_Y_rfft , index=index_Y, columns=
label_max_rfft))

160 df_Y = df_Y.join(pd.DataFrame(data=skw_Y_rfft , index=index_Y, columns=
label_skw_rfft))

161 df_Y = df_Y.join(pd.DataFrame(data=krt_Y_rfft , index=index_Y, columns=
label_krt_rfft))

162 df_Y = df_Y.join(pd.DataFrame(data=avg_Y_rfft , index=index_Y, columns=
label_avg_rfft))

163 df_Y = df_Y.join(pd.DataFrame(data=min_Y_rfft , index=index_Y, columns=
label_min_rfft))

164
165 df = pd.concat([df_X, df_Y])
166 df=(df-df.mean())/df.std()
167 aux = pd.concat([pd.DataFrame(data=0, index=index_X, columns=['seizure']),pd.

DataFrame(data=1, index=index_Y, columns=['seizure'])])
168 df = df.join(aux)
169
170 # select a random channels with extracted features and seizure
171 ch = "F8-T8"
172 onset = df[[ch+"-std",ch+"-var",ch+"-max",ch+"-skw",ch+"-krt",ch+"-avg",ch+"-

min",ch+"-std_rfft",ch+"-var_rfft",ch+"-max_rfft",ch+"-skw_rfft",ch+"-
krt_rfft",ch+"-avg_rfft",ch+"-min_rfft","seizure"]]

173 # reject null values
174 onset = onset.dropna()
175
176 # plot correlation matrix
177 fig, ax = plt.subplots(figsize=(12, 3))
178 fig.canvas.draw()
179 ax.set_xticks(np.arange(15), minor=False)
180 ax.set_xticklabels(['std', 'var', 'max', 'skw', 'krt',
181 'avg', 'min', 'std', 'var',
182 'max', 'skw', 'krt', 'avg',
183 'min', 'seizure'], minor=False)
184 ax.invert_yaxis()
185 heat = onset.corr()["seizure"].to_numpy()
186 heat = np.expand_dims(heat, axis=0)
187 im = ax.imshow(heat)
188 ax.get_yaxis().set_visible(False)
189 for i,label in np.ndenumerate(heat):
190 ax.text(i[1],0,"{:.2f}".format(label),ha='center',va='center')
191 fig.colorbar(im)

Listing 17: get correlation matrix of different features
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Figure 1: Channels selected from the dataset



EEG data analisis

import numpy as np
import pandas as pd
from numpy.fft import fft, rfft
from scipy.stats import skew, kurtosis
import csv, mne, math
import matplotlib.pyplot as plt
import seaborn as sns

Import a saple from the dataset CHB-MIT Scalp EEG Database

target = "chb16"
file = "chb16_14.edf"

# this drive path can be modified
drive_path = "C:/Users/Eugene Chen/Desktop/UNI/Project/Data/"
seizure_pointers = pd.read_excel(drive_path + "seizure data.xlsx", index_col=0)
seizure_pointers["index"] = (
    seizure_pointers["seizure_file"]
    + " "
    + seizure_pointers["seizure_number"].astype(str)
)
record_path = drive_path+"/"+target+file
channels = [
    "P8-O2",
    "C4-P4",
    "FP1-F3",
    "FP2-F8",
    "CZ-PZ",
    "FP1-F7",
    "T7-P7",
    "C3-P3",
    "FP2-F4",
    "P4-O2",
    "F8-T8",
    "F7-T7",
    "F3-C3",
    "FZ-CZ",
    "P3-O1",
    "P7-O1",
    "F4-C4",
]
patient = seizure_pointers[seizure_pointers["index"] == "chb16_14 1"]

seizure_start = patient.seizure_start.values[0]
seizure_duration = patient.seizure_duration.values[0]
edf_data = mne.io.read_raw_edf(
            drive_path
            + "chb-mit-scalp-eeg-database-1.0.0/"
            + patient.case.values[0]
            + "/"
            + patient.seizure_file.values[0]
            + ".edf/",
            preload=True,
            verbose=50
        )
# appliying low pass filter
edf_data.filter(h_freq=40, l_freq=0, verbose=False)
edf_data.drop_channels(list(set(edf_data.ch_names) - set(channels)))
seizures = mne.Annotations(
                onset=seizure_start, duration=seizure_duration, description="bad"
            )
edf_data.set_annotations(seizures)
seizure_sample = mne.concatenate_raws(
                edf_data.crop_by_annotations(), verbose=50
            )
non_seizures = mne.make_fixed_length_epochs(
                edf_data, seizure_duration, reject_by_annotation=True, verbose=50
            )

sample_id = 30
channel = 4

no_seizure = non_seizures[sample_id]._get_data(verbose=50)[0][channel]
sample_len = no_seizure.shape[0]
seizure = seizure_sample.get_data()[channel][:sample_len]
step = seizure_duration/sample_len
x = np.arange(0, seizure_duration, step)



2 seconds means 2 times the sampling rate witch is 2 * 256  = 512

Selecting a random 2s epoch of the dataset

#Selecting 2s of non-seizure
no_seizure = no_seizure[1000:1512]
#Selecting 2s of seizure
seizure = seizure[1000:1512]
sample_len = no_seizure.shape[0]
step = 2/sample_len
x = np.arange(0, 2, step)

# Some desing declarations, can be ignored
sns.set(font='arial',
        rc={
            'axes.edgecolor': 'lightgrey',
            'axes.facecolor': 'None',
            'axes.grid': False,
            'axes.labelcolor': 'dimgrey',
            'axes.spines.right': False,
            'axes.spines.top': False,
            'figure.facecolor': 'white',
            'lines.solid_capstyle': 'round',
            'patch.edgecolor': 'w',
            'patch.force_edgecolor': True,
            'text.color': 'dimgrey',
            'xtick.bottom': False,
            'xtick.color': 'dimgrey',
            'xtick.direction': 'out',
            'xtick.top': False,
            'ytick.color': 'dimgrey',
            'ytick.direction': 'out',
            'ytick.left': False,
            'axes.axisbelow': False,
            'ytick.right': False})

Plotting to see the difference between seizure and non-seizure

<matplotlib.legend.Legend at 0x1e128319970>

fig, ax = plt.subplots(figsize=(15, 6), dpi=200)
ax.grid(color='black', linestyle='-', linewidth=0.1)
ax.set_xticks(np.arange(0, 14, 1)) 
ax.axis(xmin=0,xmax=2,ymax=seizure.max(),ymin=seizure.min())
ax.plot(x, seizure, color ='#F5B14C', linewidth=0.8, label="seizure")
ax.plot(x, no_seizure, color ='#661D98', linewidth=0.8, label="non seizure")
# ax.set_title("Seizure and non seizure in time domain comparison")
ax.set_xlabel("Time/s")
ax.set_ylabel("Amplitude")
ax.legend()



Computing fourier transformation ang getting only the real part

ictal_ft = abs(rfft(seizure))
ictal_ft = [ x.real for x in ictal_ft]
interictal_ft = abs(rfft(no_seizure))
interictal_ft = [ x.real for x in interictal_ft]
N = len(ictal_ft)
n = np.arange(N)
T = 2
freq = n/T
freq_sampling_rate = (freq<1).sum()

Plot the frequency domain from an epoch of seizure and non-seizure

<matplotlib.legend.Legend at 0x1e11ae14250>

fig, ax = plt.subplots(figsize=(15, 6), dpi=200)
ax.grid(color='black', linestyle='-', linewidth=0.2)
# ax.axis(ymax=ictal_ft.max(),ymin=0)
ax.axis(xmin=0,xmax=50)
ax.plot(freq, ictal_ft, color ='#F5B14C', linewidth=0.8, label="seizure")
ax.plot(freq, interictal_ft, color ='#661D98', linewidth=0.8, label="non-seizure")
ax.set_title("seizure and non-seizure frequency domain comparison")
ax.set_xlabel("frequency/Hz")
ax.set_ylabel("Power")
ax.legend()

def get_reduced_freq(target, batch_size, sampling_rate):
    '''
    input:
    target -> sample to apply the tranformation
    batch_size -> lenght of the signal reduction (int)
    sampling_rate -> sampling rate of the signal (int)
    output:
    return target applied reduction and fourier tranformation
    '''
    result = []
    batch=[]
    for i in target[0:(sampling_rate*40)+1]:
        batch.append(i)
        if len(batch)==batch_size:
            batch_mean = sum(batch)/batch_size
            result.append(batch_mean)
            batch=[]
    return result

def get_reduced_freq_repeated(target, batch_size, sampling_rate):
    '''
    input:
    target -> sample to apply the tranformation
    batch_size -> lenght of the signal reduction (int)



    sampling_rate -> sampling rate of the signal (int)
    output:
    return target applied reduction and fourier tranformation
    but returning an array with the same lenght as the target
    '''
    result = []
    batch=[]
    for i in target[0:(sampling_rate*40)+1]:
        batch.append(i)
        if len(batch)==batch_size:
            batch_mean = sum(batch)/batch_size
            result+=[batch_mean]*batch_size
            batch=[]
    result+=[sum(batch)/len(batch)]*len(batch)
    return result

Calculating the results of the reduction aaplied

num_baches = 20
bach_size=6
ictal_ft_features = get_reduced_freq(ictal_ft, bach_size, 14)
interictal_ft_features = get_reduced_freq(interictal_ft, bach_size, 14)
reduced_ictal_ft  = get_reduced_freq_repeated(ictal_ft, bach_size, 14)
reduced_interictal_ft = get_reduced_freq_repeated(interictal_ft, bach_size, 14)

Plot the each epoch after fourier transformation and

<matplotlib.legend.Legend at 0x1e11b1f2fd0>

fig, ax = plt.subplots(figsize=(20, 6), dpi=200)
ax.grid(color='black', linestyle='-', linewidth=0.1)
ax.axis(xmin=0,xmax=42)
ax.plot(freq, ictal_ft, linewidth=1, label="seizure")
ax.plot(freq, reduced_ictal_ft, color ='#191716', linewidth=2, label="seizure_reduced")
ax.plot(freq, interictal_ft, linewidth=1, label="non-seizure")
ax.plot(freq, reduced_interictal_ft, color ='#3d348b', linewidth=2, label="non-seizure_reduced")
ax.set_title("Seizure and non-seizure frequency domain comparison with reduction")
ax.set_xlabel("frequency/Hz")
ax.set_ylabel("Power")
ax.legend()

matrix from all layers frequencies



bach_size=6
convolution_features_ictal = []
convolution_features_interictal = []
for channel in range(seizure_sample.get_data().shape[0]):
    seizure = seizure_sample.get_data()[channel][1000:1512]
    no_seizure = non_seizures[sample_id]._get_data(verbose=50)[0][channel][1000:1512]
    ictal_ft = abs(rfft(seizure))
    ictal_ft = [ x.real for x in ictal_ft]
    interictal_ft = abs(rfft(no_seizure))
    interictal_ft = [ x.real for x in interictal_ft]
    ictal_ft_features = get_reduced_freq(ictal_ft, bach_size, 14)
    interictal_ft_features = get_reduced_freq(interictal_ft, bach_size, 14)
    convolution_features_ictal.append(ictal_ft_features)
    convolution_features_interictal.append(interictal_ft_features)
    

<matplotlib.colorbar.Colorbar at 0x1e11f8406a0>

fig, axes = plt.subplots(nrows=2, ncols=1, figsize=(10,8))
im =axes[0].imshow(convolution_features_ictal, vmin = 0, vmax = 0.003)
axes[0].set_title("seizure")
axes[1].imshow(convolution_features_interictal, vmin = 0, vmax = 0.003)
axes[1].set_title("non-seizure")
fig.colorbar(im, ax=axes.ravel().tolist())
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