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Abstract

Robotics and robot manipulators are some common concepts which nowadays are seen as
something usual in a lot of industries. However, they are quite young fields in engineering
and they include lots of different specialities such as mathematics and mechanical or elec-
trical engineering. These lasts decades, the development of new robots and their control
techniques have grown a lot, having now a wide variety of knowledge about their behavior
and control algorithms that allow them to do their specific tasks with low errors and high
performance.

This project presents a new strategy in control engineering for the robotics field, which
consists of an extension of a sliding mode controller to a complex-valued domain. This
controller allows to track the tool center position (TCP) of a 2-link planar manipulator
without the direct use of inverse kinematics and working always in the complex space.
Hence, the forward kinematics of the end-effector of the robot are modeled with complex
variables to design the nonlinear controller and be able to analyze its performance and
study the potential of this new approach in this application field. Moreover, three more
different controllers (a real-valued sliding mode controller, a state-feedback and a PID con-
trol) are also designed so the main controller (Complex-valued sliding mode controller) can
be analyzed and compared with other solutions to study the possible benefits and disad-
vantages it may have. All the controllers are analyzed and compared with Matlab and
simulated with Simulink and the results obtained are studied according to a qualitative
and quantitative analysis based on some Key Performance Indicators (KPIs).

Finally, all the results obtained during all the development of this project are summarized,
discussed and presented with the conclusions extracted.
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Resum

La robòtica i els robots manipuladors són conceptes que actualment es contemplen com
a temes habituals en moltes indústries. De totes maneres, es tracta de camps relativa-
ment nous en l’enginyeria i inclouen diverses especialitats com la matemàtica i l’enginyeria
mecànica o elèctrica. Durant aquestes últimes dècades, el desenvolupament d’aquests
robots i les seves tècniques de control han crescut considerablement, arribant a tenir un am-
pli coneixement sobre el seu comportament i els algorismes de control que els hi permeten
realitzar les seves tasques amb errors baixos i gran rendiment.

Aquest projecte presenta una estratègia nova en l’enginyeria de control pel camp de la
robòtica, la qual consisteix en una extensió del control per mode de lliscament (sliding mode
control, en anglès) en un domini complex. Aquest controlador permet fer un seguiment de
la posició final d’un robot manipulador pla de dos braços sense l’ús directe de la cinemàtica
inversa i treballant sempre a l’espai complex. D’aquesta manera, la cinemàtica directa del
robot s’ha modelat amb variables complexes per tal de dissenyar el controlador no lineal i
poder analitzar el seu rendiment i estudiar el potencial d’aquest nou enfocament en aquest
camp d’aplicació. A més, s’han dissenyat també tres controladors (un control per mode de
lliscament estàndard, un PID i un control per realimentació d’estat) per a poder analitzar
i comparar el controlador principal (control per mode de lliscament complex) amb altres
solucions i, d’aquesta manera, estudiar les seves possibles avantatges i inconvenients. Tots
els controladors s’analitzen i comparen fent servir Matlab i se simulen amb Simulink,
estudiant els resultats obtinguts fent una anàlisi qualitativa i quantitativa basada en uns
Indicadors Clau de Rendiment (KPIs).

Finalment, tots els resultats obtinguts durant el desenvolupament del projecte es re-
sumeixen, discuteixen i presenten amb les conclusions extretes.
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Resumen

La robótica y los robots manipuladores son conceptos que actualment se contemplan como
temas habituales en muchas industrias. De todas maneras, se trata de campos relativa-
mente nuevos en la ingeniería e incluyen diversas especialidades como la matemática i
la ingeniería mecánica o eléctrica. Durante estas últimas décadas, el desarrollo de estos
robots y sus técnicas de control han crecido considerablemente, llegando a tener un amplio
conocimiento sobre su comportamiento y los algoritmos de control que les permiten realizar
sus tareas con bajo error y gran rendimiento.

Este proyecto presenta una estrategia nueva en ingeniería de control para el campo de la
robótica, consistente en una extensión de un controlador en modo deslizante (sliding mode
control, en inglés) a un dominio de valores complejos. Este controlador permite seguir la
posición final de la herramienta de un manipulador plano de 2 eslabones sin el uso directo
de la cinemática inversa y trabajando siempre en el espacio complejo. De esta manera,
la cinemática directa del efector final del robot se modela con variables complejas para
diseñar el controlador no lineal y poder analizar su rendimiento y estudiar el potencial
de este nuevo enfoque en este campo de aplicación. Además, también se han disseñado
tres controladors (un control en modo deslizante, un PID y un control por realimentación
de estado) para poder analizar y comparar el controlador principal (un control en modo
deslizante complejo) con otras soluciones y, de esta manera, estudiar sus posibles ventajas
e inconvenientes. Todos los controladores se analizan y comparan usando Matlab y se
simulan con Simulink, estudiando los resultados obtenidos con un análisis cualitativo y
cuantitativo basado en unos Indicadores Clave de Rendimiento (KPIs).

Finalmente, todos los resultados obtenidos durante el desarrollo del proyecto se resumen,
discuten y presentan junto a las conclusiones extraídas.
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Chapter 1

Introduction

1.1 Motivation

Robotics and control theory are some wide and current topics and they are present in a
lot of areas, specially in machines and industries, as they allow to perform tasks faster
and with high precision. The control strategies used are really diverse [Jiang et al., 2020]
[George Thuruthel et al., 2018] and depend a lot on the task that needs to be carried on
and the requirements it may have.

The main motivation of this project is to introduce a different new approach of a sliding
mode controller [Utkin, 1993] in the robotics and automatics field based on the complex-
valued description [Dòria-Cerezo et al., 2020]. There are some areas or topics in robotics
that are an extension of complex numbers, such as quaternions [Goldman, 2011], or that
can be simplified considering the complex domain, such it could be the Cartesian position
of a planar robot, that could be benefited in terms of control strategies by considering a
complex-valued approach when designing the controllers. This work introduces this new
approach in this area so it can be analyzed and it can be considered whether it can bring
benefits to the current control algorithms or not.

1.2 State of the art

All the industries and sectors have been changing for the last past decades as new improve-
ments have been reached. One of the most important changes that has been introduced is
the use of robots to help the workers do some tasks, whether it is because of its difficulty or
because any other requirement such as precision, performance, and so on. All these robots
can be modeled using several techniques and can use different control methods depending
on the areas or robotic fields for which these algorithms are needed.

The modeling methods, and emphasizing on robotic manipulators, can be divided between
kinematics and dynamics models, prioritizing each one of them according to its future use.
For the kinematic modeling, in terms of getting the forward kinematics equations, one of the
most used method is the Denavit Hartenberg convention [Denavit and Hartenberg, 1955].
On the other hand, the equations of motion of a dynamic model can be obtained through
different methods, of which it is worth noting the Newton-Euler equations [Ardema, 2004],
the Lagrange-Euler formulation [Lagrange, 1853] or the generalized d’Alembert equation
of motion formulation [Lee et al., 1983].

Regarding the control strategies used, the manipulators are usually controlled directly

1



Chapter 1. Introduction 2

with the torque applied to each of their joints and they typically use the joint angles as
state variables. The target position is transformed through inverse kinematics to the joint
space so it can be controlled according to the angles inputs. The most typical controllers
used are based on the feedback-linearization technique, which allows to design linear con-
trollers like PID [Johnson and Moradi, 2005], sliding mode controllers (that can also be
complemented with other controllers like PID or one of its variants) and passivity-based
controllers [Khan et al., 2012].

On the other hand, although the use of complex variables to model dynamic systems is
not new, the control theory tools for complex-valued systems are not extensive at all.
Some works that rely on this approach include mainly the control of electrical systems
like power converters or electrical machines [Dòria-Cerezo et al., 2020] or complex-valued
neural networks [Hirose, 2003].

1.3 Objectives

The main objective of this project is to introduce and design a sliding mode controller for
a 2-link planar manipulator based on a complex-valued approach to describe the variables
of the system. To achieve this goal, the following specific objectives must be met:

• Explore the state of the art of the control of robotic manipulators.

• Study the kinematic and dynamic behavior of a robot.

• Introduce and develop a proper nonlinear model of a 2-link manipulator.

• Design different controllers that control the TCP properly and can be used to compare
the results obtained.

• Define the benefits and disadvantages of the main controller designed according to
an analysis and comparison of the response of the other controllers presented.

• Give a basis in the robotics framework about complex-valued based controllers.

1.4 Outline of the project

This work is divided and organised with the following structure:

Chapter 2

In Chapter 2, a brief introduction to sliding mode control is presented, describing its basis
and defining some important concepts that will be used during the design of the controllers.
Moreover, the introduction of the SMC is extended to a class of complex-valued dynamic
systems, so it can be used to present the different concepts before designing the main
controller.

Chapter 3

This chapter introduces the kinematics and dynamics of a robot manipulator in order to
get a proper model that can be used to design the different controllers proposed. Moreover,
the kinematics of the TCP are also modeled in the complex domain so it can be used in
Chapter 3 to design the complex-valued sliding mode controller. Once the robotic arm is
modeled, it will be implemented with the use of Matlab and Simulink and simulated to
get the different responses and analyze them.
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Chapter 4

In this chapter, the proposed controllers are designed. First, the three controllers that
will be used to analyze and compare the results obtained with the complex-valued sliding
mode controller are introduced and described. One of them consists of a standard (real-
valued) sliding mode controller whereas the other two are linear controls (PID and state-
feedback controls) based on a feedback linearization technique. Finally, it introduces a
complex-valued sliding mode controller to track the final position of the end-effector of a
2-link planar manipulator. All of them are designed and implemented with Matlab and
simulated via Simulink.

Chapter 5

In Chapter 5, the different tests conducted to analyze the response of the controllers, as
well as the different indicators used to compare them are presented. The controllers are
simulated and compared between them to see the relative benefits and drawbacks they
have.

Chapter 6

This chapter introduces the economic analysis of all the project, divided between personal
cost and material cost.

Chapter 7

In this chapter, the environmental impact of all the work is studied and analyzed.

Chapter 8

Chapter 8 introduces a brief analysis of the social impact and gender equality.

Chapter 9

The final chapter presents the conclusions of the work and the results obtained during its
realisation. The future work based on what has been presented in this work is also exposed
in Chapter 9.

1.5 Project planning

The developing of any project must be adjusted properly to the calendar and the deadlines
established. Then, the first step has been defining the different tasks required to achieve
the objectives mentioned before. The project has been divided according to the following
activities:

• Objective definition: The first step should always be the complete definition of
the objective that must be accomplished during the realization of the project.

• Research and previous study: Analyze the state of the art of complex-valued
controllers, as well as for the other strategies proposed during this work. The different
theoretical background of all of them and the modeling methods are also included in
this task.

• Kinematic modeling: Model the kinematic behaviour of a 2-link planar manipu-
lator.

• Dynamic modeling: Model the dynamic behaviour of the robot and get its equa-
tions of motion.

• Design of the linear controllers: Design the linear controllers based on a previous
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feedback linearization.

• Design of the standard (real-valued) SMC: Design of the real-valued sliding
mode controller.

• Design of the complex-valued SMC: Design of the complex-valued sliding mode
controller.

• Simulation and comparison: Simulation and comparison of the different control
strategies proposed.

• Impact analysis: Economical, environmental and social analysis related to this
work.

• Conclusions: The final step is to sum up all the conclusions extracted and analyze
the future work to do next.

The entire task breakdown and the distribution of time dedicated to each task is graphically
represented in the Gantt chart [Gantt, 1974] shown in Figure 1.1, in where all the durations
have been defined in weeks.

Figure 1.1: Gantt diagram for the detailed activities of the project.



Chapter 2

Sliding mode control

2.1 Sliding mode control basis

Previous to starting the project, a brief introduction to the sliding mode control (SMC)
for real-valued systems is introduced.

Given the nonlinear system affine in the control 1

ẋ = f(x) + g(x)u, (2.1)

where ẋ is the evolution of the state variables, x ∈ Rnx is the state vector, u ∈ Rnu is
the input vector and f : Rnx 7−→ Rnx and g : Rnx × Rnu 7−→ Rnx are the state and
input mapping. The SMC is a nonlinear control method that modifies the dynamics of
the system by applying a discontinuous control signal that forces the system state to reach
(reaching face) and to remain (sliding face) on a specified sliding surface (σ). Then, the
main components to design the proper SMC are:

• The switching function is defined as the function (σ(x)) so that the system on the
sliding surface (switching manifold) Σ̂ ⊆ Σ evolves in the desired way, being Σ :=
{x ∈ Rn;σ(x) = 0} and Σ̂ the sliding domain.

• A discontinuous control law

u =

{
u+, σ(x) > 0

u−, σ(x) < 0
(2.2)

which has to be chosen in order to enforce a sliding mode.

On the other hand, it is important to consider the existence of sliding modes. Considering
the positive-definite Lyapunov function candidate

V (x) =
1

2
σT (x)σ(x) (2.3)

and the system defined in (3.1), a sufficient condition for the existence of a sliding mode is

1During the realisation of the work, the time dependency of all the variables will be omitted to simplify
notation and all the equations presented.

5



Chapter 2. Sliding mode control 6

V̇ (x) = σT (x)σ̇(x) < 0, (2.4)

where σ̇(x) = ∂σ
∂x ẋ = ∂σ

∂x (f(x) + g(x)u). Hence, the discontinuous control action defined in
(3.2) can be complemented as

u =

{
u+, σ(x) > 0 ⇒ σ̇(x) < 0

u−, σ(x) < 0 ⇒ σ̇(x) > 0.
(2.5)

Finally, when the system is confined to the sliding surface (σ(x) = σ̇(x) = 0), it behaves
as a reduced system driven by an equivalent control (ueq). This equivalent control is the
continuous control law that makes Σ an invariant manifold with respect to (3.1) and can
be defined as

ueq = −
(
∂σ

∂x
g(x)

)−1 ∂σ

∂x
f(x). (2.6)

It is important to notice how ∂σ
∂xg(x) ̸= 0, known as reachability condition, must be guar-

anteed for all x in a neighborhood of Σ̂ ⊆ Σ. For practicality, the control law is usually
defined as u = ueq + ud, being ueq the equivalent control (continuous) and ud the discon-
tinuous part ensuring a finite time convergence to the surface. Hence, the control law is
fitted according to

u+ < ueq < u−. (2.7)

Finally, ideal sliding mode controllers require of infinite switching frequency, which in
real applications is not possible to achieve. It is also a behavior that may produce low
control accuracy, heat loses in electrical systems or even excite undesired high frequency
dynamics. One of the most common solutions to solve this chattering problem is changing
the discontinuous control law, which depends on the sign of the sliding manifold, with the
use of a saturation function as the following:

u =

{
sign(σ), |σ| > ϵ

κσ, |σ| ≤ ϵ,
(2.8)

where κ is a gain, ϵ ∈ R+ is the thickness of the boundary layer and sign() stands for
the sign function. However, it is also worth noting that chattering might also be caused
because of the switching behaviour of some actuators used in the system, as it could be an
electronic power converter.

2.2 Complex-Valued SMC

Sliding modes can also be extended to a class of complex-valued nonlinear dynamic systems
[Dòria-Cerezo et al., 2020]. In this section, a brief introduction to complex-valued sliding
mode control (CV-SMC) is presented. Then, the first step is to introduce some notation
that will be used during the work.

Let j =
√
−1 be the imaginary number and let Cn denote the complex nth-dimensional

space. Then, defining z = |z|e−jφz ∈ C as a complex variable represented in exponential
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form, where |z| and φz are its modulus and argument, respectively, its real and imaginary
parts can be written as Re(z) and Im(z). Moreover, notation z̄ will be used to represent
the complex conjugate of z. Finally, Ω ⊂ Cn denotes an open subset of Cn and H(Ω,Cn)
the set of holomorphic maps from Ω to Cn.

Let’s consider the nonlinear system affine in the control

ż = f(z) + g(z)u, (2.9)

where z ∈ Cnz is the state vector, u ∈ C is the input and f, g ∈ H(Ω,Cn) are the state
and input mapping, respectively. Then, the complex switching function is defined as the
function (σ(z)) so that the system on the sliding surface (switching manifold) Σ̂ ⊆ Σ
evolves in the desired way, being Σ := {z ∈ Cn;σ(z) = 0} and Σ̂ the sliding domain.

The equivalent control definition presented for real-valued systems can also be extended
to the complex domain

ueq = −
(
∂σ

∂z
g(z)

)−1 ∂σ

∂z
f(z), (2.10)

where the reachability condition ∂σ
∂z g(z) ̸= 0 is also fulfilled.

On the other hand, the same Lyapunov candidate function as for real-valued sliding mode
controllers can be considered when working in the complex domain. Hence,

V =
1

2
σ̄(z)σ(z) ⇒ V̇ =

1

2
(σ̄σ̇ + ˙̄σσ) = Re(σ̄σ̇),

V̇ = Re
(
σ̄
∂σ

∂z
(f(z) + g(z)u)

)
.

From here, the control action u = ueq + ud, with ueq defined in (2.10), can be chosen so
that it induces sliding motion, as

V̇ = Re
(
σ̄
∂σ

∂z
(g(z)ud)

)
< 0. (2.11)

Moreover, starting from (2.11), the reachability in finite-time of the sliding manifold can be
studied. Finally, as it happens with the standard sliding mode controllers, complex-valued
solutions to the chattering problem must be considered. The most similar approach to the
saturation function presented previously, is the consideration of a boundary layer, which
can be defined as

u =

{
−κ σ

|σ| , |σ| > ϵ

−κσ
ϵ , |σ| ≤ ϵ,

(2.12)

where κ is a gain and ϵ ∈ R+ is the thickness of the boundary layer. It is noticeable
how the expression z

|z| = ejφz , z ̸= 0, is the representation of the sign function for com-
plex variables. Apart from this strategy, some other alternatives are also presented in
[Dòria-Cerezo et al., 2020], such as some hysteretic approximations.
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2.3 Summary

In this chapter, a brief introduction to sliding mode controllers has been presented, de-
scribing its basis and defining terms such as the equivalent control action or the importance
of a boundary layer in real applications. Then, sliding modes have been briefly extended
to complex-valued dynamic systems, presenting a short introduction of this approach and
the notation that will be used during the realisation of the project.



Chapter 3

Manipulator modeling

As it has been commented in Chapter 1, the main objective of this project is to design and
analyze a complex-valued sliding mode control of a 2-link planar manipulator. In order
to design a suitable controller, the first step is to understand how a 2-DOF robotic arm
behaves and to get a proper mathematical model from it.

In this chapter, a brief introduction to robotics modeling and which parameters should be
taking into account is discussed.

3.1 Kinematic model

In general terms, kinematics in robotics is referred to the study or representation of the
movement of a robot according to a reference frame, regardless of its generation forces
[Craig, 2005]. It describes in an analytical form the position, velocity, acceleration (an all
of their time derivatives) as a function of time and their geometrical properties.

3.1.1 Denavit-Hartenberg Convention

A robotic manipulator is composed of a set of links connected together with joints. In the
case studied, it will be considered that each link is connected by the use of an angular joint,
which allows a relative rotation between them. This means each joint provides one degree
of freedom to the robot. In order to build the kinematic model according to the reference
frame (base of the robot), the relation (rotation and position) of each frame relative to
its predecessor must be determined. This allows to set a relation between all the different
links of the manipulator and to obtain the relative position and orientation of each point
by using homogeneous transformations. Concatenating the corresponding transformation
matrices of each link (containing the rotation component and the translation component)
has as a result a global transformation matrix that links the Tool Center Position (TCP
or end-effector) according to its base (reference frame).

These analysis and calculations to obtain the transformation matrix between frames and
choosing each link’s frame can be done in different ways, which makes it usual to use the
Denavit-Hartenberg (DH) convention to do so [Denavit and Hartenberg, 1955]. Although
there are more different methods that lead to the same result, this project only considers the
DH methodology. In this convention, each homogeneous transformation (A) is calculated
as a product of four basic transformations, which depend on four different parameters
θ, α, a, d, explained later in the chapter.

9
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In case of a manipulator, an orthonormal coordinate system is established for each joint
(Xi, Yi, Zi), where i = 1, 2, ..., n, being n the degrees of freedom of the robot, following
three specific rules:

1. The Zi−1 axis matches the joint axis, being its positive direction according to the
positive value of its rotation θi.

2. The Xi axis is perpendicular to the Zi−1 axis.

3. The Yi axis is defined to complete the orthonormal coordinates system.

Then, the four parameters needed to obtain the transformation matrix are defined as
follows

1. θi is the angle in Zi−1 needed for Xi−1 to reach Xi.

2. di is the distance between Xi−1 and Xi in the Zi−1 direction.

3. ai is the distance between Zi−1 and Zi in the Xi direction.

4. αi is the angle rotated in the Xi direction that makes Zi−1 reach Zi.

This notation is represented in Figure 3.1.

Figure 3.1: Denavit Hartenberg parameters definition [Huynh et al., 2018].

With all the parameters defined, the homogeneous transformation matrix i−1Ai between
two links can be obtained as

i−1Ai = T(Zi−1,θi)T(0,0,di)T(ai,0,0)T(Xi,αi), (3.1)

where T is the transformation corresponding to the DH parameters (2 rotations and 2
translations). Developing the previous equation, a general matrix can be obtained as
follows:
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i−1Ai =


cos θi − sin θi 0 0

sin θi cos θi 0 0

0 0 1 0

0 0 0 1




1 0 0 0

0 1 0 0

0 0 1 di

0 0 0 1




1 0 0 ai

0 1 0 0

0 0 1 0

0 0 0 1




1 0 0 0

0 cosαi − sinαi 0

0 sinαi cosαi 0

0 0 0 1



=


cos θi − sin θi cosαi sin θi sinαi ai cos θi

sin θi cos θi cosαi − cos θi sinαi ai sin θi

0 sinαi cosαi di

0 0 0 1

 .

In the same way, the inverse of this transformation can be computed, getting as a result
the following matrix

i−1A−1
i =


cos θi sin θi 0 −ai

− cosαi sin θi cosαi cos θi sinαi −di sinαi

sinαi sin θi − sinαi cos θi cosαi −di cosαi

0 0 0 1

 .

3.1.2 Forward kinematics

Forward kinematics (FK) refers to the use of kinematic equations to study the position
and orientation of the end-effector of the manipulator relative to its base (reference frame)
as a function of the variables of its previous joints [Paul, 1981]. This means moving from
a joint space to a Cartesian space to get the transformation of the TCP coordinates.

To obtain these matrices that allow such transformation, the Denavit-Hartenberg con-
vention is applied to the robotic arm studied, represented in Figure 3.2, in which the
different frames are represented. It can be seen how there is one frame per joint and TCP
({O1}, {O2}) and the reference frame {O0} assigned to the base of the robot.

Figure 3.2: 2-DOF planar manipulator scheme and DH frame assignment.



Chapter 3. Manipulator modeling 12

As mentioned before, the manipulator is composed of two links of length l1 and l2, re-
spectively. The angles rotated from link i with respect the previous frame are named as
θi.

In order to get the transformation matrix from frame 0 to frame 2, the four DH parameters
must be defined for each link. Table 3.1 summarizes this information below.

Table 3.1: Denavit Hartenberg parameters.

Link (i) θi αi ai di

1 θ1 0 l1 0

2 θ2 0 l2 0

Now, the homogeneous transforms 0A1 and 1A2 can be obtained as

0A1 =


cos θ1 − sin θ1 0 l1 cos θ1

sin θ1 cos θ1 0 l1 sin θ1

0 0 1 0

0 0 0 1

 , (3.2)

1A2 =


cos θ2 − sin θ2 0 l2 cos θ2

sin θ2 cos θ2 0 l2 sin θ2

0 0 1 0

0 0 0 1

 . (3.3)

Concatenating these matrices the global homogeneous transform is obtained:

0T2 =
0A1

1A2 =


cos (θ1 + θ2) − sin (θ1 + θ2) 0 l1 cos (θ1) + l2 cos (θ1 + θ2)

sin (θ1 + θ2) cos (θ1 + θ2) 0 l1 sin (θ1) + l2 sin (θ1 + θ2)

0 0 1 0

0 0 0 1

 . (3.4)

Notice how the first 3×3 components of the matrix refer to the rotation of the end-effector
from the reference frame and how the last column is the translation vector with respect
the base of the robot; that is,

x = l1 cos (θ1) + l2 cos (θ1 + θ2), (3.5)

y = l1 sin (θ1) + l2 sin (θ1 + θ2), (3.6)

z = 0. (3.7)
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3.1.3 Inverse kinematics

Inverse kinematics (IK) is referred to the opposite problem of forward kinematics, that
is, obtaining the kinematic equations that, given the TCP coordinates, allow to get the
different joint configurations to reach them [D’Souza et al., 2001]. This is a more complex
problem to solve than forward kinematics and does not always have a valid solution, as there
can be a configuration for the end-effector that requires of non-valid joint configurations
to reach it. Apart from having to consider the working and joint space to determine the
existence of a solution, it is also important to notice that one final configuration might
have multiple solutions, which depend on the number of joints of the robot.

The methodology used to solve the inverse kinematics problem is by matching the com-
ponents of the global transformation matrix 0Tn to find the different joints configurations.
In general terms, the algorithm used is the following:

0Tn = 0A1
1A2 ... i−1Ai ...

n−1An,

0A−1
1

0Tn = 1A2 ... i−1Ai ...
n−1An,

1A−1
2

0A−1
1

0Tn = 2A3 ... i−1Ai ...
n−1An,

...

n−2A−1
n−1 ... 1A−1

2
0A−1

1
0Tn = n−1An.

Applying this inverse kinematics procedure presented and some algebra calculations, the
joints configurations that allow to get the desired final position of the end-effector (x2, y2)
can be obtained with the following equations:

θ2 = arccos

(
x22 + y22 − l21 − l22

2l1l2

)
, (3.8)

θ1 = arctan

(
y2
x2

)
− arctan

(
l2 sin (θ2)

l1 + l2 cos (θ2)

)
. (3.9)

3.1.4 Jacobian matrix

The jacobian is a matrix of partial derivatives that allows to get a relationship between
the linear and angular velocities of the TCP and the speeds of the rest of the joints. This
means it is a way to move from a static problem to a dynamic one, as shown in (3.10).

0Vn =

 0Ṗn

0Ẇn

 = Jn



θ̇1

θ̇2

.

.

.

θ̇n


= JnΘ̇n, (3.10)
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where Jn ∈ M6×n(R) is the jacobian matrix, 0Ṗn ∈ M3×n(R) is the linear velocity vec-
tor and 0Ẇn ∈ M3×n(R) is the angular speed vector with respect the reference frame
{X̂0, Ŷ0, Ẑ0}. For the specific case of a 2-link planar manipulator, the jacobian matrix can
be obtained as follows

J2 =
(
J21 J22

)
=

(
0z0 × 0P2

0z1 × 1P2

0z0
0z1

)
, (3.11)

being

0z0 = [0, 0, 1],

0z1 = [0, 0, 1],

0P2 = [l1 cos (θ1) + l2 cos (θ1 + θ2), l1 sin (θ1) + l2 sin (θ1 + θ2), 0],

1P2 =
0P2 − 0P1 = [l2 cos (θ1 + θ2), l2 sin (θ1 + θ2), 0],

which can be obtained with the third and fourth column of 0A0, 0A1 and 0A2. The resultant
jacobian matrix is

J2 =



−l1 sin θ1 − l2 sin (θ1 + θ2) −l2 sin (θ1 + θ2)

l1 cos θ1 + l2 cos (θ1 + θ2) l2 cos (θ1 + θ2)

0 0

0 0

0 0

1 1


. (3.12)

Then, the non-zero terms of the velocity of the TCP, according to (3.10), are

vx = −l1 sin θ1θ̇1 − l2 sin (θ1 + θ2)(θ̇1 + θ̇2), (3.13)

vy = l1 cos θ1θ̇1 + l2 cos (θ1 + θ2)(θ̇1 + θ̇2), (3.14)

ωz = θ̇1 + θ̇2. (3.15)

Equation (3.10) shows that there is a possibility to get the joint configuration needed to
reach some specific values of velocity, which means that a velocity control can be done by
calculating the jacobian matrix for each sample time. Then, it is important to notice that
this is not possible if the jacobian matrix is not invertible. This is called a singularity and
represent those combinations of joint states that do not allow the movement in certain
directions or areas [Donelan, 2010]. All manipulators have singularities in their workspace
limits but there can also be some within the workspace scenario. In these configurations,
at least one degree of freedom is lost.
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3.2 Dynamic model

Up until now, only the static formulation of a manipulator has been discussed without
taking into consideration the forces required to produce the movement. It is clear that,
in order to control a manipulator, these forces cannot be neglected. Although there are
several methods to model the dynamic behaviour of a robot, this project is not focused on
modeling but in controlling the robotic manipulator. This is why only the Lagrange-Euler
formulation will be discussed as it will be the methodology used to model the robot studied
[Lagrange, 1853].

3.2.1 Lagrange-Euler formulation

It is known that the dynamic model of a robot can always be written as

M(q)q̈ + C(q, q̇)q̇ + F (q̇) +G(q) + τd = B(q)τ −AT (q)λ, (3.16)

where

• q ∈ Rnq is the vector of configurations of the robot and q̇ and q̈ its derivatives.

• M(q) ∈ Mnq×nq(R) is its inertial matrix.

• C(q, q̇) ∈ Mnq×nq(R) is the Coriolis matrix (or centrifugal forces matrix).

• F (q̇) ∈ Rnq is the friction term of the system.

• G(q) ∈ Rnq is the gravity component.

• τd ∈ Rnq is used to model the possible disturbances in the system.

• τ ∈ Rnu is the joint torques vector.

• B(q) ∈ Mnu×nu(R) refers to the input.

• AT (q) ∈ Mnu×nu(R) and λ ∈ Rnu are the kinematic constraints and a vector of
lagrangian multipliers, respectively.

Notice how the nu and nq dimensions must be the same, as they are related to the number
of links of the robot (nq = nu = n). For this project, some of these terms will be neglected
and a simpler dynamic model will be used:

M(q)q̈ + C(q, q̇)q̇ + F (q̇) +G(q) + τd = τ. (3.17)

Unlike other methods, the Lagrange-Euler formulation is based on establishing an energy
balance to get the equations of motion (EOM) and obtain the matrices that form the model
in (3.16). The first step is to define the Lagrangian, which is a scalar function obtained as
the difference between the kinetic energy and the potential energy.

L(q, q̇) = Ec(q, q̇)− Ep(q). (3.18)

From here, the equation of motion can be computed with
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τ =
d

dt

(
∂L
∂q̇

)
− ∂L

∂q
, (3.19)

τ =
d

dt

(
∂Ec

∂q̇

)
− ∂Ec

∂q
+

∂Ep

∂q
. (3.20)

Finally, and before starting the corresponding calculations, some considerations about the
planar manipulator studied are defined:

• Each link of the robot will be considered as an homogeneous bar, so its inertia can
be calculated as Ii =

1
12mi(li)

2, being mi the mass.

• The center of gravity (CoG) of each link is positioned in the middle (lCoG = li/2).

Kinematic energy

The kinetic energy can be defined as the energy the manipulator has as a consequence
of its movement. It can be calculated as superposition of the kinetic energy of each link
and it is important to notice that two different terms must be taking into account (kinetic
energy due to the linear velocity and kinetic energy due to the angular speed).

Ec =
n∑

i=1

1

2
mi(vi)

2 +
1

2
Ii(ωi)

2. (3.21)

For each link, its energy is calculated as follows:

Ec1 =
1

2
m1(v1)

2 +
1

2
I1(ω1)

2 =
1

2

(
m1

l21
4
+ I1

)
θ̇21,

Ec2 =
1

2
m2(v2)

2 +
1

2
I2(ω1)

2 =

=
1

2
m2

(
l21θ̇

2
1 +

l22
4
(θ̇1 + θ̇2)

2 + 2l1
l2
2
θ̇1(θ̇1 + θ̇2) cos(θ2)

)
+

1

2
I2(θ̇1 + θ̇2)

2.

Expressing these equations in a matrix form, the inertial matrix from (3.16) can be ob-
tained.

Ec =
1

2
θ̇TMθ̇, being M =

(
m11 m12

m21 m22

)
,

where

m11 = m1
l21
4
+ I1 +m2

(
l21 +

l22
4
+ l1l2θ̇1 cos(θ2)

)
+ I2,

m12 = m21 = m2
l22
4
+m2l1

l2
2
cos(θ2) + I2,

m22 = m2
l22
4
+ I2.
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Potential energy

On the other hand, the robot also has a potential energy as a consequence of its weight.
As it has been done with the kinetic energy, the robot’s potential energy is calculated as
the sum of the energy of each link.

Ep = Ep1 + Ep2 = m1g
l1
2
sin θ1 +m2g

(
l2
2
sin (θ1 + θ2) + l1 sin θ1

)
. (3.22)

In the previous equation, g is used for the gravity acceleration vector. Then, the gravity
component of the model (3.16) can be obtained considering the partial derivatives, which
are calculated as follows:

G1 =
∂Ep

∂θ1
= m1g

l1
2
cos θ1 +m2g

(
l2
2
cos (θ1 + θ2) + l1 cos θ1

)
, (3.23)

G2 =
∂Ep

∂θ2
= m2g

l2
2
cos (θ1 + θ2). (3.24)

Equations of motion

The last two terms to completely define the dynamic model of the planar manipulator are
the friction and the Coriolis matrices. For the first one, a constant parameter proportional
to the rotational speed will be considered whereas determining the Coriolis matrix requires
of some more complex calculations. In a general form, this matrix can be written as

C =

c111θ̇1 + c121θ̇2 c211θ̇1 + c221θ̇2

c112θ̇1 + c122θ̇2 c212θ̇1 + c222θ̇2

 , (3.25)

being cijk = cjik = 1
2

(
∂mij

∂θi
+ ∂mki

∂θj
− ∂mij

∂θk

)
. The results of each variable are

c111 = 0,

c121 = −m2l1
l2
2
sin θ2,

c112 = m2l1
l2
2
sin θ2,

c122 = 0,

c211 = −m2l1
l2
2
sin θ2,

c221 = −m2l1
l2
2
sin θ2,

c212 = 0,

c222 = 0.

(3.26)

Now that all the components have been defined, the full dynamic model can be expressed
in its matrix form

(
τ1

τ2

)
= τ = M

θ̈1

θ̈2

+ C

θ̇1

θ̇2

+ F

θ̇1

θ̇2

+G. (3.27)

The equations of motion can be obtained by developing the previous matrix system into
two different equations, one per joint torque τi.
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τ1 =

(
m1l

2
1

3
+

m2l
2
2

3
+m2l

2
1 +m2l1l2 cos (θ2)

)
θ̈1 +

(
m2l

2
2

3
+

m2l1l2
2

cos (θ2)

)
θ̈2−

− m2l1l2
2

sin (θ2)θ̇
2
2 −m2l1l2 sin (θ2)θ̇1θ̇2 +

m1gl1
2

cos (θ1) +
m2gl2

2
cos (θ1 + θ2)+

+m2gl1 cos (θ1),

τ2 =

(
m2l

2
2

3
+

m2l1l2
2

cos (θ2)

)
θ̈1 +

m2l
2
2

3
θ̈2 +

m2l1l2
2

sin (θ2)θ̇
2
1 +

m2gl2
2

cos (θ1 + θ2).

Finally, some model disturbances τd will be added as Gaussian noise, with zero mean and
non-zero deviation.

3.3 Complex-valued kinematic model

The forward kinematics model of a robotic manipulator can be extended to the complex
domain, thing that will allow to design the proper complex-valued controller. Then, the
position of the TCP of a n-link robot, zn ∈ C, can be obtained as

zn =

n∑
i=1

lie
j
∑i

p=1 θp , (3.28)

which, for the particular case of this project (2-link manipulator), derives in the following
equation:

z2 = l1e
jθ1 + l2e

j(θ1+θ2), (3.29)

whose time derivatives are

ż2 = l1jθ̇1e
jθ1 + l2j(θ̇1 + θ̇2)e

j(θ1+θ2), (3.30)

z̈2 = l1jθ̈1e
jθ1 − l1jθ̇

2
1e

jθ1 + l2j(θ̈1 + θ̈2)e
j(θ1+θ2) − l2j(θ̇1 + θ̇2)

2ej(θ1+θ2). (3.31)

The use of the inverse kinematics to get a relation between the joint variables and the
position of any part of the links of a robot is no longer needed when using this formulation
and, in terms of getting a control model, it can be combined it with its corresponding
dynamic equations of motions, presented in (3.17). It is also important to mention that
the complex representation reduces the dimension of the states studied, as it merges two
states (both, vertical and horizontal, positions) in a single expression.

3.4 Summary

In this chapter, a brief introduction to robotics modeling was exposed. Both, the kinematic
and dynamic models have been presented as well as the simplifications considered in this
project. With the final equations of motion, the 2-link planar manipulator can be modeled
by using the Matlab/Simulink software [MATLAB, 2022] so the different controllers can
be tested and analyzed. Moreover, the forward kinematics model has been extended to the
complex domain so it can be used later on the design of the CV-SMC.



Chapter 4

Control of a 2-link planar
manipulator

The main purpose of this project is to design and analyse a complex-valued sliding mode
controller to track the tool-center position (TCP) of the manipulator to follow a reference
signal. In this chapter, the main controller is designed, as well as three alternative strategies
that will be used to compare and analyze the results obtained.

4.1 Feedback linearization

The first two controllers proposed are based on linear techniques. Then, the first step
is to linearize the nonlinear model of the plant using a feedback linearization strategy
[Mustafa, 2014]. This approach implies transforming the nonlinear system into an equiv-
alent linear system through a change of variables (z = Φ(x)) and a suitable control input
(u = α(x)+β(x)v). The feedback linearization control input proposed to make this change
is

u = C(θ, θ̇)θ̇ +G(θ) +M(θ)v. (4.1)

Applying these input signals, the system transforms from the nonlinear model (4.1) to the
following linear system

ż = Az +Bv =

(
0 1

0 0

)(
θ

θ̇

)
+

(
0

1

)
v, (4.2)

y = Cz +Dv =
(
1 0

)(θ
θ̇

)
. (4.3)

This transformation allows to design a linear controller to track the position of the TCP of
the robot to follow the desired trajectory. The system modelling and control scheme can
be seen in Figure 4.1.

19
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Figure 4.1: General system scheme.

4.1.1 State feedback control

The first controller proposed is a state feedback control. In order to directly track the
position of the end-effector, this project proposes to change the state vector by adding the
final Cartesian coordinates of this configuration instead of the joint angles. Combining
equations (3.5) and (3.6) with equations (3.13) and (3.14), the time derivatives of the
position (linear speed) can be computed as a function of the other states as follows:

ẋTCP = −yTCP θ̇1 − l2 sin (θ1 + θ2)θ̇2,

ẏTCP = xTCP θ̇1 + l2 cos (θ1 + θ2)θ̇2.

Then, the resulting nonlinear model is given by

ż =


θ̈1

θ̈2

ẋTCP

ẏTCP

 = f(x, u) + ω =


v1

v2

−yTCP θ̇1 − l2 sin (θ1 + θ2)θ̇2,

xTCP θ̇1 + l2 cos (θ1 + θ2)θ̇2.

 , (4.4)

which can be linearized around its equilibrium point with the Jacobian matrices:

A =
∂fi
∂zi

∣∣∣∣
(zeq ,veq)

=


0 0 0 0

0 0 0 0

−y −l2 sin (θ1 + θ2) 0 −θ̇1

x l2 cos (θ1 + θ2) θ̇1 0


(zeq ,veq)

,

B =
∂fi
∂vi

∣∣∣∣
(zeq ,veq)

=

(
1 0 0 0

0 1 0 0

)T

(zeq ,veq)

.

Finally, the matrix C = ∂hi
∂zi

stands for the direct measurements of the system. From
the analysis around the desired position (xd, yd), the equilibrium point obtained is zeq =
[θ̇1e, θ̇2e, xe, ye] = [0, 0, xd, yd] and veq = [v1e, v2e] = [0, 0]. It can be noticed how the
relation between the desired coordinates of the end-effector and the equivalent joint angles
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comes given by the inverse kinematics equations mentioned in Chapter 2. The final linear
approximation results in

∆ż =


0 0 0 0

0 0 0 0

−yd −l2 sin (θ1d + θ2d) 0 0

xd l2 cos (θ1d + θ2d) 0 0

∆z +


1 0

0 1

0 0

0 0

∆v,

y =

(
1 0 0 0

0 1 0 0

)
∆z +

(
0 0

0 0

)
∆v,

where ∆ϵ stands for the difference between the state or input and the equilibrium point
(∆ϵ = ϵ− ϵeq). Now, the controllability can be checked with the A and B matrices:

C =


1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 −yd −l2 sin (θ1d + θ2d) 0 0 0 0

0 0 xd l2 cos (θ1d + θ2d) 0 0 0 0

 ,

which has full rank when yd cos (θ1d + θ2d) ̸= xd sin (θ1d + θ2d). Geometrically, this corre-
sponds to both links being aligned.

The equations of the state feedback controller (SFC) chosen for this system can be ex-
pressed as

v1 = −
(
K11 K12

)(∆θ̇1

∆x

)
, (4.5)

v2 = −
(
K21 K22

)(∆θ̇2

∆y

)
, (4.6)

which has been chosen this way to decouple the dynamics of both joints. Finally, the values
of each of the gains can be obtained with the pole placement technique. It is important
to remark that, for this project, the poles of the controllers will be selected to obtain a
desired response that can be compared with the results of the CV-SMC, although this
might imply not being the optimal tuning of the controllers.

Having to linearize the system around its equilibrium point is not a problem in case of
the regulation problem, in which the desired position (and angles) is constant through
all the time. This will not be the case of the tracking problem, as the desired position
changes through the time and so does the jacobian matrices used to get the state-feedback
controller. To solve this issue, a typical solution is to expand the model by adding an
integral control component. The final scheme of the feedback-state controller is shown in
Figure 4.2.



Chapter 4. Control of a 2-link planar manipulator 22

Figure 4.2: State-feedback controller scheme.

4.1.2 PID control

The system can also be controlled considering the double integrator model in (4.2). In this
case, the linearized model is already decoupled and equivalent to 2 SISO systems, which
makes a PID controller a suitable option. The overall control signal has the form

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

de(t)

dt
, (4.7)

where Kp, Ki and Kd are the proportional, integral and derivative gains, respectively,
and e(t) is the error between the desired value and the current one. A brief explanation
and discussion of each component is presented to evaluate the need of each part in the
controller.

• Proportional: The control action is proportional to the current error. Increasing its
gain tends to make the system react faster but it also causes overshoot.

• Integral: Helps reduce the steady-state error. Increasing its gain may produce oscil-
lations in the system.

• Derivative: Anticipates the error, as it takes into account the rate of change of the
error. It decreases the overshoot present in the system as it has a damping effect.

The qualitative effect of each action in the closed-loop response is summarized in Table
4.1.

Table 4.1: Effect of each action in the system’s response.

Gain Rise time Overshoot Steady-state Settling time

Kp Decrease Increase Decrease Small change

Ki Decrease Increase Decrease Increase

Kd Small change Decrease No change Decrease

Then, taking into account the case studied, it is clear that the controller must have a
proportional and integral action to set the tool center point of the manipulator in the
desired position and maintain it there. However, it also seems proper to add a derivative
component to avoid having a big overshoot in the system.

As it has been done previously, the gains are chosen to accomplish the desired response to
be able to compare this controller with the others. The representation of this system in
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the Laplace domain (transfer functions) is the following

(
θ1(s)

θ2(s)

)
=

( 1
s2

0

0 1
s2

)(
V1(s)

V2(s)

)
. (4.8)

The characteristic polynomial of the close-loop dynamics is the numerator resulting of
1 + Ci(s)θi(s)/Vi(s), being Ci(s) the controller of each joint. For the first link, a PD
controller is proposed to avoid any overshoot in the response, whereas for the final link, a
PID controller is assumed. Figure 4.3 shows the control scheme representation.

Figure 4.3: General system scheme.

The different values of the constants of the PID and PD controllers can be obtained using
the pole placement method. In case of the PID controller, the linear system is a third
order system and three poles have to be defined in order to get the different constants of
the controller. On the other hand, for the PD controller, it is a two order system and
only two poles must be defined. To simplify the tuning of the controller, this project
proposes choosing a dominant pole (p1), which would make the selection of the other ones
automatic (i.e. p2 > 5p1 and p3 > 7p1). However, in order to get a proper response that
can be compared to the other controllers, some other tools for tuning the parameters might
be considered, as it could be the PID Tuning Toolbox of Matlab.

Finally, in order to use the feedback linearization strategy effectively, it is important to
remark the importance and need of knowing properly the system. The change of variables
and the control input applied to transform the nonlinear model into an equivalent linear
system are strictly related to the dynamic model of the system that wants to be controlled.
In this particular case, it is mandatory a good knowledge of matrices M,C and G, as seen
in (4.1). Then, if the knowledge or estimation of these matrices is not good enough, the
resultant system will not be lineal and both strategies proposed will lead to undesired
results. Moreover, it can be noted how the PID and the state-feedback controllers are
based on an approximation around the working point. All of these considerations will be
taken into account for the qualitative analysis.

4.2 Sliding mode controller

Apart from the linear strategies presented, a nonlinear sliding mode controller is proposed
in order to deal with the nonlinearities of the robotic manipulator dynamics. Hence, the
second controller designed to be used to compare the response of the CV-SMC is a real-
valued sliding mode controller (RV-SMC). From equation (3.17), which contains all the
dynamics of the system considered, the control model used to design the controllers can
be extracted. To do so, the disturbance torques added (τd) will be neglected as they are
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considered unknown variables. Then, the equations of motion used to design all the control
algorithms are the following:

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ. (4.9)

4.2.1 Joint angles control

The control problem is defined such that the pointer position tracks a certain reference
trajectory (z2d). Then, the switching surface σ considered will be defined as a function of
the error between the desired value and the current one. It is necessary to take into account
that the dimension of this function will not be the same as for the CV-SMC, as both angles
have to be considered as separate states. Then, the switching function is defined as

σ = e+ λė, (4.10)

where e stands for the error between both angles of links of the manipulator and its desired
values

e = (q − qd) =

(
θ1 − θ1d

θ2 − θ2d

)
, (4.11)

and its time derivative as

σ̇ = ė+ λë. (4.12)

Then, defining the same Lyapunov candidate function as presented in Chapter 2,

V =
1

2
σTσ, (4.13)

a control law that allows the existence of a sliding mode can be obtained ensuring that

V̇ = σT σ̇ < 0. (4.14)

Replacing (4.11) in (4.14)

V̇ = σT (ė+ λë) = σT (ė− λq̈d + λq̈),

which considering (4.9) can be extended to

V̇ = σT (ė− λq̈d) + σTλM−1(u− Cq̇ −G).

Then, that expression can be reorganized as follows:

V̇ = σT (ė− λq̈d − λM−1(Cq̇ +G)) + σTλM−1u.

For this analysis, the use of an equivalent control ueq is considered. Hence, the control law
obtained will have the form of u = ueq + ud. Considering its definition in (2.6)
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σ̇ = 0 ⇒ e− λq̈d + λM−1(ueq − Cq̇ −G) = 0, (4.15)

ueq = M(q̈d −
1

λ
ė) + Cq̇ +G. (4.16)

Substituting the full control law

V̇ = σTλM−1ud < 0 ⇒ ud = −k

λ
Msign(σ), (4.17)

where the sign() function stands for the sign of each of its components. Then, the full
expression of the derivative of the Lyapunov function is

V̇ = −k|σ|,

which ensures being negative for k > 0.

As explained in Chapter 3, it is important to consider that for a real implementation, the
use of a saturation function as in (2.8) might be necessary. Although the scope of this
project only considers simulation, it is an important fact that must be taken into account
when implementing this control algorithm in a robot manipulator. It is also important to
notice that the inverse kinematics transformation may be used to pass from the Cartesian
coordinates (x, y) to the joint space (q1, q2).

The diagram scheme of the real-valued sliding mode controller (RV-SMC) implementation
is represented in Figure 4.4.

Figure 4.4: Real-Valued sliding mode controller scheme.

4.2.2 Coordinates position control

However, although the approach of controlling the different angles is the one most com-
monly used, this project presents an alternative to control directly the position of the
end-effector of the manipulator. By doing this, the inverse kinematic calculation require-
ment is no longer needed and only the use of forward kinematics is used. It is also noticeable
how this approach allows a more reliable comparative with the CV-SMC, as both control
directly the position of the TCP instead of the joint angles.

In Chapter 3, the position of the tool of the manipulator is obtained in (3.5) and (3.6)
from its kinematic model. Starting from this point, its first and second time derivatives,
which will be needed to design this new controller, can be obtained as
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ẋTCP = −yTCP θ̇1 − l2 sin (θ1 + θ2)θ̇2,

ẏTCP = xTCP θ̇1 + l2 cos (θ1 + θ2)θ̇2,

ẍTCP = −ẏTCP θ̇1 − yTCP θ̈1 − l2 cos (θ1 + θ2)(θ̇1 + θ̇2)θ̇2 − l2 sin (θ1 + θ2)θ̈2,

ÿTCP = ẋTCP θ̇1 + xTCP θ̈1 − l2 sin (θ1 + θ2)(θ̇1 + θ̇2)θ̇2 + l2 cos (θ1 + θ2)θ̈2.

The same procedure presented before will be followed to design this new approach. Then,
the new manifold function in terms of the error (e) and its time derivative can be computed
as follows:

σ = e+ λė =

(
x− xd

y − yd

)
+ λ

(
ẋ− ẋd

ẏ − ẏd

)
(4.18)

σ̇ = ė+ λë =

(
ẋ− ẋd

ẏ − ẏd

)
+ λ

(
ẍ− ẍd

ÿ − ÿd

)
, (4.19)

being from now on (x, y) the coordinates of the TCP of the planar manipulator and (xd, yd)
its desired target position. Using the time derivatives of this position the ones presented
previously, the derivative of the switching surface can be expressed as σ̇ = Ψ+ Γq̈, where

Ψ =

(
ẋ− ẋd − λ(ẍd + ẏθ̇1 + l2 cos (θ1 + θ2)(θ̇1 + θ̇2)θ̇2)

ẏ − ẏd − λ(ÿd − ẋθ̇1 + l2 sin (θ1 + θ2)(θ̇1 + θ̇2)θ̇2)

)
(4.20)

Γ = λ

(
−y −l2 sin (θ1 + θ2)

x l2 cos (θ1 + θ2)

)
. (4.21)

Substituting the equation of motion modeled in (4.9), the equivalent control signal can be
calculated as

ueq = −MΓ−1Ψ+ Cq̇ +G. (4.22)

Now, considering the same Lyapunov function

V =
1

2
σTσ ⇒ V̇ = σT σ̇ = σT (Ψ + Γq̈), (4.23)

and substituting dynamic model of the system presented in (4.9)

V̇ = σT (Ψ + ΓM−1(u− Cq̇ +G)), (4.24)

a control signal (u = ueq + ud) that fulfils the condition of existence of a sliding mode can
be obtained if

V̇ = σTΓM−1ud < 0. (4.25)
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By considering the discontinuous control signal as

ud = −kMΓ−1sign(σ), (4.26)

the condition of existence of a sliding mode gets fulfilled for k > 0, as V̇ = −k|σ|.

4.3 Complex-valued SMC

4.3.1 Equivalent control design

Once all the real-valued controllers have been introduced, the control problem can be
extended to the complex space to track the pointer position of the robotic manipulator.
It can be seen how, working in the complex domain, allow to control the position in two
axis as one single state (i.e, z = x + yj), but this is not possible when working in a real-
valued space. The control problem will also use the same model introduced in (4.9). The
output, given by (3.29), has relative degree two with the control input in (3.12). Then,
the following second-order complex switching manifold is proposed

σ = (z2 − z2d) + λ(ż2 − ż2d), (4.27)

whose time derivative can be expressed as

σ̇ = (ż2 − ż2d) + λ(z̈2 − z̈2d) = Ψ + ξT q̈, (4.28)

being

Ψ = l1jθ̇1e
jθ1 + l2j(θ̇1 + θ̇2)e

j(θ1+θ2) − ż2d − λ(z̈2d + l1jθ̇
2
1e

jθ1 + l2j(θ̇1 + θ̇2)
2ej(θ1+θ2)),

ξ = j

l1e
jθ1 + l2e

j(θ1+θ2)

l2e
j(θ1+θ2)

 ,

where Ψ ∈ C and ξ ∈ C2. Using the Lyapunov candidate presented in Chapter 2, its time
derivative in the complex domain can be written as

V̇ =
1

2
(σ̄σ̇ + ˙̄σσ) = Re(σ̄σ̇). (4.29)

Substituting (3.30) and (3.31) in (4.29) and doing some basic algebra, the following results
are obtained:

V̇ = Re(σ̄σ̇) = Re(σ̄(Ψ + ξT q̈)) = Re(σ̄(Ψ + ξTM−1(u− Cq̇ −G)))

= Re(σ̄(Ψ− ξTM−1(Cq̇ +G))) + Re(σ̄ξTM−1u).

Breaking down the complex sliding surface into its modulus and argument,

V̇ = |σ|ϕ+ |σ|γTM−1u, (4.30)
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being

γ = Re(e−jφσξ),

ϕ = Re(e−jφσ(Ψ− ξTM−1(Cq̇ +G))).

According to its previous definition, the expression of the equivalent control can be obtained
as

σ̇ = 0 ⇒ Ψ+ξTM−1(ueq−Cq̇−G) = 0 ⇒ ueq = (ξTM−1)−1(ξTM−1(Cq̇+G)−Ψ). (4.31)

It can be noticed how, this calculation must be done with a pseudo-inverse method, as it
is not a square matrix. Then, defining the control law as u = ueq + ud,

V̇ = |σ|ϕ+ |σ|γTM−1(ueq + ud)

and using ueq from (4.31)

V̇ = |σ|γTM−1ud.

From here, the discontinuous control signal can be chosen as

ud = −kγ, (4.32)

with k > 0, that ensures V̇ < 0 if γTγ ̸= 0.

4.3.2 Simplified control design

However, in order to avoid the use of the equivalent control and the pseudo-inverse matrix
calculation required, a second approach for the control law is studied in this project.
Instead of considering the equivalent control term, only the discontinuous part obtained
before will be used (u = −kγ). Then, the constant k must be bounded to guarantee the
existence of a sliding mode.

Starting from the Lyapunov function defined

V̇ = |σ|ϕ− k|σ|γTM−1γ,

the existence of a sliding mode is ensured for

k >
ϕ

γTM−1γ
.

Being M a symmetric matrix implies that its inverse will also be symmetric. By definition,
it can be proven that a real square and symmetric matrix can be diagonalized in an
orthogonal base as
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M−1 = QDQ−1, (4.33)

where QT = Q−1 and D is diagonal matrix with eigenvalues λ1 and λ2, being |λ1| ≤ |λ2|.
Now, the previous condition to guarantee the existence of a sliding mode can be bounded
as

V̇ = |σ|(ϕ− kγTM−1γ) ≤ |σ|(ϕ− kλ1γ
Tγ). (4.34)

Then, V̇ < 0 can be achieved with

k >
ϕ

λ1γTγ
. (4.35)

Finally, the vector γ is a function of the link rotation angles (θ1 and θ2) and the argument of
the complex manifold. Considering the bounds of the trigonometric functions, the following
bounds are obtained:

γmin ≤ γTγ ≤ γmax,

0 ≤ γTγ ≤ (l21 + 2l1l2 − 2l22).

Now, these limits can be added to expression (4.35) in order to choose an admissible gain
of the sliding mode controller as

k >
ϕ

λ1γmin
. (4.36)

The condition to ensure the existence of a sliding mode is guaranteed with V̇ < 0. On the
other hand, the finite-time convergence can be proved as follows.

From

V̇ = |σ|(ϕ− kγTM−1γ),

and defining µ = (ϕ − kλ1γmin), the time derivative of the Lyapunov function can be
bounded as

V̇ ≤ −µ|σ|.

Then, considering its definition introduced in Chapter 2,

V̇ ≤ −µ
√
2
√
V ,

which leads to

√
V (t) ≤ −µ

√
2

2
t+

√
V (0).
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Then, Σ is reached (V (t) = 0) in finite time t− t0 ≤ tr, where tr =
√
2
√

V (0)

µ and µ > 0.

The final control scheme designed is represented in Figure 4.5.

Figure 4.5: General system scheme.

It is also important to take into account that an implementation of this controller in a real
robotic manipulator may require the use of a boundary layer as defined in (3.8). The use of
it would avoid discontinuities in the control action and a better response of the controller
in real-life applications. However, as this project is based mainly in simulation, this term
is not strictly mandatory, as the chattering effect will not cause any problem during the
simulations.

4.4 Summary

In this chapter, four different controllers have been proposed. On one hand, two linear
controllers (state feedback control and PID control) have been designed based on a feedback
linearization strategy; on the other hand, two nonlinear sliding mode controllers have
been presented to track the TCP of the planar manipulator: the first one with real-based
variables and the second one with a complex-valued scheme. All the controllers’ gains will
be chosen to get the same time response so they can be compared between them. In the
next chapter, the controllers will be modelled and implemented in Matlab and Simulink
so they can be simulated to get the proper results to analyze them.
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Simulation and comparison

The final step once all the controllers have been designed is to simulate them to evaluate
their performance and be able to compare them and extract some proper conclusions.
During this chapter, all the different tests carried on are defined and discussed and a
comparison between all the controllers is done according to the results obtained. All the
implementation and simulations are done with Matlab and Simulink, as well as the
post-analysis.

5.1 Tests description

The first thing to define are the different tests that will be used to evaluate the controllers
designed during this work. According to the reference signal proposed, the control problems
that exist in manipulators are mainly the regulation and tracking problems:

• Regulation problem: The reference signal is constant, which basically means that the
time derivatives of this signal are zero during all the test.

• Tracking problem: The reference signal to be followed is time-dependant and bounded,
and so are its time derivatives.

In this case, the reference signal is the TCP of the manipulator (and consequently, also
the joint angles), the first time derivative is its velocity and the second derivative is the
acceleration. It is important to take into account how all the reference signals must be
continuous during all the time, as well as their derivatives. To design them properly, a
commonly used method is base them on splines to ensure they are continuous and derivable
during all the duration of the test [Egerstedt and Martin, 2001]. However, this project will
not get into detail with this technique and will simply use different signals that fulfil these
requirements.

Moreover, for each test problem, some different variables will be added to test the efficiency
and robustness of the controllers:

• Model disturbance: As mentioned during Chapter 3, the model can be complemented
with an unknown input disturbance (τd) that represents the uncertainty of the model.
Here, it will be modelled as a constant disturbance.

• Parametric uncertainties: The parameters used to model all the controllers might
differ from the real ones. In this case, the uncertainty will be added to the masses of
each link.

31
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• Sensor noise: The sensor used to measure the input variables of the controllers will
also be complemented with a small white noise. It will be introduced to the system
as a Gaussian noise, with zero mean and non-zero deviation.

• Initial position: The response of the controller might vary depending on the ini-
tial coordinates of the manipulator. To take this fact into account, different initial
conditions will be used for each test.

Then, the tests done to analyze the controllers and compare them are the following:

1. Regulation: Regulation test for a reference position of (x, y) = (0.0866, 0.25) m
(which corresponds to the angles (θ1, θ2) = (π6 ,

π
3 ) rad).

2. Tracking: Tracking test for a reference signal according to the one shown in Figure
5.1.

Figure 5.1: Desired position for the tracking test.

Each test of the ones described above will be simulated for an ideal behavior, for input
disturbance (model disturbance will be added), for parametric uncertainty, for noise sen-
sitivity (sensor noise will be added) and for another different initial condition. However,
the first step will be tuning all the gains of each strategy to have approximately the same
settling time for the worst initial condition, so all the controllers are equally adjusted in
order to be fairly compared.

To sum up, the different control strategies simulated are summarized below.

1. Complex-valued sliding mode controller (CV-SMC): SMC with the control law u =
−kγ according to (4.32).

2. Real-valued sliding mode controller (RV-SMC): SMC with the control law u = ueq +
ud, being ueq = −MΓ−1Ψ+ Cq̇ +G and ud = −kMΓ−1sign(σ), according to (4.22)
and (4.26).

3. State feedback controller (SFC): Control strategy based on (4.5) and (4.6) and a
previous feedback linearization to deal with the non-linearities of the model.

4. PID strategy: A PID and a PD control law according to (4.7) and a feedback lin-
earization.

Finally, it is also important to mention the kinematic and dynamic parameters of the robot
modeled and simulated to test the controllers, which are presented in Table 5.1
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Table 5.1: Robot parameters.

Link (i) Mass [kg] Length [m] Inertia [kg m2]

1 1.5 0.1 0.0013

2 2 0.2 0.0067

5.2 Key Performance Indicators

Once all the tests have been defined and before starting the simulations to compare the four
controllers proposed it is important to describe the Key Performance Indicators (KPIs).
These parameters and variables will allow a fair comparison and see the advantages and
drawbacks of the CV-SMC against the other control strategies used. Although all the
indicators will provide a quantitative analysis, it is important to take into account that
some qualitative variables will be also used. The quantitative KPIs are the following:

• Average of the errors: Defining the error between the current value and the desired
one as ei(t) = xi(t)− xid(t), the average of the errors is calculated as 1

N

∑N
i=1 |ei(t)|.

• Area of the infinity norm of the error vector: The second indicator related to the
error against the target position value will be calculated as

∫ T
0 ||e(t)||∞dt.

• Infinity norm of the control input vector: Apart from the error, the control signal
required to achieve the desired value is an important indicator to evaluate each control
strategy. Thus, the third KPI will be the infinity norm of the control input vector
and it will be calculated according to ||u(t)||∞ = maxi |ui(t)|.

• Area of the infinity norm of the control input vector: The last indicator will be the
area of the third indicator and it will be calculated as

∫ T
0 ||u(t)||∞dt.

These KPIs will be used to compare the response of the four controllers studied in this
project. However, for each simulation related to the SMC, the sliding surface will also be
plotted so a better analysis can be executed.

5.3 Regulation problem results

Now that all the considerations related to the tests and comparison factors have been
completely discussed, the four controllers can be simulated and analyzed (the CV-SMC,
RV-SMC, PID and SFC). The first test, as mentioned in section 5.1, is the regulation
problem.

The desired position for the first regulation test is the one obtained from setting the joint
angles to (θ1, θ2) =

(
π
6 ,

π
3

)
rad, which corresponds to the TCP of (x, y) = (0.0866, 0.25) m.

The gains and tuning parameters have been adjusted so all of them have approximately
the same settling time of ts ≃ 0.3 s and they are the following:

1. CV-SMC: Control parameters: λ = 0.05 and k = 750.

2. RV-SMC: Control parameters: λ = 0.05 and k = 25.

3. PID: Control gains: KpPID = 500, KiP ID = 10, KdPID = 50, KpPD = 500, KdPD =
50.

4. SFC: Control gains: K11 = 255.5, K12 = −46352, K21 = 196.7, K22 = −44838.
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However, having two different states (X and Y coordinates) makes difficult to tell the time
in which they reach the target. As this is the key parameter to tune the controllers, both
states have been reduced to a single state, being this last the modulus of the position
(
√
x2 + y2). The test has been simulated during 1 second and using a solver step-size of

1 × 10−4 s, beginning in the initial condition (x0, y0) = (−0.2932, 0.0518) m. Figure 5.2
shows the evolution of the position modulus in time, during all the test. It can be seen
how all the four controllers reach the target value in almost the same time (ts ≃ 0.3) s and
it can be said that all controllers can be fairly compared.

Figure 5.2: Time response of the modulus of the position.

In Figure 5.3, the evolution of the vertical position of the end-effector is represented. It
can be seen how all the four controllers are able to maintain the desired position once it
has been reached. In order to achieve this settling time requirement, both the PID and the
SFC present a small overshoot, being the absolute value of the error higher for the SFC.

Figure 5.3: Time response of Y position.
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In the same way, Figure 5.4 shows the time evolution of the position in the horizontal
axis. For this variable, the only strategy that presents an overshoot is the PID controller.
The difference between the SMCs is quite small and the exact values of the error will be
analyzed properly in section 5.5.

Figure 5.4: Time response of X position.

It is also important to analyze the control input signal required to achieve this performance.
In Figure 5.5, all of the control actions for both joint actuators are represented. It can be
seen how the control action related to the actuator of the second joint is always lower than
the one related to the first joint. The higher values are also obtained for the state-feedback
controller, whereas the lower absolute values appear to be the SMCs signals.

Figure 5.5: Time response of the control signals.
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However, comparing the profiles of the input signals of the PID and the SFC with the inputs
of the SMCs in a regulation problem might not be adequate, their maximum and minimum
values can give some interesting information when designing the actuators. Finally, for
the case of the two sliding mode controllers (CV-SMC and RV-SMC), the evolution of the
switching manifold function is shown in Figures 5.6 and 5.7, respectively. The error related
to the horizontal variables (position and velocity) is included in the first component of the
RV-SMC manifold and in the real part of the complex-valued surface for the CV-SMC,
whereas the error for the vertical components is represented in the imaginary term and
second term of the switching manifold function. The modulus of both components is also
represented to have a better understanding of their behaviour.

Figure 5.6: Time evolution of the switching manifold for the RV-SMC.

Figure 5.7: Time evolution of the switching manifold for the CV-SMC.
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It is important to notice how each position in a plane can be achieved by two different
configurations of the robot. When directly controlling the Cartesian coordinates of the end-
effector instead of the angles of each joint, the trajectory followed by each of the controllers
cannot be directly controlled, which results on very different configurations followed to go
from the initial conditions to their targets. Figure 5.8 shows the difference between the
planar trajectories followed with each control strategy. Although the final position is the
same for all of them, the path to get there is different. This is an important behaviour to
take into account when defining the control problem, especially when working in a space
with obstacles.

Figure 5.8: Planar trajectory followed with each control strategy.

Moreover, the variations of the test used to check and analyze their behaviour with input
disturbances, parametric uncertainties, sensor noise and change of initial conditions are
also simulated. The control signals are quite similar to the ideal behaviour; hence, only
the error for each position variable is represented in these cases. The time response of the
position of the end-effector is represented in Figures 5.9 and 5.10 for an input disturbance
of τd = [0.5,−0.5] Nm. It can be seen how the sliding mode controllers maintain a similar
response than for the ideal case. However, the linear controllers are not able to follow the
real target coordinates. The PID controller presents the biggest error of all the strategies.
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Figure 5.9: Time response of Y position with the input disturbance τd = [0.5,−0.5] Nm.

Figure 5.10: Time response of X position with the input disturbance τd = [0.5,−0.5] Nm.

The second test conducted corresponds to the parametric uncertainties. As it has been
mentioned before, the difference to the real parameters will be added in terms of both
masses. The controllers have been designed considering the masses presented in Table
5.1, but the values implemented have been set to m1 = 2.25 kg and m2 = 1 kg. The
results obtained, which are represented in Figures 5.11 and 5.12, show the time response
for both coordinates. It can be seen how the error for the linear controllers increase
significantly, as it could be expected according to the design strategy followed (feedback
linearization). However, being a regulation problem, the target position remains constant
and both controllers are able to converge to a solution. The PID controller is the one that
presents the highest error.
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Figure 5.11: Time response of Y position with parametric uncertainties.

Figure 5.12: Time response of X position with the parametric uncertainties.

The results obtained for the noise sensitivity test are represented in Figures 5.13 and
5.14. In this third test, the two joint angle sensors have been modeled to follow a normal
distribution of zero mean and a standard deviation of 0.0286 deg. Similar to the previous
test, all the strategies are able to follow the desired path and overcome the white noise
present in the sensors when working on a regulation problem.
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Figure 5.13: Time response of Y position for the noise sensitivity test.

Figure 5.14: Time response of X position for the noise sensitivity test.

The final test is executed by changing the initial conditions of the manipulator. In this
particular case, the robot begins in the position (x0, y0) = (−0.2639, 0.1225) m, which
corresponds to the initial angles of (θ1, θ2) = (3π4 , π6 ) rad. Now, the robot begins the
regulation problem closer to its target position, and, as a consequence, the absolute error
is always lower than in the previous test. The time response of the TCP can is represented
in Figures 5.15 and 5.16.
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Figure 5.15: Time response of Y position with (x0, y0) = (−0.2639, 0.1225) m.

Figure 5.16: Time response of X position with (x0, y0) = (−0.2639, 0.1225) m.

With these new initial conditions, the path followed with each of the controllers can be seen
in Figure 5.17. The profile followed by the PID controller is similar that for the other cases,
but, for the SMCs and the SFC, some significant differences can be noticed. However, all
the numerical results will be analyzed more precisely in the end of this chapter.
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Figure 5.17: TCP path followed with each strategy.

It can be seen how all the four control strategies proposed allow to reach the desired position
in proper conditions. Although the paths followed by all of them are quite different, both
SMC appear to have a similar behaviour with similar errors. However, a more precise
analysis with its corresponding numerical results and according to the KPIs presented is
done in Section 5.5. The PID and the state-feedback controllers present some overshoot
when reaching the desired position but they can achieve the target value with a low error.

5.4 Tracking problem results

The second test used to analyze the controllers designed is a tracking problem. The target
path is the one presented previously in Figure 5.1 and will also be simulated during 7.5 s
and with the same step size of 1 × 10−4 s. In this case, the initial position is chosen
to be (x0, y0) = (0.1, 0.2) m and all the controllers are tuned to reach a settling time of
ts ≃ 0.25 s. The final parameters are the following:

1. CV-SMC: Control parameters: λ = 0.045 and k = 250.

2. RV-SMC: Control parameters: λ = 0.05 and k = 100.

3. PID: Control gains: KpPID = 500, KiP ID = 50, KdPID = 40, KpPD = 500, KdPD =
40.

4. SFC: Control gains: K11 = 75, K12 = −12500, K21 = 75, K22 = −6250. The integral
gains are set to Ki1 = Ki2 = −5000.

In Figure 5.18, the time response of the vertical position is represented. It can be seen how
the SFC and the PID present a big overshoot that implies a higher absolute error than
the SMCs. However, all of the controllers can track the target position properly once they
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have converge enough. The exact quantitative results will be analyzed in the end of the
chapter to get a proper analysis of the four strategies studied. At time t = 4.7 s, the linear
controllers significantly increase their error against the desired value. This happens mainly
because of two causes: the first one is related to the fact that both controllers are designed
based on an approach around the working point, which is constantly changing its value,
whereas the second cause is because they are in a point near to the non-controllability
condition. However, this condition is not fully achieved and hence, the SFC is able to keep
tracking the desired value.

Figure 5.18: Vertical position followed with each strategy.

The horizontal position obtained for the different controllers is shown in Figure 5.19. All
four strategies achieve the desired value and are capable of following the path with low
error. As it happened in the regulation problem, the PID controller needs a bit of overshoot
to reach the target position within the same time than the other options. On the other
hand, the effect seen for the Y position is not clearly noticeable for the X position.

Figure 5.19: Horizontal position followed with each strategy.
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The control input required to achieve this performance during the test is plotted in Figure
5.20. It is worth pointing that the SMCs present a noticeable difference in terms of absolute
values of their control signals, being them way higher for the RV-SMC than for the CV-
SMC.

Figure 5.20: Control inputs for all the controllers.

Finally, for the sliding mode controllers, both components of the sliding surface are repre-
sented in Figures 5.21 and 5.21.

Figure 5.21: Sliding surface for the RV-SMC.
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Figure 5.22: Sliding surface for the CV-SMC.

It can be seen how none of the SMCs lose the sliding condition during all the test. This
is an important fact to consider when comparing them with the behaviour of the linear
controllers, specially at t = 4.7 s, in which both SMCs are still able to track the target
position. A more detailed analysis of this test will be done in section 5.5, according to the
KPIs indicated previously.

Once the ideal behaviour has been simulated, the four test variants are presented. The
first one is the input disturbance test, in which the same disturbance torques than in
the regulation problem are implemented to the model. Figures 5.23 and 5.24 show the
TCP coordinates obtained for the first 7.5 seconds of the tracking test. It can be clearly
seen how the SMCs are robust to these disturbances added. For the PID controller, the
error increases significantly, specially to track the Y position. Finally, the SFC presents a
response between the two behaviours seen. The error is not as big as for the PID but it is
still higher than for the SMCs. Then, it can be said that the SMCs are the most robust
strategies in terms of overcome input disturbances.
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Figure 5.23: Horizontal position followed with each strategy with torque disturbance.

Figure 5.24: Vertical position followed with each strategy with torque disturbance.

The second test is for the parametric uncertainties. As it has been done in the regulation
analysis, the uncertainty is added in the masses and in the same amount. Figures 5.25
and 5.26 show the time response obtained during for this case. It can be noticed how the
error for the linear controllers is much higher than for the nonlinear controllers. Although
they remain stable during the simulation, the followed trajectory is not close to the target,
which can be seen specially for the Y position.
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Figure 5.25: Horizontal position followed with each strategy with parametric uncertainties.

Figure 5.26: Vertical position followed with each strategy with parametric uncertainties.

The third analysis done is to test the sensor noise sensitivity. The joint angle sensors
are modeled following the same white noise distribution presented previously. The time
response of the TCP coordinates obtained is represented in Figures 5.27 and 5.28, in where
it can be seen again the robustness of the two SMCs designed. On the other hand, the
SFC and the PID controllers have a bit of a higher error but they are able to achieve a
similar time response than for the ideal case. It can be said, then, that all four controllers
are robust to a random sensor noise.
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Figure 5.27: Horizontal position followed with each strategy adding sensor noise.

Figure 5.28: Vertical position followed with each strategy adding sensor noise.

The last test done consists of changing the initial coordinates of the planar manipulator.
The new starting position simulated is (x0, y0) = (−0.2639, 0.1225) m. Being these initial
conditions closer to the target position allow all the controllers to reach faster the desired
path and with lower overshoot errors for the case of the PID and SFC. However, for the
Y coordinate, the SFC present a high absolute error, most likely caused because of the
linearization done when designing the controller. The results obtained for this last scenario
are presented in Figures 5.29 and 5.30.
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Figure 5.29: Horizontal position followed for (x0, y0) = (−0.2639, 0.1225) m.

Figure 5.30: Vertical position followed for (x0, y0) = (−0.2639, 0.1225) m.

5.5 Controllers comparison

Once all the tests have been simulated, the controllers are compared between them ac-
cording to the KPIs defined previously. However, it is also important to consider some
qualitative concepts regarding each estimator and relative to some responses observed. Fi-
nally, it has been giving more importance to the tracking problem as the regulation can
be considered as an specific case of the tracking and allows and is a less generic solution.

5.5.1 Regulation analysis

The first test analyzed through the KPIs is the regulation problem. Figure 5.31 shows the
evolution through time of the average error obtained for each strategy. Although the linear
controllers are based on an approach around the working point, this is not a problem when
doing a regulation test, as the working point remains constant through the time. However,
it is also important to notice the high overshoot they presented during this test. In terms
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of absolute error, this does not look as a problem; however, normally this is not an ideal
behaviour in the robotic manipulators field.

Figure 5.31: Average error for an ideal regulation problem.

Both SMCs appear to have similar results. The difference between them can be more
easily compared with Figure 5.32, in which it can be seen the area of the infinity norm
of the errors. It can be seen how the RV-SMC has a slightly lower error than the CV-
SMC. However, this difference can be reduced when decreasing the step size defined for
the simulations. It can also be seen how for the SFC, this error keeps increasing with time.

Figure 5.32: Area of the average error for an ideal regulation problem.

The input required to achieve these results is also an important factor to take into account.
However, comparing the input signals for a SMC and a feedback controller is not consistent
when analyzing a regulation problem. By definition, the SMC input will always remain
switching whereas for the feedback controllers will reach a constant value. On the other
hand, the maximum value can be compared. Figure 5.33 shows the infinity norm of these
signals. This maximum input value is obtained for the SFC, being halved by the PID. The
SMC have some initial values of a tenth of both linear controllers.
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Figure 5.33: Results of ||u(t)||∞ for an ideal regulation problem.

In Figure 5.34, the area of these values is represented. Comparing the SMCs, it is seen how
the CV-SMC presents a lower value than the RV-SMC. Regarding the linear controllers,
the SFC requires less effort than the PID controller to achieve the desired response.

Figure 5.34: Area of ||u(t)||∞ for an ideal regulation problem.

Regarding the test variations done for the regulation problem, some relevant conclusions
can be extracted without the need of analyzing these KPIs. First of all, the SMCs present
the most robust behaviour of all the controllers studied. On the other hand, it can be said
that all the controllers are robust to sensor noise sensitivity, although the error for the
linear controllers increases, specially for the PID. Finally, in terms of adding parametric
uncertainties or input disturbances, the PID controller is not able to reach the desired
value. The SFC has less error than the PID but it does not completely reach the target.
Then, both linear controllers are not robust against disturbances and model uncertainty,
as it could be expected because of the feedback linearization procedure needed to design
them.
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5.5.2 Tracking analysis

The results obtained for the tracking problem are also analyzed through the KPIs proposed.
The tracking problem is considered to be more significant than the regulation as it is a
more generic test.

Figure 5.35 shows the time evolution of the average of the errors. It can also be seen
the existence of the high overshoot needed for the linear controllers. One important thing
to notice here is the increase of the error at time t = 4.7 s, specially for the SFC. As it
has been commented previously, this happens when it is close to a singular configuration.
However, the controller is still able to overcome this problem and keep tracking properly
the position.

Figure 5.35: Average error for an ideal tracking problem.

To get a better understanding of these errors, their area is represented in Figure 5.36. It
can be seen how the CV-SMC begins with a higher error than the other strategies but,
once it has reached the target value, it is able to track the position with an error almost
null. All the other controllers have a higher error during the test, specially for the PID
controller. Then, the most adequate response here is accomplished by the CV-SMC, as
the tracking error once it has reached the target is lower than for the other controllers.

Figure 5.36: Area of the average error for an ideal tracking problem.

As it has been done previously, the input signals are analyzed in Figure 5.37. Comparing
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the SMCs, it is clear that the CV-SMC is able to get a better result (lower error) with less
control effort. Regarding the linear controllers, the PID presents a higher value than the
SFC.

Figure 5.37: Results of ||u(t)||∞ for an ideal tracking problem.

The integral of these infinite norms is also represented in Figure 5.38. Both behaviours
mentioned are also noticeable in this image.

Figure 5.38: Area of ||u(t)||∞ for an ideal tracking problem.

The KPIs have also been analyzed for the test’s variants. The average of the errors and
its area are summarized in Figures 5.39 and 5.40. The same behaviour as before can be
seen, as the CV-SMC presents the lowest error once it has reached the target position.
From here, it is clear that the linear controllers are not able to track the desired position
properly with disturbances and without the adequate knowledge of the system (parametric
uncertainties), specially the PID controller. The SFC has also a bad behaviour when adding
sensor noise to the system. To sum up, in terms of the average error, the CV-SMC is the
most suitable solution of the ones presented.
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Figure 5.39: Average error for the tracking problem variants.

Figure 5.40: Area of the average error for the tracking problem variants.

On the other hand, although the differences between the test variants and the ideal be-
haviour is not that significant for the control inputs, the results obtained are also presented.
Figures 5.41 and 5.42 show the infinite norm of the control signal for the linear controllers
and SMCs, respectively. The highest values remain in all situations for the RV-SMC and
the PID.
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Figure 5.41: Results of ||u(t)||∞ for the tracking problem variants.

Figure 5.42: Results of ||u(t)||∞ for the tracking problem variants.

The area of the infinite norm of the inputs can be analyzed in Figures 5.43 and 5.44. Apart
from the conclusions extracted previously, it is noticeable how the PID has an increasing
rate higher when adding white noise to the sensor.
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Figure 5.43: Area of ||u(t)||∞ for the tracking problem variants.

Figure 5.44: Area of ||u(t)||∞ for the tracking problem variants.

To sum up, a brief summary of all the conclusions extracted from this comparison is
presented. Regarding the regulation problem, it has been seen how for an ideal behaviour,
all the controllers are able to reach the desired position and maintain that value through
time. However, it is worth noting that, in order to reach a fast response, the linear
controllers present a significant overshoot. Moreover, when adding input disturbances and
parametric uncertainties, both SFC and PID are no longer able to reach the target. This
is due to the necessity of knowing the model when applying a feedback linearization and
because they have been designed around the working point. Regarding the noise sensitivity,
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all of them have a proper performance, being better for the SMCs. Finally, the difference
between the CV-SMC and the RV-SMC is low in the regulation problem.

On the other hand, in the tracking analysis it has been clearly seen how the most adequate
response is accomplished with the CV-SMC. Although in terms of the error, both SMC
present a similar response, the control action needed for the RV-SMC is way higher than
the one required for the CV-SMC. In this test, the linear controllers present a highest error,
specially for the variant test. It can be said that none of the linear solutions are robust to
disturbances and model uncertainty. Finally, it is also important to mention how the SFC
is so sensitive to positions near a singular position, where it loses controllability.

To sum up, it can be seen how the new control strategy presented (CV-SMC), presents a
proper behaviour in this robotic application field. It can be said that it has some significant
benefits compared to the linear approaches in terms of robustness and tracking problems
and assures an adequate error in any problem of the ones simulated in this work. Moreover,
it is worth noting how this alternative allows to reduce the states of the problem, as it is
able to merge two of them using the complex domain.

5.6 Summary

In this chapter, all the controllers proposed have been simulated for two different main
tests (regulation and tracking) to analyze their response according to some KPIs. More-
over, some test variant has been introduced to check their robustness against disturbances,
parametric uncertainties and sensor noise. It has been concluded that the CV-SMC pre-
sented has some interesting benefits compared to the other controllers, specially against
the linear solutions introduced.
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Economic analysis

This chapter presents an economical analysis and the budget of this project. The work
carried out is an analysis and design of a complex-valued sliding mode controller of a 2-link
planar manipulator based on Matlab and Simulink. It is a work that can be defined as
developing of control algorithms and simulation, and for this reason, all the topics outside
this scope or future works to be done will not be considered in the economical analysis.
Finally, the cost corresponding to external expenses such as the space and energetic con-
sumption (light or water) used during the project will not be included in the economical
study. The budget is broken down into parts in Tables 6.1 and 6.2, which correspond to
the personal cost and material cost, respectively. It is also important to add some com-
ments when analyzing the economical expenses of the project: the cost referred to software
(Table 6.2) is null because of the student status licenses and that a future work related
with controlling a robotic manipulator with one of the strategies presented in the project
would require less hours of learning and previous research (being their cost lower than the
one presented here).

Table 6.1: Economical analysis of the different tasks of the project.

Personal costs Hours spent Cost per hour Total [e]

Research 240 25 6000

Kinematic and dynamic modeling 24 25 600

Design and tuning parameters for the SFC 40 25 1000

Design and tuning parameters for the PID 25 25 625

Design and tuning parameters for the RV-SMC 60 25 1500

Design and tuning parameters for the CV-SMC 140 25 3500

Controllers simulation and comparison 40 25 1000

Total 569 - 14225
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Table 6.2: Economical analysis of the material and software required for the project.

Material costs Cost per unit Total [e]

Matlab student license - 0

Computer cost 800 800

Total - 800

Then, the total budget of the project is 15025e.
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Environmental impact

Evaluating the environmental impact is always a necessary and important topic in any
project. However, the work exposed during this work is the design and simulation of a
control algorithm for a robotic manipulator. For this reason, the environmental analysis is
not considered as it is a purely software based project and does not have any direct impact.

The most important aspect related to the environmental footprint would be the one pro-
duced by the robotic manipulator itself. Without considering the manufacturing process,
the main energy consumption would be the electrical power required to do its tasks. Al-
though this value can be directly related to the actuators’ torques and hence, the controller
could have an impact on this analysis, it is considered beyond the scope of the project. In
the same direction, it is worth mentioning that the consume of electrical energy needed to
develop and simulate the algorithms (mainly due to the computer) could also be studied,
but it will not be considered as it is an indirect minor impact.
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Social impact and gender equality

In this chapter, the social impact of this work is analyzed. The project presented is a
software work in which a new controller approach is designed and simulated to see its
benefits and drawbacks. Being a project only based on software and simulation, it can be
said that the social impact does not apply. On one hand, the performance and efficiency of
this new control algorithm does not have any direct social consequence, and neither does
its design and simulation. Moreover, it is a new strategy to be implemented in a robotic
manipulator in the future, which will not make any significant impact on any social aspect.
Then, it can be said that there is not a gender equality and social impact to be analyzed.
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Chapter 9

Conclusions

All the work done during the realisation of this project and the accomplishment of the
objectives defined are analyzed in this chapter, including its main contribution and the
possibilities of future work from now on. Then, the conclusions are divided in three sections:
Main contribution, conclusions on the project and further work and proposals.

9.1 Main Contribution

As mentioned in Chapter 1, this work is an introduction of a new approach, consisting of
a complex-valued sliding mode controller, in the robotics field to see the possible benefits
and drawbacks of this solution. This project introduces this strategy successfully and
shows that it is a solution that can bring some benefits when having a tracking problem
for manipulators. It is an alternative that reduces the state-space (by merging two states
in the complex domain) and presents a lower error than the current solutions in terms of
simulation.

It also gives a basis on this technique for any robotic application, specially for those that
combine different spatial states (as it could be the position (x, y) of a planar manipulator)
and other interesting areas that use an extension of complex numbers such as quaternions.
From this work, this control strategy can be extended to different robotic areas to explore
new control alternatives and techniques, for example, the ones based on quaternions.

9.2 Conclusions on the project

The main objective of this thesis has been accomplished as a 2-link planar manipulator
has been designed and it has been successfully analyzed and compared with some other
existing solutions. It has been modeled with a nonlinear dynamic model and a complex-
valued forward kinematics model of its TCP.

Three more controllers, using different control strategies, have been designed to use them
as a comparison reference for the new CV-SMC proposed. Defining some KPIs and the
tests that should be used, the main controller has been simulated and compared, obtaining
the most robust performance of all the alternatives for the tracking analysis. It assures
convergence in a finite time and is able to track the target position with the lowest error
from all the alternatives. Regarding the regulation problem, the CV-SMC presents a similar
response as the RV-SMC. Although in ideal conditions, the PID and SFC look a suitable
option, when adding disturbances, uncertainties and sensor noise they are no longer able
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to achieve the same performance as the sliding mode controllers.

On the other hand, the CV-SMC presents some other benefits that the other controllers
do not have. First of all, it is a nonlinear controller that merges two states into a single
one and does not need a precise knowledge of the system. Secondly, it does not require of
any direct inverse kinematic calculations, as it is able compute the position from the joint
state through the complex domain. Finally, it has also been seen how the control action
needed to achieve the desired response is significantly lower than for the standard SMC.

9.3 Further work and proposals

This work leaves some aspects to be done in the future, starting from the implementation of
the algorithm in a manipulator. The controller should be integrated, tuned and validated
to obtain the best performance possible. A more detailed study with real application can
also be done to see the real impact and behaviour of this strategy and compare it with the
simulation results presented in this work.

This work also proposes to extend this control strategy to other applications in robotics
such as the ones mentioned previously. It could be interesting to design a complex-valued
sliding mode controller using quaternions as states variables to describe systems and ro-
tations in the three-dimensional space or extend the problem presented in this project for
robots with higher DOF.
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