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Abstract—Machine learning techniques to support decision 
making processes are in trend. These are particularly relevant in 
the context of flight management where large datasets of planned 
and realised operations are available. Current operations 
experience discrepancies between planned and executed flight 
plan, these might be due to external factors (e.g. weather, 
congestion) and might lead to sub-optimal decisions (e.g. 
recovering delay (burning extra fuel) when no holding is expected 
at arrival and therefore it was no needed). Dispatcher3 produces 
a set of machine learning models to support flight crew pre-
departure, with estimations on expected holding at arrival, 
runway in use and fuel usage, and the airline’s duty manager on 
pre-tactical actions, with models trained with a larger look ahead 
time for ATFM and reactionary delay estimations. This paper 
describes the prototype architecture and approach of 
Dispatcher3 with particular focus on the challenges faced by this 
type of data-driven machine learning models in the field of air 
transport ranging: from technical aspects such as data leakage to 
operational requirements such as the consideration and 
estimation of uncertainty. These considerations should be 
relevant for projects which try to use machine learning in the 
field of aviation in general. 

Keywords - machine learning; challenges; pre-departure 

I.  INTRODUCTION 
To conduct more efficient and sustainable operations an 

early anticipation of discrepancies between the planned and 
executed flights is paramount. Otherwise, those responsible for 
the flight operations – duty managers, dispatchers and pilots - 
might make sub-optimal decisions which could lead to higher 
costs and more emissions. The anticipation of disruptions, e.g. 
ATFM delay issued to flights, are required to support the 
creation of flight management solutions which could minimise 
the environmental impact of aviation, e.g. avoiding expensive 
tactical recovery of delay by increasing flight speed, when 
actions modifying the planning of rotations could have led to a 
lower usage of fuel if disruption were anticipated with enough 
look ahead time. 

Flight operations generate a large set of data from different 
sources: from planned activities, such as flight plan, forecast 
weather available when dispatching the flight or expected 
airspace and airport congestion, to actual realisations, such as 
flight performance data recorded in the flight data monitoring 

on-board systems (FDM), actual weather or holding times. 
Therefore, a natural (and in trend) approach is to use these data 
for modelling to create predictions on operational parameters 
with machine learning (ML) techniques.  

Dispatcher31, a CleanSky2 Innovative Action, aims at 
achieving this, developing a software prototype for the 
acquisition and preparation of historical flight data and use 
machine learning techniques to support the optimisation of 
future flights. Two prediction horizons are considered: longer 
look ahead predictions aiming at supporting the duty manager 
with models trained on D-1; and short-term predictions pre-
departure (3 hours prior EOBT) to provide advice to the crew 
on what to expect in the flight aiming at supporting tactical 
decisions. These short-term predictions could be integrated on 
trajectory optimisers such as the one developed in CleanSky2 
Innovation Action Pilot3 [1],[2]. 

The use of ML in this field, however, presents a set of 
challenges that will be explored in this paper. This paper 
focuses on the description of these challenges which could 
provide insight for similar projects in the field of air transport: 

• Large datasets should be prepared before being used 
for modelling requiring data preparation pipelines. 

• The training of machine learning models has its own 
challenges such as data leakage or data availability. 

• Finally, individual predictions of complementary 
processes need to be integrated into a comprehensive 
view suitable for the end user. 

The architecture the prototype is presented in Section II. 
The datasets used and information on how they are processed 
in Section III. The approach to develop the individual machine 
learning models and the challenges faced are summarised in 
Section IV. The paper then focuses on how the individual 
models are integrated into an advice generator system with 
some aspects that should be considered in this process in 
Section V. Finally, the paper closes with conclusions and 
further work laid out in Section VI.  

 
1 www.dispatcher3.eu - https://cordis.europa.eu/project/id/886461 
 (Accessed October 2022) 

http://www.dispatcher3.eu/
https://cordis.europa.eu/project/id/886461


2 
 

 

II. DISPATCHER3 ARCHITECTURE 

Dispatcher3 is organised in three layers as depicted in Figure 1: 

• Data infrastructure to support the storage and 
management of datasets required to train the models. 

• Predictive capabilities, which comprises the pipelines 
required for the data acquisition and preparation and 
machine learning individual models definition, training 
and validation. 

• Advice capabilities, which uses the individual machine 
learning models trained in the previous layer to present 
the information to the end users in a comprehensive 
manner. This might require the definition and 
execution of model-driven predictions supported by the 
individual machine learning models.  

1) Data infrastructure 

Different data sources are required in Dispatcher3, as shown in 
Section III. An iterative process has been used to identify and 
acquire datasets as required by the different models and 
development needs. These data are stored and managed in a 
data infrastructure set up in Amazon Web Services (AWS). 

2) Predictive capabilities 

The predictive capabilities are developed in two processes: 

• Data acquisition and preparation, composed of: 
o Data wrangling (preparation and cleaning), which 

focuses on the acquisition of the data and their 
incorporation into the data lake. Once it is acquired 
it needs to be cleaned and prepared so that it can be 
used for the data analytics. 

o Descriptive analytics, using data mining techniques 
to extract the KPIs that will be used as target 
variable (variables to predict using ML models). 

• Predictive model development, which consists of 
o Target variable labelling and feature engineering: 

Supervised machine learning algorithms work by 
training models based on a set of labelled data. The 
datasets are annotated following the KPIs defined 
as the result of the descriptive analytics. Also, the 
selected precursors must be engineered from the 
raw data, calculating the variables necessary. 

o Train, test and validate ML predictive model: These 
activities consist of the actual training of the model 
which provide the predictive capabilities. 

Two predictions horizons are modelled: 

• Day prior operations (D-1) focusing on: 

o Probability of being regulated due to ATFM 

o Location of regulation of ATFM (aerodrome or 
airspace) if regulated 

o Probability of being assigned a positive delay, i.e., 
non-zero, if regulated 

o Amount of ATFM delay 

o Block time 

o Turnaround time (if no regulated by ATFM) 

• Pre-departure (H-3) with prediction on: 

o Expected runway at arrival 

o Fuel usage 

o Probability of holding at arrival 

o Amount of holding at arrival 

3) Advice capabilities 

The outcome of the individual models developed as part of the 
predictive capabilities might present some discrepancies and 
uncertainties that need to be considered to provide meaningful 
support to the end users. The advice generator, within the 
advice capabilities layer of Dispatcher3, focuses on how to 
present this information to the end user. 

 

Figure 1. Dispatcher3 architecture 
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III. DATA PREPARATION TECHNIQUES 

A. Data transformation techniques: ETL and ELT pipelines 
For data centred projects, the definition of an ETL (Extract, 

Transform, Load) pipeline is a requirement in order to properly 
treat the different data sources. An ETL pipeline is the set of 
processes used to move data from a source or multiple sources 
into a database, or data lake. Data shall be standardized and 
always be available. For this matter it is also important to have 
a well-structured data lake, where data can be stored raw and 
pre-processed. 

Therefore, the objective of a ETL is to extract data from all 
data sources, clean them, translate them into desired formats, 
and normalize them for use in the case studies. Data cleaning is 
typically performed during the ETL phase, which aims to 
identify missing or erroneous data values, substitute or correct 
them, and then provide clean data ready for use further in the 
machine learning pipeline. 

In Dispatcher3, we move away from the traditional ETL 
paradigm towards a more flexible ELT (Extract, Load, 
Transform) paradigm. This approach transforms the data after 
it has been loaded into the data lake and thus it enables the 
analysts and data scientists to adapt the dataset later on in the 
project as needed to different applications. This method is 
enabled by the cloud-based services which do not suffer from 
the possible problem of data explosion due to the fact that 
storage and computation are much cheaper than in the past. 
This method gets data in front of analysts much faster than 
ETL while simultaneously simplifying the architecture. 

B. Data sources and processing techniques 
Table I provides a description centred on the quality of the 

different data sources used. It is important to remark that 
several transformation techniques are required for each dataset 

such as: data integrity, filtering, missing values, out of range 
measurements and outliers identification and removal, units 
homogenisation, formatting of variables and key 
homogenization. Note that not all these processing techniques 
are always required (e.g. for some datasets they might not be 
needed in all instances (or in all case studies)) or loaded/stored 
in the data lake after being performed. In some cases, the data 
processing can be performed on-line as part of the features 
computation for training the models 

Finally, for large files containing worldwide information 
(such as weather GRIB files or ADS-B files) it is important to 
select data according to different case-studies to reduce the 
dimensionality of the required datasets. 

IV. PREDICTIVE MODELLING 

A. Machine learning model developement 
The typical machine learning model development pipeline 

consists of the following steps: 

1) Data wrangling: The first step is to filter and merge 
the different sources of data (previously cleaned in the 
data preparation stage) to produce a unique dataset. 
Each task may need a different subset of data, 
depending on the target variable. 

2) Data visualization: Visualizing data is a great way to 
gain insights. In particular, correlation plots and pair 
plots allow us to obtain information about the relations 
among variables and identify the degree of correlation 
between some features and the target variable. 

3) Feature and target engineering: Once the training set 
has been generated, the data has to be processed so 
their representation is optimal for the estimators. At 
this stage, the features are usually divided in 
numerical and categorical to apply different 
techniques to each group: The numerical columns 

TABLE I.  DATASETS 

Data set Description Quality and characteristics 

FDM provided by 
Vueling 

Contains performance data and static data 
directly collected by the airlines 

Sampling period very low 
Parameters recorded with different sampling rate 
The information is trustworthy and quality is overall good, however there are 
variables whose values are missing 
Required decoding before being used 

ADS-B data by 
OpenSky Radar data, contains trajectories  Noisy data 

Sampling period low 

METAR Contains weather information at different 
European Airports 

Sampling period high, 30 minutes 
Missing values often (might rely on manual definition/recording) 
Units might differ for different data sources 
Dynamic variables might often be filled with same value (data integrity issues) 

NOAA weather 
forecasts 

GRIB file containing meteorological 
information in a 4D space (latitude, 
longitude, altitude and time) 

Large files (GRIB files contain a lot of information) 
It is important to filter them according to different case-studies in order to 
reduce dimensionality 

ALLFT+ 
Network and flight plan and trajectories 
information from DDR2 by 
EUROCONTROL 

Allft+ files contain large information, it is important to select the desired 
features to reduce dimensionality 

ECTL R&D 
Archive 

Network information and flight information 
provided by EUROCONTROL 

Sampling period high 
Good quality 

Vueling flight data 
and flight plans 

Flight information and flight plans from 
Vueling flights. 

Sampling period high 
Good quality 
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have their missing values input with different 
strategies (e.g. mean, median, a fixed value) and are 
scaled so the algorithms that rely on distances (like K-
means) can be correctly used. The categorical values 
also have their missing values imputed, but with 
different techniques (like using the most frequent 
value) and then have to be encoded following 
strategies like ordinal encoding, one-hot encoding or 
target encoding. 

4) At this point, the models can be trained. Regardless of 
the chosen model, a set of values called hyper 
parameters must be tuned. These parameters affect the 
performance of the model and its behaviour. 
Therefore, they are crucial to correctly perform the 
chosen task. To check if the chosen features are 
significant to the task, a feature importance stage can 
be added. This ensures that the chosen features are 
tested so their relevance to the predictor can be 
assessed. 

5) Once the model returns an acceptable result, it is 
stored along with any other useful information (e.g. 
parameters, metrics, graphics). This way, it can be 
deployed and integrated in a production environment. 

It is worth noticing that steps 3 to 5 are iterative, that is, 
they are repeated over time. This is done to ensure the quality 
of the final model, since models are continuously tested to find 
improvements. 

B. Machine learning challenges in the context of Dispatcher3 
Novel AI techniques have been developed in the past years 

that push the boundaries of the accuracies of the machine 
learning models, computational cost, data representation and 
information extraction and automatisation of the ML pipelines, 
among others. GANs (Generative Adversarial Networks) have 
been successfully applied to generate novel realistic datasets 
with the same statistical properties as the training set through 
two competing neural networks against each other. A lot of 
progress has been made in the area of machine learning over 
graphs, especially in creating memory-optimised ways to 
encode information and feed it to the machine learning models. 
AutoML is enabling non-machine learning experts to 
successfully use and train simple machine learning models in 
various applications, or to quickly generate a baseline model in 
a project and get the team started, by automatising a lot of the 
time-consuming, iterative tasks of machine learning model 
development. It allows data scientists, analysts and developers 
to build ML models with high scale and efficiency while 
sustaining model quality. 

However, these techniques need to be applied with caution 
and there are a set of challenges that need to be addressed. 
Some of them are specific to the domain in which Dispatcher3 
applies. These can be summarised in: 

1. Avoiding data leakage and data availability. 

2. Machine learning model selection and tuning. 

3. Uncertainty modelling considerations. 

4. Prediction of non-observed in historical dataset 
actions. 

5. Models explainability. 

6. Data drift on exploitation models. 

1) Avoiding data leakage and data availability 
a) Data leakage 

Data leakage refers to a situation in which a model uses 
information that it is not supposed to have or would not have in 
real-world settings, and it can occur in many ways, some more 
obvious than others. In recent years, more research on data 
leakage has been performed and firmer practices were 
established to prevent it. These include, but are not limited to: 

• The need of being aware of the date and time of the 
availability of the data that is fed into machine learning 
models. That is something we strive to document 
exhaustively under model assumptions in Dispatcher3 
due to the fact that often we will not be able to have 
exact information on when some data sources will be 
available to the potential users of the models developed 
in Dispatcher3, where the models put into operation in 
real-world settings; 

• Beware of temporal leakage. Temporal leakage can 
enter the datasets when constructing training and 
testing datasets by sampling them in a way that would 
lead to not truly independent training and test sets. For 
example, when the split between the training and test 
set is not carried out sequentially. 

• Avoid oversampling leakage. This can occur in 
situations of imbalanced datasets where there is a need 
to perform minority oversampling, e.g. using SMOTE 
algorithm. If this oversampling is performed before 
splitting the datasets into training and test portion, 
information leakage could happen. 

• Leakage due to aggregation. This type of leakage can 
happen during the pre-processing state if the training 
and test dataset are grouped and normalised, which in 
turn leads to the leakage of aggregated statistics from 
the train to the test dataset. 

b) Data availability and prediction horizons 
It is crucial to ensure that the data used for the training of 

the machine learning models are available during their 
execution. One of the challenges of the development of these 
types of models in the field of aviation is that datasets tend to 
contain historical realised data, but it is very difficult to know 
which data were available at a given moment. This is 
particularly relevant for traffic and network related data. Both 
planned and realised data evolve over time (e.g. new flight plan 
submissions, flights cancellations, flights which have not 
submitted their flight plan yet, ATFM regulations which are 
issued at a given time, ATFM regulations which are cancelled). 
It is relatively easy to access datasets which contain the final 
flight planned trajectory and the realised flight, but it is 
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difficult to know at a given moment in time which flight 
information was available for a particular flight (and for the 
remaining flights in the network). 

In Dispatcher3 prediction horizons are defined to identify 
when the machine learning models will be executed with 
respect to the flights. As shown in Figure 2, the same label can 
be predicted with the information available at different 
horizons using distinct models. For example, the probability of 
a flight being affected by ATFM regulation (label to be 
predicted which can be obtained from historical data) could be 
predicted X hours prior to the schedule of the flight (prediction 
horizon 1) or the day prior operations (prediction horizon 2). 
Historical datasets will allow us to label if the flight was 
regulated or not, i.e., the label to predict (the regulation of the 
flight) is the same for both models, but the data available to 
compute the features from which to predict the labels might 
vary at these horizons. 

It is useful to differentiate between static and dynamic data 
(and features). Static data (and features) do not vary as a 
function of the prediction horizon (as depicted in Figure 2). 
Examples of these data are origin and destination, aircraft type 
or time of the day when the flight is scheduled. Dynamic data 
might be different at different horizons. For example, the 
weather forecast at arrival might be updated over time, or the 
expected demand at arrival airport might be different if the 
flight plans from other flights are available or not. This 
distinction allows us to estimate the importance of the dynamic 
features on the overall performance of the algorithms and 
therefore the relevance of the prediction horizon for a particular 
problem. 

Some assumptions over the dynamic data might be required 
(e.g. which traffic demand is assumed to be available at a given 
horizon). For this reason, analysing the impact of these 
dynamic features on the predictions is very important. 
Moreover, we could train the model only at a given horizon but 
use the available information at a different one to generate the 
prediction. In the example of the probability of being regulated 
due to ATFM, the model could be trained using for example 
the information on demand assuming that all flight plans are 
available, but then on execution the most up to date 
information would be used instead. This might lead, naturally, 

to some underperformance of the models as the input data used 
to compute the features for the prediction is not the same as the 
data used for the computation of the features used to train the 
model. A difficult aspect is the quantification of this 
degradation. 

c) Data alignment over the prediction horizons 
Different approaches can be used to define the prediction 

horizons, and these have an impact on the quality of the 
datasets used to train the models. Each approach has some 
benefits and drawbacks, and different problems might benefit 
from different considerations. Once a prediction horizon is 
defined the data available at this horizon should be defined 
(either by gathering it from historical records or by defining 
some assumptions on the data to be considered being available 
at a given period). 

i. Preiction horizon fixed at a given time 
The first simple approach is to define a given time (as 

shown in Figure 3). For example day prior operations or at 
9h00 on the day of operations. The main idea is to gather the 
data available at that given time and use this to compute the 
features required to estimate a given target variable. In some 
cases, the definition of this horizon might have some ambiguity 
(e.g. when exactly is the horizon at day prior operation? which 
datasets are considered to be available?). Some of these 
ambiguities can be mitigated by ensuring that datasets used are 
available within the defined period. 

Once the prediction horizon is defined all data available can 
be gathered to compute the features. For example, flight plans, 

 

Figure 2. Prediction horizons with static and dynamic data models traininng 

 

Figure 3. Prediction horizon at a given time (e.g. at 9h) 
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weather reports, or information on airspace configurations, 
available at that given moment. Some assumptions might be 
required regarding the data available. For example, if the 
horizon is set at 9h00 and the demand at the expected arrival 
time at a given airport is estimated as a feature for a flight, 
some of the flights arriving at the airport defining this demand 
might already be flying, others might have already flight plans 
submitted, while for others their schedule might only be 
available. 

Figure 3 presents an example of a prediction horizon 
defined at a given time to predict the probability of ATFM. 
Note that this approach is valid also to predict aggregated data, 
for example, expected holding at arrival at a given time 
aggregating all flights in that given time. 

Two drawbacks can be identified: first, for every event that 
is to be predicted (e.g. probability of ATFM in the example of 
Figure 3) the temporal distance between the prediction horizon 
and the event might be different for different observations. This 
could be an issue as the same feature (e.g. expected congestion 
at arrival for a given flight or expected weather) might be 
computed with different degrees of accuracy. Adding features 
which characterise this distance might improve the 
performance of the models. 

Second, if the model is executed outside the trained 
moment (e.g. executing the predictions with information 
available at 11h for a model trained at 9h) there will be a shift 
on dynamic features from the execution horizon to the trained 
horizon. This discrepancy between the dataset used for training 
and the dataset used for execution might produce some 
reduction in performance which might be difficult to quantify. 
Different models could be trained at different prediction 
horizons and then different approaches could be used: using the 
model which is closest to the execution time, interpolating the 
results of the closest models, etc. 

ii. Prediction horizon defined at a given distance 
with respect to flight reference 

As the models are trained to do a prediction for a given 
flight, e.g. predicting the expected holding at arrival for a given 

flight, the prediction horizon can be defined with respect to a 
reference linked to the flight. For example, 3 hours prior 
SOBT. This has the significant advantage that the models are 
operationally easy to utilise. This simple definition indicates 
that the model will be valid to do predictions x hours prior 
SOBT. 

However, this can lead to some issues relating to a 
misalignment of the different observations used to train and 
execute the models due to the distance between the reference 
point (x hours prior SOBT) and the phenomena to be predicted. 
As in the example of Figure 4 where the variable to be 
predicted (expected holding at arrival) depends on the 
conditions of the airspace/airport at arrival of those flights. 
This means that due to the different planned flight duration, 
flights which will experience similar congestion (and therefore 
probability of holding in this example) will be scheduled at 
different times (shorter flights with a shorter distance to the 
event). Therefore, the prediction horizon will be misaligned for 
different observations and if for example current weather 
observed at the arrival airport is used as a feature, for some 
flights that weather will be many hours before the others. 

This is not a problem on itself and with enough data and 
adding information which, somehow, encapsulates this distance 
between the prediction horizon and the factors affecting the 
event to be predicted, the potential impact of this misalignment 
can be mitigated. 

However, one needs to be cautious when datasets are 
imbalanced, e.g. if the number of short-haul fights is much 
larger than long-haul flights, and it would be interesting to 
analyse the performance of the models as a function of this 
distance between prediction horizon and event to be predicted. 

Note that as in the previous case, it could be possible to 
filter the samples to keep the ones which have an aligned target 
event. For example, by creating a model with a prediction 
horizon X hours prior the SOBT of the flights for flights 
arriving to their destination in a given arrival window, so that 
conditions at arrival are similar. The utility of this might be 
small and allowing the model to infer if these features are 
relevant might be a more suitable approach. 

 

Figure 4. Prediction horizon with respect to flight reference (e.g. SOBT) 
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iii. Prediction horizon defined at a given distance 
with respect to event 

A final possible approach is to define the prediction horizon 
with respect to the event which is targeted to be predicted. For 
example, as shown in Figure 5, estimating the expected holding 
at arrival x hours prior the arrival. This approach might be 
more suited for models which are not flight-centred but event-
centred. For example, it could be considered that the 
probability of experiencing a holding does not depend on the 
characteristics of a given flight but more on the conditions of 
the arrival airport at the time of arrival of the flight. In that 
case, one could define the problem as estimating the expected 
holding time for flights arriving at the airport at a given time-
window (e.g. arriving around 9h) with the information 
available x hours prior that time. 

Note that in this case, depending on the horizon, some 
flights might already be flying, for others might have a flight 
plan already submitted, while others might still be only 
scheduled. This might render the prediction for a specific flight 
difficult and be more suited to estimate for example the 
situation of the infrastructure, e.g. expected average 
holding/delay at arrival at a specific time given the situation of 
the ATM network x hours before. 

d) Data verification 
Assumptions tend to be incorporated into the models 

already in the stage of data acquisition, transformation, and 
ingestion (typically performed by data engineers). However, 
those processes often are not documented well and ETL or 
ELT pipelines. This can become very problematic when a 
model wants to be validated by the users because doubts or 
unclear model results trace back all the way to the initial stages 
of data collection. 

In Dispatcher3, for these reasons we intend to document as 
much as possible the processes of data collection and the 

description of raw data sources, as well as transformations 
performed on the datasets to yield model-ready data. 

2) Machine learning model selection and tuning 
a) Hyper-parameter tuning. 

Choosing the right set of hyper-parameters for a model for 
a particular application is one of the key choices in machine 
learning model development. This represents a very 
computationally expensive problem, and it varies greatly not 
only from one model type to another, but also from one 
application to another. An experienced data scientist might ad-
hoc choose an appropriate set of hyper-parameters for an 
application and a model and perform fine-tuning from that set 
as a starting point, achieving satisfying performance. 

However, in most cases, the data scientists do not know 
what a good starting set of hyper-parameters would be, and 
performing a full search over a whole grid of possible 
combinations of parameters is very time-consuming. Therefore, 
and in line with the experience of the machine learning 
community, the approach proven as most effective is a 
combination of a random search of hyper-parameters within a 
manually assigned range (relying on the heuristics set by the 
empirical observations for each model). This yields a 
computationally not overly expensive method that usually 
gives very good results. 

b) Choice of the ML model 
It is often difficult to select the appropriate machine 

learning model to use for a specific application. Indeed, the 
only thing one can rely on is empirical research on the 
performance of the models and often that can vary significantly 
from one field to another. Most advocated approach recently is 
to keep it simple approach: data scientists are encouraged to try 
simpler models first, establish a baseline model that can be 
used for the performance assessment and run an exhaustive 
comparison of models throughout development iterations 
before advocating for specific methodologies. 

 

Figure 5. Prediction horizon with respect to event (e.g. time when holding at arrival is produced) 



8 
 

 

c) Data-centric vs. model-centric approach 
Often times in the presentations and papers on novel 

machine learning techniques, more complicated architectures 
are being advocated due to alleged superior performance. 
However, in most cases the performance improvement comes 
from better formulations of the problems, better data pre-
processing, feature engineering, or simply working on data 
quality itself (rather than trying to find that perfect model). 

3) Uncertainty modelling considerations 
The characterisation of this individual uncertainty (or error) 

on each prediction is paramount in many fields. For example, 
uncertainty can rapidly grow when applying the outcome of 
these models in dynamic and unstable systems, or when their 
outcome is combined with other models. This is the case for 
many applications in the field of Air Traffic Management when 
integrating the prediction models into airlines and air traffic 
control support decision tools. Supervised machine learning 
models can generate the relationship between input (features) 
and target variables from a training dataset. Once a model has 
been trained, some error is expected between predicted and 
actual realisations of the target variable. This error accounts for 
both aleatory uncertainty in the phenomena being modelled and 
epistemic uncertainty in the capability of the model to represent 
the relationship between features and target variables. The 
homoscedasticity of the error on the predictions by the model 
cannot be always assumed for several reasons: the training set 
could be more or less dispersed on different regions of the 
feature space; the underlying processes and relationships being 
modelled could present aleatory uncertainty; and the machine 
learning model might have limitations which could produce 
more accurate predictions on different regions of the feature 
space. For this reason, averaged statistics and the distribution 
of the error on the predictions for the entire validation set 
cannot generally be used as an estimation of the uncertainty of 
a single prediction. The local uncertainty of the model could be 
different than the average dispersion of the error and even 
present some skewness. 

Different approaches have been suggested in the literature 
to overcome these limitations and to estimate the uncertainty 
and reliability of the individual predictions, such as: sensitivity 
analysis on the models [3], delta method based on nonlinear 
regression [4], Bayesian method [4], bootstrap method 
developing several neural network models with subsets of 
training set [5], local neighbourhood prediction interval using 
clustering techniques [6], mean-variance estimation method 
[7], gaussian processes [8], [9] or quantile regression, which 
estimates multiple quantiles simultaneously [10],[11],[12],[13].  

Most of these methods provide either an estimation of the 
variance of the error or an interval of reliability but are not able 
to describe the distribution of possible values. In Dispatcher3, 
we propose the use of a probabilistic classifier to characterise 
the distribution of the error of a prediction relying on the 
estimation of this error on the training set, obtaining the 
discrete distribution of the possible expected values of the 
prediction [14]. This will be done particularly for ML models 

which need to be integrated into other higher-level models as 
the modelling of the propagation of uncertainty becomes 
paramount on those cases; or when translating indicators, e.g. 
delay into cost due to the non-linearities of cost of delay [15]. 
Having only the expected value without its distribution will 
probably lead to underestimation of cost.  

When this integration is not required and only the 
qualitative indication of the uncertainty is to be transmitted to 
the end user, the problem can be translated into a discrete 
probabilistic classification problem with definition which are 
operationally relevant. This is the case for holdings at arrival, 
where instead of estimating the expected exact amount of 
holding, the probability of experiencing different qualitative 
amount of holdings (minor, high, severe) are used. 

4) Prediction of non-observed in historical dataset actions 
Supervised machine learning models are trained to predict 

labels as a function of features. These are computed based on 
historical datasets. This means that it might be difficult to 
predict the impact of situations which are not available in the 
training datasets. Depending on how the models generalise this 
issue might be more or less acute. 

Airlines and ATM operations are being monitored 
throughout the day and actions are performed to mitigate 
negative situations. For example, an aircraft might be swapped 
with another, a flight cancelled to prevent the propagation of 
delay, or flights might resubmit a flight plan to avoid a 
congested region. If these actions are not recorded, then it is 
difficult to generate a predictive system which allows the user 
to advance when these negative situations which require their 
intervention might be needed. 

One of the ways of mitigating this is the integration of the 
outcome of ML models into higher-level models which can 
simulate the do nothing approach. For example, by propagating 
estimated delay through the day so that the impact on 
reactionary delay of not intervening on the planning can be 
estimated [14]. This enables the possibility to identify 
situations which if action is not performed undesirable 
outcomes are obtained. Directly using machine learning models 
could be difficult as in the historical datasets the actions of the 
duty managers would already be recorded. 

5) Models explainability 
One of the most discussed topics in the industry powered 

by AI is the explainability of such advanced AI models. When 
it comes to more complex architectures that are being used in 
various applications, the models itself is a black box and it can 
be difficult to disentangle how the model arrives at a certain 
conclusion (forecast). Indeed, most ML models do not provide 
insight into their inference process. However, and that is 
especially prominent in aviation, as we wish to integrate AI 
powered systems into decision-making processes and allow 
them to assist human workers in their operations, the need for 
explainability rises. To have a solid human-machine interface 
that allows for partial levels of automation and human users to 
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interact with intelligent systems in a meaningful and perhaps 
collaborative way, model explainability is a key component. 

6) Data drift on exploitation 
The main assumption of ML pipelines is that the data 

samples used for training are independent and the distributions 
of training, test and evaluation data sets identical. However, in 
real-world setting the statistical properties of the target variable 
the ML model is trying to estimate change over time, which is 
often referred to as 'data drift'. This is something that becomes 
a large problem when putting ML models into production. 

V. ADVICE GENERATION 

A. Overview and motivation 
As previously presented, Dispatcher3 develops a set of 

individual machine learning models to predict specific 
indicators at given prediction horizons for flights. During the 
airline operations the duty manager, dispatcher and pilot need 
to access this information. The relevance (and validity) of the 
predictions will evolve over time. Moreover for the same flight 
different predictions relating to similar processes will be 
produced. These need to be integrated in a comprehensive 
interface/visualisation so that they can be used to improve the 
operational decisions and situational awareness. 

Figure 6 presents the different individual ML models. 
These provide information at different prediction horizons: 
with tactical pre-departure predictions, such as expected 
holding at arrival, and pre-tactical information, such as 
probability of ATFM delay being issued. 

Each of these individual models will produce a prediction 
which will be either a probability, an expected value, or a 
distribution of possible values. As depicted in Figure 7, the 
outcome of some of these models needs to be collected so that 
a comprehensive view is provided: tactical pre-departure 
information, and ATFM information. Some of these models 
can be combined in a more complex manner to produce further 
predictions: reactionary delay integrator. All these models will 
be underpinned by the flight operations plan and its 
visualisation. 

In this flight operation plan, the different flight, and their 
rotations (planned and realised) will be visualised integrating 
the outcome of the different models. 

With these considerations, the advice generator has three 
main objectives: 

1. Collect all the different individual prediction models 
into an integrated system. This needs the identification 
of which models are suitable for each of the planned 
flights at a given moment in time. 

2. Integrate the outcome of the different models into a 
single visualisation. This will require the consideration 
of uncertainty in the predictions and complementarity 
of individual ML models. 

3. Use the individual machine learning models to 

generate a forecast of non-observed actions in the 
historical dataset, such as reactionary delay or 
probability of breaching a curfew. 

B. Information representation 
There are two aspects that should be considered when 

presenting the information: the level and how the information 
is presented. 

1) Level of information presented 
It is paramount to present the information with the right 

level of detail. As mentioned previously, the advice generator 
will rely on the visualisation of the flight plans and their 
rotations as depicted in Figure 7. 

Figure 7 presents an example of the visualisation of the 
different rotations for a set of aircraft throughout the day. Four 
sets of flights are identified at a given moment in time: 

• Already flown, which have landed prior to the current 
time. 

• Flying, which are being currently operated. 

• At pre-departure. These flights are close in time, their 
final flight plan has already been generated, and if pre-
departure aspect will impact them such as ATFM 
regulations these will already be known. For these 
flights, pre-departure models will be available (e.g. 
probability holding at arrival). 

• Planned, which are planned flights for which new 
flight plans might be generated. For some of these 
flights if they are affected by ATFM regulations might 
not be known yet, and therefore predictive models 
could be useful. 

 

Figure 6. Advice generator integration of different ML models 
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Note how the flights belonging to the different sets will 
change as time evolve. The visualisation will evolve as new 
flight plans and operations are generated. This high-level view 
will be useful for the duty manager to easily identify flights 
that are impacted by different operational aspects as predicted 
by the models. For example, Figure 8 presents how the 

probability of being impacted by ATFM regulation could be 
presented for the planned flights. 

If a flight is selected then more detailed information could 
be provided, for example integrating the ATFM information 
available from the different models as depicted in Figure 9. 

 

Figure 7. Visualisation of planned and exsecuted flihgts and rotations 

 

Figure 8. Visualisation of robability of being affected by ATFM regulation 

 

Figure 9. Visualisation of probability of being affected by ATFM regulation [16] 



11 
 

 

Similarly, the information for the tactical execution of the 
flight can be aggregated into a single visualisation which can 
be shared with the crew pre-departure (as shown in Figure 10. 
Note this is a representation on how information could be 
presented not how it might actually be implemented in the final 
release of Dispatcher3). 

2) Representation of data 
Besides providing the right information at the right level it 

is critical to consider how this information is presented, 
particularly with the consideration that the models will have 
uncertainty. As discussed previously the simplest approach to 
represent uncertainty of the models is to characterise their 
error, in Dispatcher3, for some models, we have also 
considered the possibility to directly predict a probability 
distribution of possible expected values. Finally, when a model 
is classifying between alternatives, besides the error of the 
model the probabilities of the classification could also be used 
as an approach to determine the certainty of the model on its 
predictions. 

The advice generator (and the models) could consider 
different approaches: 

• Provide the expected value without any further 
information. This could lead to actions by the end users 
which are not desirable as the quality of these 
predictions and uncertainties are not considered. 

• The expected value could be accompanied by 
additional information encoded in the visualisation 
(e.g. using colours to indicate the certainty of the 
predictions). 

• Use discretised predictions instead of expected values 
(e.g. high, medium, low categories instead of a value 
for the expected holding at arrival). 

• Capture the uncertainty in a value and provide this 
along the expected value. 

Dispatcher3 will model some of these and gather feedback 
from experts on the most suitable representation. 

C. Integration of ML models into advice generator 
Finally, as the advice generator is in charge of the 

visualisation of the planned flights and the outcome of the 
individual machine learning models, it will be the advice 
generator the component of Dispatcher3 which will execute the 
individual models with the data available in the system at a 
given moment. 

VI. CONCLUSIONS AND FUTURE WORK 
Machine learning models are gaining traction in the 

aviation community to support flight operations with the 
objective of minimising operational costs and the 
environmental impact of aviation, i.e., improving the decision-
making process within airlines. 

These models tend to be narrow, i.e., tackle a specific 
indicator to be predicted within a given prediction horizon. The 
individual machine learning models could be integrated in 
either support systems, e.g. trajectory optimisers, or directly 
present the information to the end users. Moreover, in some 
cases, the outcome of the different models should be combined 
in a model-driven architecture to produce the relevant 

 

Figure 10. Pre-tactical information representatio 



12 

information, and not all models are valid for all flights in all 
operational situations. This strengthens the need for an 
architecture which incorporates an integrator of models as the 
one suggested in the advice generator in Dispatcher3. 

The development of machine learning models requires the 
deployment of a data management infrastructure and well-
defined data preparation pipelines. Several challenges to 
develop the individual models have been highlighted in this 
paper ranging from common issues on machine learning such 
as models explainability or data drift on exploitation to more 
relevant aspects to aviation such as the clear definition of 
prediction horizons and modelling of uncertainty. 

In aviation, historical datasets tend to contain a snapshot of 
the final planned operations. It is therefore difficult to know at 
a given moment in time the information which is available as 
flight plans tend to evolve over time. For pre-departure models 
(3H prior SOBT) this might not be necessarily an issue as the 
final flight plan is defined, but when larger lookahead times are 
seek this could be a complex task. We have found that a good 
approach is the division of features between static, which do 
not evolve over time, such as origin and destination airports, 
and dynamic features, which might depend on the information 
at the prediction horizon, such as weather data. This allows 
modellers to quantify the benefit of using the dynamic data and 
the potential error introduced by modelling using data which 
might slightly differ on operations. The paper presents different 
approaches towards the definition of the prediction horizons. 

Uncertainty is paramount when dealing with flight 
operations. Airlines tend to be conservative with respect to 
their operations and the non-linearities of cost of delay means 
that prediction of just expected values are fully suitable. We 
suggest the use of probabilistic distribution as outcome of the 
models to capture these uncertainties. The discretisation of the 
target variable (e.g. holding at arrival) into operationally sound 
categories (e.g. mild, medium, severe) is also a suitable 
approach. 

The estimation of non-observed data (e.g. reactionary delay 
if no action is performed) is also crucial to obtain information 
for the end user which are relevant to them, i.e., if no action is 
taken these flights might suffer this extra delay. The need of 
using models which incorporate the outcome of the different 
machine learning predictions is of high importance in this field. 

Finally, the work on Dispatcher3 has highlighted the need 
to integrate the outcome of different machine learning models 
into a single interface with sometimes contradictory 
predictions. 

Future work will focus on the finalisation of the different 
individual models and their integration in the prototype, and 
further exploring how the information should be presented to 
the end users. 
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