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08019 Barcelona, Spain
2)Department of Magnetohydrodynamics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400,
D-01328 Dresden, Germany

(Dated: 19 January 2023)

The magnetised spherical Couette (MSC) problem, a three dimensional magnetohydrodynamic paradigmatic
model in geo- and astrophysics, is considered to investigate bifurcations to high-dimensional invariant tori
and chaotic flows in large scale dissipative dynamical systems with symmetry. The main goal of the present
study is to elucidate the origin of chaotic transients and intermittent behaviour from two different sequences
of Hopf bifurcations involving invariant tori with four fundamental frequencies, which may be resonant.
Numerical evidence of the existence of a crisis event destroying chaotic attractors and giving rise to the
chaotic transients is provided. It is also shown that unstable invariant tori take part in the time evolution
of these chaotic transients. For one sequence of bifurcations, the study demonstrates that chaotic transients
display on-off intermittent behaviour. A possible explanatory mechanism is discussed.

I. INTRODUCTION

Numerical simulations are nowadays a fundamental
tool to advance in the field of geophysical and astrophysi-
cal fluid dynamics. Canonical models describing the mo-
tion of electrically-conducting fluids are derived from the
well-known Navier-Stokes and induction equations (Mof-
fatt and Dormy (2019)). These are time-dependent and
nonlinear partial differential equations whose analytic so-
lution is unknown and therefore numerical algorithms are
developed for the approximation of their solution with
computer simulations. The analysis of simulation data
when contrasted with observations helps to develop more
accurate theoretical dynamo models of geo- and astro-
physical phenomena (Roberts and Glatzmaier (2000)).
In addition, simulations also provide valuable informa-
tion for the design and guiding of experiments in the
field (Gailitis et al. (2002)).

One of the classical examples of a geophysical and as-
trophysical problem is the magnetised spherical Couette
(MSC) problem in which a conducting fluid fills the gap
between two differentially rotating spheres in the pres-
ence of a magnetic field applied parallel to the axis of
rotation. This problem has been widely studied both
numerically (Hollerbach (2009); Travnikov, Eckert, and
Odenbach (2011); Gissinger, Ji, and Goodman (2011);
Garcia et al. (2020a)) as well as experimentally (Sisan
et al. (2004); Kasprzyk et al. (2017); Kaplan, Nataf,
and Schaeffer (2018); Barik et al. (2018); Ogbonna et al.
(2020, 2022)) due to its relevance to understanding the
origin and evolution of planetary and stellar flows.

In the mathematical formulation of the MSC prob-
lem, three dimensionless parameters describe the input
physics. They are the aspect ratio of the spherical shell
χ = ri/ro (ri and ro are the inner and outer radii, respec-
tively), the Reynolds number Re measuring the differen-
tial rotation, and the Hartmann number Ha measuring
the strength of the applied magnetic field. As these pa-

rameters are varied, a rich variety of dynamical regimes
have been discovered, described, and analysed during the
last decades thanks to the use of numerical simulations
(e. g. Hollerbach and Skinner (2001); Hollerbach (2009);
Travnikov, Eckert, and Odenbach (2011); Gissinger, Ji,
and Goodman (2011); Kaplan (2014); Kaplan, Nataf,
and Schaeffer (2018); Garcia et al. (2020a)). For in-
stance, for a given relatively thin shell geometry (χ ≥ 0.5)
and for all magnetic field strengths (Ha), a time indepen-
dent and axisymmetric (i. e. invariant by any azimuthal
rotation) base state is found for sufficiently small differ-
ential rotation (Re). With increasing Re, this base state
becomes unstable to a non-axisymmetric instability, with
some azimuthal symmetry m = m1 (m is the azimuthal
wave number), whose spatial nature strongly depends on
Ha. For low Ha, the instability is basically hydrody-
namic and situated at the radial jet flowing outwards in
the equatorial plane. At moderate Ha, the instability
takes the form of a return flow concentrated in the mid-
dle of the shell, and for larger Ha, the flow streamlines
are basically parallel to the axis of rotation, giving rise
to the shear-layer instability.

These dynamical regimes are subjected to the symme-
tries of the MSC system, which is an SO(2)×Z2 equiv-
ariant system, meaning that it is invariant to azimuthal
rotations and reflections with respect to the equatorial
plane. Theoretical studies in the framework of dynam-
ical systems with symmetry (Crawford and Knobloch
(1991); Ecke, Zhong, and Knobloch (1992); Golubitsky
and Stewart (2003)) have demonstrated that the Hopf-
like instability of the axisymmetric base state gives rise to
rotating waves (RW), a type of periodic flow with certain
azimuthal symmetry m = m1 for which the time evolu-
tion is described as a solid body rotation of a fixed flow
pattern (Garcia and Stefani (2018)). A secondary Hopf
bifurcation is responsible for the appearance of mod-
ulated rotating waves (MRW) which are quasiperiodic
flows with two fundamental frequencies, i. e. invariant
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two dimensional tori (Rand (1982); Golubitsky, LeBlanc,
and Melbourne (2000); Casas and Jorba (2012); Garcia
et al. (2019)). Successive Hopf bifurcations, for which a
symmetry breaking occurs, give rise to high-dimensional
invariant tori with three (Garcia et al. (2020a)) and even
four fundamental frequencies (Garcia et al. (2020b)).
The analysis of symmetry breaking bifurcations of MRW
in symmetric systems is of fundamental importance since
they enable the Newhouse-Ruelle-Takens theorem (New-
house, Ruelle, and Takens (1978)) to be overcome in the
route to chaotic flows.

This paper concentrates on the analysis of high-
dimensional tori (with dimensions of 2,3 and 4) and the
bifurcations to chaotic flows, which have been recently
discovered by Garcia et al. (2020b), but also investi-
gates the presence of transient phenomena associated
with the disappearance of a chaotic attractor. An explo-
ration of the parameter space leads us to the identifica-
tion of resonant invariant four-dimensional tori and also
to detect and investigate intermittent behaviour during
chaotic transients. Invariant tori, and their bifurcations
to chaotic flows, are widely studied in the case of low di-
mensional systems. For instance, the appearance and dis-
appearance of four-dimensional tori and chaotic attrac-
tors have been studied in detail by Kuznetsov, Sataev,
and Turukina (2011) for a system of three coupled van
der Pol oscillators. Quasiperiodic invariant tori, includ-
ing resonant motions and global bifurcation to chaotic
flows, have also been comprehensively investigated by
Fleurantin and James (2020) in the case of a three dimen-
sional dissipative vector field. For high-dimensional sys-
tems arising from the discretisation of partial differential
equations the computational methods of regular states
require the implementation of parallel algorithms based
on advanced numerical linear algebra methods (e. g. Di-
jkstra et al. (2014); Tuckerman (2020)). For this reason
the exploration of both the parameter as well as the phase
space in this type of problems is restricted by the com-
putational resources and thus there exist few studies ad-
dressing global bifurcations of high-dimensional tori and
chaotic flows. This is in particular the case for the MSC
system considered in our study.

A crisis event (Grebogi, Ott, and Yorke (1982, 1983)) is
one of the most common mechanisms by which a chaotic
attractor loses stability in favour of a chaotic saddle.
The latter comprises nonattracting invariant sets in the
phase space which are responsible for chaotic transient
phenomena. Transient chaos is however not only asso-
ciated with chaotic saddles but may be also due to the
existence of a blow-out bifurcation (Ott and Sommerer
(1994)), and even other mechanisms (see Omel’chenko
and Tél (2022) for a review). The global properties of
chaotic attractors, the structure of their basin of attrac-
tion (Sommerer and Ott (1993)), and the bifurcations
giving rise to them in nonlinear systems, are nowadays
an active area of research. This is especially true in the
case of low-dimensional systems such as the Duffing-Van
der Pol oscillator and related problems (e. g. Yue, Xu,

and Wang (2013); Feng (2017)), but also for problems
in other disciplines such as economics (Lorenz and Nusse
(2002)).

Chaotic motion can be intermittent, in the sense that
the time evolution of the system alternates between two
or more different states that occupy distinct regions in
the phase space (see the review of Knobloch and Moehlis
(1999)). Different types of intermittent dynamics, type-
I, II, and III, were studied in Pomeau and Manneville
(1980) in the context of the Lorenz problem with the
aim of shedding light on the observed behaviour in fluid
dynamics experiments. In their description, the different
types of intermittence arise from the different ways in
which a simple fixed point of the system loses stability
as a control parameter is varied. Intermittent behaviour
may also arise as a result of certain types of crisis for
which a chaotic attractor suddenly changes its distribu-
tion in the phase space (Grebogi et al. (1987)). Unstable
invariant objects, lying on an invariant manifold of the
phase state, organise on-off intermittent behaviour de-
fined in Platt, Spiegel, and Tresser (1993). In this latter
study, the fact that the stability of these unstable or-
bits is controlled by dynamics outside from the manifold
resulted in a key issue. The special type of on-off inter-
mittency may appear as a result of a blow-out bifurcation
(Ott and Sommerer (1994); Ott et al. (1995)) when the
chaotic attractor losing stability does not have a riddled
basin of attraction. The existence of intermittent be-
haviour has also been associated with an orbit riddling
(He (2005)), after a tangency in the phase space is de-
veloped from high-dimensional tori, once the parameter
is varied in a one dimensional nonlinear wave system.

In the fluid dynamics context, such as the plane Cou-
ette or pipe flows (Eckhardt et al. (2008); Budanur,
Dogra, and Hof (2019); Letellier (2017)) the analysis
of transient chaos and chaotic saddles has provided valu-
able insight in the understanding of the transition to tur-
bulence, the formation of coherent structures, and the
characterisation of intermittent behaviour. In the con-
crete case of shear flows, the concept of intermittency
has been of importance to understand transition to tur-
bulence (Avila and Hof (2013); Lemoult et al. (2016)).
Depending on the aspect ratio of the container the tran-
sition to turbulence could have a spatio-temporal nature,
or in contrast, could be mainly described as a purely tem-
poral process (Philip and Manneville (2011)). The exis-
tence of these unstable states and their invariant man-
ifolds (e. g. Gibson, Halcrow, and Cvitanović (2008);
Kawahara, Uhlmann, and van Veen (2012)) is key for
describing the laminar-turbulant boundary and coher-
ent structures in shear flows. According to van Veen
and Kawahara (2011), a homoclinic tangle between the
stable and unstable manifolds is responsible for chaotic
intermittent bursting. Later, Cherubini and De Palma
(2013) conjectured that the existence of bursts can be
also described by heteroclinic connections approaching
an unstable periodic orbit. A systematic computation
and description of heteroclinic connections, a structurally
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stable solution departing from unstable equilibria or peri-
odic orbits and tending to another unstable regular flow,
has been performed in Halcrow et al. (2009).

The analysis of intermittent chaotic motion in three
dimensional MHD systems in the framework of dynam-
ical systems theory is also fundamental for understand-
ing how cosmic magnetic fields are generated (Pratt, J.,
Busse, A., and Müller, W.-C. (2013)) but also to shed
light into the formation of coherent structures in astro-
physical plasmas (Matthaeus et al. (2015)). In the case of
numerical simulations within a periodic box (e. g. Sweet
et al. (2001); Alexakis and Ponty (2008)), dynamo ac-
tion takes place as a result of a blow-out (non-hysteretic)
bifurcation with associated on-off intermittency. This is
also the case for the MSC dynamo problem (Raynaud and
Dormy (2013)), in which the magnetic field is not exter-
nally applied as in our case. However, in the case of the
α2 dynamo model of Oliveira et al. (2021), intermittent
behaviour was not found and the dynamo effect saturates
thanks to a hysteretic blow-out bifurcation. Dynamo ex-
periments in a turbulent background have also shown in-
termittent magnetic field measurements (Nornberg et al.
(2006)).

This paper starts by describing the MSC system of
equations and the numerical methods employed to solve
them in Sec. II. The selected output data and the meth-
ods employed to analyse it are outlined in Sec. III. The
paper then mainly addresses two important aspects de-
scribed above. Firstly, we provide further evidence of
the bifurcation scenario first described in Garcia et al.
(2020b) by presenting a new branch, which follows a sim-
ilar sequence of symmetry breaking bifurcations, giving
rise to invariant tori with four fundamental frequencies,
including resonant motions. These solutions are anal-
ysed in detail and their structure in the phase space is
characterised in Sec. IV. Secondly, the investigation of
chaotic attractors and the appearance of chaotic tran-
sients is performed in Sec. V. In this section, we pro-
vide numerical evidence of the existence of a crisis event
destroying chaotic attractors and giving rise to chaotic
transients. For a certain range of Hartmann numbers, the
transients involve on-off intermittent motion, which may
be due to a tangency in the phase space. Section VI con-
tains the verification of on-off signature of these chaotic
transients using standard statistical methods. Finally,
Sec. VII summarises the results obtained.

II. NUMERICAL MODEL

The fluid container is a spherical shell of inner and
outer radii ri and ro, respectively. The fluid is conduct-
ing with constant physical properties: electrical conduc-
tivity σ = 1/(ηµ0) (µ0 is the free-space magnetic per-
meability), density ρ, kinematic viscosity ν, and mag-
netic diffusivity η. The outer sphere is kept fixed whereas
the inner sphere rotates around a vertical axis with con-
stant angular velocity Ω (see figure 1). The whole sys-
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FIG. 1. Sketch of the spherical shell including the applied
magnetic field and the inner sphere rotation.

tem is exposed to a uniform axial magnetic field B0 =
B0 cos(θ)êr−B0 sin(θ)êθ of amplitude B0 (θ is the colat-
itude).

To obtain a dimensionless system of equations, the
characteristic quantities d = ro−ri, d2/ν, riΩ and B0 are
employed as scales for length, time, velocity and magnetic
field, respectively. For moderate rotation rates of the in-
ner sphere (moderate Reynolds Re = Ωrid/ν ∼ 103),
the inductionless approximation can be used for liquid
metals, for instance, the eutectic alloy GaInSn, since the
magnetic Prandtl number Pm = ν/η ∼ O(10−6) (Morley
et al. (2008)) and then the requirement for a low magnetic
Reynolds number Rm = Ωrid/η = PmRe ∼ 10−3 � 1 is
satisfied.

In the inductionless approximation the magnetic field
is decomposed as B = êz + Rmb and the terms O(Rm)
are neglected in the Navier-Stokes and induction equa-
tions

∂tv + Re (v · ∇)v = −∇p+∇2v + Ha2(∇× b)× êz,

∇× (v × êz) +∇2b = 0,

∇ · v = 0, ∇ · b = 0.

This system of equations is commonly referred to as
the MSC system and depends on three parameters: the
Reynolds number, the Hartmann number, and the aspect
ratio

Re =
Ωrid

ν
, Ha =

B0d√
µ0ρνη

= B0d

√
σ

ρν
, χ =

ri
ro
.

The flow boundary conditions are no-slip (vr = vθ =
vϕ = 0) at the outher sphere (r = ro) and constant ro-
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tation (vr = vθ = 0, vϕ = sin θ) at the inner sphere
(r = ri). Insulating exterior regions are selected for
the magnetic field. This is the usual setting in previous
numerical studies (e. g. Hollerbach and Skinner (2001);
Garcia et al. (2020a)) and experiments (e. g. Kasprzyk
et al. (2017); Ogbonna et al. (2020)).

The numerical method used to solve the MSC system
is outlined next. A detailed description for discretisation
and time stepping of the Navier-Stokes equations in ro-
tating spherical geometry can be found in Garcia et al.
(2010) and references therein. The velocity v and mag-
netic b divergence-free fields are expressed in terms of
toroidal and poloidal potentials (Chandrasekhar (1981)).
The expression for the velocity field is

v = ∇× (Ψr) +∇×∇× (Φr) , (1)

r = r êr being the position vector. The scalar potentials
are expanded as spherical harmonics series (up to degree
Lmax and orderMmax = Lmax) in the angular coordinates
(θ, ϕ) (ϕ is the longitude). In the case of the velocity
potentials the spherical harmonics expansion is

Ψ(t, r, θ, ϕ) =

Lmax∑
l=0

l∑
m=−l

Ψm
l (r, t)Y ml (θ, ϕ), (2)

Φ(t, r, θ, ϕ) =

Lmax∑
l=0

l∑
m=−l

Φml (r, t)Y ml (θ, ϕ), (3)

with Y ml (θ, ϕ) = Pml (cos θ)eimϕ, Pml being the nor-
malised associated Legendre functions, of degree l and or-
der m, satisfying Ψ−ml = Ψm

l . The potentials are unique
if the condition Ψ0

0 = Φ0
0 = 0 is imposed. A colloca-

tion method, on a Gauss–Lobatto mesh of Nr points,
is employed for the discretisation of the radial direc-
tion. OpenMP parallel strategies and optimised libraries
(FFTW3, see Frigo and Johnson (2005)) and matrix-
matrix products (dgemm, see Goto and van de Geijn
(2008)) are implemented in the numerical code. The time
integration method, based on high order implicit-explicit
backward differentiation formulas (IMEX–BDF), has an
explicit treatment of the Lorenz force and the nonlinear
terms.

III. ANALYSIS OF MHD FLOWS

The interpretation of MHD flows is based on the anal-
ysis of very long time series obtained with direct numeri-
cal simulations (DNS) of the MSC system. The different
MHD flows are computed by varying the magnetic field
amplitude and keeping the rotation of the inner sphere
and the aspect ratio of the shell fixed. This translates in
only varying Ha and keeping the values of Re and η fixed
at Re = 103 and η = 0.5, respectively.

The numerical resolutions employed for this study are
nr = 40 radial collocation points and a spherical har-
monic truncation parameter of Lmax = 84. This resolu-
tion is tested by increasing the values to nr = 60 and

Lmax = 126 to verify that a solution with the same tem-
poral dependence, and with similar (within 1% of error)
time-averaged properties, is obtained. Most DNS are
evolved for more than 100 viscous time units to filter
initial transients before the attractor is reached.

The procedure to obtain the branches of solutions is
standard. A saturated solution (i. e. a solution after
the initial transient) at Ha1 is employed as initial con-
dition for simulating the solution at Ha2 = Ha1 + δHa
(δHa may be positive or negative). The first solution is a
modulated rotating wave (MRW) obtained from a rotat-
ing wave (RW) with azimuthal symmetry m = 4 already
computed in Garcia and Stefani (2018).

We use an azimuthally constrained DNS code to com-
pute unstable flows with certain azimuthal symmetry
m = m1. The only requirement is that the unstable
manifold of the flow lies away from the subset m = m1,
i. e. the unstable mode cannot have azimuthal symmetry
m = km1 for any integer k. We recall that the flow has
azimuthal symmetry m = m1 if and only if the spheri-
cal harmonics expansion of the scalar fields (see Eq. 2)
has only non-vanishing amplitudes on the azimuthal wave
numbers m = km1, for any integer k.

The analysis of the solutions is performed from the
time series extracted from the DNS. Concretely, we anal-
yse the volume-averaged kinetic energy

K =
1

2V

∫
V
v · v dv, (4)

where V is the shell volume and v is the velocity field.
We also consider the kinetic energies Km associated with
each azimuthal wave number m, obtained by only con-
sidering the spherical harmonics amplitudes Ψm

l and
Φml of a single order m = m0 and degree l satisfying
|m0| ≤ l ≤ Lmax and setting to zero all the other ampli-
tudes with m 6= m0. The analysis of Km for different az-
imuthal modes m provides information about how energy
is distributed in space and helps to identify the most en-
ergetic wave number mmax which satisfies Kmmax

> Km,
1 ≤ m ≤ Lmax, and m 6= mmax, with the overline repre-
senting a time average. The non-axisymmetric kinetic
energy Kna is computed considering only the m 6= 0
wave numbers in the spherical harmonics expansion of
the potential fields and measures the departure of the so-
lutions from the purely axisymmetric (m = 0) base flow.
The poloidal kinetic energy KP or the non-axisymmetric
toroidal kinetic energy KT

na are defined by only using the
poloidal scalar or the m 6= 0 azimuthal wave numbers
of the toroidal scalar, respectively, in the expression of
the velocity field. While the poloidal scalar is directly re-
lated to the radial component of the velocity, the toroidal
scalar only contributes to the azimuthal and colatitudinal
components.

As discussed in the introductory section, the system
is SO(2)×Z2-equivariant (invariant to azimuthal rota-
tions and reflections with respect to the equatorial plane).
These systems are associated with a particular type of
solutions called rotating waves (RW) and modulated ro-
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tating waves (MRW), which can be precisely defined in
terms of their spatio-temporal symmetry (e. g. Rand
(1982); Golubitsky, LeBlanc, and Melbourne (2000);
Sánchez, Garcia, and Net (2013); Budanur et al. (2017);
Garcia et al. (2019)).

A solution of the system u(t, r, θ, ϕ) is a rotating wave
(RW) if u(t, r, θ, ϕ) = R(ωt)u(0, r, θ, ϕ), where R(ωt) is
a rigid rotation about the vertical axis of angle ωt. Then,
the RW is described as a solid body rotation at a constant
angular velocity ω of a given pattern u(0, r, θ, ϕ). Al-
though a RW is periodic, its azimuthally-averaged prop-
erties are constant. If the solution is a modulated rotat-
ing wave, u(t, r, θ, ϕ) = R(ωt+ γ(t))ũ(t, r, θ, ϕ), where γ
and ũ are τ -periodic functions of time. In this case, the
temporal dependence of the solution is described by two
fundamental frequencies ω and 2π/τ . Because of this
particular spatio-temporal symmetry, the azimuthally-
averaged properties are periodic.

Rotating waves develop once the base axisymmetric
state becomes unstable to non-axisymmetric perturba-
tions. Secondary Hopf-type bifurcations of RW give rise
to MRW with two fundamental frequencies (invariant
tori). Successive Hopf-type bifurcations result in MRW
with three and even four fundamental frequencies as
studied in Garcia et al. (2020b). To identify quasiperiodic
MRW with Nf fundamental frequencies and azimuthal
symmetry m = m1, the notation NfT-MRWm1

is used.
These quasiperiodic flows are investigated by means of
a Fourier based refined analysis (Laskar (1993b)) and
Poincaré sections as will be subsequently outlined.

As commented above, the main frequency of RW
and MRW, corresponding to the azimuthal drift of
the wave, is removed from the frequency spectrum of
volume-averaged quantities. These quantities are con-
stant in time for RW, periodic for 2T-MRW, quasiperi-
odic with two fundamental frequencies for 3T-MRW, and
quasiperiodic with three fundamental frequencies for 4T-
MRW. For this reason the Poincaré sections of volume-
averaged quantities for 2T-MRW correspond to a single
point, to a closed curve for 3T-MRW , and to a surface
for 4T-MRW. Poincaré sections of weakly chaotic flows
(consisting of a cloud of points) may resemble surface-
like sections of regular 4T-MRW. To fully distinguish
both types of solutions, we have performed the chaos
test of Laskar, Froeschlé, and Celletti (1992); Laskar
(1993a) and studied the diffusion measure of the solution
in the phase space. In addition, we have checked that the
three frequencies f1, f2, and f3 are fundamental, in the
sense that any other frequency fj of the spectrum of any
volume-averaged kinetic energy is a linear combination
of the fundamental frequencies with integer coefficients.

IV. BIFURCATION DIAGRAMS OF MRW

The time-averaged and maximum values of the non-
axisymmetric kinetic energy of saturated flows at η = 0.5
and Re = 103 are plotted in figure 2 versus Ha. In this
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FIG. 2. Bifurcation diagram of the volume-averaged non-
axisymmetric kinetic energy densityKna versus Ha. (a) Time-
averaged Kna and (b) maximum values of Kna. Solid (dashed)
lines are used for stable (unstable) flows. Branches of rotating
waves RWm, modulated rotating waves MRWm, and chaotic
waves CWm, the subscriptm being their azimuthal symmetry,
are displayed. MRWs with Nf fundamental frequencies are
labelled as NfT, with Nf = 2, ..., 4. The colours distinguish
the types of solutions.

figure, there are two different branches of 2T-MRW which
bifurcate, without breaking the m = 4 symmetry, from
the branch of RW with azimuthal symmetry m = 4 (orig-
inally computed by Garcia and Stefani (2018)). These
branches are labelled as 2T-MRW4-I and 2T-MRW4-II.
Notice that for these types of solutions, the time average
is very similar to that of the parent RW4 (Fig. 2(a)), but
as they have oscillatory (periodic) Kna, the maximum
value is clearly different (see Fig. 2(b)).

As described by Garcia et al. (2020b), for the branch I
there is a sequence of Hopf bifurcations giving rise to
MRW with four fundamental frequencies (branch 4T-
MRW1):

RW4
1O−−→ 2T-MRW4

2O−−→ 3T-MRW2
3O−−→ 4T-MRW1,
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which is exactly the same sequence obtained in figure 2
for the branch II. The critical Hartmann numbers for the
bifurcations on branch I are:

Ha1 ≈ 2.4, Ha2 ≈ 0.8, Ha3 ≈ 1.52,

and on branch II:

Ha1 ≈ 2.86, Ha2 ≈ 1.6, Ha3 ≈ 2.05.

Both sequences (I and II) of bifurcations involve the same
sequence of azimuthal symmetry breaking and appear-
ance of stable solutions:

m = 4
1O−−→ m = 4

2O−−→ m = 2
3O−−→ m = 1

Unst.
1O−−→ Unst.

2O−−→ Unst.
3O−−→ St.

Bifurcation 1O is supercritical whereas bifurcations 2O
and 3O are subcritical. Although for both branches the
same sequence of bifurcations occurs, their solutions have
different structures in the phase space. This is shown in
the next two sections, where each branch is described in
detail.

A. Branch I

This branch was first studied in Garcia et al. (2020b),
but the transition to chaotic flows (labelled as CW1) was
not clarified due to the time series, although very long
(up to 100 time units), not being sufficiently long to cope
with very small frequencies exhibited by some solutions
along the branch of 4T-MRW1-I (around Ha = 1.35) as
we show in the following. The power spectral density
(psd) of K4 is displayed in figure 3(a) for a 4T-MRW1-I
at Ha = 1.3 and a detail of the lower frequencies including
the psd of 4T-MRW1-I at Ha = 1.2 and at Ha = 1.4 are
displayed in figure 3(b). The minimum frequencies are
fmin = 0.205 for Ha = 1.2, fmin = 0.0311 for Ha = 1.3,
and fmin = 0.412 for Ha = 1.4, i. .e, the value at Ha = 1.3
is almost an order of magnitude smaller than those at the
neighbouring Ha.We have checked that the smallest fre-
quencies of the psd correspond to fmin = 2f3− f2, where
f1, f2, and f3 are the fundamental frequencies labelled
in fig. 3(a).

To demonstrate that the solution at Ha = 1.3 is a regu-
lar, i. e. a 4T-MRW1 and not a chaotic flow, the diffusion
measure of the orbit in the phase space is estimated from
a time dependent accurate frequency analysis following
the algorithm of Laskar, Froeschlé, and Celletti (1992);
Laskar (1993a), which has been successfully applied to
the MSC problem in Garcia et al. (2021). The proce-
dure requires the selection of a time window T < Tf
(Tf is the total time interval of the time series) and the
computation of the first fundamental frequency f1 using
Laskar’s algorithm Laskar (1993b), which achieves a rel-
ative accuracy of around 10−5, over the time window T .
The solution is considered regular if the variation of f1

over the different time windows (covering the total time
interval) is smaller than the considered accuracy. Fig-
ure 4(a) displays the value of f1 versus time for different
time windows T = 10, 20, 40, 60, 100, and a final time of
Tf = 200. This figure clearly shows that only for T = 60
and T = 100 the variation of the frequency is insignifi-
cant. This variation is quantified in Fig 4(b) by employ-
ing the time difference δf(t) = |f(t + T ) − f(t)| which
only can be computed for t < Tf − 2T (see Garcia et al.
(2021) for details). For T = 60, values of δf(t) ≈ 10−4

are obtained whereas for T ≤ 40 (used in Garcia et al.
(2020b)) the time difference rises to δf(t) ≈ 10−3. Since
only time windows T ≤ 40 over a total time interval of
Tf = 100 were used in Garcia et al. (2020b), the solution
was not classified as regular. With time series spanning
up to Tf = 200, we have been able to confirm the regular
character of all the solutions on branch 4T-MRW1 down
to Ha = 0.7. With the same length of the time series,
the solution obtained at Ha = 0.6 gives rise to variations
of order 10−2 for frequencies computed with time win-
dows of length T = 100. This ensures that the solution
is chaotic so the transition to chaotic flows CW1-I may
be approximated to occur at Ha ≈ 0.65.

Because f1, f2 and f3 are fundamental, any other
frequency fj is a linear combination of f1, f2 and f3
with integer coefficients. The relative error value for
the linear combinations of the frequencies fj is εj =
|fj−k1j f1−k2j f2−k3j f3|/fj . A linear combination is valid

whenever εj < 5 × 10−5 in accordance with the relative
accuracy (10−5) achieved for the frequencies (see Garcia
et al. (2021) for a detailed study of this accuracy). We ob-
serve that as Ha is decreased along the branch the num-
ber of fj with larger amplitudes increases so that larger
integers ki are required for the linear combinations. We
have used 6 ≤ ki ≤ 18 and considered the frequencies
fj with amplitudes larger than 10−6Amax, where Amax is
the largest amplitude of the psd.

As noticed above for Ha = 1.3, there may be linear
combinations of the fundamental frequencies which be-
come very small, and even vanish, as Ha is decreased
along the branch 4T-MRW1. This is because the funda-
mental frequencies vary with Ha and so do the linear com-
binations. When a linear combination having at least one
coefficient equal to unity vanishes, a resonant solution is
obtained with one less fundamental frequency. This is the
case for Ha = 0.8 where the relative error of the resonance
is εres = (f1−4f2+f3)/f1 = 8.3×10−8. For this solution
the Poincaré section involving volume-averaged kinetic
energies will be a closed curve. This is shown in figure 5
for the Poincaré section at the time instants ti where
K(ti) = 0.02177 (recall that K is the volume-averaged
kinetic energy). The volume-averaged poloidal kinetic
energy KP(ti) is displayed versus the volume-averaged
non-axisymmetric toroidal energy KT

na(ti) for Ha = 0.85
(a), Ha = 0.8 (b), and Ha = 0.75 (c). At Ha = 0.8
the Poincaré section is a complicated but closed curve
evidencing the resonance condition.
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B. Branch II

As commented on before, this branch follows the same
sequence of bifurcations as branch I, but an additional
branch of 2T-MRW4 (labelled IIb) develops from 2T-
MRW4-II by means of a period doubling bifurcation at
Hapd ≈ 1.4 (see figure 2). Period doubling bifurcations
of 2T-MRW are common in the MSC system at low Ha.
They have been described by Garcia et al. (2020a) for
flows with azimuthal symmetry m = 2 and m = 3.

At the bifurcation point 3O, the solutions on the
branch 3T-MRW2-I become stable. The same happens
for branch II. By increasing Ha from this point along
the branch of 3T-MRW2-I becomes unstable at around
Ha & 2. For Ha = 2.05 or Ha = 2.1 and by taking as the
initial condition the solution at Ha = 2 on the 3T-MRW2-
I branch, a solution on the 3T-MRW2-II is obtained af-
ter an initial transient when integrating the MSC equa-
tions with constrained azimuthal symmetry m = 2. As
the branches 3T-MRW2-I and 3T-MRW2-II have m = 2
azimuthal symmetry, the eigenfunction at the bifurca-
tion point (on branch I) should have at least m = 2
azimuthal symmetry. This gives evidence for a connec-
tion between the unstable and stable manifolds of branch
3T-MRW2-I and branch 3T-MRW2-II, respectively. This
behaviour is not found for branch II, where unstable so-
lutions of 3T-MRW2-II, arising due to a local bifurcation
at Hasn ≈ 2.42, can be integrated.

Despite the solutions on branches I and II following
the same sequence of bifurcations and originating from
the same branch of RW4, the orbits of the solutions have
significantly different distributions in the phase space, re-
vealing different degree of complexity. Notice also that
the existence of 4T-MRW1-II is restricted to a small Ha
interval. The three-dimensional plots of figure 7 cor-
respond to the phase portraits of volume-averaged ki-
netic energies (see figure caption for details) including a
Poincaré section (the grid plane) for a 3T-MRW2 and a

4T-MRW1 solutions on branch I (panels (a) and (c)) and
on branch II (panels (b) and (d)). While the solutions on
branch I have a phase portrait with a clear toroidal-like
structure, the phase portraits of solutions on branch II
are more folded and intricate with spherical-like shape.

In the framework of a sequence of bifurcations giving
rise to 3T and 4T (high-dimensional tori) in the one di-
mensional nonlinear system of wave propagation of He
(2005), the appearance of bursting intermittent solutions
was associated with a tangency of the orbit in the phase
space that allows an occasional riddling, giving rise to
the intermittent behaviour. In our case this tangency
has already happened on branch 3T-MRW1-II at around
Ha ≈ 2.25. This is clearly seen on figure 7 (b) for a
3T-MRW1-II at Ha ≈ 2.1 where the two patches of the
Poincaré section overlap as in He (2005).

As for branch I, the transition to chaotic flows is inves-
tigated by means of a time-dependent refined frequency
analysis requiring long time integrations over 100 time
units. We have estimated the critical Hartmann number
for this transition to be Ha ≈ 1.88. Chaotic flows, either
on branches I or II, are stable over a relatively small in-
terval of Ha. For branch I they lose stability at Ha ≈ 0.45
and for branch II at Ha ≈ 1.75. By further decreasing Ha
on each branch, chaotic flows become unstable giving rise
to large initial transients. The sudden disappearance of a
chaotic attractor as the parameter of the system is varied
usually corresponds to a boundary crisis (Grebogi, Ott,
and Yorke (1982)), which occurs as the chaotic attractor
collide with unstable fixed points, periodic orbits, or in-
variant tori ( Grebogi, Ott, and Yorke (1983)). By taking
a look at the bifurcation diagram of branch I (fig. 2), it
may be that the collision of CW1-I branch occurs with
the unstable 4T-MRW1-I branch, born when the branch
4T-MRW1-I loses stability. This could be possible since
both branches may have similar values of Kna close to the
crisis. A similar situation seems to happen with branch
II.
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FIG. 4. Diffusion measure on branch 4T-MRW1-I:
Time-dependent frequency spectrum based on Laskar algo-
rithm (SDDSToolKit). The time series corresponds to the
volume-averaged kinetic energy of the m = 4 component of
the flow. (a) Frequency with maximum amplitude versus
time. (b) Time difference δf(t) = |f(t+T )−f(t)| versus time
(logarithmic scale). Different colors denote different lengths of
the time series (blue T = 10, green T = 20, red T = 40, black
T = 60, and magenta T = 100). The solution corresponds to
a 4T-MRW1 at Ha = 1.3 with a very small frequency peak
(Fig. 3(b)).

We remark that chaotic flows may also lose stability
by means of a blow-out bifurcation (Ott and Sommerer
(1994)), for which the chaotic state lies within an invari-
ant manifold. This will be the case, for instance, when
the chaotic attractor has certain spatial symmetries (Ott
et al. (1995)), which does not correspond to our situa-
tion (chaotic flows have lost all azimuthal symmetries).
In addition, blow-out bifurcations may as well give rise to
chaotic transients when the chaotic attractor before the
bifurcation has a riddled basin of attraction. Conversely,
if the basin of the chaotic attractor losing stability is not
riddled, the blow-out bifurcation gives rise to intermit-
tent behaviour (Ott and Sommerer (1994)). In our case,
the situation is just the reverse. For branch II, the basin
of attraction of the chaotic attractor seems to be riddled
(due the tangency in the phase space), but as it is shown

3.50

3.52

3.54

3.56

3.58

3.60

3.8 3.9 4 4.1

(a)

PSfrag replaements

K
T

na

(×104)

K

P

(×
1
0
3
)

3.50

3.52

3.54

3.56

3.58

3.60

3.8 3.9 4 4.1

(b)

PSfrag replaements

K
T

na

(×104)

K

P

(×
1
0
3
)

3.50

3.52

3.54

3.56

3.58

3.60

3.8 3.9 4 4.1

(c)

PSfrag replaements

K
T

na

(×104)

K

P

(×
1
0
3
)

FIG. 5. Resonances on branch 4T-MRW1-I: Poincaré
sections at the time instants ti defined by the constraint
K(ti) = 0.02177, K being the volume-averaged kinetic energy.
The volume-averaged poloidal kinetic energy KP(ti) is dis-
played versus the volume-averaged toroidal non-axisymmetric
energy KT

na(ti). The solutions are 4T-MRW1 at (a) Ha =
0.85, (b) Ha = 0.8, and (c) Ha = 0.75.

in the next section, we observe intermittent behaviour.
For branch I, the basin of attraction is not riddled but
intermittent phenomena seems not to be present. For
all these reasons, we tend to believe that chaotic flows
lose stability by means of a crisis and not by means of a
blow-out bifurcation. Schematic diagrams summarising
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the possible scenarios for branches I and II are shown in
Fig 6.

V. TRANSIENT BEHAVIOUR

This section is devoted to the description and anal-
ysis of initial transients, which can span long time in-
tervals. They are sometimes found when taking initial
conditions on the branches of chaotic waves CW1-I and
II. As commented in the previous section, the existence
of these long initial transients seems to be related with
the occurrence of a boundary crisis at which a chaotic
attractor loses stability developing a chaotic saddle (Gre-
bogi, Ott, and Yorke (1982, 1983)). The time evolution
of initial conditions lying close to these chaotic saddles,
which are invariant sets repelling in some directions of
the phase space (Kantz and Grassberger (1985)), is char-
acterised by a long-lived chaotic behaviour that suddenly
stops and reaches a stable, usually regular attractor, af-
terwards. Recently, the existence of a terminal transient
phase just before the appearance of the final attractor
was made evident in Lilienkamp and Parlitz (2018).

The sudden disapearance of the long-lived chaotic
transient behaviour and the convergence towards a reg-
ular attractor is visualised in Fig. 8. The time evolu-
tion of the kinetic energies Km for m = 1, .., 4 during
the transient phase close to chaotic saddles correspond-

ing to branch I (from now on called saddles I) is dis-
played in Fig. 8(a) for Ha = 0. The same plot is shown
in Fig. 8(b) for the transient phase close to chaotic sad-
dles corresponding to branch II (saddles II) for Ha = 1.3.
In both panels, the dominant azimuthal wave number is
m = 4, since K4 � Km (m = 1, 2, 3). On average, K4

may be more than one order of magnitude larger thanKm

(m = 1, 2, 3), and about two orders of magnitude larger
at some intervals. For these time intervals, the transient
phase almost lies in the invariant subspace m = 4 (i. e.
it is quasi-invariant). Notice that in figure 8, the lifetime
of the transient phase (i. e. the limits of the horizontal
axis) varies with Ha. This lifetime also strongly depends
on the initial condition considered, but statistically tends
to infinity when the critical parameter of the crisis is ap-
proached (Grebogi et al. (1987)). The main difference
between figure 8(a) and figure 8(b) is that in the latter
(i. e. for the transient phases close to saddles II), the time
intervals where K4 > 10Km (m = 1, 2, 3), i. e. the time
intervals where the solution lies in the quasi-invariant
subspace, are longer and more frequent. Nevertheless,
both long-lived transients ultimately saturate to a regu-
lar solution, a 2T-MRW3 (with m = 3 azimuthal symme-
try) described previously in Garcia et al. (2020a), since
K4,K2,K1 → 0 in Fig. 8.

As Ha is decreased, chaotic saddles may develop homo-
clinic or heteroclinic tangencies of their invariant mani-
folds, which tend to increase the fractal dimension of the
saddle in a stair-case way (Lai, Życzkowski, and Grebogi
(1999)), giving rise to more complex chaotic transients.
Numerical evidence of this behaviour is provided later
in this section. Although unstable, the investigation of
these transient states is important since they may ex-
ist for very long times and thus may be the only states
that can be detected experimentally. These transient
states exhibit a temporal behaviour which can be re-
lated with the existence of unstable MRW belonging to
branches I and II. Specifically, the transients of branch I
(those occurring for Ha < 0.45) seem to sometimes ap-
proach the unstable branch of 2T-MRW4-I, whereas the
transients corresponding to branch II (those occurring
for 0.9 < Ha < 1.7) may approach either the unstable
branches 2T-MRW4-IIb, 3T-MRW2-I, or 3T-MRW2-II.

Figure 9(a) displays the non-axisymmetric kinetic en-
ergy Kna versus time for the transient at Ha = 0.0 (i. e.
corresponding to saddle I). The evolution of Kna seems
to alternate between periods of chaotic oscillatory be-
haviour (marked with the (c) label) and periods of regu-
lar oscillations (marked with the (b) label). By compar-
ing the kinetic energy of the most energetic mode (K4)
of the transient with that of an unstable 2T-MRW4-I at
Ha = 0.0 (see Fig. 9(b)) during the time interval marked
with (b) in Fig. 9(a), it is clear that the transient ap-
proaches the unstable 2T-MRW4-I, since the amplitude
and period of the oscillations of K4 are very similar. The
same variables are displayed in Fig. 9(c) during a chaotic
period (time interval (c) of Fig. 9(a)) of the transient
together with a stable CW1-I solution at Ha = 0.5. In
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this case, the transient strongly resembles the chaotic at-
tractor before the crisis. To provide further evidence of
the relation between the transient and the unstable 2T-
MRW4-I or the chaotic attractor before the crisis, the
time series of their kinetic energies of the m = 8 mode
and that of the m = 1 mode are displayed in Fig. 10(a)
and Fig. 10(b), respectively. The agreement between the

transient time series and the other shown in the figure is
as clear as in Fig. 9.

Poincaré sections of volume-averaged kinetic energies
help to confirm the dynamics close to the saddle. They
are defined by the constraint K(t) = K, with K be-
ing the volume-averaged kinetic energy and K its time
average. The volume-averaged poloidal kinetic energy
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FIG. 10. Chaotic transient at Ha = 0.0: (a) Compari-
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KP is displayed versus the volume-averaged toroidal non-
axisymmetric energy KT

na at the Poincaré sections in
Fig. 11. Panel (a) contains the comparison of the tran-
sient, during the period (b) of Fig. 9, with the unsta-
ble 2T-MRW4-I (the two square points) at Ha = 0.0.
Although the transient points (circles) are scattered all
over the plot (as they should), they tend to be concen-
trated very close to the square points corresponding to
the Poincaré section of the 2T-MRW4-I. Similarly, the
pair of clouds of points (circles) of Fig. 11(b) correspond-
ing to the transient have similar topologies and they are
located over the two patches of the Poincaré section of
the stable CW1-I solution at Ha = 0.5.

Figures 12 and 14 are analogous to Fig. 9, but for tran-
sients at Ha = 1.3 and Ha = 1.7, respectively, associated
with the chaotic saddle II. For Ha = 1.3, there are differ-
ent periods of time where the solution approaches either
an unstable 2T-MRW4-IIb or an unstable 3T-MRW2-II
(both at Ha = 1.3). This is shown in Fig. 13, which
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FIG. 11. Chaotic transient at Ha = 0.0: Poincaré sections
defined by the constraint K(t) = K, K being the volume-
averaged kinetic energy and K its time average. The volume-
averaged poloidal kinetic energy KP is displayed versus the
volume-averaged toroidal non-axisymmetric energy KT

na. (a)
Poincaré sections for the transient (restricted to the time in-
terval (b) of Fig. 9, circles) and for the unstable 2T-MRW4-I
(squares), both at Ha = 0.0. (b) Poincaré sections for the
transient at Ha = 0.0 (restricted to the time interval (c)
of Fig. 9, circles) and for the stable CRW1 at Ha = 0.5
(dots). Because volume-averaged properties are considered,
the Poincaré sections of 2T are a single point.

compares the contour plots of the radial velocity of the
transient at some time instants with the corresponding
contour plots of the unstable 2T-MRW4-IIb or the un-
stable 3T-MRW2-II, both at Ha = 1.3. In Fig. 12(b), the
period doubling giving rise to the unstable 2T-MRW4-
IIb branch is also reproduced during the transient phase.
For the transient at Ha = 1.7, besides the periods ap-
proaching the 3T-MRW2-II (fig. 14(b)), there are peri-
ods reminiscent of the chaotic attractor before the crisis
(fig. 14(c)). Notice that in this case, the transient neither
can approach the branch of 2T-MRW4-IIb or 3T-MRW2-
I since these branches are born at Ha < 1.6.

Figure 14(a) seems to display oscillatory regular be-
haviour for approximately t ∈ [15, 20], just before the

time period marked with the label (b), i. e. before the
transient approaches the unstable 3T-MRW2-II branch.
In addition, for t ∈ [15, 20], the transient at Ha = 1.7 has
a symmetry of nearly m = 2. This may be an indication
that the transient is approaching the branch 3T-MRW2-I
as we argue in the following. As commented in Sec. IV B,
the unstable invariant manifold of branch 3T-MRW2-I
seems to be connected with the stable invariant mani-
fold of branch 3T-MRW2-II at around Ha ≈ 2, where the
branch 3T-MRW2-I loses stability, seemingly by means
of a saddle-node bifurcation. This is because taking an
initial condition on branch 3T-MRW2-I and integrating
with Ha > 2, a solution on the branch 3T-MRW2-II
is reached. The unstable part of 3T-MRW2-I, born at
the saddle node, may extend for smaller Ha = 1.7, and
thus the transients close to the chaotic saddle may ap-
proach this branch and be repelled afterwards to branch
3T-MRW2-II, thanks to the connection of their invari-
ant manifolds. Aside from t ∈ [15, 20], the approach of
the transient to branch 3T-MRW2-I and the subsequent
repelling to branch 3T-MRW2-II can be also identified
from t ∈ [40, 44].

As in Fig. 11, the Poincaré sections of volume-averaged
kinetic energies are displayed in Fig. 15 and Fig. 16 for
the transients found at Ha = 1.3 and Ha = 1.7, re-
spectively, corresponding to the chaotic saddle II. The
four square points of Fig. 15(a) correspond to the un-
stable 2T-MRW4-IIb with period doubled and are sur-
rounded by four patches of circle points corresponding
to the transient during the time interval labelled with
(b) in Fig. 12(b). Analogously, the circles correspond-
ing to the transient sections, during the time interval la-
belled with (c) in Fig. 12(c), are located very close to the
two closed curves (which can be barely distinguished) of
Fig. 15(b). The similarity between the Poincaré sections
of the transient and the unstable objects is repeated for
Ha = 1.7 (see Fig. 16). In this case, the sections for the
unstable 3T-MRW2-II are clearly two closed curves, ly-
ing very close (see Fig. 16(a)). We recall (as commented
in Sec. IV B) that by increasing Ha along branch 3T-
MRW2-II the two closed curves overlap, giving rise to a
tangency of the orbit in the phase space. The overlap-
ping of the two patches of the Poincaré section is large for
the chaotic attractor of CW1-II at Ha = 1.8 since these
chaotic flows bifurcate from the branch 4T-MRW1-II, for
which the overlapping of the section already occurs. Ac-
cordingly, the overlapping of the transient at Ha = 1.7 is
also large (see Fig. 16(b)).

The overlapping of the Poincaré sections may indicate
a riddled basin of attraction (Sommerer and Ott (1993);
He (2005)), which may favour intermittent behaviour for
transients corresponding to chaotic saddles emanating
from branch II. This overlapping is not present on branch
I (e. g. see Fig. 7(a,c)), thereby perhaps inhibiting inter-
mittency during the transients of chaotic saddles I. As
shown in the next section, the intermittent nature of the
transients corresponding to branch II is confirmed.
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VI. ON-OFF INTERMITTENCY STATISTICS

The previous section has provided evidence that the
transients within the chaotic saddle II exhibit intermit-
tent behaviour. During some time intervals, these tran-
sients have values of kinetic energy of the modes m 6= 4k
significantly smaller than those corresponding to the ki-
netic energy of the modes m = 4k, for some integer k
(see Fig. 8(b)). This basically means that during these
time intervals, the transient almost lies within the invari-
ant manifold defined by the azimuthal symmetry m = 4
and is derailed from this manifold when the kinetic en-
ergies of the mode m = 1, 2, 3 are significant. This type
of intermittent behaviour, in which the orbit is subse-
quently directed and repelled from certain unstable at-
tractors lying within a invariant manifold (also quasi-
invariant), has been defined by Platt, Spiegel, and Tresser
(1993) as on-off intermittency. This type of intermit-
tent chaos has been widely characterised (e. g. Heagy,
Platt, and Hammel (1994); Platt, Hammel, and Heagy
(1994); Aumâıtre, Pétrélis, and Kirone (2005)) and
their statistical signature can be extracted from time se-
ries (e. g. Venkataramani et al. (1995, 1996); Toniolo,
Provenzale, and Spiegel (2002)).

In this section, some statistical analyses are performed
on the time series of transients close to either the chaotic
saddle I (at Ha = 0.0) or the chaotic saddle II (at
Ha = 0.9, 1.3, 1.7), but also to the time series of a stable
chaotic attractor on branch CW1-II (at Ha = 1.8). The
analyses are done for K∗ = K1 +K2 +K3 as a measure
of the departure of the intermittent transient from the
invariant subspace of azimuthal symmetry m = 4. Sim-
ilar results are obtained when K∗ = Ki and i = 1, 2, 3.
For on-off intermittency, the probability measuring the
departure from the invariant manifold should have a
power law distribution P (K∗) ∼ Kγ

∗ with γ ∈ (−1, 0)
(Venkataramani et al. (1996); Toniolo, Provenzale, and
Spiegel (2002)). Figure 17 displays the probability dis-
tribution function (pdf) of the kinetic energy K∗ of the
modes m = 1, 2, 3, 4 and the sum of the kinetic energies
of the modes m = 1, 2, 3 (K∗ = K1 + K2 + K3) for the
transient at Ha = 0.9. Either for K∗ = Ki, i = 1, 2, 3,
or for K∗ = K1 + K2 + K3, there is an interval of K∗
values for which the pdf has a slope γ ∈ (−1, 0), which
is a signature of on-off intermittency for the transient at
Ha = 0.9. This is clearly not the case for m = 4 since K4

does not measure the departure from the invariant mani-
fold, which is defined by the m = 4 azimuthal symmetry.

Figure 18(a) displays the pdf of K∗ = K1 + K2 + K3

for all the time series considered: a transient within the
chaotic saddle I (Ha = 0.0), transients close to the chaotic
saddle II (Ha = 0.9, 1.3, 1.7), and a stable solution from
branch CW1-II (Ha = 1.8). While for Ha = 0.9, 1.3, 1.7
(i. e. transients within the chaotic saddle II) the pdf
seems to follow the predicted power laws for on-off in-
termittency, these can not be identified in the pdf of ei-
ther the transient close to the chaotic saddle I or the
stable CW1-II, suggesting that these two cases do not
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the transient at Ha = 1.3 (point on the left of Fig. 12(a)) with almost m = 2 azimuthal symmetry, respectively.

correspond to on-off intermittency. This seems also to
be confirmed with other on-off intermittency statistical
indicators explained as follows.

With time series analysis, a threshold Kc = αmaxK∗,
with α ∼ O(0.1), is considered to distinguish between
the on and off phases. This threshold defines the set
of burst times as the times when the curve of K∗ crosses
the threshold line in the upper direction so the solution is
away from the m = 4 invariant subspace (see Venkatara-
mani et al. (1996)). The factors α for Ha = 0, Ha = 0.9,
Ha = 1.3, Ha = 1.7, and Ha = 1.8, are α = 0.25,
α = 0.26, α = 0.4, α = 0.28, and α = 0.34, respec-
tively, and the maximum values are maxK∗ = 4× 10−4,
maxK∗ = 4.7× 10−4, maxK∗ = 4.51× 10−4, maxK∗ =
3.56×10−4, and maxK∗ = 2.08×10−4, respectively. The
set of burst times (normalised) has a fractal box-counting
dimension d = 1/2 (Venkataramani et al. (1996)), i. e.
the number N of time intervals of length δt required to
cover the fractal set follows N(δt) ∼ δt−1/2. This is dis-
played in Figure 18(b) and the agreement with the on-off
intermittency theoretical scaling is again only valid for
Ha = 0.9, 1.3, 1.7 (i. e. for transients close to the chaotic
saddle II).

Another characteristic signature of on-off intermit-
tency is provided by the notion of the set of interburst
times (defined as the difference ∆t of two successive burst
times). The pdf of the interburst times follows the scal-
ing P (∆t) ∼ ∆t−3/2 (Venkataramani et al. (1996)). Fig-
ure 18(c) displays these pdf for the analysed time series.
For Ha = 0.9, 1.3, 1.7 (especially for Ha = 1.3) the pdf
seem to approach the valid scaling for on-off intermittent
behaviour. Notice that the agreement with the theory is
not clear as in Fig. 18(b) since very large time series are
required to approximate the set of interburst times and
the time series are limited by the lifetime of the tran-
sients. The same shortcoming occurs when considering
the power spectral density (psd) of the time series of K∗.
In the case of on-off intermittent signal, the psd scales as
f−1/2 (Venkataramani et al. (1995)), which can not be
clearly identified from our time series (see figure 18(d)).

VII. CONCLUSIONS

The study focuses on the analysis of bifurcation phe-
nomena between regular and chaotic magnetohydrody-
namic (MHD) flows. These flows are obtained by di-
rect numerical simulations of the magnetised spherical
Couette (MSC) system, a widely used three-dimensional
MHD model for the study of astrophysical phenomena.
As recently found by Garcia et al. (2020b), symmetry
breaking Hopf bifurcations may give rise to stable at-
tractors described by four fundamental frequencies (i. e.
four-dimensional invariant tori). According to Newhouse,
Ruelle, and Takens (1978), this scenario is not possi-
ble when the system is generic (i. e. without any pre-
scribed symmetry) since any perturbation applied to
three-dimensional invariant tori gives rise to chaotic be-
haviour. The analysis of spatially symmetric systems, as
the MSC system, is thus of fundamental importance to
understand the type of bifurcations that may occur.

The mechanism, first described in Garcia et al.
(2020b), of the generation of four-dimensional invari-
ant tori (4T) in the form of modulated rotating waves
(MRW) is confirmed in the present study by analysing
a new branch of solutions. As in Garcia et al. (2020b),
the bifurcation parameter is the Hartmann number, mea-
suring the strength of the magnetic field applied to the
system, while the other parameters (the Reynolds num-
ber and aspect ratio of the shell) are fixed. The results
show that the new branch (branch II) giving rise to 4T
follows the same sequence of Hopf bifurcations as the
branch described in Garcia et al. (2020b) (branch I), but
in contrast, the structure of solutions in the phase space
is significantly different for both branches. By analysing
Poincaré sections of 3T-MRW and 4T-MRW on both
branches, we have revealed the different phase space dis-
tributions of their solutions. In the case of branch II, the
two patches of the Poincaré sections overlap, indicating
a tangency of the orbit (He (2005)), which may indicate
a riddled basin of attraction. In contrast to this, the two
patches of the Poincaré sections of solutions along branch
I are clearly separated and the three-dimensional phase
space plots of the orbit have a toroidal-like structure.
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FIG. 15. Chaotic transient at Ha = 1.3: Poincaré sections
defined by the constraint K(t) = K, K being the volume-
averaged kinetic energy and K its time average. The volume-
averaged poloidal kinetic energy KP is displayed versus the
volume-averaged toroidal non-axisymmetric energy KT

na. (a)
Poincaré sections for the transient (restricted to the time in-
terval (b) of Fig. 12, circles) and for the unstable 2T-MRW4-
IIb (squares). (b) Poincaré sections for the transient (re-
stricted to the time interval (c) of Fig. 12, circles) and for the
unstable three tori 3T-MRW2-I (full circle). Because volume-
averaged properties are considered, the Poincaré sections of
2T and 3T are a single point and a closed curve, respectively.
The closed curve in (b) is so small that looks like a point, but
it is not.

With the help of very long time series, we have been
able to determine the transition between 4T-MRW and
chaotic flows by analysing the diffusion of the orbit in the
phase space following the procedure described by Laskar,
Froeschlé, and Celletti (1992); Laskar (1993a). This was
not possible in Garcia et al. (2020b) because the analysed
time series were not long enough. We have shown that
before the transition, 4T-MRW may develop resonances,
i. e. one of the fundamental frequencies can be expressed
as linear combination of the others. This is verified by
employing an accurate algorithm (Laskar (1993b)) for de-
termining the fundamental frequencies.
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Aside from the study of high dimensional invariant tori
and their transition to chaos on branches I and II, an-
other important goal of this research is to investigate in
detail the nature and prevalence of chaotic flows when
varying the Hartmann number. Chaotic MHD attractors
only appear to be stable in a small range of Hartmann
numbers close to the transition from regular 4T-MRW.
Away from the range of stability of chaotic attractors on
both branches (I and II), the time integrations typically
involve very long initial transients (which may exceed
50 dimensionless units) before a stable attractor (which
may not belong to branch I nor branch II) is reached.
The existence of these long initial transients has been in-
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FIG. 17. Probability distribution function of the kinetic en-
ergy K∗ of the individual modes m = 1, 2, 3, 4 for a intermit-
tent transient flow at Ha = 0.9. For m = 1, 2, 3 there is a
range of K∗ for which the pdf has slope γ ∈ (−1, 0). This
is not the case for m = 4. The theoretical scaling is marked
with a solid line (red online).

terpreted as a result of a crisis, at which a stable chaotic
attractor loses stability developing a chaotic saddle.

By a direct comparison of time series of volume-
averaged kinetic energies and Poincaré sections of the ini-
tial transients with unstable MRW with either azimuthal
symmetry m = 4 or m = 2, existing at the same pa-
rameters, we have demonstrated that during the tran-
sients, the phase space trajectory approaches these un-
stable MRW at certain periods, but after some time in-
terval it is repelled farther away. The different phase
space structure of unstable MRW belonging to branch
I and branch II make the corresponding transients also
different. Specifically, the tangency in the phase space
observed for 3T-MRW belonging to branch II favours the
development of intermittent behaviour (e. g. He (2005)),
which is observed during the transients associated with
the chaotic saddle of branch II, but not during the tran-
sients associated with branch I.

The intermittent nature of the transients is investi-
gated by employing well-known statistical methods, in-
cluding the analysis of the set of burst times, designed for
the time series. In the case of transients associated with
chaotic saddles of branch II, the intermittency is of on-off
type whereas this is not the case for transients associated
with branch I as commented earlier. On-off intermittency
involves the existence of an invariant manifold, at which
the intermittent trajectory is attracted, with some un-
stable transverse direction, from which the trajectory is
subsequently repelled. In our case the on-off invariant
manifold corresponds to the azimuthal symmetry m = 4.

On-off intermittency may arise from a blow-out bifur-
cation (Ott and Sommerer (1994)), but as commented in
Sec. IV B, this seems to not be the case. In our situa-
tion, the existence of a riddled basin of attraction for the
chaotic flows on branch II and the intricate structure of
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the invariant manifolds of the unstable 3T-MRW2-I and
3T-MRW2-II branches for Ha ∈ [0.9, 1.7] allow the tran-
sient orbit to jump and approach the different branches,
thus explaining the observed on-off intermittent signa-
ture for transients corresponding to chaotic saddle II.
Conversely, the absence of this riddled basin or connec-
tion between branches I and II may also explain why the
on-off intermittent signature is not found for transients
within the chaotic saddle I.

Blow-out bifurcations have been found to be the mech-
anism for on-off intermittent dynamics in the case of
MHD problems involving the emergence of dynamo ac-
tion in a three-dimensional periodic box (Sweet et al.
(2001); Alexakis and Ponty (2008)) and also in spherical
geometries as is the case of Raynaud and Dormy (2013),
which considers the same problem considered here but
without the inductionless approximation. In these stud-
ies, the invariant manifold giving rise to the on-off in-
termittent behaviour corresponds to the absence of mag-
netic field, which is in contrast to our study since our

manifold is defined in terms of the azimuthal symmetry
of both velocity and magnetic fields. This is natural since
in our case a magnetic field is always present, although
it is very weak since the range of Hartmann numbers
investigated is order of unity.
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Garcia, F., Net, M., Garćıa-Archilla, B., and Sánchez, J., “A com-
parison of high-order time integrators for thermal convection
in rotating spherical shells,” J. Comput. Phys. 229, 7997–8010
(2010).

Garcia, F., Seilmayer, M., Giesecke, A., and Stefani, F., “Mod-
ulated rotating waves in the magnetized spherical Couette sys-
tem,” J. Nonlinear Sci. 29, 2735–2759 (2019).

Garcia, F., Seilmayer, M., Giesecke, A., and Stefani, F., “Chaotic
wave dynamics in weakly magnetised spherical Couette flows,”
Chaos 30, 043116 (2020a).

Garcia, F., Seilmayer, M., Giesecke, A., and Stefani, F., “Four-
frequency solution in a magnetohydrodynamic Couette flow as a
consequence of azimuthal symmetry breaking,” Phys. Rev. Lett.
125, 264501 (2020b).

Garcia, F., Seilmayer, M., Giesecke, A., and Stefani, F., “Long
term time dependent frequency analysis of chaotic waves in the
weakly magnetised spherical Couette system,” Physica D 418,
132836 (2021).

Garcia, F. and Stefani, F., “Continuation and stability of rotating
waves in the magnetized spherical Couette system: Secondary
transitions and multistability,” Proc. R. Soc. A 474, 20180281
(2018).

Gibson, J. F., Halcrow, J., and Cvitanović, P., “Visualizing the
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Laskar, J., Froeschlé, C., and Celletti, A., “The measure of chaos
by the numerical analysis of the fundamental frequencies. ap-
plication to the standard mapping,” Physica D 56, 253 – 269
(1992).

Lemoult, G., Shi, L., Avila, K., Jalikop, S. V., Avila, M., and Hof,
B., “Directed percolation phase transition to sustained turbu-
lence in Couette flow,” Nature Phys 12, 254–258 (2016).



19

Letellier, C., “Intermittency as a transition to turbulence in pipes:
A long tradition from reynolds to the 21st century,” Comptes
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