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Summary

We propose a new framework for fracture mechanics, based on the idea of an
approximate fracture geometry representation combined with approximate interface
conditions. Our approach evolves from the shifted interface method, and introduces
the concept of an approximate fracture surface composed of the full edges/faces of
an underlying grid that are geometrically close to the true fracture geometry. The
original interface conditions are then modified on the surrogate fracture geometry,
by way of Taylor expansions. The shifted fracture method does not require cut cell
computations or complex data structures, since the behavior of the true fracture is
mimicked with standard integrals on the approximate fracture surface. Furthermore,
the energetics of the true fracture are represented within the accuracy of the underly-
ing polynomial finite element approximation and independently of the grid topology.
The computational framework is presented here in its generality and then applied
in the specific context of cohesive zone models, with an extensive set of numerical
experiments in two and three dimensions.
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1 INTRODUCTION AND OVERVIEW

This work presents the Shifted Fracture Method (SFM) as a new computational framework for fracture mechanics. The SFM is
based on the idea of approximating the fracture interface conditions on an approximate fracture geometry (the surrogate fracture)
that coincides with the edges/faces of the grid that are closest, in some sense, to the true fracture geometry.
The term “shifted” in the name of the method derives from the fact that the fracture conditions are modified (shifted, in

fact) in both location and value with the purpose of mimicking the true fracture interface conditions on the true geometry of
the fracture. It is important to realize that shifting only the location of the interface conditions would produce a computational
method analogous to the node-release technique1–4, with the consequent drawback of mesh dependency of the numerical results.
Instead, by shifting also the value of the fracture interface conditions, the SFM is not affected by such mesh dependencies,

and its variational formulation automatically incorporates the projection of the surrogate surface area onto the true surface area,
which is instrumental in the representation of the correct energy released by the fracture.
In order to put into perspective the SFM, we attempt to present a brief - and certainly not comprehensive - account of the earlier

and most recent contributions to computational fracture mechanics. Some of the earliest computational strategies to simulate
fracture propagation problems involve the node-release technique1–4 and the element deletion approach4. In the node release
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technique, the fracture is numerically represented by duplicating displacement degrees-of-freedom along the edges/faces of the
computational grid in two/three dimensions, and applying appropriate cohesive zone models on the numerical crack faces. The
propagation of the fracture cannot then follow an arbitrary direction, but must follow along the edges/faces of the computational
grid. With this strategy, the surface area of the fracture is incorrectly captured, and consequently, large errors in fracture release
energy may occur. To correct these issues, adaptive mesh refinement can be used to allow the grid to align with the theoretical
direction of propagation of the fracture, and alleviate the problem of incorrect fracture surface representations. The drawback
of these techniques is the added complexities of managing remeshing data structures as the fracture propagates and the need to
transfer information from the old mesh to the new mesh at each adaptive refinement.
More recently, Lew and collaborators developed the Universal Meshes algorithm5,6, in which a base computational grid is

locally adapted as the fracture propagates through the domain. This approach avoids mesh dependencies by mesh adaptation,
and has been implemented also in the context of higher-order discretizations7,8.
Mesh dependencies in the behavior of the fracture are also observedwhen considering element-deletion techniques4, andmore

generally fracture damage modeling techniques9,10. There, a damage model is introduced to reduce the stiffness of elements that
lie in proximity of a fracture. In their simplest implementation in conjunctionwith piecewise-linear finite element approximations
of the displacements, also element damage models do not correctly capture the energy released in the fracture11–13. Part of the
limitations of element deletion techniques is due to the piecewise-constant approximation of the stresses (or strains), which is not
sufficient to prevent large mesh dependencies in the numerical solution. In a recent development, the authors of14–21 proposed
a new breed of damage models based on mixed formulations of the equations of elasticity, which allow higher-order stresses
approximations and avoid the mesh dependencies of earlier contributions. The numerical results are certainly promising and
somewhat “resuscitate” methods that have in the simplicity of implementation their strong point.
Over the past two decades, the computational fracture mechanics community explored ideas aimed at circumventing the limi-

tation of node-release techniques. The literature is vast, and a full account is possibly beyond the scope of this work. Nonetheless,
it is important to mention a number of essential contributions.
By relating the loss of ellipticity of the partial differential equations governing the classical continuum model to the develop-

ment of strong discontinuities, Simo et al.22 proposed a general localized failure framework that was later expanded by Armero
and Garikipati23.
Embedded Finite Element Methods (EFEMs) were proposed by several groups23–30, and rely on the idea of augmenting

the finite element shape functions with appropriate enrichments that can be used to approximate the kinematics of the crack.
These methods are typically distinguished in approaches with strong discontinuities (introducing displacement jumps)23,25–29,31
or with weak discontinuity (introducing strain jumps)24,30,32. The latter approach is more applicable in the case in which an
obvious jump in strains occurs, such as in shear bands of metals and soils. Weak enrichment EFEMs enrich the strains with
incompatible modes, and result in non-conforming finite elements, in which, typically, the surface of the fracture is approximated
as a globally discontinuous geometric object. Weak enrichment EFEMs typically require a length scale parameter to define the
width of the strain jump and as yet have been unable to overcome mesh dependencies33. In strong enrichment EFEMs, by means
of appropriately constructed enhanced shape functions, elements can properly capture the highly localized modes that prelude
failure. Recent developments in this area are found in34–38.
Later, the eXtended FEM (or XFEM)39–41 and the Generalized FEM (GFEM)42–45 were introduced to have a more general

description of the kinematic fields in proximity of the fracture, allowing the enrichments to be much more general than in the
earlier EFEM. From a general perspective, XFEMs/GFEMs can be considered as Partition of Unity FEMs46,47, in which the
standard finite element basis is locally enriched to represent the displacement and stress fields in close proximity of the fracture.
A large body of literature has since been developed, and here we would like to point out the contributions in the realm of
cohesive-zone models48–50, which are the focus of the present work.
On a completely different area of development, new damagemodels were developed using variational principles to control and

drive the evolution of cracks. These approaches follow under the name of gradient damage models51–53, phase-field models54–57,
and have provided very important tools to numerically simulate crack nucleation, branching and merging. These methods are
based on a diffuse representation of the fracture, and the introduction of a damage variable that controls the evolution of fractures.
By relying on gradient information, phase-field and gradient damage models are intrinsically nonlocal models, although they
rely on a classical partial differential equation description of the fields representing the fracture process. For this reason, they are
simpler to implement than nonlocal damage models of the integral type58,59, as they do not require the computation of a nonlocal
state variable as the weighted average of a local state variable in a neighborhood of each point of the computational domain.
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An alternative nonlocal approach to fracture is Peridynamics (PD)60–64, in which the equations of continua are reformulated
as an integro-differential equation. At the price of an increased computational cost, PD offers a more general and comprehensive
approach to fracture, and has found various implementations, including meshfree/meshless algorithms65, which had already
been proposed as a tool to study crack propagation problems66–68. PD shares with phase-field algorithms the ability to more
easily attack crack branching and nucleation, although the technical reasons are different.
We would like now to make a few comments on two of the approaches to fracture mentioned above, namely XFEM and phase-

field models. As previously mentioned, The XFEM represents the fracture as a sharp interface that can cut across finite elements,
and obviates to the severe grid-dependence issues associated with earlier models. It is however of difficult implementation in
three-dimensions, since it requires special data structures and special integration procedures that are hard to implement. At the
same time the numerical stability and the algebraic system of equations associated with XFEM variational formulation may be
affected by the presence of small-cut elements, and a number of stabilization approaches have been proposed69–73.
Phase-field models, instead, resort to an energetic principle for the characterization of the numerical fracture, and are of easier

implementation in the three-dimensional case. However, they introduce a diffuse representation of the fracture itself, and they
may be, for this reason, less efficient in the numerical representation of the fracture away from the crack tip. In addition, the
location of the crack is not directly given in a phase-field model, but this might be important in studying problems in which
other physics are coupled to the propagation of fracture, such as the case of fractured porous media with flow coupling, etc. An
approach that blends a phase-field model and a sharp crack representation was presented in74–76.
The SFM approach described here evolves from the Shifted InterfaceMethod77,78, an approximate domain approach, in which

interfaces are approximated by the set of closest edges on the grid, and interface conditions are appropriately modified (shifted),
using Taylor expansions, to achieve a prescribed level of accuracy. In this work, we describe how these ideas can be used in
general, and more specifically in the context of cohesive zone models. The description of the crack relies on the definition
of a distance (vector) between the location of the true crack (or a sufficiently accurate estimate of it), and the location of the
surrogate crack. The SFM does not require cut cell computations or complex data structures, since the behavior of the true
fracture is mimicked with standard integrals on the approximate fracture, which preserves the energetics of the true fracture to a
high degree of accuracy. In fact, the SFM adopts the same integration quadratures and data structures utilized in common node-
release techniques. In this sense, the SFM stands as an interesting alternative to both node-release techniques and XFEM/GFEM
approaches, in that it has the computational data structure of a node-release technique but the accuracy of a XFEM/GFEM.
This article is organized as follows: Section 2 describes the classical framework of cohesive zone models and its variational

formulation for an XFEM/GFEM approach; Section 3 presents the formalism of the SFM, a general mixed displacement-strain
SFM variational formulation, and a simplified version of the same with computational cost comparable to the standard primal
displacement formulation; Section 4 describes the details of the SFM implementation from the point of view of nonlinear
solution methods and crack propagation strategies; and a comprehensive suite of two- and three-dimensional tests are presented
in Section 5.

2 A COHESIVE APPROACH TO FRACTURE PROPAGATION

In this work we consider fracture propagation problems in linearly elastic solids under the assumption that a cohesive law governs
the Fracture Process Zone (FPZ). This scenario is typical of cases in which linear elastic fracture mechanics (LEFM) is not
applicable, that is when the FPZ at the crack tip is not small compared to the size of the crack and the size of the specimen79.
Cohesive laws have been pioneered in the works of Dugdale80, Barenblatt81 and Hillerborg82, and rely on traction-displacement
relations on the portion of the crack faces inside the FPZ to propagate fractures.
Geometrically, a fracture can be described as an embedded interface as depicted in Figure 1. There, Ω is a connected open

set in ℝd with Lipschitz boundary )Ω (where d = 2, 3 indicates the number of spatial dimensions), Γc is the fracture interface,
Γcoℎ is the cohesive zone (the part of Γc where cohesive tractions are different from zero), and A is the crack tip.

2.1 A mixed form of the equations of elasticity
The equations of linear isotropic elastostatics describe the deformation of a solid medium under prescribed external loading. In
what follows, we will consider a mixed formulation in terms of displacement and strain variables, since this approach guarantees
the possibility of imposition of Dirichlet, Neumann and fracture interface conditions using the shifted boundary approach83.
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FIGURE 1 The (true) fracture path Γc , the cohesive zone Γcoℎ, and the fracture tip A. A zoomed view in the vicinity of the
crack tip is presented on the right.

Consider the following displacement/strain mixed form of the linear elastostatics equations:

0 = b + ∇ ⋅ �(") , (1a)
" = ∇su . (1b)

Here, b is a body force,∇ and∇⋅ are the gradient and divergence operators, respectively, � is the stress tensor, and " is the strain
tensor defined as the symmetric gradient of the displacement field u, namely ∇su = 1∕2

(

∇u + ∇tu
)

, where (⋅)t is the transpose
(or adjoint) operator. For elastic materials, the underlying stress-strain constitutive law is

�(") = C " , (2)

where C = [Cijkl] is the fourth-order elastic stiffness tensor. For isotropic materials, C collapses to

Cijkl = ��ij�kl + �(�ik�jl + �il�jk) . (3)

Here � and � are the Lamé coefficients, which are related to the Young’s modulus E, the Poisson ratio �, the bulk modulus �,
and the shear modulus G by:

� = E�
(1 + �)(1 − 2�)

, � = G = E
2(1 + �)

, � = � + 2�∕3 . (4)

Under these hypotheses, (2) reduces to
�(") = � tr(")I + 2� " , (5)

where tr(") is the trace of the strain tensor " ("kk in the Einstein repeated index notation). Assuming that the boundary Γ = )Ω
is partitioned as ΓD ∪ ΓN with ΓD ∩ ΓN = ∅, displacement boundary conditions

u
|ΓD = uD(x) (6a)

are enforced on ΓD and traction boundary conditions

�(")n
|ΓN = (C ")n|ΓN = tN (x) (6b)

are enforced on ΓN , where tN is the normal traction and n is the outward-pointing normal to the boundary ΓN .

2.2 A Cohesive Zone Model
We consider a cohesive zone model that is commonly adopted in many computational approaches to fracture mechanics (see,
e.g.,48 for its application in the XFEM). In particular, we consider a generalized approach that encompasses Mode I and Mode II
fracture propagation by means of a constitutive relation between an equivalent traction and an equivalent fracture opening3,84–88.
The discussion that follows should not be considered as restricted to the particular cohesive zone model chosen, but can easily
be generalized to virtually any cohesive zone model.
Consider the crack faces (i.e., the opposite surfaces of the crack on Γc shown in the right panel of Figure 1) and their respective

normals n+ and n−, such that n+ = −n− = n. A cohesive zone model relies on the definition of cohesive tractions t+ and t−
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FIGURE 2 The cohesive law teq(weq).

on the faces of the crack inside the cohesive zone Γcoℎ. Outside the cohesive zone, that is over the set Γc ⧵ Γcoℎ, the cohesive
tractions take the zero value. Hence, the cohesive zone model enforces the traction boundary condition

t = tcoℎ(w) on Γc , (7)
with tcoℎ = 0 on Γc ⧵ Γcoℎ, where the crack opening w = w(u) along Γc is defined as

w(u) = u− − u+ = [[u]] , (8)

in which [[�]] = �− − �+ is the jump function. Note that the cohesive tractions must equilibrate, that is

t ≡ t+ = �(")+ ⋅n+ = −�(")− ⋅n− = −t− on Γc . (9)

The traction tcoℎ can be decomposed into a normal and tangential component, namely

tcoℎ = tnn + ts� , (10a)
tn = tcoℎ ⋅ n , (10b)
ts = tcoℎ ⋅ � , (10c)

where tn is the component of the traction normal to the fracture surface and ts is the component of the traction tangent to
the fracture (the sliding component, along a unit vector � that is given as a linear combination of the unit vectors � i, for i =
1,… , d − 1). Similarly, the crack opening w(u) can be decomposed as

w(u) = wnn +ws� , (11a)
wn = w(u) ⋅ n , (11b)
ws = w(u) ⋅ � . (11c)

In the generalized cohesive models described in86–88, an equivalent crack opening weq is introduced, and defined as

weq =
√

w2
n + �2w2

s , (12)

where � is a model parameter. The normal and sliding component of the traction are then expressed as

tn = teq(weq)
wn

weq
, (13a)

ts = �2 teq(weq)
ws

weq
, (13b)

where these expressions are motivated by considerations on the energetic consistency of the constitutive model. The complete
specification of the cohesive zone model involves the definition of the function teq(weq), which in our case is given as87,88

teq(weq) =

⎧

⎪

⎨

⎪

⎩

tcr − Tweq for 0 < weq = w⋆ < wcr , ẇ⋆ > 0 ,
t⋆
w⋆ weq , for 0 ≤ weq < w⋆ < wcr , ẇ⋆ = 0 ,

0 , for weq ≥ wcr ,

(13c)
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and is graphically depicted in Figure 2. The extent of the cohesive zone is implicitly defined by way of a critical crack opening
parameter wcr, used in the definition of the cohesive traction tcoℎ. The interpretation of the cohesive law function teq(weq) is
as follows: the traction force follows a rigid response until the value tcr is reached (the vertical segment from the origin to the
point (0, tcr) in Fig. 2), at which point the crack faces are allowed to separate (weq > 0) and the cohesive traction follows the
line tcr − Tweq (i.e., the cohesive branch). Note also that T = tcr∕wcr > 0 is the magnitude of the (negative) slope of the linear
profile of the cohesive traction law and that, by definition, teq(weq) ≥ 0, which implies that the cohesive traction acts to close
the fracture opening. In particular, the state w ≥ wcr, for which teq(weq) = 0, corresponds to points on Γc ⧵ Γcoℎ. Hence, the
range of values 0 < w < wcr, for which teq(weq) > 0, implicitly defines Γcoℎ. In the case in which unloading occurs in the
cohesive zone, a history variablew⋆ tracks the largest (equivalent) crack opening achieved at a point on the crack surface, and the
unloading/reloading occurs along the line (t⋆∕w⋆)weq , which is also called the unloading/reloading branch (see again Fig. 2).
The boundary value problem associated with crack propagation involves the solution of (1) under the elastic constitutive

law (2), the (outer) boundary conditions (6) and the fracture interface conditions (7). We also define the fracture energy

GF =

wcr

∫
0

teq(weq) dw , (14)

which collapses to GF = tcrwcr∕2 for the model at hand.

Remark 1. A well-known drawback of the model presented here is its inability to prevent the interpenetration of the crack faces
(i.e., a negative crack openingw). Hence, the reader should not take this model too literally, but consider it instead as an example
in the much broader realm of application of the shifted fracture approach.

Remark 2. Note that, for some cohesive zone models, the cohesive zone Γcoℎ extends over the entire crack surface Γc , that is
Γc ⧵Γcoℎ = ∅. This is the case, for example, when the cohesive law has an exponential scaling, that is teq(weq) = tcre−weq∕wcr . The
discussion that follows on the shifted fracture approach can easily be adapted to this case, and other variations on this theme.

2.3 Variational equations
Throughout the rest of the exposition, we will use the Sobolev spaces Hm(Ω) = W m,2(Ω) of index of regularity m ≥ 0 and
index of summability 2, equipped with the (scaled) norm

‖v‖Hm(Ω) =

(

‖v‖2L2(Ω) +
m
∑

k=1
‖l(Ω)kDkv‖2L2(Ω)

)1∕2

, (15)

where Dk is the kth-order spatial derivative operator and l(A) = (meas(A))1∕d is a characteristic length of the domain A. Note
that H0(Ω) = L2(Ω). As usual, we use a simplified notation for norms and semi-norms, i.e., we set ‖v‖m;Ω = ‖v‖Hm(Ω) and
|v|k;Ω = ‖Dkv‖0;Ω = ‖Dkv‖L2(Ω). In the sequel, (u, v)! = ∫! u v d! denotes the L2 inner product on a subset ! ⊂ Ω and
⟨u, v⟩� = ∫� u v d� denotes the L

2 inner product on the subset � ⊂ )Ω ∪ Γc .
We consider now a general variational formulation in the context of the infinite-dimensional solution spaces

Su(Ω ⧵ Γc) =
{

v ∈
(

H1(Ω ⧵ Γc)
)d ∶ v

|ΓD = uD
}

, (16a)

S"(Ω ⧵ Γc) =
(

H1(Ω ⧵ Γc)
)d×d , (16b)

Vu(Ω ⧵ Γc) =
{

v ∈
(

H1(Ω ⧵ Γc)
)d ∶ v

|ΓD = 0
}

, (16c)

V"(Ω ⧵ Γc) = S"(Ω ⧵ Γc) , (16d)

where Hk(Ω ⧵ Γc) is the Sobolev space of square-integrable functions with square-integrable weak derivatives up to order k,
except at the interface Γc , that is, on the open set Ω ⧵Γc . Here Su(Ω ⧵Γc) and S"(Ω ⧵Γc) are the set of functions that represent
the solution for displacements and strains, and Vu(Ω ⧵ Γc) and V"(Ω ⧵ Γc) are the corresponding test function spaces.
Multiplying (1a) and (1b) by � ∈ Vu(Ω ⧵ Γc) and  ∈ V"(Ω ⧵ Γc), we obtain

− (�,∇ ⋅ �("))Ω⧵Γc = (�, b)Ω⧵Γc , (17a)
( , ")Ω⧵Γc = ( ,∇

su)Ω⧵Γc . (17b)
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Equation (9) can be recast in a form of wider applicability when considering the variational statements associated with cohesive
zone models. Defining the �-weighted average {{�}}� = ��+ + (1 − �)�− of a quantity � for any � ∈ [0, 1], we can observe
that (9) implies two important identities, namely

[[�(")]]n = 0 and {{�(")}}�n = tcoℎ . (18)

Integrating by parts (17a) and accounting for the fact that the solution may not be smooth across Γc yields

(∇�,�("))Ω⧵Γc − ⟨�,�(")n⟩)Ω + ⟨[[�]], {{�(")}}�n⟩Γc + ⟨{{�}}1−�, [[�(")]]n⟩Γc = (�, b)Ω⧵Γc , (19)

where we have also used the identity [[�(")�]] = {{�(")}}�[[�]] + [[�(")]]{{�}}1−� on Γc .
Without loss of generality, we assume that the Dirichlet boundary conditions are enforced strongly, which implies that �

|ΓD =
0. Thus, applying the Dirichlet boundary conditions (6a), the Neumann boundary conditions (6b), the cohesive law (13) on Γc ,
and recalling (18), equation (19) can be recast as

(∇�,�("))Ω⧵Γc + ⟨[[�]], tcoℎ⟩Γc = (�, b)Ω⧵Γc + ⟨�, tN⟩ΓN . (20)

Combining equation (17b) with (20), we have the final weak form as:

(∇�,�("))Ω⧵Γc + ( , " − ∇
su)Ω⧵Γc + ⟨[[�]], tcoℎ⟩Γc − (�, b)Ω⧵Γc − ⟨�, tN⟩ΓN = 0 . (21)

Remark 3. (Euler-Lagrangian equations). Integrating (21) back by parts, we obtain

− (�,∇ ⋅ �("))Ω⧵Γc + ( , " − ∇
su)Ω⧵Γc − ⟨[[�]], {{�(")}}�n⟩Γc − ⟨{{�}}1−�, [[�(")]]n⟩Γc + ⟨[[�]], tcoℎ⟩Γc

− (�, b)Ω⧵Γc − ⟨�, tN⟩ΓN = 0 , (22)

which can be reformulated as

− (�,∇ ⋅ �(") + b)Ω⧵Γc + ( , " − ∇
su)Ω⧵Γc − ⟨{{�}}1−�, [[�(")]]n⟩Γc − ⟨[[�]], {{�(")}}�n − tcoℎ⟩Γc

+ ⟨�,�(")n − tN⟩ΓN = 0 , (23)

and corresponds to

−∇ ⋅ � − b = 0 , in Ω ⧵ Γc , (24a)
" − ∇su = 0 , in Ω ⧵ Γc , (24b)
�n − tN = 0 , on ΓN , (24c)

{{�}}�n − tcoℎ = 0 , on Γc , (24d)
[[�]]n = 0 , on Γc , (24e)

which enforce the governing equations (1), the (outer) traction boundary conditions (6b), the fracture interface conditions (7)
and stress equilibration condition (9).

Γc
A

Γ̃c

Ã

Γc

A

Γ̃c
Ã

d

d

FIGURE 3 The fracture path Γc , the surrogate fracture path Γ̃c , and the distance vector d at two locations along Γ̃c .
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3 THE SHIFTED FRACTURE APPROACH

3.1 The true crack, the surrogate crack and maps
Consider a family Tℎ of admissible and shape-regular triangulations ofΩ, and assume that each triangulation is cut by the crack
Γc , depicted as a blue curve in Figure 3.
The key idea in the Shifted Fracture Method is to shift the location where the fracture cohesive conditions are applied from the

true location of the fracture Γc to a surrogate location Γ̃c , represented by the red segmented curve in Figure 3, and to appropriately
modify the interface conditions.
There are many ways to define the surrogate fracture. One way is to consider the edges (or faces) in Tℎ that are the closest to

Γc in the sense of the closest point projection. We now define a mapping

Mℎ ∶ Γ̃c → Γc , (25a)
x̃ → x , (25b)

using the closest point projection (see89,90 for more details).Mℎ associates to any point x̃ ∈ Γ̃c on the surrogate crack a point
x =Mℎ(x̃) on the physical crack Γc and a corresponding distance vector function dMℎ

, defined as

dMℎ
(x̃) = x − x̃ = [M − I ](x̃) . (26)

For the sake of simplicity, we set d = dMℎ
where d = ‖d‖� and � is a unit vector.

Remark 4. An alternative way of defining the mapMℎ, and correspondingly the distance vector d, is a level set description of
the true crack, in which d is defined by means of a distance function.

3.2 General strategy to shift cohesive zone conditions
The goal now is to discretize the linear elasticity equations (1a)–(1b) on Ω with outer boundary conditions (6a)–(6b) on Γ, and
to modify the fracture interface conditions (24d)–(24e) so that they are applied on Γ̃c rather than Γc .
To this end, inspired by the ideas introduced in78,91, a first-order Taylor expansion of u and C " is performed at the surrogate

crack Γ̃c , in order to “shift” (24d) – (24e) from Γc to Γ̃c (see for reference Figure 3). Thus,

ŭ(x̃) ∶= u(Mℎ(x̃)) = u(x̃) + (∇ud)(x̃) +Ru(x̃) , on Γ̃c , (27a)

�̆(x̃) ∶= �(Mℎ(x̃)) = �(x̃) + (∇� d)(x̃) +R�(x̃) , on Γ̃c , (27b)

where we have defined the extension functions ŭ(x̃) ∶= u(Mℎ(x̃)) and �̆(x̃) ∶= �(Mℎ(x̃)), and the remainders Ru and R�
satisfy

‖Ru(x̃)‖ = o(‖d‖) and ‖R�(x̃)‖ = o(‖d‖) as ‖d ‖ → 0 . (28)

Neglecting the remainders Ru and R� , we have the approximation on Γ̃c
ŭ(x̃) ≈ S(u)(x̃) , (29a)

�̆(x̃) ≈ S(�)(x̃) , (29b)

where we have introduced the shift operators:

S(u)(x̃) ∶= u(x̃) + (∇ud)(x̃) , (30a)

S(�)(x̃) ∶= �(x̃) + (∇� d)(x̃) . (30b)

Our goal is to enforce the cohesive zone model on the surrogate cohesive crack Γ̃c rather than on the true cohesive crack Γc
(see again Figure 3). In order to maintain an optimal accuracy and avoid mesh dependencies, the cohesive zone model (7) also
needs to be adapted appropriately. In particular, (7) can be used to express t̆ in terms of ŭ as

t̆ = �̆n̆ = tcoℎ(w(ŭ)) , on Γ̃c , (31a)

where n̆(x̃) ∶= n(Mℎ(x̃)). Approximating �̆n̆ ≈ S(�)n̆ andw(ŭ) ≈ w(S(u)), we obtain the shifting of the cohesive zonemodel:

S(�)n̆ ≈ tcoℎ(w(S(u)) , on Γ̃c . (31b)
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In the next section we proceed to describe a viable variational discretization of the shifted cohesive zone model.

Remark 5. The proposed approach is based on the validity of the Taylor expansion, which is a reasonable assumption in the
context of cohesive zone models. In fact, cohesive zone models are designed to prevent the stress to become unbounded as the
grid is refined. Note also that the finite element approximation of gradient quantities typically occurs from below, that is the
stresses computed on coarse grids are typically lower than the true gradients. The combination of these two aspects offers a
sufficient level of robustness in practical engineering computations for the algorithm to be detailed in what follows.

Remark 6. In principle, the Taylor expansion is not the only tool that can be used to shift the fracture conditions from Γc to Γ̃c .
Hence, depending on which shift operator is used, the approach described above defines a family of computational methods. In
this sense, the Shifted Fracture Method can be interpreted as a framework, more than a single computational method.

3.3 Shifted variational equations
The first step in the derivation of variational equations is the definition of S ℎ

u (Ω ⧵ Γ̃c) and S ℎ
" (Ω ⧵ Γ̃c), the discrete spaces of

functions used to approximate the displacement u and the strain ":

S ℎ
u (Ω ⧵ Γ̃c) = {v ∈ (C0(Ω ⧵ Γ̃c))d ∶ v

|ΓD = uD , v ∣T∈ (P
1(T ))d , ∀T ∈ Tℎ} , (32a)

S ℎ
" (Ω ⧵ Γ̃c) = {! ∈ (C0(Ω ⧵ Γ̃c))d×d ∶ ! ∣T∈ (P1(T ))d×d ,! = !t, ∀T ∈ Tℎ} , (32b)

whereP1(T ) is the space of linear polynomial functions over the element T . Essentially,S ℎ
u (Ω⧵ Γ̃c) andS ℎ

" (Ω⧵ Γ̃c) are spaces
of vector and symmetric tensor functions that are piecewise-linear and continuous everywhere except across the interface Γ̃c ,
and are compatible with boundary conditions on )Ω ⧵ Γc . Analogously, we can define the test function spaces

V ℎ
u (Ω ⧵ Γ̃c) = {v ∈ (C0(Ω ⧵ Γ̃c))d ∶ v

|ΓD = 0 , v ∣T∈ (P1(T ))d , ∀T ∈ Tℎ} , (32c)
V ℎ
" (Ω ⧵ Γ̃c) = S ℎ

" (Ω ⧵ Γ̃c) . (32d)

Instead of (17a), let us test the strong equations against V ℎ
u (Ω ⧵ Γ̃c) and V ℎ

" (Ω ⧵ Γ̃c), namely

− (�,∇ ⋅ �("))Ω⧵Γ̃c = (�, b)Ω⧵Γ̃c , (33a)
( , ")Ω⧵Γ̃c = ( ,∇

su)Ω⧵Γ̃c , (33b)

where now the numerical solution may not be smooth across Γ̃c . Integrating by parts (33a) and (33b) yields

(∇�,�("))Ω⧵Γ̃c + ⟨[[�]], {{�(")}}�ñ⟩Γ̃c + ⟨{{�}}1−�, [[�(")]]ñ⟩Γ̃c = (�, b)Ω⧵Γ̃c + ⟨�, tN⟩ΓN , (34)

where the two faces of the crack Γ̃c are Γ̃+c , with outer normal ñ+, and Γ̃−c , with outer normal ñ−. We also define ñ = ñ+.
We can now consider the terms {{�(")}}�ñ and [[�(")]]ñ in (34), and express them in terms of shifted fracture interface

conditions. Starting from the term {{�(")}}�ñ, we have

{{�(")}}�ñ = {{�(")}}�((ñ ⋅ n)n + (ñ ⋅ �)�)
= (ñ(x̃) ⋅ n̆(x̃)) {{�("(x̃))}}� n̆(x̃) + (ñ(x̃) ⋅ �̆(x̃)) {{�("(x̃))}}� �̆(x̃) . (35)

Observing that {{�("(x̃))}}� n̆(x̃) = {{� n̆}}� = {{(�̆ −∇� d) n̆}}� = {{t̆− (∇� d) n̆}}� = t̆−{{(∇� d)}}� n̆, since t̆(x̃) and n̆(x̃) are
uniquely defined on Γ̃c , and applying the Taylor expansion (27b), we obtain

{{�(")}}�ñ = (ñ ⋅ n̆) ( t̆ − {{(∇�(")d)}}� n̆ ) + (ñ ⋅ �̆) {{�(")}}� �̆ , on Γ̃c . (36)

Hence, using (24d), (24e), (31a) and (31b),

⟨[[�]], {{�(")}}�ñ⟩Γ̃c = ⟨[[�]], (ñ ⋅ n̆) ( t̆ − {{(∇�(")d)}}� n̆ ) + (ñ ⋅ �̆) {{�(")}}� �̆⟩Γ̃c
= ⟨[[�]], (ñ ⋅ n̆) tcoℎ(w(u + ∇ud))⟩Γ̃c − ⟨[[�]], (ñ ⋅ n̆) ( {{(∇�(")d)}}� n̆ ) − (ñ ⋅ �̆) {{�(")}}� �̆⟩Γ̃c
= ⟨[[�]], (ñ ⋅ n̆) tcoℎ(w(u + ∇ud))⟩Γ̃c + ⟨[[�]], {{�(")}}�ñ − {{�(") + ∇�(")d}}�(ñ ⋅ n̆)n̆⟩Γ̃c , (37)

where we have used again the decomposition of the normal ñ in terms of its components along n̆ and �̆ . Similarly, applying to
the term ⟨{{�}}1−�, [[�(")]]ñ⟩Γ̃c the first of (18), that is [[�̆(")]] n̆ = 0, yields

⟨{{�}}1−�, [[�(")]]ñ⟩Γ̃c = ⟨{{�}}1−� , (ñ ⋅ n̆) [[�̆(") − ∇�(")d]] n̆ + (ñ ⋅ �̆) [[�(")]] �̆⟩Γ̃c
= ⟨{{�}}1−� , − (ñ ⋅ n̆) [[∇�(")d]] n̆ + (ñ ⋅ �̆) [[�(")]] �̆⟩Γ̃c
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= ⟨{{�}}1−� , [[�(")]]ñ − (ñ ⋅ n̆) [[�(") + ∇�(")d]] n̆⟩Γ̃c . (38)

Substituting (37) and (38) into (34) and including the strain equation, we obtain

(∇�,�("))Ω⧵Γ̃c + ( , " − ∇
su)Ω⧵Γ̃c + ⟨[[�]], (ñ ⋅ n) tcoℎ(w(u + ∇ud))⟩Γ̃c + ⟨[[�]], {{�(")}}�ñ − {{�(") + ∇�(")d}}�(ñ ⋅ n)n⟩Γ̃c

+ ⟨{{�}}1−� , [[�(")]]ñ − (ñ ⋅ n) [[�(") + ∇�(")d]]n⟩Γ̃c − (�, b)Ω⧵Γ̃c − ⟨�, tN⟩ΓN = 0 , (39)

where we have omitted the symbol ̆(⋅) over n, for the sake of simplicity, and it is understood that all the fracture interface
integrals are taken over Γ̃c . In what follows, we will omit ̆(⋅) over n whenever it does not cause confusion. We then obtain the
final variational problem

Find [u, "] ∈ S ℎ
u (Ω ⧵ Γ̃c) ×S ℎ

" (Ω ⧵ Γ̃c) such that, ∀[�, ] ∈ V ℎ
u (Ω ⧵ Γ̃c) × V ℎ

" (Ω ⧵ Γ̃c) ,

B
[Ω⧵Γ̃c ]
SFM ([u, "]; [�, ]) −L

[Ω⧵Γ̃c ]
SFM ([�, ]) = ⟨�, tN⟩ΓN , (40a)

where

B
[Ω⧵Γ̃c ]
SFM ([u, "]; [�, ]) −L

[Ω⧵Γ̃c ]
SFM ([�, ]) − (�, b)Ω⧵Γ̃c = (∇�,�("))Ω⧵Γ̃c + ( , " − ∇

su)Ω⧵Γ̃c
+ ⟨[[�]], tcoℎ(w(S(u))⟩Γ̃c
+ ⟨[[�]], {{�(")}}�ñ − {{S(�("))}}�(ñ ⋅ n)n⟩Γ̃c
+ ⟨{{�}}1−� , [[�(")]]ñ − (ñ ⋅ n) [[S(�("))]]n⟩Γ̃c . (40b)

Remark 7. The reason why we have left the term ⟨�, tN⟩ΓN out of the bilinear form will be apparent in Section 3.6, and we ask
the reader to be patient in the meantime.

3.4 Shifted Euler-Lagrangian equations
Integrating the first term of equation (39) by parts and accounting for potential discontinuities across the surrogate cohesive
crack Γ̃c , we have

(�,−∇ ⋅ �(") − b)Ω⧵Γ̃c − ⟨{{�}}1−�, [[�(")]]ñ⟩Γ̃c − ⟨[[�]], {{�(")}}�ñ⟩Γ̃c + ( , " − ∇
su)Ω⧵Γ̃c + ⟨�,�(")n − tN⟩ΓN

+ ⟨[[�]], (ñ ⋅ n) tcoℎ(w(u + ∇ud)) ⟩Γ̃c + ⟨[[�]], {{�(")}}�ñ − {{�(") + ∇�(")d}}�(ñ ⋅ n)n⟩Γ̃c
+ ⟨{{�}}1−� , [[�(")]]ñ − (ñ ⋅ n) [[�(") + ∇�(")d]]n⟩Γ̃c = 0 , (41)

which, after simplifying some boundary terms, yields

(�,−∇ ⋅ �(") − b)Ω⧵Γ̃c + ( , " − ∇
su)Ω⧵Γ̃c + ⟨�,�(")n − tN⟩ΓN

− ⟨[[�]], (ñ ⋅ n) ({{�(") + ∇�(")d}}�n − tcoℎ(w(u + ∇ud))) ⟩Γ̃c − ⟨{{�}}1−� , (ñ ⋅ n) [[�(") + ∇�(")d]]n⟩Γ̃c = 0 , (42)

and corresponds to

−∇ ⋅ � − b = 0 , in Ω ⧵ Γ̃c , (43a)
" − ∇su = 0 , in Ω ⧵ Γ̃c , (43b)
�n − tN = 0 , on ΓN , (43c)

(ñ ⋅ n)
(

{{S(�("))}}�n − tcoℎ(w(S(u))
)

= 0 , on Γ̃c , (43d)
(ñ ⋅ n) [[S(�("))]]n = 0 , on Γ̃c , (43e)

where the first three equalities are the enforcement of the balance of forces, the definition of the strain, and the traction boundary
conditions, while the last two conditions are associated with the crack interface. In particular, (43d) enforces the cohesive law -
approximated by the Taylor expansion and (43e) enforces the continuity of the normal component of the stress - again with the
Taylor approximation - along all of Γ̃c .

Remark 8. Role of (ñ ⋅n) in (43). The residuals (43d)–(43e) are multiplied by the weight (ñ ⋅n), which represents the projection
of the curve/surface measure of the edges/faces in Γ̃c onto Γc , in the two/three-dimensional case, respectively. This area cor-
rection term is essential for the correct computation of the work associated with the crack cohesive forces, and to avoid severe
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mesh dependencies in numerical computations. This is to say that the virtual work statement associated with (43d)–(43e) is
automatically self-correcting for the effective true crack surface area. Instead, when node release techniques over the edges/faces
of the grid are combined with cohesive zone models, the discrete crack area and associated virtual work statement are grossly
inaccurate and induce severe mesh dependencies. We will return to this point when discussing, later on, the numerical results.

3.5 A stabilized Shifted Fracture Method
If equal-order piecewise linear interpolation is used for both variables u and ", the overall finite element formulation is not
numerically stable. It is however possible to stabilize the formulation (40a) by adding appropriate variational multiscale sta-
bilization terms proposed in92–94. In these works, sub-grid components of the solution expressed by means of the residual of
the discrete equations were used to enhance numerical stability. In the present work, the following modified form of the mixed
system (40a) is used:

B
[Ω⧵Γ̃c ]
SFM ([u, "]; [�, ]) −L

[Ω⧵Γ̃c ]
SFM ([�, ]) + (∇ ⋅ �( ), �uℎ2∕2�(∇ ⋅ �(") + b))Ω⧵Γ̃c

−( − ∇s�, 2��"(" − ∇su))Ω⧵Γ̃c = ⟨�, tN⟩ΓN , (44)

where the parameters �" = 0.5 and �u = 10 are chosen for all computations shown in Section 5. The choice of �" and �u
was already explored in92,93 for the Darcy flow operator, with an analysis of stability and convergence. The same choice of
stabilization was made when adopting the Shifted Boundary Method for immersed solid mechanics computations83, and was
mathematically proved stable and accurate.

Γ̃l

Γc
A

Γ̃c

Ã

d

l

FIGURE 4 The true crack Γc (blue), the surrogate crack Γ̃c (red), and the boundary Γ̃L (orange) of the layer of elements.

3.6 An efficient numerical implementation: the shifted fracture layer
The SFM described so far relies on a mixed displacements/strains formulation, which could be undesirable, due to the increase
in degrees of freedom and thus the associated computational cost. At the same time, a primal formulation with piecewise-
linear interpolation of u would lead to a first-order accurate method, because the cohesive traction conditions are akin to Robin
conditions and the SFM would then require second-order derivatives of the displacement field. In fact, replacing " = ∇su in the
stress definition leads to ∇(�(∇su)) = 0, in the case of piecewise linear interpolation.
This section introduces a strategy that significantly reduces the computational burden of solving the mixed system without

reducing the accuracy of the displacement solution u. This approach was proposed by Atallah et al.83 and successfully tested
for Dirichlet and Neumann conditions in linear elasticity.
Recalling the definitions of Γ̃c in Section 3.1, we define Ω̃l as the set of elements T ∈ Tℎ with at least one node on Γ̃c∪B(Ã, l)

(here B(Ã, l) is the ball of center Ã and radius l), that is,

Ω̃l = {∪T∈Tℎ
T ∶ T ∩ (Γ̃c ∪ B(Ã, l)) ≠ ∅} . (45)
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The set Ω̃l can be described as the set of elements that are neighboring the surrogate crack surface, augmented by a cluster of
elements around the tip of the surrogate crack, as shown in Figure 4. The radius l of the ball B(Ã, l) is chosen to scale like the
mesh size ℎ, and typically l ∈ [2ℎ, 3ℎ]. More details on the choice of l are included in Section 4.1.1. Observe that the boundary
of Ω̃l may include a portion of the boundaries ΓD and ΓN . Consider now the variational formulation:

Find [u, "] ∈ Vu,ℎ(Ω) × V",ℎ(Ω̃l) such that, ∀[�, ] ∈ Vu,ℎ(Ω) × V",ℎ(Ω̃l) ,

BSFM([u, "]; [�, ]) = LSFM([�, ]) , (46a)

where

BSFM([u, "]; [�, ]) = (C∇su,∇s�)Ω⧵Ω̃l +B
[Ω̃l⧵Γ̃c ]
SFM ([u, "]; [�, ]) , (46b)

LSFM([�, ]) = (�, b)Ω⧵Ω̃l + ⟨�, tN⟩ΓN +L
[Ω̃l⧵Γ̃c ]
SFM ([�, ]) . (46c)

This variational formulation is a combination of a standard primal formulation for the displacement unknown u, and the mixed
formulation (40) described in Section 3.3, but this time restricted to the domain Ω̃l ⧵ Γ̃c . Using integration by parts, it is possible
to recover the following Euler-Lagrange equations. Here we focus on their restriction to Ω ⧵ Ω̃l and its boundaries:

−∇ ⋅ �(∇su) = b , in Ω ⧵ Ω̃l , (47a)
�(∇su+)n+ + �(")− n− = 0 , on Γ̃l , (47b)

(C∇su)n = tN , on ΓN ∩ )(Ω ⧵ Ω̃l) , (47c)

where the "+" and "−" signs refer to the primal (Ω ⧵ Ω̃l) and mixed (Ω̃l) sides of the domain, respectively. Equation (47b)
enforces continuity of the normal component of the stress across the interface Γ̃l . Note that the discrete displacement u is by
definition continuous over all of Ω ⧵ Γ̃c .

Remark 9. The formulation (46) requires to solve the irreducible primal formulation over the major portion of the domain,
Ω ⧵ Ω̃l , and to restrict the mixed variational formulation only on a small layer of elements Ω̃l near the surrogate fracture Γ̃c .
In this context, the mixed formulation (40) described in Section 3.3 can be interpreted as a gradient reconstruction technique,
built to ensure optimal error convergence for the SFM.

Remark 10. In the case in which multiple cracks are present with multiple (possibly overlapping) regions Ω ⧵ Ω̃il , the proposed
efficient implementation would still be applicable and effective, since it would amount to use the mixed formulation on the union
⋃

i
(

Ω ⧵ Ω̃il
)

, and the primal formulation elsewhere.

4 IMPLEMENTATION OF THE SHIFTED FRACTURE METHOD

In this section, we discuss in detail the implementation of the SFM, which has computational complexity similar to a node
release technique2–4.
The propagation of the fracture is tracked by an iterative algorithm, which requires at every step the choice of a direction of

propagation and an increment of crack length. The selection of the propagation direction is detailed in Section 4.1, the crack
propagation algorithms and data structures are described in Section 4.2, and the crack length increments are chosen via the
arc-length control strategy described in Section 4.3.

4.1 Selection of the crack propagation direction
The SFM is not tied to any particular strategy for selecting the fracture propagation direction and we describe next two pos-
sibilities, which will be tested and compared in the numerical experiments: 1) the maximal principal tensile stress criterion,
described in Section 4.1.1, and 2) the stress intensity factor (SIF) criterion, described in Section 4.1.2.

4.1.1 Maximal principal stress criterion
The maximal principal stress criterion (e.g., see49,95 and references therein) is based on the idea of propagating the crack tip
along a plane orthogonal to the maximal principal stress. This approach has the advantage of simplicity, although it might not
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q1 r1

q2
r2

FIGURE 5 Estimation of the principal stresses at the tip of the true crack: The quadrature points used for the averaging of �Ã
and ∇�Ã.

always be sufficiently accurate. This is especially the case for curved cracks propagating in geometries with corners41,88, as
confirmed by the numerical tests of Section 5.1.2. In the three-dimensional case, the implementation of the maximal principal
stress criterion is, in general, simpler than the implementation of stress intensity factor criterion, and for this reason is preferred
in the present work, although we stress it is not the only option for the SFM.
Because at the crack tip the stresses are typically less accurate, it is common practice to take a weighted average of the stresses

in a neighborhood of the crack tip95. In the context of the SFM, this strategy needs to be appropriately shifted to the surrogate
crack. The principal stresses are computed using an eigenvalue/eigenvector decomposition of the stress tensor �(A) at the true
crack tip A, which is in turn estimated using a Taylor expansion centered at the surrogate tip Ã, namely,

�(A) = ⟨�⟩Ã + ⟨∇�⟩Ãd . (48)

Here, ⟨�⟩Ã and ⟨∇�⟩Ã are the weighted averages of the stress and stress gradient around the surrogate tip Ã. For a scalar a, the
operator ⟨⋅⟩Ã is defined as in49, that is,

⟨a⟩Ã =
∫B(Ã,l)∩Ω wa dΩ

∫B(Ã,l)∩Ω w dΩ
, (49)

where B(Ã, l) ∩ Ω is the ball of center Ã and radius l and

w = e−
r2

2l2

(2�)3∕2l3
, (50)

with r = r(y) = |y − Ã| the Euclidean distance from the surrogate crack tip. Note that w is a Gaussian function centered at Ã
and l determines how fast the weight function decays from the crack tip. Figure 5 shows the set B(Ã, l) used in the definition
of the weighted average operator. For example, in Figure 5, the quadrature point q1 is used to compute (49), while q2 is not, as
it lies outside of the ball B(Ã, l). In all numerical tests presented in Section 5, we take l = 2.5ℎ.

Remark 11. Since a cohesive zone model is utilized in this work, the magnitude of the stress gradients becomes correlated with
the cohesive length, which does not change as the grid is refined. Hence, as the grid resolution is increased, stress gradients
are approximated with increasing accuracy. Overall, this approach proved robust and accurate in the representation of the crack
curvature.

4.1.2 Stress intensity factor (SIF) criterion
The stress intensity factor criterion is computationally more involved than the maximum principal stress criterion, but certainly
offers many advantages. First and foremost, accuracy: since the SIFs are integral quantities, they converge with a much higher
rate than the stress for a given discretization41,88. In addition, when shear effects are important in the development of cracks, the
SIF approach is significantly superior.
Here we follow the approach proposed by Unger et al.88, which avoids the computation of interaction integrals by linking the

analytic representation of the near-tip displacement field for a traction-free crack surface to the stress intensity factors through
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FIGURE 6 Displacement components around the crack tip in a polar coordinate system, and quadrature sampling points.

the formula

uI (r, �) = KI
1
2�

√

r
2�

cos
(�
2

) [

� − 1 + 2 sin2
(�
2

)]

+KII
1
2�

√

r
2�

sin
(�
2

) [

� + 1 + 2 cos2
(�
2

)]

, (51a)

uII (r, �) = KI
1
2�

√

r
2�

sin
(�
2

) [

� + 1 − 2 cos2
(�
2

)]

−KII
1
2�

√

r
2�

cos
(�
2

) [

� − 1 − 2 sin2
(�
2

)]

, (51b)

where r and � are polar coordinates (see Fig. 6), � = 3−�
1+�

for plane stress, � = 3 − 4� for plane strain and � = E
2(1+�)

. As shown
in Figure 6, the polar coordinate system is aligned with the crack direction at the true tip A. Looking at Figure 6, consider now
the first two fractured edges on the surrogate fracture Γ̃c and their projections BA and CB onto the (estimated) true fracture Γc .
Consider also the quadrature points q1, q2, q3 or q4 associated to BA and CB, where the displacement components uI and uII
satisfy equation (51b) with � = � or −� representing the opposite faces of the crack. Then, at each quadrature point, KI

KII
= uII

uI
,

and a more reliable mean value can be obtained averaging over the four quadrature points (eight samples in total, since two crack
faces lie at every quadrature point). The crack direction is associated with the maximum circumferential (hoop) tensile stress
and can be computed using the formula

tan
(�c
2

)

= 1
4
KI

KII
± 1
4

√

(

KI

KII

)

+ 8 , (52)

where the sign is chosen so that the hoop stress �n =
1
2
(�I,I + �II,II ) +

1
2
(�I,I − �II,II ) cos(2�c) + �I,II sin(2�c) is maximal.

4.2 Crack propagation algorithms and data structures
The typical SFM algorithms and data structures required to propagate the fracture in two and three dimensions are not much
different from the data structures required in a node-release technique3. A detailed presentation is outlined next. We start with
the two-dimensional case, since it is more intuitive, and then explain how the key procedures and data structures need to be
modified in the three-dimensional case.

4.2.1 Two-dimensional case
In the two-dimensional case, once a direction of propagation for the (true) fracture has been found (with the methods described
in Section 4.1), the idea is to propagate the surrogate fracture Γ̃c and to track the location of the estimated true crack tip using the
distance vector d, as shown in Figure 7. This leads to a pseudo-loading step, in which the topology of the fracture is updated.
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(a) (b) (c)

FIGURE 7 SFM strategy for the propagation of a two-dimensional fracture.

Algorithm 1 Topological update of the fracture in two dimensions.

1: initialization (n = 0): set the initial surrogate crack tip Ã0 (as the closest boundary node to the true tip A0)
2: loop over n (fracture topology step)
3: Compute the weighted stress at the true tip �(An) = ⟨�⟩Ãn + ⟨∇�⟩Ãnd using (48), (49) and (50)
4: Compute the maximum tensile principal stress �p associated with �(An)
5: if �p > tcr
6: Define the ball B(Ãn, r) = {x ∈ ℝ2 ∶ ‖x − Ãn‖ < r} with radius r = �pℎ
7: Compute the fracture propagation direction at An (unit vector ec) using either:
8: ∙ the maximum tensile principal stress criterion (Section 4.1.1), or
9: ∙ the SIF criterion (Section 4.1.2)
10: initialization: iterate (i) = 0 and Ã(0)n+1 = Ãn

11: while Ã(i)n+1 ∈ B(Ãn, r) loop over the iterate (i)
12: Define N (Ã(i)n+1) as the set of nodes that are connected to Ã

(i)
n+1 by an edge

13: loop over every node N̄∗ ∈ N (Ã(i)n+1)
14: Set e(N̄∗) as the oriented edge connecting Ã(i)n+1 and N̄

∗ ∈ N (Ã(i)n+1), that is e(N̄
∗) = Ã(i)n+1N̄

∗

15: if ec ⋅ e(N̄
∗) > 0

16: Compute the distance d(N̄∗) from N̄∗ to the half-line emanating from An in the direction ec (see Fig. 7b)
17: Add N̄∗ to the set N +(Ã(i)n+1) = {M

∗ ∈ N (Ã(i)n+1) ∶ ec ⋅ e(M
∗) > 0}

18: end if
19: end loop over N (Ã(i)n+1)
20: SelectN∗ = argminN̄∗∈N +(Ã(i)n+1)

d(N̄∗)
21: Add the edge e(N∗) to the surrogate fracture Γ̃c
22: Update Ã(i+1)n+1 = N∗

23: end while loop over iterate (i)
24: end if
25: Apply arc-length Algorithm 3 to solve the nonlinear system of equations
26: end loop over n
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(a) The propagator node G. (b) The ball B(G, r) centered at G.

(c) The face GBC is added to Γ̃c to prevent holes. (d) Propagation continues inside B(G, r).

FIGURE 8 The three-dimensional propagation of the crack surface from a propagator node G.

Due to the very general topology that the computational grid can assume, and similar to XFEMs/GFEMs48 and node-release
techniques3, it is not always feasible for the SFM algorithm to precisely enforce that only one new surrogate edge is released at
every incremental update of the fracture topology.
Our approach, similar to XFEMs/GFEMs, is to allow multiple edges of Γ̃c to release, as long as they are contained in or

intersect the ball (or disk) B(Ã, r), centered at the surrogate tip Ã and of radius r, shown in Figure 7a. Specifically, we take
r = �pℎ with �p = 2.5, that is, we allow about three surrogate edges at a time to release, as shown in Figure 7c. In some sense,
the parameter �p relates to the arc-length parameter Δl discussed in Section 4.3, to which the reader is referred for a thorough
discussion.
An additional requirement is that the surrogate fracture must propagate forward, that is, as shown in Figure 7b, that the inner

product of the unit vector ec (aligned in the fracture propagation direction) and the unit vector e(N∗) (aligned from the current
surrogate tip Ã to the candidate new tip location N∗) be positive and of minimal in magnitude. For example, looking again
at Figure 7b, the edge ÃN∗ (associated with the nodes Ã and N∗) is allowed as a candidate to propagate the fracture, while
edge ÃN ′ is disallowed. The edge ÃN∗ is eventually chosen since the inner product ec ⋅ e(N∗) is minimal among all the edges
connected to the surrogate tip Ã. The specific details of the two-dimensional fracture propagation algorithm are presented in
Algorithm 1.
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(a) (b)

FIGURE 9 Strategy for forward-propagation of the three-dimensional surrogate crack surface. Given the edge e(G) connecting
the nodesG and S on the crack front 
̃c , consider the two faces attached to it, namely F0 (with nodesG, S, andM) and F (e(G))
(with nodesG, S, andN∗). Let Γ∗c be a candidate plane of propagation of the true crack andGp, Sp,Mp andN∗

p the projections
on Γ∗c of G, S,M andN∗, respectively. Let then PM and PN be the projections ofM andN∗ on the segment connecting Gp
and Sp. Only faces for which the inner product of PMMp ⋅ PNN∗

p < 0 are accepted as possible candidates on the updated
surrogate fracture Γ̃c . That is to say that the face F (e(G)) is accepted for a configuration as in Figure 9a and discarded for one
as in Figure 9b. Because of the basic space-filling features of three-dimensional grids, the forward propagation constraint will
always be satisfied by at least one candidate face. See for more details Algorithm 2.

Remark 12. The idea of “forward” propagation of the crack is purely spatial, in the sense that we select the edges of the surrogate
fracture surface to be the best approximate representation of the true fracture surface. In a number of preliminary tests not
reported here for the sake of brevity, the SFM proved to work also in the case of back-and-forth zig-zagging surrogate crack
patterns, thanks to the area correction associated with the term n ⋅ ñ. We prefer however to avoid this scenario, and for this
reason the condition of forward spatial crack propagation has been added. Note also that non-monotonic loading is possible for
the current cohesive zone model, which can be also be modified to incorporate contact in the case of full crack closure.

4.2.2 Three-dimensional case
The algorithm and data structures for the propagation of the three-dimensional fracture is more complex than in the
two-dimensional case, but still of similar complexity with respect to a three-dimensional node-release technique3. In the three-
dimensional case, the fracture is a front (a continuous, possibly non-smooth curve, in ℝ3) and enforcing continuity of the
surrogate (and true) fracture surface is more challenging. However, the geometric framework of the SFM, which is based on
the distance vector function d, offers many advantages over a XFEM/GFEM approach in this regard, because it is considerably
easier to manipulate distances than cuts/intersections, for the purpose of tracking the evolution of the fracture and enforcing con-
tinuity of the crack surface. For the SFM, in fact, the continuity property of the fracture surface is equivalent to the requirement
that the distance vector function d between Γ̃c and Γc is single valued.
The key idea in developing three-dimensional SFM data structures is to define a surrogate fracture front 
̃c ⊂ Γ̃c (see Fig. 8a)

and a propagation strategy for it. A node G ⊂ 
̃c for which the maximum principal tensile stress is above tcr (node release
condition) becomes a member of the set G
̃c of fracture propagators. Let B(G, r) be the ball of radius r = �pℎ (with �p ∼ 3)
centered atG ∈ G
̃c , and �(G) the plane orthogonal to the eigenvector ep(G) associated with the maximal tensile principal stress
at G. The union of these balls, {∪GB(G, r) ∶ G ∈ G
̃c}, defines an envelope region where the crack is allowed to propagate.
Inside each ball B(G, r), propagation will occur in a direction approximately aligned with the plane �(G), as shown next.
The algorithm loops over the propagators in the set G
̃c . Let G ∈ G
̃c be the first of such propagators in the loop, and consider

an oriented edge e(G) ⊂ 
̃c attached toG. In particular, there will be two such edges ifG is an internal node, or one such edge if
G is on the exterior boundary. We note that it is sufficient to pick one edge of this type, which always exists. Then, Γ̃c is updated
by adding to it a (triangular) face F (e(G)) of the grid that has two nodes on the edge e(G) and an additional node N∗ outside
e(G) (see Fig. 8b).
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Algorithm 2 Topological update of the fracture in three dimensions
1: initialization (n = 0): set the initial surrogate crack front 
̃c;0 (as the closest-point projection to the initial crack front 
c;0)
2: loop over n (fracture topology step)
3: Set N (
̃c) as the set of nodes on the crack front 
̃c (e.g., A ∈ N (
̃c) in Fig. 8a)
4: Initialize the set of fracture propagators G
̃c = ∅
5: loop over the nodesN i ∈ N (
̃c)
6: Compute the weighted average stress at the true tip �(N i) = ⟨�⟩N i

+ ⟨∇�⟩N i
d using (48), (49) and (50)

7: Compute the maximum tensile principal stress �p associated with �(N i) and associated unit eigenvector ep(N i)
8: if �p > tcr
9: AddN i to the set of fracture propagators G
̃c

10: Define the ball B(N i, r) = {x ∈ ℝ3 ∶ ‖x −N i‖ < r} with radius r = �pℎ (see Fig. 8b whereN i = G)
11: Compute the candidate fracture propagation plane �(N i) throughN i and orthogonal to ep(N i)
12: end if
13: end loop over N (
̃c)
14: loop over the propagators Gj ∈ G
̃c
15: initialization: iterate (k) = 0, 
̃ (0) = 
̃c and N (0) = {Gj}
16: while N (k) ≠ ∅ loop over the iterate k
17: Pick a nodeN ∈ N (k) and find an edge e(N) ⊂ 
̃ (k) attached to it
18: Set boolean fillGap = false
19: Set F (e(N)) as the set of triangular faces attached to e(N)
20: Set F+ = ∅ (set of forward propagating faces)
21: loop over F ∈ F (e(N))
22: Set N̄∗ as the vertex (node) of F opposite to e(N)
23: if N̄∗ ∈ 
̃kc
24: Set boolean fillGap = true.
25: Add F to the surrogate fracture surface Γ̃c (see Fig. 8c)
26: Update 
̃ (k+1)c
27: exit loop over F ∈ F (e(N)) and continue from line 40
28: else
29: if F satisfies the forward fracture propagation condition (see Fig. 9) then
30: Add F to F+

31: Compute the average distance ⟨d(N̄∗)⟩ to the planes �(G′) with G′ ∈ G (N∗)
32: end if
33: end if
34: end loop over F ∈ F (e(N))
35: if fillGap = false
36: Add F ∗ = argminF+⟨d(N̄∗)⟩ to the surrogate fracture Γ̃c (see Fig. 8d)
37: AddN∗ to N (k+1) (N∗ is the vertex of F ∗ opposite to e(N))
38: Update 
̃ (k+1)c : remove e(N) and add the two opposite edges of F ∗
39: end if
40: Update N (k+1): remove nodes that do not belong to 
̃ (k+1)c
41: end while loop over iterate (k)
42: Update 
̃c = 
̃ (k+1)c , and similarly for N (
̃c)
43: end loop over the propagators Gj ∈ G
̃c
44: Apply arc-length Algorithm 3 to solve the nonlinear system of equations
45: end loop over n
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The procedure to select F (e(G)) (i.e.N∗) is as follows: first, ifN∗ already belongs to 
̃c , the face F (e(G)) is added to Γ̃c , to
avoid the formation of spurious holes in Γ̃c (see Fig. 8b); otherwise, for every candidate face F (e(G)), the set G (N∗) = {G′ ∈
G
̃c ∶ N

∗ ∈ B(G′, r)} is defined as the set of propagators G′ that have N∗ contained inside B(G′, r); the average distance
⟨d(N∗)⟩ of N∗ from the planes �(G′) with G′ ∈ G (N∗) is computed; finally, the face F (e(G)) is chosen so that ⟨d(N∗)⟩ is
minimal, and ⟨d(N∗)⟩ is stored for the corresponding nodeN∗. Once a face is added to Γ̃c , the set 
̃c is updated, and propagation
of the crack continues from the new edges added to 
̃c . Eventually, the fracture propagation is completed inside the ball B(G, r)
associated with the propagator G, and can continue inside the balls B(G′, r) associated to the additional propagators G′ ∈ G
̃c ,
until it extends to the entire envelope {∪GB(G, r) ∶ G ∈ G
̃c}.
Note that, also in the three-dimensional case, the constraint of forward-propagation of the surrogate fracture is enforced,

following the approach described in Figure 9. Because of the basic space-filling features of three-dimensional grids, the forward
propagation constraint will always be satisfied by at least one candidate face.

Remark 13. In principle, the shape of the surrogate fracture surface may depend on the order with which the loop over the
propagators is performed, but in practice if sufficient mesh resolution is available, this is not the case.

Remark 14. The proposed strategy yields a continuous surrogate fracture surface without spurious holes.

The operations described above involve local grid operations, and parallel implementation comes with relative ease, if the set

̃c is available to all processors.
Of course, the proposed approach to propagate topologically the fracture is not the only choice, and alternative, more efficient

strategies can be considered. The key point here is that the propagation of the fracture, as in the two-dimensional case, occurs
on the surrogate fracture interface Γ̃c , and that, through the distance d, an estimate of the location of the true fracture surface Γc
is found.

4.3 A Newton-Raphson method with crack-opening arc-length control
The propagation of fractures in solids may induce global softening responses and snap-back patterns, as sketched in Figure 10a.
It is well-known that the Newton-Raphson method with displacement control cannot appropriately capture the unloading branch
of the force/displacement curve in a snap-back problem (the dashed line seen in Fig. 10b). Analogous issues are encountered
with a force control strategy, which only captures the response up to the peak load.

f

uf0

(a) An example of snap-back.

f

uf0

(b) Displacement control for a snap-back problem.

FIGURE 10 Snap-back example and limitation of the displacement control strategy for a Newton-Raphson method.

Arc-length methods96–98 offer considerable advantages for this class of problems, in terms of robustness and accuracy. In the
version of the arc-length method we propose, the control variable is tuned to scale with the crack openingweq(u). We start with
a classical estimate1,48 of the cohesive zone length lcoℎ, namely:

lcoℎ =
GFE

(1 − �2)t2cr
, (53)
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where GF is the fracture energy defined in (14). Observe that lcoℎ does not change through the fracture process. For a
characteristic mesh size ℎ, the total number of elements in the cohesive zone is given by

Ncoℎ = lcoℎ∕ℎ . (54)

The evolution of the fracture occurs in a number of (loading) steps. Each loading step extends the surrogate fracture by an
amount roughly corresponding to r = �pℎ, where ℎ is the mesh size and the quantity r has already been defined in Sections 4.2.1
and 4.2.2. Hence, the assumption that the fracture propagates approximately by an amount r leads to the estimate Δweq ≈
�pwcr∕Ncoℎ of the crack opening increment. In our computations, it was found beneficial to take a slightly more restrictive
constraint, that is:

Δweq =
�pwcr

2Ncoℎ
, (55)

which corresponds to allowing the fracture to propagate by r∕2 at each loading step.
Let QΓ̃coℎ denote the set of quadrature points q of position xq , for the edges/faces of the surrogate cohesive zone Γ̃coℎ. The

control parameterΔl in the arc-length method is defined as the norm of the vector of crack opening increments at the quadrature
points on the surrogate crack:

∑

q∈QΓ̃coℎ

(

Δweq(u(xq))
)2 = Δl2 (56a)

Δl2 = nqfNcoℎ

(�pwcr

2Ncoℎ

)2

= �2p nqf
ℎ (1 − �2)
E GF

(

tcrwcr

4

)2

= �2p nqf ℎ (1 − �
2)
GF
E

, (56b)

where nqf if the number of quadrature points per edge/face of the elements attached to the fracture surface (in two/three dimen-
sions, respectively). Note that equation (56a) is the constraint that characterizes the size of an increment in this crack-opening
arc-length control strategy, whereas equation (56b) is a mechanics-based expression for Δl obtained by combining equations
(53)–(55).
Consider now a discretization of the solution (in our case, by piecewise-linear approximating finite element spaces), so that

the unknown pair (u, ") is approximated in terms of the degrees-of-freedom pair (y, z), where y and z indicate arrays of degrees
of freedom. In particular, through the finite element shape functions, it holds the relation u(x) = u[y](x) and "(x) = "[z](x),
where we have made explicit the dependency of (u, ") on (y, z). Then the variational form (46) leads to an algebraic system

R((y, z); �) = Fint(y, z) − �Fext = 0 , (57)

where Fint(y, z) is associated with the internal mechanical forces, and Fext is a reference external load. The parameter � controls
the amount of load applied. We present next a strategy to relate the increment Δ� to Δl defined in (56), which in turns relates
Δ� with the fracture energy GF , the elasticity moduli E and G, and the grid spacing ℎ. In what follows, we will use the notation
x = (y, z). For a step n in the loading process, the system of equations (57) can be linearized about the iterate (i) as

0 = Fint(x(i)n ) +
[

)Fint(x)
)x

](i)

n
�x(i)n − (�

(i)
n + ��

(i)
n )Fext

= R
(

x(i)n ; �
(i)
n

)

+K(i)
n �x

(i)
n − ��

(i)
n Fext , (58)

where x(i)n = (y(i)n , z
(i)
n ) and K(i)

n =
[

)Fint(x)∕)x
](i)
n . The solution of (58) is

�x(i)n = �x(i)int;n + ��
(i)
n x(i)ext;n , (59)

where �x(i)int;n = −[K
(i)
n ]

−1 R
(

x(i)n ; �
(i)
n

)

and x(i)ext;n = [K
(i)
n ]

−1 Fext. Equation (58) needs to be solved at each iterate of the Newton-
Raphson procedure associated with a specific loading step n. The overall solution and load control parameter at step n and a
final iterate (I) can be expressed as

x(I)n = x0 +
n−1
∑

k=1
Δxk

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
xn−1

+
I
∑

i=1
�x(i)n

⏟⏟⏟
Δx(I)n

, (60a)

�(I)n = �0 +
n−1
∑

k=1
Δ�k

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
�n−1

+
I
∑

i=1
��(i)n

⏟⏟⏟
Δ�(I)n

, (60b)
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Algorithm 3 Arc-length method based on the crack opening control.

1: while ‖R(x(i)n ; �
(i)
n )‖ > "toll‖R(x

(0)
n ; �

(0)
n )‖ (with R(x); �) defined in (57))

2: Compute �x(i)int;n = −[K
(i)
n ]

−1 R
(

x(i)n ; �
(i)
n

)

and x(i)ext;n = [K
(i)
n ]

−1 Fext
3: Substitute �x(i)int;n and x(i)ext;n into (62) and find the two roots to the quadratic equation in ��(i)n
4: for each of the roots ��(i)n;1 and ��

(i)
n;2

5: Compute �x(i)n using (59)
6: Update the total increments Δx(i)n = Δx(i−1)n + �x(i)n
7: Compute Ξ[��(i)n ] = Δw

T
eq,n−1Δw

(i)
eq,n

8: end for
9: if max(Ξ[��(i)n;1],Ξ[��

(i)
n;2]) < 0 then

10: exit the while loop
11: return to line 1 and increase the arc-length radius Δl2 (to avoid the closing of the crack)
12: else
13: Set ��(i)n = argmax(Ξ[��(i)n;1],Ξ[��

(i)
n;2])

14: Update x(I)n and �(I)n using equations (60a) and (60b)
15: Update iterate (i)→ (i + 1)
16: Compute the residual R(x(i+1)n ; �(i+1)n ) in equation (57)
17: end if
18: end while

where x(0)n = xn−1 and �(0)n = �n−1. Then (56) can be used to define the arc-length control strategy

∑

q∈QΓ̃coℎ

(

weq

(

u[ y(i−1)n + �y(i)int;n + ��
(i)
n y(i)ext;n ](xq)

)

− weq
(

u[ yn−1 ](xq)
)

)2
= Δl2 , (61)

where (58) has been restricted to only the unknown y, with y(i−1)n + �y(i)int;n + ��
(i)
n y(i)ext;n = y(i)n . Equation (61) is a quadratic

equation in ��(i)n and can be recast as

a1
(

��(i)n
)2 + a2 ��(i)n + a3 = 0 , (62a)

with

a1 =
∑

q∈QΓ̃coℎ

weq

(

u[y(i)ext;n](xq)
)2

, (62b)

a2 = 2
∑

q∈QΓ̃coℎ

(

weq

(

u[ y(i−1)n + �y(i)int;n ](xq)
)

− weq
(

u[ yn−1 ](xq)
)

)

weq

(

u[y(i)ext;n](xq)
)

, (62c)

a3 =
∑

q∈QΓ̃coℎ

(

weq

(

u[ y(i−1)n + �y(i)int;n ](xq)
)

− weq
(

u[ yn−1 ](xq)
)

)2
− Δl2 . (62d)

The quadratic equation (62) has in general two roots, and we select the one that satisfies the condition

Ξ = ΔwT
eq,n−1(Δw

(i−1)
eq,n + �w

(i)
eq,n) = Δw

T
eq,n−1Δw

(i)
eq,n ≥ 0 , (63)

implying that the incrementΔweq,n−1 andΔw(i)
eq,n must be roughly pointing in the same direction. The overall arc-length strategy

is summarized in Algorithm 3

5 NUMERICAL RESULTS

A number of computational tests in two and three dimensions are presented, with comparison with classical benchmark tests in
the field.
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5.1 Two-dimensional tests
We consider here three classical examples that have been widely studied in the literature, both experimentally and numerically:
the three-point bending specimen test1,48,99, the L-shape panel test87,88,100 and the four-point bending specimen test48,99,101. The
first produces a straight crack path, while the other two produce curved crack paths. The tests are ordered so as to respect the
increasing complexity of the nonlinear snap-back response in the case of brittle materials. The plane strain assumption is adopted
for all two-dimensional numerical simulations.

F

l b

FIGURE 11 Geometry and setup of the three-point bending specimen.

5.1.1 Three-point bending specimen
The geometry of the three-point bending specimen is shown in Figure 11 and is constituted of a rectangular beam of height
b = 0.15 m, length l = 4b, and thickness s = b. The material properties are: E = 36.5 GPa, � = 0.1, tcr = 3.19 MPa, where
E is Young’s modulus, � is Poisson’s ratio and tcr is the normal critical stress. The load F is distributed over a strip of length
0.01 m, symmetric with respect to the midpoint of the beam. The beam is simply supported at both ends and the horizontal
displacement is prevented by the right support, as shown in Figure 11. The performance of the SFM is assessed for values of
the fracture energy GF = 5 N/m, GF = 50 N/m and GF = 200 N/m, which span from brittle to ductile fracture behavior.
Four computational grids (denoted Mesh 1, 2, 3 and 4) are used in the calculations, whose details are presented in Table 1.

Meshes 1, 2, 3, and 4 have an average mesh size ℎ = 5 mm, ℎ = 2.5 mm, ℎ = 1.25 mm and ℎ = 0.625 mm. Meshes 2, 3, and 4
are obtained by nested refinement of Mesh 1, and the sizes of the grids refer to a neighborhood of the crack path, since they are
slightly coarsened away from it.

Meshes Number of elements Number of nodes Average element size around crack path
Mesh 1 1,565 851 5 mm
Mesh 2 3,477 1,828 2.5 mm
Mesh 3 10,513 5,385 1.25 mm
Mesh 4 19,318 9,774 0.625 mm

TABLE 1Mesh properties for the three-point bending specimen.

As the load F increases, the bottom of the mid section is the location where the principal stress first reaches the normal critical
stress tcr, and a crack develops upward. Because of the symmetry of the problem, the crack path is vertical.
Figure 12a shows the non-dimensional load-deflection curves for both the fully mixed formulation described in Section 3

and the fracture layer approach described in Section 3.6. The fracture energy is GF = 5 N/m and induces a sharp snap-back
response. For both formulations, the load-deflection curves converge to the same limit after four levels of mesh refinement.
Since the fracture layer approach gives very similar results to the mixed variational formulation, we will only show results for
the former from now on. Figure 12b shows that the SFM solution converges to values in very good agreement with both the
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work of Carpinteri and Colombo1, which used adaptive mesh refinement in combination with a node release technique, and of
Moës and Belytschko48, which used the XFEM. Figure 13 shows the true/surrogate crack paths and the subdomains Ω̃l and
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(a) Comparison between the fully mixed formulation (40)
and fracture layer variational formulation (46).
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(b) Comparison of the fracture layer SFM formulation
against references.

FIGURE 12 SFM computations of the three-point bending test: Non-dimensional load-deflection curves for brittle response
(GF = 5 N/m).

Ω⧵Ω̃l for the fracture layer implementation of the SFM.We consider here different loading stages for Mesh 1 and againGF = 5
N/m. Note that, for the SFM, the true crack path is computed from the surrogate crack path using the distance vector d and the
maximal principal tensile stress criterion.

Remark 15. The SFM estimate of the true crack path is very accurate, considering that the computational grid is unstructured
and without symmetries. We believe this is due to the combination of the use of a cohesive zone model, which prevents gradients
to grow unbounded as the grid is refined, and the approximation properties of the Taylor expansion, which remain valid under
these conditions.

It is worthwhile at this point to compare the SFMwith the node-release technique (NRT), which in practice corresponds to the
case of a primal (displacement-based) variational formulation of the SFM with the distance vector enforced to be d = 0. Figure
14 shows a comparison of the numerical results obtained with the SFM and the NRT (the latter is clearly mesh dependent), for a
fracture energy GF = 5 N/m. For the NRT, the approximate crack path follows the edges of the grid, and the cohesive interface
conditions are imposed on the approximate crack (depicted in green in the two plots on the left of Figure 14). As already
mentioned, in the case of the SFM, the crack path is estimated from the surrogate crack path using the distance d, and this results
in a considerably more accurate result (marked in blue). For comparison, the black dashed line indicates the exact fracture path.
This difference in approximation has also very important consequences in the profiles of the non-dimensional load-deflection

curves, shown in the right panel of Figure 14. The NRT produces large oscillations in the load-deflection curves and a large
overshoot for the peak load, because the direction of propagation of the crack is highly influenced by the orientation of the
candidate edges. The edges in the crack path obtained with the NRT can easily form angles between 30◦ and 90◦ with respect
to the true crack direction. As a result, whether the crack propagation direction is chosen by way of stress intensity factors or
maximum (averaged) principal stresses, a much larger load is required to reach the critical value tcr on those edges. In this
way, both overshoot and oscillations can be observed in the load-deflection curves. Instead, for the SFM, the crack direction is
not tied to the edges’ orientation, and, as a consequence, we obtain very smooth load-deflection curves without overshoots or
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FIGURE 13 SFM computations of the three-point bending test: Crack path and layer at different stages of the fracture propa-
gation. Simulations are performed for a brittle material (GF = 5 N/m) and Mesh 1. The estimated true crack path is plotted in
blue and the shifted (surrogate) crack path is plotted in red for different loading stages. The estimated true crack path is obtained
by shifting the edges of the surrogate crack path by the distance vector d. The dark gray area represents Ω̃l , the layer where the
mixed SFM formulation is applied. A standard displacement-based primal formulation is applied elsewhere.
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FIGURE 14 Three-point bending specimen with fracture energy GF = 5 N/m. On the left, the crack path for the NRT (green)
and the SFM (blue) with fracture energy GF = 5 N/m on different meshes. The black dashed line shows the exact vertical crack
path. On the right, the non-dimensional load-deflection curves for the NRT (green curves) and the SFM (blue curves).

oscillations. Note also that the SFM produces a very good approximation to the overall fracture surface area, because of the area
correction factor n ⋅ ñ discussed in Remark 8 of Section 3.4.
The three-point bending specimen test can also be used to evaluate the accuracy of the SFM and NRT in estimating the

position of the crack path at various resolutions. A measure of the error in location of the surrogate crack and the exact crack
path is the shaded area shown on the left of Figure 15. An analogous definition would hold for the error between the estimated
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true crack path location and the exact crack path location. A definition that encompasses all these measures of error is

ep = ∫
Γp

|xe − xp| |np ⋅ ne| dΓp (64)

where Γp is a computed crack path, and xe and xp are the x-components of points xe and xp on the exact and computed crack
paths Γc;e and Γp, respectively. In the specific case of the SFM, (64) can be evaluated with Γp = Γ̃c , for the surrogate crack path,
or Γp = Γc , for the estimated true crack path. In the case of the NRT, instead, (64) can only be evaluated on Γp = Γ̃c;NRT, that is
a fracture path composed of full edges of the grid. Note that, in general, Γ̃c;NRT ≠ Γ̃c , because of the known mesh dependencies
in the selection of the fracture path in the NRT. See the left panel of Figure 15 for a visual depiction of the error ep, represented
as the shaded area between the surrogate and exact crack paths. Note also that in the case of the three-point bending specimen,
the exact crack path is vertical and ne = (1, 0).

Wed

f

uf0 u∗f

f ∗

FIGURE 15 On the left, the crack position error, depicted as the dark gray area between the surrogate crack path (red) and the
exact path (black). On the right, the work of external load in a load-displacement plot.

Another measure of the accuracy of the proposed approach is the error between the total dissipated fracture energy and the
total work of external loads. The work of an external load f that produces a cumulative displacement uf at its point of application
can be abstractly defined as

Wex =

uf

∫
0

f ⋅ du , (65)

where the case of a distributed load can be handled with slight modifications. In the case of the three-point bending specimen the
load is applied vertically but it is distributed over a small area, over which the work has to be integrated. Part of Wex is dissipated
by the crack and the other is stored as elastic energy in the domain. The dissipated energy by the crack can be computed as
Wed = ∫

u∗f
0 f ⋅ du − 1

2
u∗f ⋅ f

∗. Once the crack has completely separated the structural specimen, all the external work would be
dissipated by the crack, that is Wed = Wex. As shown in Figure 15, Wed is graphically depicted as the shaded area. The energy
dissipated by the crack can be calculated as the integral of the fracture energy over the surface of the crack. As shown in Figure
2, for a cohesive zone model, the dissipated energy by the crack is

Wcd = ∫
Γc

⎛

⎜

⎜

⎝

w∗

∫
0

tdw − 1
2
t∗w∗

⎞

⎟

⎟

⎠

dΓc . (66)

Similarly, when the crack is fully developed, Wcd = ∫Γc (∫
w
0 tdw)dΓc ≈ ∫Γ̃c GF |ñ ⋅ n| dΓ̃c . Then we can introduce

eW = |Wed −Wcd| , (67)

that is, the misfit between the fracture energy and the work of the external load(s).
Figure 16 shows the errors ep and eW for the three-point bending specimen test, comparing the SFM and NRT. The left panel

of the picture shows that the crack position error ep does not converge for the NRT, while it converges with first-order accuracy
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FIGURE 16 Three-point bending specimen: Convergence rate of the SFM and the NRT on crack position error ep and the error
in the fracture energy budget eW , for GF = 5 N/m.
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FIGURE 17 Non-dimensional load-deflection curves for the three-point bending test with fracture energy GF = 50 N/m and
GF = 200 N/m.

for the SFM. The right panel of the picture shows that while the NRT has a first-order converging eW , the SFM provides a
quadratic convergence for the same quantity.
For completeness, we show in Figure 17 the results from three-point bending specimen simulations with the SFM and higher

levels of fracture energy, which induce more ductile behavior. In particular, Figure 17 shows the non-dimensional load-deflection
curves with fracture energyGF = 50N/m andGF = 200N/m. Also in this case the SFM solutions agree closely with the classic
references1,48. Similar fracture energetic considerations apply in this case.
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FIGURE 18 Geometry and setup of the L-shape panel.

5.1.2 L-shape panel
In this second numerical example, a mixed-mode crack is investigated in an L-shape panel87,88,100. The geometry, loading and
boundary conditions are shown in Figure 18, where a = 0.25m, b = 0.22m and the thickness t = 0.1m. The material properties
are Young’s modulus E = 20 GPa, Poisson’s ratio � = 0.18, fracture energy GF = 100 N/m, normal critical stress tcr = 2.2
MPa and shear effect parameter � = 1.5. The load F is distributed over a strip of length 0.01m centered at the location indicated
in Figure 18. As mentioned by references87,88, the maximal tensile principal stress criterion of Section 4.1.1 does not produce
a correct crack path for this mixed-mode L-shape panel test. In fact, for this approach, shear effects are not fully accounted for
around the crack tip, leading to a less accurate direction of propagation of the crack. Therefore, the SIF approach described in
Section 4.1.2 is used here to select the crack propagation direction.
Figure 19a shows the comparison of the SFM true crack path against Dumstorff and Meschke’s87 numerical result and Win-

kler’s100 experimental results. The SFM solution agrees well with the reference numerical result of Dumstorff and Meschke87
and lies within the experimental uncertainty bracket of the experiments of Winkler100. In Figure 19b, the load-deflection
curves of SFM also match the reference numerical and experimental results. Figure 19c shows a comparison of the crack paths
obtained from SFM and NRT for Mesh 1. The NRT crack path does not match the experimental results. Figure 19d compares
the load-deflection curves for SFM and NRT. The NRT produces a higher peak load compared with the SFM and the reference
computational and experimental results.

Remark 16. The SFM estimate of the curved true crack path is fairly accurate. The cohesive zone model prevents the stress
gradients to become unbounded and this in turns guarantees the validity of the Taylor expansion approach.

5.1.3 Four-point bending specimen
Next, we consider the four point bending specimen101, described by the setup of Figure 20. The geometrical parameters are
b = 0.2 m, l = 4b, a = 0.2b, c = 0.4b and the material properties are Young’s modulus E = 28 GPa, Poisson’s ratio � = 0.1,
fracture energy GF = 100 N/m, and normal critical stress tcr = 1.75MPa. Both loads F1 and F2 are distributed over a strip of
length 0.02 m centered at the locations indicated in Figure 20.
Figure 21a and 21b show a comparison of the SFM crack paths for different meshes against the classical references in the

literature48,101. As shown in Figure 21a, the curved crack paths computed with the SFM and the maximum principal tensile
stress criterion agree well with the numerical results of Carpinteri et al.101, in which the same criterion was used. Similarly, in
Figure 21b, the SFM crack paths agree well with the XFEM computations of Moës and Belytschko48, where in this case both
methods use the SIF criterion for fracture propagation.
Figure 21c and 21d show that the load-deflection curves for both F1 and F2 are in good agreement with the numerical

data48,101. In particular, when using the stress intensity factor criterion to estimate the direction of the fracture propagation,
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(b) Load-deflection curve for the L-shape panel test with
SIF.

(c) SFM true crack path (blue), surrogate crack path (red)
and NRT crack path (green) for the L-shape panel test.
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(d) SFM and NRT load-deflection curves for the L-shape
panel test.

FIGURE 19 L-shape panel test87,100. Crack path (left) and load-deflection plot (right).

the SFM results are in very good agreement with the numerical results of48, which also proposed stress intensity factors for
propagating cracks. A very severe snap-back is observed for the F1 − �1 curve, where �1 is the deflection under the load F1.
Figure 22 compares SFM and NRT crack paths at different loading stages on Mesh 1. Similar to previous tests, SFM provides

mesh independent and overall more accurate crack paths, compared to NRT. Figure 23 shows the stress components and true
crack paths at three different loading stages.
It becomes clear from this test, that the SFM, if complemented with appropriate strategies for estimating the direction of

fracture propagation, is in very good agreement with results of XFEM/GFEM, while maintaining a relatively simple data
structure.
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FIGURE 20 Geometry and setup of the four-point bending specimen.
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(a) SFM true crack path computed with the maximal
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(b) SFM true crack path computed with the stress inten-
sity factor criterion.
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imal tensile principal stress criterion).
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(d) Load-deflection curves for the loads F1 and F2 (SIF
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FIGURE 21 Four point bending problem48,101. Crack path (left) and load-deflection plots (right). The results in Figures 21a
and 21c are computed estimating the crack propagation direction with the maximum tensile principal stress criterion. The results
in Figures 21b and 21d are computed estimating the crack propagation direction with the stress intensity factor (SIF) criterion.
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FIGURE 22 SFM true (blue) and surrogate (red) crack paths and NRT crack paths (green) at different loading stages for the
four-point bending problem. The computations utilize the maximum principal tensile stress criterion for crack propagation, but
analogous results can be obtained with the stress intensity factor criterion.

5.2 Three-dimensional tests
5.2.1 Three-point bending specimen
This example revisits the numerical test in Section 5.1.1. The material properties, boundary and loading conditions are the same,
except here the third dimension about the thickness is also considered. Figure 24 shows the non-dimensional load-deflection
curve with fracture energy GF = 50 N/m. The result are similar to the two-dimensional version of the test. Figure 25 shows the
propagation of the true (blue) and surrogate (red) crack surfaces at different loading stages. The true crack surface propagates
very close to vertically. Two computational grids are employed: Mesh 1, with 5,118 elements and 1,087 nodes; and Mesh 2,
with 19,130 elements and 3,657 nodes. The corresponding mesh sizes in proximity of the fracture are 13 mm and 6.5 mm,
respectively.

5.2.2 Pull-out test
Next, we consider a pull-out test of a steel anchor embedded in a cylinder concrete. The geometry and boundary conditions
are shown in Figure 26. The material properties are Young’s modulus E = 30 GPa, Poisson’s ratio � = 0.2, fracture energy
GF = 106 N/m, normal critical stress tcr = 3MPa and shear effect parameter � = 1.0. Load F is applied on the green surface
in Figure 26. Table 2 shows the average sizes and properties of the three meshes used in the SFM computations.

Meshes Number of elements Number of nodes Average element size around crack path
Mesh 1 10,690 2,176 50 mm
Mesh 2 13,122 2,745 30 mm
Mesh 3 23,443 4,791 15 mm

TABLE 2Mesh properties for three-dimensional pull-out test.

Figure 27a shows the comparison with the work of Gasser and Holzapfel 34, who used a nonlinear hyperelastic framework in
combination with an exponential cohesive zone model, namely teq(weq) = tcre

−awb
eq , where a = 11.323, b = 0.674. For the sake

of comparison, we added this model to the SFM framework we developed in the context of linear elasticity.
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FIGURE 23 Stress distribution near the crack and true crack path (white line) at different loading stages.

As shown in Figure 27a, the SFM results with the exponential cohesive zone model and Mesh 2 seem in good agreement
with the results of Gasser and Holzapfel 34, and the differences could be attributed to the fact that in this work we only consider
linearly elastic media.
Figure 28 shows the propagation of the true (blue) and surrogate (red) crack surfaces at different loading stages. The true

crack surface shape agrees well with the results in 34, where a cone-shaped crack is obtained.

6 CONCLUSIONS

We have presented a new framework for computational fracture mechanics based on the idea of shifting the fracture interface
conditions to a surrogate fracture composed of full edges/faces (resp., in two/three dimensions) of the grid in close proximity of
the true fracture location. By appropriately modifying with Taylor expansions the interface conditions at the surrogate fracture
surface, we have shown that it is possible to develop methods with accuracy comparable to XFEM/GFEM, with much simpler
computational complexity.



32 Li, Atallah, Rodriguez-Ferran, Valiveti, Scovazzi

0 1 2 3 4 5 6 7 8
Deflection/b #10-4

0

0.05

0.1

0.15

0.2

0.25

Lo
ad
/(t
cr
b2
)

Mesh 1, h=13 mm
Mesh 2, h=6.5 mm
2D Result

FIGURE 24 Non-dimensional load-deflection curves for the three-dimensional three-point bending specimen test with fracture
energy GF = 50 N/m.

FIGURE 25 Three-dimensional three-point bending specimen test. The top row shows the crack surface (blue) and surrogate
crack surface (red) at different steps in the evolution of the fracture. Observe that the estimate true surface is virtually flat and
vertical. The bottom row shows a side view of the surrogate fracture surface
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FIGURE 26 Geometry and setup of the three-dimensional pull-out test.
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(a) Linear and exponential cohesive zone model.
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FIGURE27Load-deflection curves for the three-dimensional pull-out test. On the left, a comparison of the exponential cohesive
zone model for nonlinear elasticity of34, against the SFM with a linearly decaying cohesive zone model. A solution for the SFM
for linear elasticity combined with the exponential cohesive zone model of34 is also shown.
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FIGURE 28 Three-dimensional pull-out test: True crack surface (blue) and surrogate crack surface (red).

We have also demonstrated, with theoretical derivations and numerical experiments, that the shifted fracture approach does
not produce mesh-dependent results and is effective in capturing the energetics of the fracture. We presented an extensive suite
of tests in two and three dimensions.
When considering future work, it is foreseen to explore the application of the Shifted Fracture Method to problems of crack

branching and merging, which are inherently very complex. Crack branching involves the definition of the initiation criterion
and the selection of propagating directions for crack branches. For example, in the context of dynamic crack branching, there
is already a relatively rich theory on branching initiation criteria, based on a critical crack tip speed, and branching angles.
The shifted fracture approach can be easily adapted to this case and the data structures developed in77, for T-junction thermal
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interfaces, can be appropriately modified. These are potential avenues of future development, beyond the scope of the present
work.
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