
A Machine Learning based Recommendation
System for furniture selection

Degree Thesis
submitted to the Faculty of the

Escola Tècnica d’Enginyeria de Telecomunicació de Barcelona
Universitat Politècnica de Catalunya

by

Maŕıa Isabel Manresa Román

In partial fulfillment
of the requirements for the degree in

Technologies and Services of Telecommunication ENGINEERING

Advisor (UPC): Javier Ruiz Hidalgo
Advisor (StageInHome): Pol Albacar Fernández

Barcelona, Date 21/06/2022

Abstract

Artificial Intelligence (AI) is one of today’s fastest growing technologies, and has been
evolving for decades. It allows machines to have the ability to ”learn”, and self-correct.
This technology is used in many fields, such as decision making, diagnostics in medicine,
pattern recognition and virtual reality among others.

This project has been carried out at StageInHome, a startup company specialized in AI
and Deep Learning for interior decoration. In this case, the proposal is to build a bed
recommendation system.

For this project, we have created databases of both images and metadata, an image
retrieval according to resemblance, a classifier to differentiate bed types and finally a user
interface that allows an easy use of the whole implemented system, including also a price
filter.

2

Resum

La Inteligència Artificial (IA) és una de les tecnologies amb més perspectiva de creixement
d’avúı en dia, i que porta evolucionant desde fa dècades. Aquesta tecnologia permet
que màquines tinguin la capacitat d’aprendre, raonar o autocorretgir-se i s’utilitza en
camps molt diversos com en presa de decisions, diagnòstics de medicina, reconeixement
de patrons i realitat virtual entre d’altres.

Aquest projecte s’ha d’esenvolupat a StageInHome, una empresa especialitzada en IA i
Deep Learning per a la decoració automàtica d’espais interiors. En aquest cas, es proposa
un sistema recommanador de llits.

Per aquest projecte, s’han creat bases de dades, tant de imatges com de metadades, un
recomanador d’imatges segons la semblança, un classificador per diferenciar els tipus de
llit i finalment una interf́ıcie d’usuari que permet un fàcil ús de tot el sistema implementat
també un filtre de preu.

3

Resumen

La Inteligencia Artificial (IA) es una de las tecnoloǵıas con más perspectivas de crecimiento
de hoy en d́ıa, y que lleva evolucionando desde décadas atrás. Esta tecnoloǵıa permite que
máquinas tengan la capacidad de ”aprender”, ”razonar” o autocorregirse y es utilizada
en muchos campos, como en toma de decisiones , dignósticos en medicina, reconocimiento
de patrones y realidad virtual entre otros.

Este proyecto se ha llevado acabo en StageInHome, empresa especializada en IA y Deep
Learning para la decoración de espacios interiores. En este caso, se propone construir un
sistema recomendador de camas.

Para este proyecto, se han creado bases de datos tanto de imágenes como de metadatos,
un recomendador de imágenes según el parecido, un clasificador para diferenciar los tipos
de cama y finalmente una interfaz de usuario que permite un fácil uso de todo el sistema
implementado incluyendo también un filtro de precio.

4

Acknowledgements

First of all, I would like to thank Javier Ruiz Hidalgo, for his supervision during the whole
project and for his help during its development.

Also, I would like to thank Pol Albacar as well as all the StageInHome team for their help
and support during the last four months I have been working on this project.

To my parents, for their unconditional support, for believing in me, even when I did not,
and for doing all the efforts to make possible for me to study in the UPC.

And finally, to my partner, for the patience and for being by my side, making these years
great despite the stress and difficulties.

5

Revision history and approval record

Revision Date Purpose
0 24/04/2022 Document creation
1 17/06/2022 Document revision

DOCUMENT DISTRIBUTION LIST

Name
Maŕıa Isabel Manresa Roman

Javier Ruiz Hidalgo
Pol Albacar Fernández

Written by: Reviewed and approved by:
Date 15/06/2022 Date 21/06/2022
Name Maŕıa Isabel Manresa Román Name Javier Ruiz Hidalgo
Position Project Author Position Project Supervisor

6

Contents

List of Figures 8

List of Tables 8

1 Introduction 10
1.1 Project Overview and Statement of purpose 10
1.2 Objectives . 10
1.3 Work Plan . 11

2 State of the Art and Fundamentals 12
2.1 Image Retrieval . 12
2.2 Segmentation . 14

2.2.1 Object Detection . 14

3 Methodology 16
3.1 Preprocessed Database . 16
3.2 Image Retrieval . 18
3.3 Segmentation and Object Detection . 19
3.4 Classification . 19

4 Results 20
4.1 Preprocessed Database . 20

4.1.1 Web Scraping . 20
4.1.2 Database preprocessing . 20

4.2 Image Retrieval . 22
4.3 Segmentation and Object Detection . 25
4.4 Classification . 28
4.5 User Interface . 32

5 Budget 36
5.1 Material . 36
5.2 Salaries . 36
5.3 Total Costs . 36

6 Conclusions 37

7 Future Work 37

References 38

Appendices 40

A Work Plan 40

7

Lists

List of Figures

1 Project overview diagram . 10
2 Gantt diagram (1) . 11
3 Gantt diagram (2) . 11
4 Gantt diagram (3) . 11
5 Hand-crafted and Deep Learning Features 12
6 Examples of Low level features and Deep level features 13
7 Examples and comparison of segmentation types 14
8 Overview of some two-stage detection frameworks for object detection . . . 15
9 General outline of the project . 16
10 Metadata fields scraped from the original webpage 17
11 Content based Image Retrieval block diagram 18
12 Feature extraction from Deep Learning . 19
13 Database preprocessing block diagram . 21
14 Examples of images decorated and white background 21
15 Test of the DeepCBIR code . 22
16 Structure of the output of the Image Retrieval block 23
17 Confusion Matrix Image Retrieval . 24
18 Example Image Retrieval (1) . 25
19 Examples Segmentation . 26
20 Example of a section in the MOS . 27
21 Examples classifier’s database . 28
22 Suggested learning rate . 29
23 Classifier’s training and validation loss . 30
24 Confusion matrix of the classifier . 30
25 Suggested LR for master/individual problem 31
26 Doubtful examples of Individual and Master beds 31
27 User Interface: password . 32
28 User Interface: Image uploader . 33
29 User Interface: price selector . 33
30 User Interface: Classifier . 33
31 User Interface: Recommendations . 34
32 User Interface: Products . 34
33 User Interface: Product metadata . 35

Listings

List of Tables

1 Summary of the MOS results. 27
2 Table with hyper parameters for the classifier’s training. 29

8

3 Weights used for the classifier training. 29
4 Table of the Material costs . 36
5 Table of the Salaries . 36
6 Table Total costs . 36
7 WP1. 40
8 WP2. 40
9 WP3. 41
10 WP4. 41
11 WP5. 42
12 WP6. 42
13 WP7. 42
14 WP8. 43

9

1 Introduction

1.1 Project Overview and Statement of purpose

The project has been carried out at StageInHome, which is a startup company based in
Barcelona, that by using Artificial Intelligence can decorate interior spaces with only one
picture as an input image.

The pieces of furniture that the user can see in the StageInHome’s decorated output are
generated using generative models, meaning that they do not exist. So the user could not
buy them if they liked some of the items.

Figure 1: Diagram that presents how the technology of StageInHome and this project fit together.

The aim of this project is to build a furniture recommendator that uses the previous
mentioned generated images as input. Then, using image processing techniques, AI as
well as some user preferences, presents to the costumer similar pieces with some additional
information and where they can buy them. A diagram can be seen in Figure 1.

The idea of this project was suggested by the company after working in the PAE subject,
where StageInHome asked the group to build a furniture ”Shazam”. This was a system
that aimed to identify different pieces of furniture in a room and tell the user where to
buy or find them.

1.2 Objectives

In this section the main objectives of the project are shown.

• Develop a Web Scraping algorithm for a specific site.

• Analyze images with image processing techniques.

• Develop an Image Retrieval block that takes into account similarity and user inputs.

• Create a user interface to show results.

• Efficient and well-structured code.

10

1.3 Work Plan

The work plan has a total of 8 main work packages: Web Scraping, Filter Database, Image
Retrieval, Segmentation, Classification, Join all blocks, User Interface and Documentation.
These have been distributed in 4 months. The Gantt diagram is presented in Figure 2,
Figure 3 and Figure 4.

Figure 2: Gantt diagram of the project (1).

Figure 3: Gantt diagram of the project (2).

Figure 4: Gantt diagram of the project (3).

More about the work packages can be found in Appendice A.

11

2 State of the Art and Fundamentals

In this section there will be a review of the technologies that are being used in the Image
Retrieval and in the segmentation fields. In addition we will explain the relevant context
in order to make a better understanding of the next Methodology and Results.

2.1 Image Retrieval

The aim of Image Retrieval systems is to find similar images by searching and retrieving
them from a large digital database [1].

With this purpose there are different approaches [2]:

• Text based Image Retrieval uses the text associated to an image to know what
it contains. It allows to present the information as a textual query, and will find
the relevant images based on the match between the textual query and the manual
annotations of images [3].

• In Content Based Image Retrieval, the images are searched and retrieved depending
on the similarity of their visual contents to a query image. For this features of the
image are used with a feature extractor that is used to extract level features like
color, texture and shape.

• Semantic Based Image Retrieval uses the semantic meaning of the images. This is
one of the efforts that aims to close the semantic gap problem, which is the difference
between the image representation and the needs of the user’s information. There are
two main approaches: Annotating images or image segments with keywords through
automatic image annotation or adopting the semantic web initiatives.

From now on, we will focus on Content Based Image Retrieval since it seams the best op-
tion for our use case. It consists on four steps: data collection, build up a feature database,
searching in the database and finally order the results of the retrieval by calculating the
distance between the features of the query image and of the images in the database.

Figure 5: Hand-crafted and Deep Learning Features [4].

This features can be Hand-crafted features or Deep Level features (Figure 5). The hand-
crafted features, are extracted by using information presented in the image itself with

12

Image Processing techniques such as HOG. The Deep Level features are obtained by deep
learning using Neural Networks such as CNN.

In DeepCBIR [5], they propose to use deep learning features derived from a convolution
network that has been trained for a large image classification problem. From it, a n-
dimensional feature vector will be obtained.

The feature vector mentioned above comes from Convolutional Neural Networks (CNNs)
which are a sequence of layers that have a hierarchy. They start with an input layer
followed by one or multiple hidden layers and finally, they end in an output layer. The
first layers are basically edge detectors and they extract low level features. As we go deeper
in the architecture, the model represents deep level features that are extracted from the
low-level ones (Figure 6). The features extracted in the layers of a CNN that is trained
as an image classifier serves as good descriptor for image retrieval tasks.

Figure 6: Examples of Low level features and Deep level features [5].

On the one hand, there are Global features which are global descriptors of an image and
produce a single vector with values that describe aspects of the image such as shape,
colour and texture. This are useful for classification purposes. The main advantage of this
type of features is its ability for extraction and the low computational cost, but they often
fail to take into account the visual content of the Image.

On the other hand, Local descriptors, are more effective for high level applications. They
have a higher complexity and computational cost since the features have more dimensions
in the space. Nowadays, research focuses on the use of Deep Learning techniques for the
extraction of these features since they seem to outperform the traditional methods.

13

2.2 Segmentation

We can distinguish three main types of segmentation: Semantic Segmentation, Object
Detection, and Instance Segmentation (Figure 7).

• Semantic Segmentation has the purpose to predict a label for each pixel of an Image.
It does not distinguish between different objects of the same class.

• Object Detection recognizes object categories and it predicts the position of the
object by a bounding box. So it does distinguish between different items that are
included in the same class.

• Instance segmentation is a combination of the previous explained techniques and is
able to identify different objects while it assigns the same label to objects that are
the same class, and also separates them pixel by pixel with a mask.

Figure 7: Examples and comparison of segmentation types [6].

So, for spatial detection there can be two different settings: On the one hand, a bounding
box, which is a rectangle that localizes objects. And on the other hand, a pixel-mask that
is more precise than the previous one and segments the objects by telling which pixels
belong to the detected ones.

2.2.1 Object Detection

Object detectors can be divided in two categories:

• Two-Stage detectors, like R-CNN [7], first they get a proposal of regions from where
to extract the features. Then, for each proposed region, a classifier predicts the
category of each one of them.

14

• One stage detectors, such as YOLO [8], make predictions of objects on each location
without the region scan step. Although the performance of the first ones is better,
one-stage detectors are more time-efficient.

From now on we will focus on the Two-Stage detectors since are the ones that have been
used in this project because in this user case the computation time is not that important
as its performance. In Figure 8 are some of the architectures used .

Figure 8: Overview of different two-stage detection frameworks for generic object detection [6].

R-CNN [7] is a pioneer neural network as two-stage object detector and its work flow
has three main steps: Proposal generation of the regions, feature extraction and region
classification. First it generates around 2.000 proposals (separating the regions that can
easily be classified as background). Then each of these proposed regions is cropped and
resized and is encoded into a feature vector by using a deep CNN. Next, this feature
vector goes through a one-vs-one classifier. Finally, in order to make the bounding box fit
the object, box regressors are used with extracted features as inputs.

The main drawbacks of this method is that the features of each proposal are extracted
separately meaning that there are a lot of duplicated computations and it is very time
consuming not only the training part, but also the testing. The three steps mentioned
earlier are independent and can not be implemented as an end-to-end proposal. It also
struggles to generate high quality proposals in complex situations.

Another convolutional neural network that has some improvements compared to the pre-
vious one is the Fast R-CNN [9]. It has fixed length regions and it computes a feature
map for the whole image with fixed length region features. To extract these features a
ROI Pooling layer is used and it only takes one value on N for the N×N grid. Next, these
feature vectors are fed into a sequence of fully connected layers that lead to a classifica-
tion layer to generate the softmax probabilities and with it the label. Finally leading to a
regression layer to have a more accurate bounding box. This approach can be optimized
to an end to end and it achieves a better detection accuracy while having a better training
and inference speed.

15

Finally, The Faster R-CNN [10] relies on a RPN, which is a fully convolutional network
that takes an image of arbitrary size and generates a set of object proposals on each
position. This network slides over the feature map using a m × m sliding window and
computing a feature vector for each position. This feature vector goes to a object classifi-
cation layer which classifies each proposal as an object or background and to a bounding
box regression layer. Although it can be optimized in an end-to-end manner, it is difficult
to detect small objects since it uses a single deep layer feature map to make the final
prediction.

3 Methodology

Figure 9 represents the structure of the project which has been divided in different blocks.
At the end, they all together work to deliver to the user the final recommendation images
and metadata as outputs.

Figure 9: Outline of the project.

The work flow begins when the user uploads an image, generated by StageInHome, that
will be classified according to its bed type (master, individual or cradle). Next, the image
will go through the segmentation block where a bounding box will be computed and
it will be used jointly with a preprocesed database to find similar images in the Image
Retrieval block. After that, the user will be able to filter taking into account the price
of the products. Finally the retrieved image will be displayed as well as all the related
products within the price range with its information.

3.1 Preprocessed Database

In order to build this recommendation system we firstly needed to build an image database

16

where the system searches given an image of a piece of furniture. The database does not
only need to have all the possible recommended images, but also a way of linking them
to products, and all its information as metadata.

Since there was a need of having a big database in order to be able to have better
recommendations, Web scraping was done. Ikea’s webpage is public and seamed a good
option for this because it has a wide range of pieces of furniture and it is available almost
worldwide.

Also, we needed information to display about the products and that was scraped too as
metadata. For this we took information of 10 fields that can bee seen in Figure 10:

1. name: Name of the product

2. short description: Short description of what the product is

3. price: Price in $

4. long description: Description of some interesting characteristics of the product.

5. product id: Product id in the Ikea website

6. measurements: Dimensions of the product (if available)

7. rating: User rating out of 5.

8. product url: link of the Ikea’s official website where the user can buy the product.

9. category: Category where Ikea has classified the product.

10. subcategory: Subcategory where Ikea has classified the product.

Figure 10: Metadata fields scraped from the original webpage.

17

These fields were chosen because of their relevant information for the user and for database
processing purposes that will be addressed later on this document.

After all the web scraping there was a need to prepare the database of images that
later would be used in the Image Retrieval. Nowadays StageInHome only works with
bedrooms so we decided to just work with beds. Since the input image would be of an
already decorated bedroom, the comparison needed to be made between both images
being decorated bedrooms. Also there was a removal of duplicated images. Finally using
other blocks from the code, a classification of types of bed and crops using bounding boxes
were done.

3.2 Image Retrieval

This block consists of a Content Based Image Retrieval that needs an input image, the
scope, which is the number of retrieved images that the system will give as an output, and
a database of images. From here, there will be a feature extraction. In Figure 11 there is
a diagram with the outline.

Figure 11: Content based Image Retrieval block diagram.

The approach used is the one presented in DeepCBIR [5]. For the feature extraction, they
propose to use a pretrained classification model that removes the last SoftMax activation,
which is the layer that calculates the final probabilities for each class, and keeps the
previous fully connected layer. With this, it obtains all the deep level features information
in a n-dimensional feature vector (Figure 12).

18

Figure 12: Feature Extraction from a Deep Learning model.

The classification model implemented is an Inception Resnet V2 model that is pretrained
with ImageNet [11]. Finally in order to sort the images from the database by similarity,
the Euclidean distance (1) between the features of the database and the ones of the input
image is computed. The first retrieved image will be the one that minimizes this value.

D2
ij =

n∑
v=0

(xvi − xvj)
2 (1)

3.3 Segmentation and Object Detection

Taking into account that the plan is to compute the image retrieval of the bed, the
background of both the input image and the database images is not important and it will
interfere with the final result, a segmentation block was needed.

After doing a comparison between Instance segmentation and bounding boxes that will
be further explained in the 4.3 of the Results, the decision was to use a Faster R-CNN
(X101-FPN) [12] from Detectron2 [13], which was trained with COCO dataset [14]. This
was the chosen one since the documentation said its box Average Precision is 43.0, the
highest available in the object detection category in the Detectron2 Model Zoo. The
model, detects all types of beds, including cradles with the same label.

3.4 Classification

The main reason for implementing this block was to improve the performance of the
Image Retrieval block by first classifying the bed type. Depending on the output label,
the Image retrieval will use a different database to compute recommendations. There are
four possible labels: master bed, individual bed, cradle and others. If the label is ’others’
it will ask for another image since it does not contain a bed. Otherwise, depending on the
label, the used database will only contain, individual beds, master beds or cradles.

Another reason why this block was required is because, as explained in 3.3, the Object
Detection model is pretrained and it has all the types of bed under the same label.

The final version of the classifier was obtained by fine tuning an already pre-trained
architecture ResNet34 with ImageNet [11]. By doing this, there is a redirection of the
training to the specific problem that there is a need to solve.

19

4 Results

The general work flow followed through the development of the whole project has been
very similar. First the code is developed in a Jupyter Notebook to see if every part works
properly. After that, the code goes to a sequential Python script where later will be
arranged in functions and classes if needed. This methodology allows scalability of the
code and makes it more efficient, not forgetting that the first objective is for it to work
and a comprehensible code.

This section has been divided into the 5 main blocks worked during the project: Web
scraping, Image Retrieval, Segmentation and Object Detection, Classification and User
Interface. In each block, is explained the different implementations and the validations
done as well as the results, conclusions and decisions made from them.

4.1 Preprocessed Database

4.1.1 Web Scraping

This part has been developed from scratch and it has three main parts: The web scraping
of the Ikea images, the product’s metadata and the product thumbnail images. In all of
them an API has been used to extract the data as well as Beautiful Soup [15], which is a
Python library for pulling data out of HTML and XML files.

It should be noted that the web scraping code depends a lot on the web page that is
being scraped, meaning that if it was needed to scrap more online stores most of the code
would not be reused and that is why we needed a big one where we could extract almost
everything. With this approach it was only needed the scraping of one web page.

First, the scraping of all the Ikea images with Beautiful Soup, which resulted in obtaining
99.316 images that we saved for processing later.

For the product’s metadata the same library was used, and everything was saved in a
table. This table has 24.996 rows meaning that there is metadata from 24.996 different
products.

Finally, in order to show the product’s thumbnail in the User Interface, a third web scrap-
ing needed to be done, in this case using the previous table of metadata with the column
”product url”, and identifying something distinctive in the HTML for the thumbnail im-
age. We saved this images in a separate folder with the product id as a name. As a result,
the thumbnail’s folder contains 24.996 images and they correspond to the 24.996 products
mentioned earlier.

Although everything was used and developed as separate blocks, in the final version of
the code everything is inside a Python class where now all the steps can be done at once.
Also some functions that could be useful for other scrapers or that were more general
were separated to an utilities and helpers files and are imported in the class.

4.1.2 Database preprocessing

First of all, there is a global diagram of the steps followed to process the database of

20

possible recommendations in Figure 13.

Figure 13: Database preprocessing block diagram.

To address the decision of only using beds, a classification of images was needed. For this
a classifier with the following classes was used: ”empty room, bedroom, kitchen, living
room, bathroom and others”. The plan was only to use the images labeled as bedrooms
but after a manual data exploration, the conclusion was that it did not work properly
with the images used. That is when the decision of adding the category and subcategory
fields in the metadata came to mind. It was a certain way that there would not be any
bed-related products missing. So by building a Jupyter Notebook to copy the images
under the desired category into another folder the result ended up being 3.920 images
under the Ikea’s category ”bed”.

Another thing noted in the previous manual data exploration is that there were a lot of
duplicated images and they could not be deleted without loosing information since its
name related them to the product. Here is where another table came to play. Using an
already built script of detecting duplicates with some modifications and a new Jupyter
Notebook to read the output of the previous one, a table with images information was
created. This table only has two columns: ”original image” and ”product ids” being the
first one the name of the file that will not be deleted and the last one, a list of product
ids of the products that the image is linked to. After removing all the duplicates there
were 1.547 images.

Figure 14: Examples decorated and white background images

21

Finally, there were two situations, decorated or white background and a classification of
images taking into account its background was needed. For this purpose a small manual
classification was done in order to set a threshold of white pixels. Above this threshold
the image would be considered with white background and if it was under it the image
was considered a decorated bedroom. This was done in a Jupyter Notebook and after
setting the threshold in 3.000.000 pixels the images were separate in two different folders:
decorated and white background. Finally a manual data exploration was done to correct
the possible miss-classifications which ended having 1.013 images in the decorated folder
and 534 images in the white background one. There are a couple of examples of these
images in Figure 14

To sum up in this block the database ended up having 1.013 decorated bedroom images
without duplicates. This images could be easily related to its products by the two-column
table of images information, and also to this product’s metadata using the table of meta-
data. The database will need more processing in the segmentation and the classification
blocks.

4.2 Image Retrieval

As said earlier, this is a big important block of the project and it will determine the next
steps. It was build from DeepCBIR [5] code adapting the output to what was needed.
First some tests were done to check if everything worked as the paper said. It was very
straight forward to test the proposed system and there was only the need to extract the
features of our database. At this point our database was not fully preprocessed (1.013
images) but it was still good for testing.

Figure 15: Test of the DeepCBIR code with a generated Image as an input.

The tests were like the one seen in Figure 15, and it seamed like it work pretty well and that
we could continue with this approach. This tests confirmed that the algorithm did what
was needed for the project so the modifications began, we modified the algorithm while
still using the CBIR class and built another class on top where the outputs were custom

22

made. We managed to not only retrieve the image path, but also all the information
related to the products on that image.

The output is a list of retrieved images and its length will be the same as the scope defined
as an input. Each item of this list will be a dictionary with two keys: ”retrieved img path”,
which will be the path where we can find the retrieved image, and ”products”. This key
will correspond to a list of products that are related to that retrieved image. Every item
of this list is a dictionary that has all the metadata information (Figure 16).

Figure 16: Structure of the output of the Image Retrieval block.

In order to do more tests to be sure of how the algorithm worked, the fuctions of the
feature extraction from the database were reviewed and some new where created. The
extraction of features of the database only needs to be done once and it generates a .npy
file that can be saved and then loaded when using the system. For this new versions of
the functions, one consists on extracting, saving and loading the features of a database.
Another, to extract, save an load the features of multiple databases at once. And finally
one to just load the features of the database with the .npy file.

Despite doing all the tests some kind of validation was needed. The best option seemed
to be a manual classification of the database and see if the retrieved images belonged to
the same class as the input. For this a confusion matrix was used. A confusion matrix
is a tool to compute validation results and allows visualization of the performance of an
algorithm mostly in classification problems. Each column represents the actual value of
the input and each row corresponds to the tested system’s predicted class. This is a very
visual way to see if a class is often being confused with another.

23

Figure 17: Confusion matrix of the Image retrieval block with whole images as the database and as
input images with a scope of 5.

The Figure 17 is the confusion matrix of the Image Retrieval. It was not done correctly
because the classes were not chosen right since some of the images could be classified as
more than one label (individual, cradle, sofa-bed, wires, headboard, nothing). It had an
accuracy of 42.5% which is not a good result and not conclusive because of the error in
the classes. So this validation did not reflect what was intended to, but still we could
come to some conclusions:

There was a need to implement a classifier for different types of beds: individual, master
or cradle because since the CBIR was a pretrained model it was not picking this kind of
details that were important for our purpose.

The other point was that there were a lot of images in the database that needed to
be deleted such as the ones that had people in them and the ones classified as others,
meaning that the image did not contain a complete decorated bed. After this database
preprocessing, there were 455 images left.

There were still some questions remaining, such as which features were more important
for the algorithm. With this purpose new tests were done as can been seen in Figure 18.

24

Figure 18: Example Image Retrieval using a whole image as an input and the whole images of the
database

The first conclusion was that it worked properly because if the input image was in the
database, the first retrieved image was itself. Second, the perspective of the image was
more important than expected. Also that was more important the colour than the struc-
ture of the bed itself. All depending on what is in the database. There are no visible
weights in the code so there is no control over this kind of preferences. Makes obvious the
need of a classifier.

At this point the decision was to move on to the next block to make sure the work plan
was followed and knowing that the following blocks would make the performance of this
one to improve.

It should be pointed that the final version of this code is a Python class that needs the
query image and the database to search retrieved images as inputs, as well as a scope that
is the number of images that the algorithm will retrieve.

4.3 Segmentation and Object Detection

The first idea that was addressed was using a semantic segmentation model that already
existed in the StageInHome code. So it just needed to be modified in order to make
inference in just one class (bed). Some tests were made using whole images, bounding
boxes and segmentation, but the last one was discarded because of the malfunctioning
of the model (Figure 19). The bounding boxes where obtained by taking the left-most,
right-most, top-most and down-most pixels.

25

Figure 19: Examples of the bad performance of the Instance Segmentation model.

Since the goal of this block is to make better the Image retrieval one, they needed to
be tested together so the same was done with the database, and the Image retrieval was
seeing:

• whole input image + whole database

• cropped bounding box of the input image + whole database

• cropped bounding box of the input image and cropped bounding box of the database

The first thing noted was that it made no sense to make comparisons between images that
had not been treated the same way, meaning that if the database was cropped using a
bounding box, the input should too. The main reason was that when Image retrieval uses
as an input image one that already is in the database, the first retrieved image should be
itself, and this did not happen if the same method was not used.

The thing was that this model of Instance Segmentation was not working properly since
it was pretrained. The main problem was that the detection did not include the whole
piece of furniture that is why bounding boxes were considered and the Image retrieval
seemed to perform better. But still the segmentation was not good enough so there was
a need to changing models.

The team was aware that the semantic segmentation models usually do not work perfectly,
but as said earlier, the results with the bounding boxes were surprisingly good and to
make sure that it was the best approach a MOS was done in order to know which type
of segmentation worked better.

A MOS is a numerical way to determine human perspective of the quality of the system
by doing a survey where the participants have to rate from one to five, in this case, the
similarity (1 Bad, 2 Poor, 3 Fair, 4 Good, or 5 Excellent).

Since the instance segmentation model was not working properly, the segmentation Ground
Truths of ADE20k [16] were used as input images and also as database images to make
sure that the results of this survey were as objective as possible. The approaches com-
pared in this test were input image using a cropped bounding box + database with a
cropped bounding box and input image just the segmentation of the bed + database just
the segmentation of the bed.

26

Figure 20: Example of a Section in the MOS.

For each section (Figure 20) there were two questions (using bounding box or semantic
segmentation), so in total there were 8 questions. The only difference between them were
the examples since the question was always the same: ”Select how much do the three
images inside the rectangle on the right look like the one in the left.” In there is an actual
example of a section.

1st
section

2nd
section

3rd
section

4th
section

Total
Mean

Bounding Box 4,24 4,44 3,96 3,72 4,09
Semantic Segmentation 3,24 3,56 3,08 2,72 3,15

Table 1: Summary of the MOS results.

The results, shown in Table 1, were clear and did not only confirm that the bounding
boxes method worked better, but with a mean above 4, there was an assurance that the
Image Retrieval block worked very well too, since the people were asked about similarity.

Taking into account the diagnostic, the decision was to use an Object Detection approach
and to do a crop of the predicted bounding box with the most probability of being a bed.
For this, Detectron2 [13] was used since it was tested in the PAE project and there was

27

a good certainty that it performed pretty well for furniture pieces with the pretrained
blocks.

For the database part was very important to just keep one crop of each image so the
decision was to use the bounding box with a higher score (probability). This methodology
will be the same for the input image.

After implementing this block, the total number of images remaining in the database was
386 using a minimum threshold of detection of 0.5. There were some tests with a threshold
of 0.9 and 0.7, but the number of images was reduced significantly (312 and 355), and the
quality with the lower threshold was still very good since the best crops were kept.

4.4 Classification

In order to train this classifier, we first needed a training and validation database which
was obtained by doing web scraping [17]. This was an already built scraper so we only
needed to set the keywords needed. After this process we ended up with a total of 7.896
images (individual: 2.840 images, master: 2.799 images and cradle: 2.257 images). Then
the Ikea images were added, and a duplicates removal and some manual classification
were done ending up with a total of 3.683 images (individual: 1.135 images, master: 1.330
images and cradle: 1.218 images). The training and validation database were obtained by
doing a 85% and 15% split of the previous one. Also a class ”others” was added with 1200
random images from ImageNet [11]. An example of these classes can be seen in Figure 21.

Figure 21: One example of each classifier’s class.

This manual classification is the last step that needed the Ikea database before extracting
its features, ending with 27 images of cradles, 144 images of individual beds and 282 images
of master beds. With these images the 3 databases for the Image Retrieval algorithm were
built.

After some tests, the best option seamed to be one with the ”others” class, using weights
(Table 3) and with the following hyper-parameters (Table 2):

28

Hyper parameters
Training Model

Learning Rate 0.001202 Architecture resnet34
Batch size 32 Threshold 0.7
Epochs 20

Multi-classification True
Loss option cross entropy
Training type Normal fit

Table 2: Table with hyper parameters for the classifier’s training.

Weights
Bed type Weight
individual 0,7629
cradle 0,7671
master 0,6963
others 0,7737

Table 3: Weights used for the classifier training.

The learning rate was set using a functionality of fast.ai [18] and it computes it by search-
ing the point with maximum slope and deducting a octave in the logarithmic space. In
Figure 22 the dot is the suggested learning rate.

Figure 22: Suggested learning rate.

With all that, the result was a training with a validation and training loss that can be
seen in Figure 23.

29

Figure 23: Classifier’s training and validation loss.

Finally to analyse the performance of the classifier, a confusion matrix was used as well
as its accuracy.

Figure 24: Confusion matrix of the classifier.

Although the accuracy is 95.41%, in the confusion matrix[19], shown in Figure 24, is
clear that there is a problem with the individual and master classification since they are

30

confused very often. After more tests, it was not possible to make a better classifier with
the model used.

Changing the database for a bigger one with only the labels master/individual, the LR
graph shown in Figure 25 was obtained:

Figure 25: Suggested LR for the master individual problem.

In the case in Figure 25, as the minimum is at 10e-3 deducting an octave produces the
suggested value to be in a positive gradient which does not make sense. This occurs as
the algorithm does not check how the gradient is at the suggested value. Also, since it
is very flat it means that the system will learn very slow and makes clear that is a very
difficult problem to solve. Sometimes it was a challenge for the team to even classify the
images that were used as database (Figure 26).

Figure 26: Doubtful examples of Individual and Master beds.

We came to the conclusion that it needs a big change of approach and model which was
not possible due to the work plan. The solution for this was to add a new selector in the
user interface that shows the label of the classifier and also lets the user to change it.

31

4.5 User Interface

The main goal of this block was to build a User Interface that was user friendly, and
pleasant to the eyes. Also in this part there was implementation of the price filter, using
the metadata extracted during the web scraping.

The price filter is the user filter that has been mentioned earlier and it consists on the
user giving a price range, which will be taken into account when showing the products
to the user. This will not condition the recommendations of the image retrieval, but still
will make an impact in the products shown.

The user interface was developed using Streamlit [20] because it is a tool designed to
build and share data apps coded as scripts in Python, the same programming language
that has been used during the whole project. Although it has limited possibilities, it is
very straight forward to develop a functional user interface. In addition, all the demos in
StageInHome are done using it and in their code there are some useful tools that have
been used in order to fit all the blocks explained above.

Figure 27: User Interface: Password.

This demo is password protected, in Figure 27 there is an image that shows how it looks
like. When the password is entered correctly, the demo starts by asking the user to upload
an image (Figure 28).

32

Figure 28: User Interface: Image uploader.

Next it asks for the price range that can be selected with a range slider (Figure 29). After
clicking the ”Select price Range” button, it will appear the label detected by the classifier
and the option to change it with a selector box (Figure 30).

Figure 29: User Interface: Price selector.

Figure 30: User Interface: classifier.

After clicking the button ”Select type” a new one with the message ”Compute Recom-
mendations” will appear and after pushing it, if the image was not a bedroom image or
did not contain a master bed, individual bed or a cradle, an error message will appear

33

explaining the problem and to try with another image. Otherwise the system will show 6
image recommendations displayed in three columns under the title ”Recommendations”
like in Figure 31.

Figure 31: User Interface: Recommendations.

Under these images will be a select button with the number of the recommendation so
the user can choose which one wants to know more about. After pressing one of these
buttons all the products linked to the images will appear under a title that includes the
number of the chosen recommendation and the number of products related to it (Figure
32).

Figure 32: User Interface: Products.

This products will show its thumbnail and a small preview of its metadata only showing
name, short description, price and product id. Then the user can choose which ones wants
to know more by clicking the ”+” and the metadata will expand showing all its fields,
including the product URL where they can buy the product from (Figure 33).

34

Figure 33: User Interface: Product metadata.

In this case the user can view the metadata of more than one product at once, but this is
not possible between different recommended images. It has to be noted that the system
will only show products within the price range, if there is none, an error message will
appear explaining that due to the price range there are no products and asking to change
the price range or to choose another recommendation.

Some products have the same thumbnail image since it is the same bed with different
measurements or with a subtle change of colour, but the decision was to keep it that way
since in the Ikea website it is displayed like that. As a result, sometimes in the related
products they all appear to be the same until the metadata is fully expanded. Also the
retrieved recommendation images are 6 (scope) not only because the grid looks well, but
also due to that it seemed the appropriate number for the user to have options to choose
from and it was not too much information at the same time.

Finally, at the end of this project, StageInHome decided to upload this demo to an Amazon
Web Services instance to make it public under their subdomain, meaning that everyone
that has a pasword can try it in http://demo.stageinhome.com:8510/recomendator.

35

http://demo.stageinhome.com:8510/recomendator

5 Budget

The approximate costs of this project take into account the materials and the salaries.

5.1 Material

There is a need of a powerful computer, its cost is around 800∗0,9
5

= 144 per year assuming
that the useful life is of 5 years. The computer has only been used for 4 months, which is
a third of the year meaning 144

3
= 48. A server has also been used, 3500∗0,9

5
= 630 per year,

630
3

= 210 for 4 months (Table 4).

Material

Description
Cost

(€/unit)
useful life
(years)

Total Cost
(€)

Computer 800 5 48
Server 3.500 5 210

Table 4: Table of the Material costs

5.2 Salaries

Considering the salary of a junior engineer in Spain as 10 €/hour that has been working
640 hours in the project and taking into account the social security that the company has
to pay as 33% (Table 5).

Salaries

Description
Salary

(€/hour)
Time dedicated

(hours)
Social Security

(€)
Total Cost

(€)
Junior Engineer 10 640 2.112 8.512

Table 5: Table of the Salaries

5.3 Total Costs

The total cost of the project is 8.770 €. (6)

Total Costs

Description
Cost
(€)

Material cost 258
Salaries cost 8.512

TOTAL COST : 8.770

Table 6: Table Total costs

36

6 Conclusions

As a conclusion at the end of this project a bed recommendator has been built with its
own database as well as with a detector, a classifier and an Image retrieval block. The
system retrieves similar and relevant images to the user with all the information needed
and also relies on a User interface that makes it easier for a user to interact with it.

The project ended having a database with 386 images separated in 3 categories by a
classifier that has an accuracy of 95.41%. Also an Image retrieval block that together
with an Object Detection block has a MOS of 4.09 up to 5. And with an easy to use User
Interface as well as an structured code that allows scalability.

Although the database is very limited, not only in terms of quantity, but also in terms
of variety and styles, the whole system is working properly and taking into account the
validations that have been done, we can say that the different objectives of this project
have been fulfilled.

To sum up the objectives accomplished, a Web Scraping algorithm has been developed
for a specific site, in this case, Ikea. A large number of images have been analyzed using
different techniques. An Image retrieval block that takes into account similarity has been
correctly implemented and the user inputs are taken into account in the display section.
A user friendly interface is provided for an easy interaction. It has an efficient and well-
structured code, with its proper documentation in order to make it easy to understand
for other developers.

7 Future Work

About the future work, in order to improve the performance of the whole system a new
classifier with more capacity and able to choose between master and individual beds needs
to be implemented. Another option could be to train or fine tuning the Object Detection
block so in the same step the detection and the classification is done.

Improving the current database by adding new online stores would make possible to
recommend a wider range of styles and could be followed by implementing another user
filter, so they can choose the store.

Right now the recommendator only works for beds, but it would be useful to have bedding
and to extend the possible recommendations to all bedroom furniture and even for other
spaces. This is not going to be as difficult as it could seam due to the scalability of the
project.

Finally this could be taken one step further, and substitute the piece of furniture recom-
mended into the original image, in order to make possible for the user to conceive how it
will look on their home and to increase the user experience.

37

References

[1] Artem Babenko and Victor Lempitsky. Deep convolutional features for image re-
trieval. Expert Systems with Applications, 177:114940, 2021.

[2] K Shubhankar Reddy and K. Sreedhar. Image retrieval techniques: A survey. Inter-
national Journal of Electronics and Communication Engineering, 9:19–27, 2016.

[3] Meenakshi Pal and Sushil Garg. Image retrieval: A literature review. International
Journal of Advanced Research in Computer Engineering and Technology (IJARCET),
2:2278–1323, 06 2012.

[4] Zhongke Liao, Haifeng Hu, and Yichu Liu. Action recognition with multiple relative
descriptors of trajectories. Neural Processing Letters, 51, 02 2020.

[5] Subhadip Maji and Smarajit Bose. Cbir using features derived by deep learning.
ACM/IMS Trans. Data Sci., 2(3), aug 2021.

[6] Xiongwei Wu, Doyen Sahoo, and Steven C.H. Hoi. Recent advances in deep learning
for object detection. Neurocomputing, 396:39–64, 2020.

[7] Trevor Darrell Ross Girshick, Jeff Donahue and Jitendra Malik. Rich feature hierar-
chies for accurate object detection and semantic segmentation. 2013.

[8] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 779–788, 2016.

[9] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), December 2015.

[10] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems, volume 28. Curran Associates, Inc., 2015.

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009.

[12] Model zoo. https://github.com/facebookresearch/detectron2/blob/main/

MODEL_ZOO.md.

[13] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick.
Detectron2. https://github.com/facebookresearch/detectron2, 2019.

[14] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick,
James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár.
Microsoft coco: Common objects in context, 2014.

[15] beautiful soup. https://www.crummy.com/software/BeautifulSoup/bs4/doc/.

38

https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md
https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md
https://github.com/facebookresearch/detectron2
https://www.crummy.com/software/BeautifulSoup/bs4/doc/

[16] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and
Antonio Torralba. Semantic understanding of scenes through the ade20k dataset.
International Journal of Computer Vision, 127(3):302–321, 2019.

[17] Hardik Vasa. Google images download. https://github.com/hardikvasa/

google-images-download, 2019.

[18] Jeremy Howard et al. fastai. https://github.com/fastai/fastai, 2018.

[19] Wagner Cipriano. Pretty print confusion matrix. https://github.com/wcipriano/
pretty-print-confusion-matrix.

[20] Streamlit. https://streamlit.io/.

39

https://github.com/hardikvasa/google-images-download
https://github.com/hardikvasa/google-images-download
https://github.com/fastai/fastai
https://github.com/wcipriano/pretty-print-confusion-matrix
https://github.com/wcipriano/pretty-print-confusion-matrix
https://streamlit.io/

Appendices

A Work Plan

This section contains all the tables of the work plan (Table 7 to Table 14).

Project: Web scraping WP ref: WP1
Major constituent: Constructiong a recommendation database Sheet 1 of 8

Short description:

Construct an Images and metadata database

Planned start date: 1/02
Planned end date: 21/02
Start event: 01/02
End event: 21/02

Internal task T1: Scrap images: Create an algorithm
to scrap all ikea product images.

Internal task T2: Scrap metadata: Create an algorithm
to scrap all ikea product metadata.

Internal task T3: Build a Python class: Build a Ikea scraper
Python class.

Deliverables: Dates:

Table 7: WP1.

Project: Filstering the database WP ref: WP2
Major constituent: Prepare the database Sheet 2 of 8

Short description:

Filter all the database into different folders

Planned start date: 21/02
Planned end date: 11/03
Start event: 21/02
End event: 11/03

Internal task T1: Images ob beds: Separate all the
images related only to beds

Internal task T2: Images related to beds: Separate all
the images of products related to beds

Internal task T3: Filter duplicates:Filter duplicates,
building another .csv in order to not loose product information

Internal task T4: Images of decorated beds: Get the
images with decorated bedrooms

Deliverables: Dates:

Table 8: WP2.

40

Project: Image Retrieval WP ref: WP3
Major constituent: Algorithm to compute the recommendations Sheet 3 of 8

Short description:
Planned start date: 11/03
Planned end date: 25/03

Have an algorithm that helps with the Image Retrieval of the
database previously constructed.

Start event: 11/03
End event: 25/03

Internal task T1: Research: Find a paper with code.

Internal task T2: Test the code: Test the code to see if it works
with our database.

Internal task T3: Modify if necessary: Modify the code if necessary.

Internal task T4: Validation of the results: Validation of the results.

Deliverables: Dates:

Table 9: WP3.

Project: Segmentation Block WP ref: WP4
Major constituent: paper and code Sheet 4 of 8

Short description:
Planned start date: 25/03
Planned end date: 19/04

Have an algorithm to segmentate the beds in all
pictures (input image and all the possible outputs).

Start event: 25/03
End event: 19/03

Internal task T1: Research: Find a paper with code, use the
algorithm developed in the PAE project, or use the segmentator
used in the company

Internal task T2: Test the code: Test the code to see if it works
with our database and how it performs with generated images.

Internal task T3: Modify if necessary: Modify the code if necessary.

Internal task T4: Validation of the results: Validation of the results.

Internal task T5: Implement Object Detection: Implement Object
detection block

Internal task T6: Validation of the results: Validation of the results.

Deliverables:

Critical review

Dates:

11/04

Table 10: WP4.

41

Project: Classification block WP ref: WP5
Major constituent: code Sheet 5 of 8

Short description:
Planned start date: 19/04
Planned end date: 02/05

Implement a bed classifier that distinguishes some types of beds.
Start event: 19/04
End event: 02/05

Internal task T1: Find or build the classifier: Find a paper
with code or build the classifier.

Internal task T2: Train the classifier: Train the classifier.

Internal task T3: Test with validation: Validation of the results

Deliverables: Dates:

Table 11: WP5.

Project: Join all blocks WP ref: WP6
Major constituent: code Sheet 6 of 8

Short description:
Planned start date: 18/05
Planned end date: 26/05

Build a main that uses all the previous blocks in the correct order
Start event: 03/05
End event: 13/05

Internal task T1: Join all blocks: Put all the blocks together.

Internal task T2: Main code: Build a main code.
Deliverables: Dates:

Table 12: WP6.

Project: User Interface WP ref: WP7
Major constituent: Simulation Sheet 7 of 8

Short description:
Planned start date: 26/05
Planned end date: 06/06

Develop a User Interface
Start event: 16/05
End event: 02/06

Internal task T1: Research: Decide what will be used
to develop the UI.

Internal task T2: Implement UI: Program the UI

Internal task T3: Implement Price Range filter: Implement a
product filter of price range

Internal task T4: Test UI and bugfixs: Test the UI

Deliverables: Dates:

Table 13: WP7.

42

Project: Documentation WP ref: WP8
Major constituent: Documentation Sheet 8 of 8

Short description:
Planned start date: 07/06
Planned end date: 21/06

Put together all the documentation of the project and write the final report.
Start event: 03/06
End event: 20/06

Internal task T1: Organise all docs: Organise all the documentation already written

Internal task T2: Write the new docs: Write the documentation.

Internal task T3: Upload all files: Upload all the necessary files.

Deliverables:

Final thesis

Dates:

20/06

Table 14: WP8.

43

Abbreviations

AI Artificial Intelligence

API Application Programming Interface

CBIR Content Based Image Retrieval

CNN Convolutional Neural Network

HOG Histogram of Oriented Gradients

HTML Hyper Text Markup Language

LR Learning Rate

MOS Mean Opinion Score

PAE Projecte Avançat d’Enginyeria

R-CNN Region-based Convolutional Neural Network

ROI Region Of Interest

RPN Region Proposal Network

URL Uniform Resource Locator

XML eXtensible Markup Language

YOLO You Only Look Once

44

	List of Figures
	List of Tables
	Introduction
	Project Overview and Statement of purpose
	Objectives
	Work Plan

	State of the Art and Fundamentals
	Image Retrieval
	Segmentation
	Object Detection

	Methodology
	Preprocessed Database
	Image Retrieval
	Segmentation and Object Detection
	Classification

	Results
	Preprocessed Database
	Web Scraping
	Database preprocessing

	Image Retrieval
	Segmentation and Object Detection
	Classification
	User Interface

	Budget
	Material
	Salaries
	Total Costs

	Conclusions
	Future Work
	References
	Appendices
	Work Plan

