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Abstract: G-protein-coupled receptors (GPCRs) are cell membrane proteins of relevance as thera-
peutic targets, and are associated to the development of treatments for illnesses such as diabetes,
Alzheimer’s, or even cancer. Therefore, comprehending the underlying mechanisms of the receptor
functional properties is of particular interest in pharmacoproteomics and in disease therapy at large.
Their interaction with ligands elicits multiple molecular rearrangements all along their structure,
inducing activation pathways that distinctly influence the cell response. In this work, we studied
GPCR signaling pathways from molecular dynamics simulations as they provide rich information
about the dynamic nature of the receptors. We focused on studying the molecular properties of
the receptors using deep-learning-based methods. In particular, we designed and trained a one-
dimensional convolution neural network and illustrated its use in a classification of conformational
states: active, intermediate, or inactive, of the β2-adrenergic receptor when bound to the full agonist
BI-167107. Through a novel explainability-oriented investigation of the prediction results, we were
able to identify and assess the contribution of individual motifs (residues) influencing a particular
activation pathway. Consequently, we contribute a methodology that assists in the elucidation of the
underlying mechanisms of receptor activation–deactivation.

Keywords: GPCRs; β2-adrenergic receptors; proteomics; molecular dynamics; signal pathways; deep
learning; convolution networks; interpretability; layer-wise relevance

1. Introduction

G-protein-coupled receptors (GPCRs) are a functionally relevant family of cell mem-
brane proteins characterized by seven transmembrane alpha-helical structural regions
connected by extra- and intra-cellular loops [1]. At the most basic level, the function of
these receptors depends on their ability to change their form [2]. Therefore, understanding
the dynamic nature of these complex structures has critical implications for both basic
science and pharmacology [3]. In the latter context, most of the current druggable targets
are proteins, and GPCRs in particular have been shown to play an important role in the
development of treatments for several diseases [4]. For this reason, the study of the struc-
tural and physicochemical dynamics of these proteins and their role in their functional
properties is of particular practical interest from a disease therapy research viewpoint.

The current understanding of the functional properties of many protein structures
would be away from our comprehension without X-ray crystallography and spectroscopy
methods [5]. These studies have been of paramount importance for capturing relevant
information about the three-dimensional position of the atoms, providing a wealth of
information for elucidating protein structures [6]. Nonetheless, the description of these
receptors as rigid entities does not allow for a full appreciation of their dynamic nature.
In this context, molecular dynamics (MD) simulations have been introduced as crucial
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analytical tools [7] for investigating the receptor intrinsic flexibility and conformational
plasticity at the atomic level in very small timescales [8]. They are suitable for studying
and complementing the functional mechanics of diverse molecular processes [9].

These computational techniques have evolved into essential tools for enriching molec-
ular structural information [8]. Moreover, they are crucial for extending the understanding
of several processes related to the receptor function, e.g., protein conformational diversity,
binding pocket analysis, protein folding, ligand binding and its influence on the signaling
process, among others (see [9–13]). Nonetheless, the investigation of the large amounts of
protein information generated by MD is a far from a trivial challenge [14]. In this context,
machine learning (ML) algorithms can provide a differential advantage for the analysis
of the metadata produced. ML algorithms have been successful as analytical tools for
healthcare and medicine in general and for bioinformatics in particular [15]. In the latter
context, for instance, ML has been used for the analysis of the dynamics of protein pockets
and the investigation of binding affinity. The application of ML to the prediction of binding
sites is investigated in [16–18], to name a few. Other contributions have addressed the
improvement of MD simulations: see, for instance, [19,20].

Despite their arguable success, ML algorithms involve the use of domain expertise for
the correct data definition, to reduce complexity, and to optimize accuracy and precision.
Manual feature engineering and human intervention may increase the risk of bypassing
subtle structural transformations that could be relevant from the functional perspective.
Alternatively, deep learning (DL)-based algorithms have emerged as critical tools for
automatically learning complex patterns when the domain is particularly difficult. The
use of these models has exponentially grown over the last decade in domains such as
bioinformatics and medicine [21,22]), as well as in proteomics in particular. DL applications
and their limitations in proteomics are discussed in [23–25], to cite a few. More specifically,
some studies have used these methods in binding prediction problems [26,27]. Their use
for the analysis and prediction of signaling pathways can be found, for instance, in [28–30].

Broadly, the research reviewed in the previous paragraphs reveals the potential of
DL methods to extract valuable knowledge concerning the underlying mechanisms of the
receptors. Nonetheless, the inherent lack of interpretability of DL approaches stands in
the way of validation and the widespread use of such methods in this domain. These
models exacerbate the black box problem often associated with shallow artificial neural
networks, making it hard to explain their decisions. As a result of this shortcoming, the
concept of explainable artificial intelligence (XAI) has become a line of research on its
own for furthering trust in the prediction results, as mentioned in [31–33]. Though the
explainability concept is highly domain-dependent, efforts have been made to formulate
policies for establishing what explanations should be or entail [34]. In this sense, a taxonomy
considering the scope, methodology, and usage for distinguishing explainability techniques
is described in [35].

On the other hand, as mentioned, the investigation of DL interpretability in the study
of proteomics research has gained interest in recent years. For instance, the study of con-
formational state changes induced by ligands using a sensitivity analysis was presented
in [36]. The LIME-Local Interpretable Model-Agnostic Explanations algorithm was used
in the investigation of relevant residues for denoting active and inactive states of GPCR
receptors [37]. In this paper, we propose the use of the layer-wise relevance propagation
(LRP) algorithm for exploring the conformational states (active, intermediate, and inactive)
of a GPCR receptor with a supervised classifier in order to gain insights from the internal
structure of the proposed DL-based model for producing robust and intuitive evidence
regarding relevant aspects for the prediction of the different conformational states [38,39].
The LRP algorithm overcomes a limitation of the LIME algorithm as it is not directly based
on a surrogate model [40]. The present study is novel as it uses, in the first place, nearly
untransformed MD simulation data, which enable the exploration of a large amount of
different intermediate states from the 3D position of their residues. Furthermore, the
relevance analysis is extended to a multi-class classification problem as the interest is in the
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recognition of the active, intermediate, and inactive conformational state. In proteomics
research, the LRP algorithm was valuable in [41–43] for studying protein–ligand interac-
tions. Regarding the application of the LRP algorithm in other domains, it was successfully
applied in the medical context for promoting trust and decision support for the proposed
models in [44,45]. An overview and comparison between different XAI techniques can be
found in [46–48].

In this study, we focus on investigating the underlying mechanisms of molecular
activation–deactivation [10]. MD simulations are key to studying the dynamics of indi-
vidual atoms over time. From this information, it is possible to reveal a virtually infinite
number of conformations, both spontaneous and induced by a ligand-binding process [1].
These conformational states (clusters of conformations) cause intermediate re-orderings
along different signaling pathways that influence a route to activate and deactivate the
receptor and, thereby, condition their functional response [49].

The development of analytical tools that enable the study of the vast amount of gen-
erated data is a relevant research goal on its own. Here, we propose one such tool: a
one-dimensional convolution neural network (1D-CNN), whose workings we illustrate
by exploring the explicit representation of the β2-adrenergic (β2 AR) receptor provided
by MD simulations. Importantly, we focus on its interpretability by investigating motifs
(residues or groups of residues) associated with the conformation of signaling pathways
that are relevant to distinguishing between conformational states. To this end, as previously
mentioned, we put forward an explainable passive algorithm, based on relevant local
patterns attribution (related to critical residues), for discriminating the receptor conforma-
tional states (active, intermediate, and inactive). Our approach also analyzes the specific
contribution of each of the transmembrane regions (referred to as helix H1–H7), as well
as those of its intracellular (ICL1–ICL3) and extracellular loops (ECL1–ECL3), to such a
conformational state discrimination problem.

2. Results and Discussion

The classification problem in this study, as described in Section 3, entails separating
three states: active, intermediate, and inactive. The results are summarized in Table 1.
Overall, the model performance results in a 77.63% accuracy on the validation set.

Table 1. Summary of classification results. Support (last column) refers to the actual number of
samples in the class. Macro average (macro avg) refers to the harmonic mean of each score reported
per class. The reported accuracy is described as the proportion of correct predictions out of the total
computed predictions.

Class Precision Recall F1-Score Support

active 0.872154 0.905455 0.888492 550
intermediate 0.671587 0.661818 0.666667 550
inactive 0.780261 0.761818 0.770929 550

macro avg 0.775363 1650

accuracy 0.776364 1650

In more detail, the confusion matrix displayed in Figure 1 reveals that the classifier is
particularly good at discriminating the active states from both the inactive and the interme-
diate ones. Nevertheless, it is evident that it struggles to predict intermediate states as a
separate class (with an F1 score of 66.66%). These results are consistent with other studies
on the prediction of conformational states in GPCRs, where the intermediate state was the
most difficult to predict, achieving less accurate results compared to the active and inactive
states [50]. Most of these misclassifications concern intermediate states being predicted
as inactive and vice versa. From this result, we could infer that the transition activation
pathway from inactive to intermediate occurs very gradually, with barely perceptible re-



Int. J. Mol. Sci. 2023, 24, 1155 4 of 22

orderings in the trajectory, i.e., the residue movement might be very limited compared to
those involved in the transition from intermediate to active states.

Figure 1. Normalized confusion matrix in the validation set.

This result could be somewhat expected, but it does not inform us about which parts of
the molecule (that is, which motifs) are more relevant to the discrimination between states.

The interpretability study in a subsequent subsection will clarify the classifier decision-
making process, providing valuable insights to ascertain the activation pathway of the structure.

2.1. Model Interpretability Using Relevance Values

As previously explained, we strived to achieve model interpretability in the reported
experiments by implementing the LRP algorithm. Generally speaking, it operates in an
artificial neural network model by scoring the contribution of its individual neurons by
backpropagating the activation through the neural network until it reaches the input. An
intuitive color map of the input space could then be produced, highlighting meaningful
patterns for each conformational state.

The received contribution by a neuron is called relevance (R) and is redistributed equally
in subsequent layers; the more a neuron contributes to the activation, the most relevance it
receives. Thus, assuming j and k as the indices for two neurons in any consecutive layers,
the R map can be computed following this basic rule:

Rj = ∑
k

ajwjk

∑0,j ajwjk
Rk (1)

From this equation, an initial relevance vector R is defined at the output layer, where
each entry corresponds to the activation of one of the C classes (conformational states).
Essentially, the formulation implies that the relevance computation of a neuron j is a
consequence of its influence over all of the k neurons in the next layer. In particular, the
numerator models the contribution of the neuron j to the neuron k, in which, aj denotes the
neuron activation and wjk is the weight of the connection between two neurons. Likewise,
to ensure the redistribution of the relevance, we must divide by the sum of the neuron
contributions of the lower layer. Following this formulation, we iteratively scored each
neuron in the neural network in order to produce explanations for the model predictions.

In this context, LRP enables the investigation of the reasons behind the model class
predictions. As an illustration, Figure 2 displays explanations for each conformational
state prediction in contrast with the true protein state using just three frames of a correctly
predicted trajectory.
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Figure 2. Example of use of LRP using just three frames, in which each row illustrates the relevance
contribution (vertical axis) of each residue (horizontal axis) for the active, intermediate, and inactive
states compared with the true state (as described in the left hand-side legends) of a given frame. The
logit value denotes the raw predictions computed by the last layer of the neural network that are
input to generate the model interpretation. Note that the logit value is highest for the explanation of
the correct class prediction (the diagonal of the graph).

2.1.1. Construction of Relevance Maps

We can achieve more intuitive relevance maps by using the so-called propagation rules
described in [51], which are designed to penalize or emphasize the contribution of the
neurons. Importantly, the decision to adopt any rule must consider the motivations behind
the need of model explanations. In the context of our analysis, providing confidence about
the system learning the correct features to identify a particular object in the input is only of
relative importance. Instead, we are seeking all of the patterns in the MD trajectory that
could be relevant to the protein function. For this reason, the epsilon rule (LRP-ε) was
preferred in this study to prevent overly complex explanations. The LRP-ε rule adds a
small and positive constant to the denominator in Equation (1) to take the form:

Rj = ∑
k

ajwjk

ε + ∑0,j ajwjk
Rk (2)

avoiding weak and noisy mappings, thus inducing a trustworthy interpretation. Other
rules were designed to stress positive contribution, therefore generating a more detailed
explanation (for instance, in the image analysis domain).

According to this, the average relevance contribution of the residues for the predic-
tion of a conformational state using the LRP-ε rule is displayed in Figure 3. It must be
emphasized that we made inferences over 100 randomly chosen trajectories, selecting indi-
vidual frames (in equal amount per conformational state) correctly predicted to compute
explanations of the predictions results.

Importantly, to ease the analysis while being consistent with the original dimension of
the data, the R maps were calculated for each residue in a particular trajectory by summing
the individual relevance per coordinate (XYZ) in the center of mass, and then dividing
by the number of coordinates. Then, the final R maps explaining each conformational
state were calculated by averaging the computed relevance from each residue in the
100 chosen trajectories.
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(a)

(b)

(c)
Figure 3. Computed average relevance of the residues to conformational states in 100 randomly
selected trajectories selecting individual frames correctly predicted. The added relevance is color-
coded according to the transmembrane helices (H1–H7) and the intracellular (ICL1–ICL3) and
extracellular (ECL1–ECL3) loops. (a) Relevance map illustrating the contribution of residues for the
active state, (b) relevance map illustrating the contribution of residues for the intermediate state, and
(c) relevance map illustrating the contribution of residues for the inactive state.

From the relevance maps reported in Figure 3, it is possible to gain a coarse understand-
ing about the overall contribution of the different regions of the receptor for the prediction
of each conformational state. Figure 3a describes the relevance values for the prediction
of the active state. The relevance map highlights H1 as having the highest positive and
negative values for the prediction of the active state, achieving maximum absolute values
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in the region of 0.2. The remaining regions also show positive and negative contributions
to the prediction of the target class, but their relevance values are notably lower than that
of H1. Figure 3b shows the relevance map for the prediction of the intermediate state. The
map again highlights H1 with both positive and negative values, this time with a somehow
lower magnitude in the area of 0.05 at most, and H3 with locally high negative relevance
values. The remaining regions show both negative and positive contributions, but reaching
comparable low values. Finally, Figure 3c shows the relevance map for the prediction of
the inactive state. The map shows that the H1 region has very high positive and negative
contributions, reaching absolute values close to 0.30. Interestingly, the ICL1 and ICL2
regions also show quite high negative relevance values. The remaining regions contribute
with lower relevance values both to the positive or negative prediction.

2.1.2. Local Relevance: Key Residues and Motifs

Figure 3 makes clear that some specific residues in Helix 1 (H1) contribute the most (are
the most relevant) to predicting the conformational states. Lesser but still clear contributions
reflecting transformations in the protein structure that influence the final prediction can
be seen in the remaining regions. From this visualization, it is difficult to recognize motifs
in the trajectory that contribute positively (i.e., with positive relevance) to an active state
but negatively to an inactive state. To assess relevant contributions (motifs) for predicting
a conformational state, a simple statistical analysis on the distribution of the calculated
relevance for each conformational state was carried out (Figure 4).

Figure 4. Histograms of the computed relevance contributions for each of the conformational states.

From the histograms of the relevance contributions, it is possible to single out those
residues that differ substantially from the rest by their relevance values. These values, which
would commonly be considered to be anomalies or outliers from a data analysis perspective,
are instead the most critical residues for model prediction in our study. Positive relevance
values contribute to the prediction of the class, whereas negative values counteract the
prediction of the class. To highlight those values, we computed the interquartile range
(IQR), understood as the difference between the first (Q1) and the third (Q3) quartiles,
and used it to establish the lower and upper bounds that will be used to single out the
residues with most significant computed relevance values. Table 2 lists such residues,
and Figure 5 highlights these most relevant residues at the receptor structure for each
conformational state.

More specifically, Table 2a details the most relevant residues for the positive and
negative prediction of the active state. It lists the 21 residues of H1 that contributed most in
the positive and negative regions of the relevance map of Figure 3a, but also lists another
18 relevant residues from six different regions according to their relevance values. Table 2b
focuses on the residues relevant for the prediction of the intermediate state. Such as in the
former case of the active state, more than 50% of the residues found as relevant pertain to
the H1 region. In particular, there are 21 residues from the H1 region and 18 from four other
regions. In the case of the inactive state, Table 2c lists 22 out of 40 residues corresponding
to to the H1 region, whereas the remaining 18 belong to five other regions.
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A comparison of the residues from all three tables (Table 2) reveals a set of common
relevant residues for the different conformational states. Interestingly, a detailed compari-
son of their relevance values identifies significant differences in their contributions towards
the different conformational states. Especially for the case of H1, it was possible to identify
subregions of residues (that is, motifs) that alter the positive and negative contribution
depending on the predicted state. Regions VAL311.31-MET361.35 have a positive contri-
bution for the active state and negative contributions for the intermediate and inactive
state. Region ILE381.37-VAL441.43 shows a prominent negative contribution for the active
state, whereas VAL391.38-LEU451.44 and GLY371.36-VAL441.43 contributed to the positive
prediction of the intermediate and inactive state, respectively. The same result was found
for the residues LEU451.44-VAL521.51, which contribute positively to the prediction of the
active state, whereas ILE471.46-VAL521.51 and ALA461.45-LEU531.52 contribute negatively
to the prediction of the intermediate and inactive state. From these results, it is possible to
state that the 3D positions of the regions VAL311.30-MET361.35 and LEU451.44-VAL521.51 are
characteristic of the active state, whereas the 3D positions of region ILE381.37-VAL441.43 are
patterns that are distinctive for the intermediate and inactive state and differentiate from
the active state. Figure 6 illustrates the aforementioned differences in the H1 residues for
the three conformational states.

Focusing now on the remaining regions with lower absolute contributions, it is possible
to distinguish the residues LYS140-GLN142 of ICL2 as distinctive for the active state by
their positive contributions and as uncharacteristic of the inactive state by their negative
contributions. According to their magnitude of contribution, residues MET822.53-GLY832.54

of H2 are characteristic of the inactive state, but uncharacteristic of the active one, whereas
PRO882.59 is characteristic of the active state and uncharacteristic of the inactive one. In the
case of the intermediate state, residue MET962.67 of H2 was found to be uncharacteristic
by a high negative contribution towards the intermediate state; nonetheless, this residue
was not highlighted as characteristic for any of the other conformational states. For H4,
ASN1484.40-LYS1494.41 are distinctive for the inactive and intermediate state, whereas they
are uncharacteristic of the active state.

From the list of residues meaningfully influencing the three conformational states
(Table 2), we can assert that hardly noticeable but distinctive re-orderings happen in the
structure, denoting active and inactive states, where most of them are around H1. This
result overall confirms the transmembrane helices movement analysis described in the
supplementary material of the original work of the dataset under study [52], in which, H1
is reported to be the region with the most substantial movement in the inactive structure.
Moreover, there are clear differences between the key residues distinguishing the active state
from the intermediate and inactive state, which explains the capability of the classifier to
accurately distinguish the active state. For the intermediate and inactive states, similarities
in the key residues were found, which, again, helps to explain the difficulties of the classifier
in distinguishing these states and the confusion between them (Figure 1). It is important
to think of the intermediate states as part of the transformation leading from the inactive
towards the active state, for which, according to [52], there are different transition pathways
that embrace a multitude of intermediate hardly recognizable conformational states.

2.1.3. Relevance per Receptor Domain

G-protein-coupled receptors have a complex structure in the form of a seven-helix
transmembrane (TM) domain, plus the extracellular (EL) and intracellular (IL) domains
comprising extracellular and intracellular termini (N-terminus and C-terminus) and loops
for connecting the trans-membrane helices [53]. In order to obtain insights at a higher
level of abstraction, this study also compared the net contribution of relevance values
per region for each conformational state. Table 3 details the total and average relevance
contribution of the constituting residues of each region calculated from the relevance
values in the 100 randomly selected trajectories. These results explain the relevance per
region for the prediction of each conformational state. In particular, Table 3b shows the
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magnitude of the contribution of the helices in the transition pathway (intermediate state).
There, it is cardinal to stress that H6 contributes positively to identifying an intermediate
state. Arguably, it is not the region with the highest absolute contribution, but the most
meaningful as the activation pathway proceeds via the motion of this helix [52].

Table 2. Contribution of the residues to each conformational state. First column: residue name; second
column: transmembrane region; third column: computed average contribution over 100 randomly
chosen trajectories. (a) Residues with highly positive and negative computed relevance values for the
prediction of the active state when the receptor binds to the full agonist. Listed in order of location
in the protein, from H1 to H7. (b) Residues with highly positive and negative computed relevance
values for the prediction of the intermediate state when the receptor binds to the full agonist. Order
as in previous list. (c) Residues with highly positive and negative computed relevance values for the
prediction of the inactive state when the receptor binds to the full agonist. Order as in previous list.

(a)
Residue Region Average Relevance

VAL311.30 H1 0.027426
TRP321.31 H1 0.075927
VAL331.32 H1 0.092033
VAL341.33 H1 0.061120
GLY351.34 H1 0.128148
MET361.35 H1 0.217308
ILE381.37 H1 −0.027097
VAL391.38 H1 −0.178782
MET401.39 H1 −0.218893
SER411.40 H1 −0.173772
LEU421.41 H1 −0.107513
ILE431.42 H1 −0.062333
VAL441.43 H1 −0.039133
LEU451.44 H1 0.011427
ALA461.45 H1 0.029983
ILE471.46 H1 0.039122
VAL481.47 H1 0.054468
PHE491.48 H1 0.042627
GLY501.49 H1 0.018640
ASN511.50 H1 0.011580
VAL521.51 H1 0.013730

GLU62 ICL1 −0.008478
THR66 ICL1 0.010564

VAL672.39 H2 0.010418
MET822.53 H2 −0.008539
GLY832.54 H2 −0.009841
PRO882.59 H2 0.008363

SER137 ICL2 −0.008333
LYS140 ICL2 0.010457
TYR141 ICL2 0.008832
GLN142 ICL2 0.014305

ASN1484.40 H4 −0.008919
LYS1494.41 H4 −0.010563

HIS178 ECL2 0.012204
GLN179 ECL2 0.011398
THR195 ECL2 −0.009774
GLN299 ECL3 0.008336
ASP300 ECL3 0.009945
ASN301 ECL3 0.012081
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Table 2. Cont.

(b)
Residue Region Average Relevance

VAL311.30 H1 −0.009869
TRP321.31 H1 −0.026707
VAL331.32 H1 −0.022955
VAL341.33 H1 −0.043398
GLY351.34 H1 −0.064005
MET361.35 H1 −0.079652
GLY371.36 H1 0.014720
VAL391.38 H1 0.077509
MET401.39 H1 0.077171
SER411.40 H1 0.077424
LEU421.41 H1 0.059308
ILE431.42 H1 0.050969
VAL441.43 H1 0.038719
LEU451.44 H1 0.020889
ILE471.46 H1 −0.008240
VAL481.47 H1 −0.023461
PHE491.48 H1 −0.016464
GLY501.49 H1 −0.010800
ASN511.50 H1 −0.007744
VAL521.51 H1 −0.008992
ILE942.65 H2 −0.009512
LEU952.66 H2 −0.019179
MET962.67 H2 −0.027799

LYS97 ECL1 −0.013127
TRP99 ECL1 0.008221

THR100 ECL1 0.009572
PHE101 ECL1 0.010311
GLY102 ECL1 0.008605

LYS1494.41 H4 0.010475
ARG1514.43 H4 0.008119
MET1564.48 H4 −0.007606
HIS2966.58 H6 0.008166
ASN301 ECL3 −0.007393

(c)
Residue Region Average Relevance

VAL311.30 H1 −0.054061
TRP321.31 H1 −0.117340
VAL331.32 H1 −0.132799
VAL341.33 H1 −0.167589
GLY351.34 H1 −0.199008
MET361.35 H1 −0.168281
GLY371.36 H1 0.125630
ILE381.37 H1 0.113863
VAL391.38 H1 0.291335
MET401.39 H1 0.283140
SER411.40 H1 0.241145
LEU421.41 H1 0.139966
ILE431.42 H1 0.081891
VAL441.43 H1 0.046977
ALA461.45 H1 −0.021858
ILE471.46 H1 −0.033237
VAL481.47 H1 −0.060328
PHE491.48 H1 −0.044268
GLY501.49 H1 −0.023422
ASN511.50 H1 −0.016268
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Table 2. Cont.

(c)
Residue Region Average Relevance

VAL521.51 H1 −0.018806
LEU531.52 H1 −0.008467

LEU64 ICL1 −0.011626
GLN65 ICL1 −0.018431
THR66 ICL1 −0.013578

VAL672.39 H2 −0.009970
ASN692.40 H2 0.010021
TYR702.41 H2 0.012877
VAL812.52 H2 0.009884
MET822.53 H2 0.012388
GLY832.54 H2 0.013402
VAL872.58 H2 −0.008223
PRO882.59 H2 −0.011405

SER137 ICL2 0.010806
LYS140 ICL2 −0.012830
TYR141 ICL2 −0.011080
GLN142 ICL2 −0.016823

ASN1484.40 H4 0.010610
LYS1494.41 H4 0.011207
ASN301 ECL3 −0.008073

(a) (b)

(c)
Figure 5. Conformational states of the receptor highlighting the residues with positive and negative
contribution in red and blue, respectively. (a) Active state, (b) intermediate state, and (c) inactive state.
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Figure 6. Computed relevance from residues in transmembrane H1 for each conformational state.

With the goal of complementing the results in Table 3, the distribution of the relevance
values is shown in Figures 7 and 8 for each of the transmembrane and intracellular and
extracellular regions. These results show, again, that H1 is the region with the highest
contribution magnitude compared with the remaining regions, which are shown at the
upper right part of the respective figures. Nonetheless, the box plot representation does not
describe a uniform distribution of the relevance values for most regions: in almost all cases,
the distributions include outliers that differ from the interquartile range (IQR) by being the
most distant points from the mean (black triangle in Figure 7). These are again considered
to be the most relevant points for differentiating conformational states, and correspond to
the residues described in Table 3.

The existence of both positive and negative outliers in almost all box plots comes from
both positive and negative contributing residues in the region. In the case of H1, these phe-
nomena were already explained as due to the fact that this transmembrane region comprises
alternating positive and negative contributions (Figure 6). As a consequence, the results of the
box plot visualization help us to asses which regions have a non-uniform contribution and
may require a further analysis to discern their internal composition regarding the contribution
of their residues.

Table 3. Contribution of the transmembranes (H1–H7) and intracellular (ICL1–ICL3) and extracellular
(ECL1–ECL3) loops for each conformational state. Bold highlights correspond to the largest positive
and negative contributions. First column: transmembrane region; second column: computed total
contribution over 100 randomly chosen trajectories; third column: average contribution. (a) Influence
of the regions on the active state when the receptor binds to the full agonist. (b) Influence of the
regions on the intermediate state when the receptor binds to the full agonist. (c) Influence of the
regions on the inactive state when the receptor binds to the full agonist.

(a)
Region Total Relevance Average Relevance

C-Terminus 0.225551 0.000470
ECL1 0.494248 0.002574
ECL2 0.508710 0.000636
ECL3 1.311195 0.006829

H1 0.810095 0.000817
H2 0.423235 0.000441
H3 −1.352042 −0.001243
H4 −0.947947 −0.001185
H5 0.412987 0.000391
H6 −0.144551 −0.000141
H7 0.202155 0.000263

ICL1 0.132802 0.000692
ICL2 0.764794 0.002390
ICL3 0.013931 0.000087
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Table 3. Cont.

(b)
Region Total Relevance Average Relevance

C-Terminus −0.047531 −0.000093
ECL1 0.802948 0.004226
ECL2 0.176164 0.000225
ECL3 −0.755840 −0.004042

H1 2.874063 0.002823
H2 −1.374141 −0.001508
H3 1.007901 0.000971
H4 1.063711 0.001259
H5 −0.078420 −0.000073
H6 0.879393 0.000879
H7 0.102290 0.000137

ICL1 −0.389075 −0.001835
ICL2 −0.992810 −0.002903
ICL3 0.205807 0.001204

(c)
Region Total Relevance Average Relevance

C-Terminus −0.294598 −0.000619
ECL1 0.183145 0.000944
ECL2 0.075889 0.000096
ECL3 −0.985589 −0.004903

H1 8.706472 0.008884
H2 0.486780 0.000512
H3 1.181698 0.001047
H4 1.309952 0.001627
H5 −0.121516 −0.000116
H6 0.250733 0.000247
H7 −0.079877 −0.000106

ICL1 −1.107198 −0.005592
ICL2 −1.039449 −0.003269
ICL3 0.316487 0.001907

(a)

Figure 7. Cont.
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(b)
Figure 7. Distribution of the relevance values per residues in the transmembrane helices (H1–H7)
and the intracellular (ICL1–ICL3) and extracellular (ECL1–ECL3) loops in the 100 randomly selected
trajectories. (a) Distribution for the active state. (b) Distribution for the intermediate state.

Figure 8. Distribution of the relevance values per residues in the transmembrane helices (H1–H7) and
the intracellular (ICL1–ICL3) and extracellular (ECL1–ECL3) loops for the intermediate state.

3. Materials and Methods

The current study analyzed the MD simulations of the β2 AR receptor generated on
the Google Exacycle platform, as an illustrative example of the proposed methodology.
The data included 10,000 parallel simulations, deposited in SimTK, of the inactive (PDB
2RH1) and active (PDB 3P0G) states of the receptor with full agonist BI-167107, carazolol
inverse agonist, and free ligand structure (apo). Further details concerning the dataset
can be found in [52] and the information about the 3D structure of the inactive state is
provided in [54]. Aiming to analyze the transition states to different activation pathways,
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our study focused on the simulations starting from the inactive state and bound to the full
agonist (referred to in this study as b2ar2rh1-b). The reason behind this setting relies on
the richness of the conformational states space of this structure [55]. We expect that the
proposed methodology could easily be replicated for studying other molecular structures.

The distribution of the durations of the simulations is shown in Figure 9. Note that
the data comprise multiple short simulations (in the order of a 6 ns average duration),
which will be valuable for identifying those motifs discerning conformational states that
constitute a particular activation pathway. In this context, each simulation step (related to a
conformational state) will become an input sample to feed our CNN-based model.

The simulation topology comprised 4640 atoms, 4646 bonds, and 282 amino acids, also
referred to as residues. Our experiments relied on the MD simulation analysis at the level of
residues. In the following subsection, we describe in detail the data transformation into a
format that is appropriate for performing predictions using the proposed CNN model.

Figure 9. Histogram of MD simulations duration for the β2 AR receptor with full agonist BI-167107.

3.1. Data Pre-Processing

This study concerned a classification task of the transition states on the 10,000 raw
time series of the MD simulations of the inactive structure with a full agonist.

The center of mass was calculated for each conformational state of the receptor over
the trajectory of the MD simulation. This means that, for the 282 residues of the structure,
the 3D position of each residue was calculated as the center-of-mass of its constituting
atoms. Therefore, our trajectories comprised states of the structure with dimension M × N,
where M is the number of residues and N is the center-of-mass positions (XYZ) of each
residue in the 3D space. However, to reduce the complexity of the problem, the dataset was
re-dimensioned to a representation of 846 (282 residues × 3 coordinates) × 1 dimensions, in-
stead of using individual information of each coordinate to discern the conformational state.

Regarding the denotation of the receptor states, we followed [52], where four main
criteria based on crucial regions of the protein are suggested. In particular, and to distin-
guish the states, we considered the first criterion: the computation of the distance between
Helix 3 (H3) and Helix 6 (H6), measured as the distance between the alpha-carbon atoms
of the residues arginine 131 and leucine 272 (R1313.50-L2726.34). Therefore, for each frame
simulation: if the computed distance is higher than or equal to 14Å, the state of the structure
is active; if it is lower than or equal to 8.5Å, it refers to an inactive state; otherwise, the state
is intermediate.

Importantly, we must note that the dataset is highly unbalanced, as illustrated by
Figure 10. It is evident that the amount of intermediate states in the MD trajectories is
much higher than either the inactive or active states. Intermediate states represent 96.01%
of the data and the active and inactive states represent, in turn, only 0.60% and 3.40%. This
condition could handicap the model’s performance as it might exhibit a bias toward the
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majority class, ignoring the minority classes. Thus, to avoid this potential limitation, the
dataset was randomly under-sampled to the minority class (the active state of the protein).
Likewise, to prevent the scale of the variables from affecting the model training, the data
were linearly transformed using min–max normalization.

Figure 10. Conformational states distributions per class from the MD trajectories.

3.2. Experimental Setup

The MD trajectories were split into two subsets—70% for training the model and the
remaining 30% for validation—to ensure that the number of samples was large enough
to provide a reliable estimation of the model generalization. In addition, we stratified
the splits, i.e., the number of samples per class remained balanced. Table 4 shows the
distribution of the data after the undersampling process.

Table 4. Data split distribution per class.

Class # Training Samples # Validation Samples

active 1060 550
intermediate 1060 550
inactive 1060 550

Total: 3180 1650

As previously stated, we addressed here a supervised classification problem using
CNN models in order to retrieve insights about the most relevant features (understood
as motifs) in the structure for distinguishing conformational states. CNNs are a particular
type of artificial neural network loosely based on the workings of the visual cortex, and
represent learning through simple non-linear modules called convolution and pooling for
feature extraction and, commonly, a feed-forward network to compute probabilities over
the learned features.

In our experiments, we followed an empirical strategy for model architecture defini-
tion. This assumes that, given the dimensionality of the data and the limited amount of
data available, over-complex architectures would increase the risk of data overfitting. A
trade-off was achieved by increasingly adding layers and filters so that the model could
learn increasingly more complex attributes. Thus, we clustered the primary layers (convo-
lution, activation function, and pooling) into a block for training a shallow architecture (few
blocks) with a fixed size of filters, and gradually increased its size until generalization
stopped yielding a significant improvement. Table 5 shows different trained architectures
used for experimentation. For all cases, the stem cell of our convolution layers considered
a kernel size fixed to 3, no padding, and a stride value set to 1. Along with the convolution
layers, we established one-dimensional max-pooling layers with a window size of 2 and
rectified linear units (ReLU) as activation functions.
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Table 5. DL architectures proposed for experimentation. The first column illustrates the number of
blocks (convolution, activation function, and pooling) and the total number of filters per block used
for experimentation. The second column represents the number of fully connected layers (FCLs) and
the amount of neurons used. The third column shows the performance of the architecture in terms of
the accuracy.

# Blocks-Filters # FCL-Neurons Accuracy

1-64 2-1024-3 0.6339
2-64-128 2-1024-3 0.6830
3-64-128-256 2-1024-3 0.7109
4-64-128-256-512 2-1024-3 0.7375

The proposed method for defining the 1D-CNN model does not enable applying a
large amount of blocks due to the dimension of the data. Adding more blocks would lead to
losing relevant information in the feature vector utilized for classifying the conformational
states. In addition, it is worth mentioning that increasing the number of blocks beyond
four, or removing max pooling layers, have not yielded significant improvements in the
accuracy of the model. Therefore, in our experiments, we used an architecture with four
blocks and added a dropout regularization layer following the first linear layer with a 0.5
value, i.e., 50% of layer neurons randomly become zeros to reduce the model complexity
and force it to learn meaningful patterns for the classification. The architecture exhibiting
the best results is summarized in Table 6.

Table 6. CNN architecture proposed.

Layer (Type) Output Shape # Parameters

Conv1d-1 [−1, 64, 844] 256
ReLu-2 [−1, 64, 844] 0
MaxPool1d-3 [−1, 64, 422] 0
Conv1d-4 [−1, 128, 420] 24,704
ReLu-5 [−1, 128, 420] 0
MaxPool1d-6 [−1, 128, 210] 0
Conv1d-7 [−1, 256, 208] 98,560
ReLu-8 [−1, 256, 208] 0
MaxPool1d-9 [−1, 256, 104] 0
Conv1d-10 [−1, 512, 102] 393,728
ReLu-11 [−1, 512, 102] 0
MaxPool1d-12 [−1, 512, 51] 0
Flatten-13 [−1, 26,112] 0
Linear-14 [−1, 1,024] 26,739,712
ReLU-15 [−1, 1,024] 0
Dropout-16 [−1, 1,024] 0
Linear-17 [−1, 3] 3075

Total parameters: 13,503,043
Trainable parameters: 13,503,043
Non-trainable parameters: 0

In addition to the network architecture design, the training procedure itself also influ-
ences the performance of the model. Our training scheme involved experimentation over a
wide range of hyper-parameters following the best practices described in [56–59]. The set of
hyper-parameters in our training process involved iterations over 500 epochs using a mini-
batch strategy with a batch size value of 1024. Cross-entropy was used as a loss function,
with adaptive moment estimation (ADAM) as the optimizer, with a 1 × 10−4 learning rate
and weight decay as regularization set to 1 × 10−5. The weight parameters were initialized
using the Kaiming uniform distribution proposed by He et al., an established initialization
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method when working with ReLU activations (see [60]). Algorithms and computations
were implemented by using Pytorch 1.10.1 on Python 3.9.7. Likewise, all experiments
were conducted on GPUs units from Google Colaboratory platform.

The classification results of the 1D-CNN-based architecture were also compared
against traditional ML approaches. The classification results using a decision tree, random
forest, k-nearest neighbors, and support vector machine are described in the Appendix A
(Table A1 and Figure A1). Overall, the 1D-CNN-based architecture is shown to clearly
outperform the rest of the classifiers in key metrics, even if some methods, such as the SVM
with the polynomial kernel, compare reasonably well for given metrics and classes.

4. Conclusions

A further understanding of the dynamic properties of protein receptors is critical
to the drug discovery process. For this, MD simulations have become primary tools for
assessing the underlying mechanisms of biomolecular systems. Nevertheless, an intelligent
analysis of the vast amount of generated data remains a critical research challenge aiming to
provide more valuable knowledge and promote process efficiency. Machine-learning-based
models and, more specifically, DL-based methods, have established themselves, over the
last decade, as relevant tools for knowledge generation in this domain. Nonetheless, the
DL black box limitation—that is, their inherent lack of interpretability—must be addressed,
otherwise risking hampering the widespread application of this family of models in relevant
domains such as pharmacoproteomics.

In this context, we illustrated our proposed approach to MD data analysis by studying
a supervised classification problem of the conformational states (active, intermediate, and
inactive) of the MD trajectories from the Google Exacycle Dataset using the inactive structure
with full agonist BI-167107. As part of it, a methodology for interpreting the predictions
of a 1D-CNN model through the generation of a map of relevant residues for the GPCRs
activation pathways using the LRP algorithm was proposed. Notably, the proposed inter-
pretability method produced novel insights by stressing characteristic motifs for the different
conformational states from the ML model that would otherwise be hardly recognizable in the
transition pathway. In particular, the results of this study provide evidence that the proposed
model learned the relationship of crucial residues for differentiating the active and inactive
receptor states, whereas such a difference was found to be less clear in the discrimination of
the intermediate state. The characteristic motifs might be involved in subtle differences in
the movement of transmembrane helices as they were not found to be related to the known
motifs relevant in the activation process of the β2 AR receptor [55]. We expect the proposed
approach to be a useful tool for experts for the analysis of MD trajectories by highlighting
state-specific characteristic motifs, which might contribute to the pathways of the different
conformational states and the transmission of signals to the cell.

Lastly, a further contribution of our study that is worth mentioning is the application of
interpretability techniques to a multi-class classification problem. Although interpretability
techniques are gaining interest in many interdisciplinary applications, they are often
used for binary classification models, where the identification of state-specific features is
straightforward based on either positive or negative contributions for the prediction of
a given class [37]. In contrast, the LRP interpretability technique was applied here to a
multi-class classification model for the prediction of three conformational states. In such a
multi-class context, the identification of state-specific residues is not straightforward, as a
residue contributes to the prediction of each of the states. To address this difficulty and also
to formalize the discovery of contiguous residue regions (motifs) with similar contributions,
we are currently working on computational methods to single out state-unique features in
the context of multi-class classification problems and the use of local neighborhood-aware
clustering algorithms to identify contiguous residue regions.
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Appendix A

Comparative performance results of the 1D-CNN proposed model as a classifier
against other traditional ML algorithms are reported next, summarized in Table A1. The
related confusion matrices of the different ML model are, in turn, shown in Figure A1.

Table A1. Summary of classification results per ML algorithm. Best results are highlighted in bold,
providing evidence for 1D-CNN as the best model for predicting conformational states.

Model Class Precision Recall F1-Score Accuracy

Decision Tree
active 0.652510 0.614545 0.632959

0.527879intermediate 0.418919 0.450909 0.434326
inactive 0.527778 0.518182 0.522936

Random Forest
active 0.636023 0.616364 0.626039

0.530303intermediate 0.494331 0.396364 0.439960
inactive 0.470414 0.578182 0.518760

Knn
active 0.542268 0.478182 0.508213

0.430909intermediate 0.367213 0.407273 0.386207
inactive 0.403604 0.407273 0.405430

SVM Linear
active 0.900232 0.705455 0.791030

0.675152intermediate 0.540323 0.730909 0.621329
inactive 0.682105 0.589091 0.632195

SVM Polynomial
active 0.893528 0.778182 0.831876

0.716364intermediate 0.584708 0.709091 0.640920
inactive 0.722222 0.661818 0.690702

SVM Radial Basis
active 0.811905 0.620000 0.703093

0.601818intermediate 0.488095 0.670909 0.565084
inactive 0.597046 0.514545 0.552734

1D-CNN
active 0.872154 0.905455 0.888492

0.776364intermediate 0.671587 0.661818 0.666667
inactive 0.780261 0.761818 0.770929

https://simtk.org/projects/natchemgpcrdata
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Figure A1. Confusion matrix per ML model.
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