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Abstract

Sentiment Analysis on social media such as Twitter can provide us with valuable
information about the users’ opinions. The singularities of these data lie in their
short format and informal language. In the last years, Deep Learning models like
Recurrent Neural Networks and Convolutional Neural Networks have been widely
studied for this task reaching promising results when combined with word embed-
ding mechanisms. In this master thesis, we go through the bases of Sentiment
Analysis and Deep Neural Networks and then some Deep Learning models are
presented. Pursuing improving the performance of these models, attention mech-
anisms like Self Attention of Transformer Encoder are presented and included in
the models. The same dataset is used to train all the presented models in order to
evaluate them and analyze the impact of including attention mechanisms on Deep
Neural Networks in a Sentiment Analysis task.
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Chapter 1

Introduction

A person wanting to buy a new product, a company worried about how people
feel about its products, political parties concerned about the possibilities they
have in the upcoming elections. There are all situations where someone is looking
for people’s opinions regarding an specific topic. Historically people asked friends
and family before buying something in order to assure they were taking the best
decision, companies did customer satisfaction surveys and political parties chose
a representative part of society and ask them about the main points of their pro-
gram. In all of these cases, the data has to be collected person by person and,
after collecting the data, it should be manually classified in order to can extract
conclusions.

Nowadays, individuals, companies, organizations and governments use the huge
amount of data available in social media for decision making: reviews about the
product you want to buy, tweets or blog posts about a social measure or a company,
etc. Therefore, social media already avoids several manually data collection. The
next step is to find a way to automate their classification in order to make all these
data useful.

Moreover, neural networks, that were widely used for image classification, were
adapted to Natural Language Processing (NLP) tasks by using word embeddings
that allow to have vector representation of words where similar words are close on
the vector space. Deep Neural Networks (DNN) have surpassed in terms of accu-
racy other traditional classification methods. Among all the DNN, Convolutional
Neural Networks (CNN) and Recurrent Neural Networks (RNN) - specially with
the presence of Long-Short Term Memory (LSTM) - are the most popular on text
sentiment analysis.



In the last decade, it appears the concept of attention mechanisms and become
a very powerful concept in deep learning improving the performance of neural
networks. Attention mechanisms assign different weights do each token of the
input allowing the neural network to focus on the more relevant parts for the
specific task obtaining a better representation of it.

In this master thesis we will study the power of attention mechanisms when work-
ing with short texts by considering Twitter data. The first chapter is composed by
an introduction of Sentiment Analysis (SA), DNN and GloVe embedding. Then,
on Chapter 2, we present the enabled models divided in two categories: DNN ar-
chitectures and Attention Mechanisms. On the third chapter we start presenting
the data set that will be used to evaluate the five different models described on
the second part of the chapter. Chapter 3 ends by comparing the different models
and, in the final chapter, the reached conclusions and future work are exposed.
There is also an appendix with the full Python code used.



Chapter 2

Deep Neural Networks for
Sentiment Analysis

2.1 Sentiment Analysis

From some years to now, the amount of data available has significantly increased
thanks to social media and blogs, where people write their opinion about several
topics or products. Sentiment Analysis is the analysis of a text with the aim of
obtaining people’s opinion regarding an specific topic. For instance, SA provides
an efficient way to determine if the expression in a text is positive or negative.

The increase of available data together with the reduction of computational costs
converts SA in one of the most active research areas in Natural Language Process-
ing. It has been spread form the field of computer science to a wide range of other
disciplines more related with social science such as marketing, finances, politics
or communications. SA has multiple applications on real world where knowing
people’s opinion helps organizations and companies to make better decisions by
analyzing how people feel in a macro scale about a product, a service or even a

brand.

Statistical methods such as Support Vector Machines (SVM), Latent Dirichlet
Allocation (LDA) or Naive Bayes have been used in text classification tasks. How-
ever, these methods present two main inconveniences first, they should be trained
in a high-dimensional feature space, what decreases the performance of the model
, and also the feature engineering process requires a lot of time and work [4].



In order to overcome this limitations, in the last years the community started to
use word embedding that transform text into matrices considering the lexical rela-
tionships between words. By doing this, we can start using Deep Neural Networks
for Natural Language tasks such as sentiment analysis.

2.2 Deep Neural Networks

The structure of DNN has been inspired by the structure of the human brain. DNN
consist on a set of units called neurons organized in layers that work unison. This
type of networks can learn to perform tasks by adjusting the connection weights
between neurons.

Input Layer Hidden Layers Output Layer

~O ~7 O
T
{4 1

Figure 2.1: DNN Structure

Figure 2.1 shows the standard structure of a DNN. It is composed by three types
of layers: one input layer, several hidden layers and an output layer. The values
in the input layer denote the input data supplied to the network while the hidden
and output layers are composed by neurons.

The flow of information between neurons is determining by the weights w and
fitting this weights allows the network to learn features from the data. In each
layer, each neuron takes its input x from the previous layer and it calculates an
output value by applying an activation function g to the weighted sum of inputs
and the bias b. Mathematically it is denoted as



g(W'a) = g(3" Wiz +)

Activation functions are usually non-linear and the most common are sigmoid,
hyperbolic tangent (tanh) and Rectified linear unit (ReLU).

1
SngOZd(Wt[B) = W
Wte Wtz

tanh(W'x) = ¢ ‘

eWtz + efWiac

ReLU(W'z) = max(0, W'r)

The choice of the activation function in the output layer depends on the specific
task that the network is performing. In the case of considering a classification
task with more than two categories, the activation function should be the softmax
function, similar to sigmoid function but adequate to handing multi-class prob-
lems, It turns a vector of K real values into a vector of K real values between 0
and 1 that sum 1 such that they can be interpreted as the probability to belong
to each of the K classes. Generally this function is only used in the output layer
and it is defined as follows.
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Neural networks are often trained with optimization techniques that need a loss
function in order to estimate the model error. Depending on the learning task the
loss function will be log-likelihood or sum of squares and the network parameters
are optimized with the output of the loss function employing different optimization
techniques. In this thesis, as we are considered a big data set and the models have
a lot of parameters, we will be working with Adam optimization algorithm that
uses Momentum and Adaptive Learning Rates to converge faster.

The most popular types of DNNs in tasks related to text processing are Convo-
lutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). The
cause of this popularity is due to the fact that CNNs can of learning local patterns



and RNNs have the ability to analyze sequential data. In the next sections, RNNs
and CNNs models will be considered. There will also be contemplated some hybrid
models that combine both of them.

The next table summarizes some of the publications of the last five using RNNs
and CNNs for sentiment analysis:

Year Study Research Methods

2017 A. Hassan et al. [10] Sentiment analysis on short texts CNN, LSTM

2018 J. Qian et al. [14] Sentiment analysis on weather-related tweets DNN, CNN

2019 A. S. M. Alharbi et al. [2] Twitter sentiment analysis CNN

2019 J. Xie et al. [17] Sentiment analysis on short texts Self Attention based BiLSTM

2021 H. S. Sharaf Al-deen et al. [4] Sentiment analysis on short texts CNN, BiLSTM, Multi-Head Attention

2.3 Word embedding: GloVe

In order to be able to work with text data in DNN, texts need to be converted
somehow to vectors. Traditionally, it has been popular the use of bag-of-words
representation (BoW) that, given a dataset, it forms a “bag” with all the words
appearing and then each entrance (sentence, document, tweet, etc) is transformed
into a vector of length the number of words in the bag that shows how many times
each word appears.

Imagine that we have the following 3 sentences:

e ‘He is my young brother’
e ‘He is a mechanic’
e ‘His young brother is as tall as him ’

The sentences have a total of 17 words that can be summarized in a bag of 11 words:

LA ]

'He’ , ’is” , 'my’, 'young’, 'brother’, ’a’, 'mechanic’, 'his’ , ’as’; 'tall’, ’him’. There-
fore each sentence will correspond with a vector of length 10, x = (z1, x9, ..., 10)
with x; the number of times that the word in the ith position of the bag of words
is the sentence:

e ‘He is my young brother’ = (1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0)

e ‘He is a mechanic’ = (1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0)
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e ‘His young brother is as tall as him’ = (0, 1, 0, 1, 1,0, 0, 1, 2, 1, 1)

This representation has some inconveniences as the length of the vector corre-
sponds to the vocabulary size so, when having a big data base like several books,
the vectors will be huge and with a lot of 0’s requiring a lot of memory and compu-
tational resources. Moreover, it does not take into account context and sentences
with a very similar meaning can have really different representations.

Word embeddings overcome these problems as they try to map human language
into a geometric space, therefore, words with similar meanings will be close in
the word-embedding space. As we can see on Figure 2.2 the distance between
the representations of ‘brother’” and ‘sister’ is similar to the one between ‘nephew’
and ‘niece’ or ‘aunt’ and ‘uncle’ as, in human language, the difference between
these words is always the same one: the gender. There are several embedding
algorithms: word2vec, ELMO, BERT, GloVe, etc.

- countess

; [ duchess-
sister /

IS8, ! S

[ ;| sempress

Figure 2.2: Distance of words in the word-embedding space [§]

In this thesis all the models considered are using a pre-trained GloVe embedding
that has been trained on Twitter data [§].

GloVe model [13] is based on factorizing a matrix of word co-occurrences statistics.

Given a set of V' words, the co-occurrence matrix X will be a matrix where X;;
denotes how many times the word j occurs in the context of word ¢. The probability
of seeing this two words together is calculated by dividing the number of times ¢
and k appear together divided by the number of times that the word ¢ appears in
the set of words: Py, = Xy /X;. Therefore given the three words 7, j and k (this
third one is called probe word) if i and j are both similar or both unrelated to the

11



probe word k, P,/ Pj, will be close to one. If 7 is similar to k but j is not, Py /Pj
will be a high number greater than 1 and in the opposite case - j similar to & and
1 different from k- the value will be very small.

Probability and Ratio | k = solid k = gas k =water  k = fashion

P(klice) 19x 107% 66x107° 3.0x107% 1.7x1073
P(k|steam) 22%x107° 78x107* 22x10° 18x1073
Piklice)/ P(k|steam) 8.9 8.5x 1072 1.36 0.96

Figure 2.3: Co-occurrence probabilities [13]

Figure 2.3 presents the co-occurrence probabilities for target words ice and steam
with four other words: solid, gas, water and fashion.

12



Chapter 3

Enabled Models

After a brief description of Sentiment Analysis and the intuition on Deep Neural
Networks, this section will be composed by two main parts. In the first part we
consider different DNN architectures and in the second part attention mechanisms
are presented.

3.1 DNN architectures

3.1.1 Convolutional Neural Networks

Convolutional Neural Networks are able to capture local features of data. The
were initially used in the field of computer vision but they are widely used in other
fields as speech recognition, text mining and sentiment analysis.

In order to classify a tweet according to its sentiment, CNN take as an input the
matrix provided by the embedding layer and outputs the probability of a tweet to
belong to each class.

Convolutional Neural Networks are composed by three type of layers: Convolu-
tional, Pooling and Dense or Fully Connected. Pooling layers are optional but the
other ones are always in the network as the convolutional layer is the one that
captures the local features and dense layer outputs the probabilities of belonging
to each class.

13
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Figure 3.1: CNN architecture for sentiment classification [16]

Figure 3.1 represents the architecture of a CNN in the case of sentiment analysis.
As can be seen, each row represents the k-dimensional word embedding of each
word. Hence, if the length of each sentence is n, a matrix of dimension n X k is
provided as input of the network.

Convolutional layers are the main component of a CNN architecture and they
are composed by filters that extract features of the date and whose parameters
should be learned. These filters f are applied over a window of k terms to generate
a convoluted feature ¢;:

ci = f(Tifiph—1]) +b

were b is the bias and f the activation function. Each filter is applied to all possible
window of words in the sequence to generate the feature map.

The Pooling Layer applies some operation over the regions in the input feature
map and extracts some representative value for each of the analyzed regions. By
doing this, pooling layers increases the CNN’s robustness to avoid noise and dis-
tortions. Contrary to convolutional layers, the function in pooling layers is fixed.
Usually what they do is to calculate the average of the features values or the
maximum, determining the essential feature of the map.

Even if Dense Layers can also be on the inside of the neural network, the output
layer is always a Dense Layer. Dense layers perform the classification task. In
a dense layer, each of the outputs of the previous layer is connected with to each
neuron in the layer, which implies that each output dimension depends on each
input dimension.

14



3.1.2 BIiLSTM

Recurrent Neural Networks are a type of neural networks that have the form of a
chain with a module that is repeated in such a way that for each step, the output
is generated based on the output of the previous step and the input of the current
one.

Embedding
Sequence (20}
= |m wy =121 It
gI21315[2] 13[5|3)2|2
_
3\ lelzlxlalz] |alzlz]z]2
= clelz|=]=s] 12]F=e]s] 2
&
wi
=
s
E zle|=|n]|L Tloe|l=isla
€ 1B1218[2[2] |2|=|2]|2]|=
w
Y = B E B L R B B S
The input to the cellis the embedded o ol I O e e B

vector from the corresponding word
in the sequence and the hidden state
from the previous timestep

-

Y% X
) / Recurrent layer \ \
h, hy h, h,
— Cell —» Cell » Cell . — Cell > Cell » Cell
I ]
L n
! |
The hidden state i hy
is initilized I v
[034 -012 . 054 -0.23] [093 -072 .. 019 -061]
units (256) units (256)
Each cell carries its “hidden” state to the The final hidden state is output by the
next timestep. This is o vector with the layer. It is o vector with the same length
same length as the number of units in o cell. as the number of unitsin a cell.

Figure 3.2: Long-Short Term Memory network [7]

Long-Short Term Memory is an special type of RNN whose module has a more
complex structure than standard RNNs. LSTM are composed by a chain of recur-
rent memory units as shown on Figure 3.2. Each of the cells has four components:
a memory cell and three gates (forget, input and output). These components in-
teract among them such that the cell records information and the gates control

15



the flow from cell to cell as shown in Figure 3.3 1.

l sigmoid }:_>

|
| output |
ga{e
T |
| | | |
i [ Un A
(- + —JL + —JL —J
he

memory

e EF

Figure 3.3: LSTM unit

Given the input = = (21,2, ..., x,) LSTM will generate the hidden vectors h =
(h1, ha, ..., hy,), being n the length of the sentence. The dimension of each vector
x; is the dimension of the embedding and the dimension of h; coincides with the
number of units in a cell. W and U are the weight matrices and b the biases of
LSTM cell during training. The procedure is the following:

First, the forget gate decides what information discard for the cell state by using
sigmoid function:

ft = O'(Wfl't + Ufht_l + bf)

f+ will be a value between 0 and 1 where 0 will mean completely forget and 1,
completely keep.

Then, the input gate will decide the new information to store in the cell. In order
to do that, first it will calculate

Z't = O-(szt + Uiht_l + b,L)

!The image is an adaptation of an schema of L. Zhang et al. [18]
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and create new candidate values to be added in the cell state ¢;.
6t = tanh(Wczt + Ucht_l + bc)

Update the old cell state ¢;_; into the new one being ® the element wise multipli-
cation.
=[O 1+ O

Finally the output is decided based on the cell state. The output gate is calcu-
lated using the formula

op =0o(W°X, +U°hy_1 + b,)

that decides which parts of the cell state to output and then, multiplying it by the
cell state, only some parts of the output are shown on the hidden state h;

hy = oy * tanh(c;)

With the procedure described above, the outputs are calculated taking into account
the previous context. Bidirectional LSTM (BiLSTM) includes both the previous
and future context.

outputs
X

backward
layer LSTM LSTM

X A
forward __| LSTM LSTM LSTM }—> - -~
layer
inputs X Xt Xt

Figure 3.4: BiLSTM structure [5]

BiLSTM is represented on Figure 3.4. It is composed by two independent LSTM,
one of them that goes forward thorough the input and anther one backwards

that will obtain two different hidden layers: , for the forward LSTM and Jy
for the backwards one. The final hidden vector h; of the BiLSTM is obtained

%
concatenating h; and h; as hy = [hy, hy].

In order to perform classification, the final hidden layer is the input of the dense
layer.

17



3.2 Attention Mechanisms

The Attention Model was fist used in machine translation tasks but, over the
years, it has become very popular in many other fields as NLP, statistical learning,
speech recognition, computer vision or sentiment classification. The application
of attention mechanisms on NLP has been one of the greatest advances of the
last decade, specially after the publication of “Attention is All you Need” by the
Google’s machine translation team in 2017 [15].

In the case of sentiment analysis, given a tweet, not all the words contribute the
same to the context of sentiment polarity. Attention mechanisms, try to imitate
humans brain behaviour and allow the model to learn the parts of the input with
a higher relevance for the specific task they are performing while forgetting the
rest.

3.2.1 Self-Attention

Self-Attention focus on modulating a word representation by using the represen-
tation of related words in the sentence, therefore, self-attention is a context aware
kind of attention.

The mechanism calculate an attention value for each input and then it outputs a
context ¢, a weighted sum of the inputs according the relevance of each word based
on the attention. First, for every word in the sentence, the algorithm computes
the attention score based on every other word in the same sentence. In order to
do that, it uses the dot product between two vectors (word representations) as a
measure of the strength of their relation. Then a scaling function and softmax
will be applied to the calculate dot product. Lastly, the weighted sum of all word
vectors in the sentence is calculated to obtain the context.

Specifically, when applying an attention layer after BiLSTM, the network will
get the hidden vector h; produced by BiLSTM as an input to obtain the context
information c¢ for each sequence. In order to do that, first the hidden representation
is transformed into another hidden representation

u; = tanh(W*¥h; + by,)
where W™ is a weight matrix and b,, a bias vector. Later, the attention value is

18



computed considering u; and a word-level context vector u,, that helps to distin-
guish the importance of different words in the sentence.

exp(uj thy)

S oxp(aT ) = softmaz(u! u,)
t t “w

ay =

The sum of the attention values of a sequence must be 1 and the higher the value,
the more relevance the word is in the context of sentiment polarity. Finally the
context value is calculated

Cc = Zatht
t

w*, b, and u, are randomly initialized and then they are adjusted during the
training process. Figure 3.5 shows an schema of the process.

Figure 3.5: Attention Mechanism

3.2.2 Transformers

Transformers were introduced in the paper “Attention is all you need” [15] and
they were originally developed for machine translation. They consist on two parts:
an encoder that process the input sequence and a decoder that generates the new
sentence in the new language. However, the encoder part can also be used for text
classification because what it does is to create a new representation of the sentence
giving more importance to the most relevant parts.

19
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Figure 3.6: Transformer encode schema [3]

As seen in Figure 3.6, the transformer encoder is composed by a Multi-Head At-
tention layer together with some Dense layers and it adds normalization layers and
residual connections.

Multi-Head Attention Mechanism

Multi-Head Attention (MHAT) consists on applying more than one Self-Attention
mechanisms at the same time. Then all the outputs are concatenated, a linear
transformation is applied and the result is utilized as the output of the MHAT.
Figure 3.7 shows the architecture.
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Figure 3.7: Architecture of the MHAT mechanism [4]

As Transformers were originally designed for translation, the Self-Attention mech-
anism is slightly different to the one described above. In translation, two different
sequences should be considered: the one being translated and the target sequence
it is being converted to. In order to deal with this problem, the query-key-value
model is introduced. Query (Q), key (K) and value (V) are three sentences:

e Query: what the algorithm is looking for
e Value: all the information available in the model

e Key: representation of value that can be compared to the query

so the algorithm match queries and keys, computes how related they are and it
returns a weighted sum of the values, obtaining the following formula:

Attention(Q, K, V) = soft QKTV
ention(Q, K, V) = softmar——
Vi
where dj, is the dimension of Q and K and the softmax function normalizes the
obtained weights.

Contrary to the case of translation, in the case of sentiment analysis just one
sentence is considered such that each sentence is being compared to itself in order to
obtain context information of each token. This one sentence available in sentiment
analysis will be at the same time considered as query, key and value so K=V=Q.

21



Dense and Normalization Layers

After the Multi-Head Attention, a Layer Normalization is applied to the set formed
by the inputs and outputs of the MHA. This process normalize the matrix rep-
resentation of each sequence independently from the other sequences, helping to
accelerate and stabilize the learning process. After this step there are two Dense
or Fully Connected Layers and later another Layer Normalization is applied as
shown in Figure 3.6.

22



Chapter 4

Model Applications and Results

In this chapter, five different models are evaluated using a Twitter data set with the
objective of analyzing the relevance of attention mechanism on sentiment analysis.
In the first section the dataset is presented and later the models are described.
Finally, the results for each model are considered and compared.

4.1 Data set

For the last two years, there are an average of 867 million of new tweets per day [11]
what makes Twitter one of the main source of opinionated short texts. However,
in order to create an original dataset for sentiment analysis first classification has
to be done manually so it is very difficult to create new data sets with enough
data to train a neural network. Hence we will be working with Sentiment140[9], a
publicly available data set.

Tweet texts often contain user mentions, hyperlinks, non-letter characters and
punctuation. Before use the texts in the neural networks, some cleaning should
be done. This does not change the sentiment of the sentence and it makes the
embedding easier. It includes

e Convert text to lower case
e Remove symbols of line breaks (\n and \r)

e Remove sings of retweets (re:)

23



Remove the non utf-8 characters

e Remove mentions, hashtags and hyperlinks

Remove all punctuation symbols
e Remove numbers

e Remove multiple spaces

sentiment text clean text
1599773 1 @ijustine hey hey
1599776 1 @linksforluv you betchal! you betcha
1599803 1 @$Sanctuminc right-click, Repost. rightclick repost
1599817 1 @YouLuvMe sure............. bighead sure bighead
1599907 1 @gabespears morning morning
1599914 1 @PJA4ever Back.. back
1599930 1 @AndrewDearling “yawns”® yawns
1599963 1 @OHTristaN it's sunoudy its sunoudy
1599993 1 @SCOOBY_GRITBOYS

Figure 4.1: Sentences with less than three words

After cleaning, duplicated tweets are deleted and we keep in the data set just the
tweets containing three or more words as most of tweets with less than three words
are not full sentences as can bee seen on Figure 4.1. Therefore, the data set is
composed by a total of 1.526.942 distributed in the following way:

Training  Test  Total number
Set Set of Tweets

Negative ~ 693.831 77.093 770.924
Positive 680.416  75.602 756.018

Sentiment

Twitter data is very unique due to the informal language being used but also
because of its length as each tweet has a limit of 140 characters'. Figure 4.2 shows
the distribution of tweets according to their number of words. Tweets are very
similar among sentiments regarding length and, in both cases, most of the tweets
are between 5 and 20 words.

'From 2017 this limit is 280 [1] but the data used in this thesis was extracted in 2009
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Number of Words in a Tweet

Negative Tweets Positive Tweets
250000 250000

200000 - 200000

150000 150000
100000

100000 -

50000 50000

35

Figure 4.2: Number of words in a Tweet

Figure 4.3 shows the most common words in tweets for each sentiment without
considering stopwords (a, all, also, am, else, had, not...). Words associated with
positive feelings like thank, love, fun, nice are among the most common words for
positive tweets while others related with negative feelings like miss, sad or hate
are more common on negative tweets.

Negative tweets ) ) Positive tweets
day got will "y time 1

v : - need
SM1SS ~+1m sad X P
g0 g0 : 7

v © friend

GJ& c rienc

look lOV m(E‘J rco

%ygoing

wesOme want twitter

fodaywant

Figure 4.3: Most common words for each sentiment

Before inputting the data into the neural network, all the the tweets are split in
words and a padding function is applied in order to being able to convert them
into a matrix by adding 0’s at the beginning of the sentence until reaching the
equivalent to 35 words. Then, GloVe embedding is applied.

In this case, we are using a pretrained GloVe embedding that has been trained
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using Twitter data to have a better representation of the informal language used
on social media. For instance it includes words like bday or zoxo. This embedding
covers 70.09% of the words that are used in the considered dataset. Some of the
words appearing on the data set not covered by the pretrained GloVe embedding
are shown in Figure 4.4. They are words with repeated characters or misspelled.

gtlt twitterfon bradie )
yeahi

booo yessss 1tlt 1
ughhh tooooo yayyyy :noi d
boooo youuuu misss Ch:ﬁh:mon >
lvatt loveee trackle =hbh
grrrr ahhhhhh sebday S0000000000
atampt eahhh Laughhave

Y timefollow ie;ssss
ummm grrrrr pleaseee ocaayyy
ahhhhh alll gahhh mampg
youu todayi boooooo nhooo
ohhhh meits neesee bradiewebb
YE¥YY wayyy yummm gzooo
twitterberry  tuitterific arghhh i

dontyouhate

toooo wthe gooo hhhhh
spymaster mannn “e

wmy wayyyy
meeee alllll .
he wooooo daynight

yyy - goodsex

Figure 4.4: Example of words not appearing on GloVe database

The performance of the different models will be evaluated by using a test data set
so the original data is split into train and test. Test dataset is selected randomly
by maintaining the proportion of tweets for each sentiment and it contains 10% of
the total data.

4.2 Models

During the training process, a validation data set is randomly chosen and it rep-
resents a 10% of the training data set. In order achieve the best results of the
experiment, some parameters of the different models are selected by using grid
search and cross-validation. Additionally, to avoid over-fitting, an early stopping
mechanisms is used based on the loss of the validation data with a patient of 5
epochs.
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4.2.1 CNN Model

The first model to be considered is a CNN with the structure shown on Figure
4.5. The number of filters and kernel size were defined by using a greed search
procedure. However model’s accuracy is not highly influenced by the number of
filters or kernel size obtaining a difference between the best and worst model of
less than 1% on the validation data set.

Pre-processing

,//;7 Text cleaning 7;\\\
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|
|
‘
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than 4 words

e N
[ Pretrained
E—

| \ Glove /
|

(/ Softmax \\ J/G|0bﬁ| Max\\
- | Classifier | \ " Pooling /
G / A /

Figure 4.5: Structure of CNN model
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Hyperparameter Value
Embedding size 200
Number of words per tweet 35
Number of filters 64
Kernel size 5
Convolutional layer activation function ReLLU
Padding same
Kernel regularizer L1
Optimizer Adam
Loss function Binary cross-entropy

Table 4.1: Hyperparameters for CNN Model

The model has been trained using the hyperparameters described on Table 4.1
and Figure 4.6 shows the details of the model where GloVe embedding represents
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the first layer where the each tweet is converted into a vector of 200 elements for
each word and the sentence maximum length is 35. Therefore, it results a 35 x
200 matrix. The convolutional layer defines 64 filters of kernel size equals to 5,
allowing to train 64 different features. Its activation function is ReLU and it is
considering ‘same’ padding. It also uses a L1 kernel regularizer with a weight of
0.001 to reduce overfitting. After the CNN layer, the global maximum layer is
used to reduce the complexity of the output and prevent overfitting of the training
data. The output matrix has a size of 1 x 64. Lastly, a dense layer with softmax
activation is applied and it outputs a vector with two real numbers between 0
and 1 that represents the probability of the tweet of being negative and positive
respectively.

Layer (type) Output Shape Param #
“embedding (Enbedding)  (Neme, 35, 200) 7862200
convld_1 (ConvilD) (None, 35, 64) 640964
global_max_poolingld_1 (Glo (None, 64) e
balMaxPoolinglD)

dense_1 (Dense) (None, 2) 138

Total params: 78,746,394
Trainable params: 64,194
Non-trainable params: 78,682,200

Figure 4.6: Details of the CNN model

The model has a total of 64,194 trainable parameters and it needed to be trained
for a total of 85 epochs using a batch of 1,000 tweets to obtaining an accuracy
of 79.88% measured on the test data set. Figure 4.7 shows the confusion matrix
normalized for true values where it can be seen that it performs better on classifying
tweets with negative sentiment.
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Figure 4.7: Confusion matrix for CNN model

4.2.2 BiLSTM Model

The second model is a BiLSTM model with the structure shown on Figure 4.8.
The number of units of the BiILSTM layer has been decided using grid search and
cross-validation in order to find the model with better performance. Similar to the
case of CNN model, the accuracy measured on the validation set is quite stable
regarding the number of filters and the difference of accuracy between the best
and worst model is lower than 1%.

Pre-processing

// Text cleaning /\
/ /Remcve Tweets with less
than 4 words
Pretrained BiLSTM
Input Data @—» Layer
Tokenization

\ Train/Test split /
Softmax
Classifier

Figure 4.8: Structure of BILSTM model
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Figure 4.9 shows the summary of the model. After the embedding layer a BILSTM
layer is applied with 64 units. There is a dropout of 0.2 inside the BiLSTM layer
and another one of 0.5 after it in order to prevent overfitting. The output of the
BiLSTM is the input of the dense layer.

Hyperparameter Value
Embedding size 200
Number of words per tweet 35
BiLSTM units 64
BiLSTM dropout 0.2
Dropout 0.5

Optimizer Adam

Loss function Binary cross-entropy

Table 4.2: Hyperparameters for BiLSTM Model

Layer (type) Output Shape Param #
“enbedding (Embedding) | (Neme, 35, 200) 78632200

bidirectional (Bidirectiona (None, 128) 135680

1

dropout (Dropout) (None, 128) 2]

dense_2 (Dense) (None, 2) 258

Total params: 78,818,138
Trainable params: 135,938
Non-trainable params: 78,682,200

Figure 4.9: Details of the BILSTM model

The model has a total of 135,938 trainable parameters and it needed to be trained
for a total of 26 epochs to obtaining an accuracy of 83.54% measured on the test
data set. Figure 4.10 shows the confusion matrix normalized for true values.
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Figure 4.10: Confusion matrix for BiLSTM model

4.2.3 Model combining CNN and BiLSTM

After evaluating CNN and BiLSTM in separate models, this model combines both
of them so that, after capturing the features extracted using CNN, a BiLSTM
layer is applied in order to filter the information. The number of filters, kernel size
and units in BiLSTM have been selected by a grid search procedure with cross-
validation and, even if the difference of accuracy among models depending on the
hyperparameters is bigger than in the previous cases, it is under 1.5%.
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Figure 4.11 shows the summary of the model. In this case, there is a convolutional
layer that takes as input the matrix built by the embedding layer and 64 filters of
size 3 are applied outputting a 35 x 64 matrix. Then a BiLSTM layer with 16 units
is applied to filter the information using its three gates (forget, input and output).
In order to avoid overfitting a dropout of 0.2 is set in the BiLSTM layer and, after
the BiLSTM layer, there is another dropout of 0.5. The output of the BiLSTM is
the input of the dense layer with dimension 2 and softmax as activation function.

Layer (type) Output Shape Param #
Cenbedding (Embedding)  (Nome, 35, 200) 78682200

convld_2 (ConvlD) (None, 35, 64) 38464

bidirectional_1 (Bidirectio (None, 32) 10368

nal)

dropout_1 (Dropout) (None, 32) 8

dense_3 (Dense) (None, 2) 66

Total params: 78,731,98
Trainable params: 48,898
Non-trainable params: 78,682,280

Figure 4.11: Details of the CNN-BiLLSTM model

Hyperparameter Value
Embedding size 200
Number of words per tweet 35
Number of filters 64
Kernel size 3
Convolutional layer activation function ReLU
Padding same
Kernel regularizer L1
BiLSTM units 16
BiLSTM dropout 0.2
Dropout 0.4
Optimizer Adam
Loss function Binary cross-entropy

Table 4.3: Hyperparameters for CNN-BiLSTM Model
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As shown in the summary there are a total of 48,898 trainable parameters and it
needed to be trained for 22 epochs obtaining an accuracy measured in the test set
of 79.87%. Figure 4.12 shows the confusion matrix of the model normalized for
true values.

Model CNN & BiLSTM

Negative

Tue label

-04
Positive 1
-03

-0.2

Negative Positive
Predicted label

Figure 4.12: Confusion matrix for CNN-BiLSTM model

4.2.4 Model BiLSTM with Self-attention

Pre-processing
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/'/ /Remove Tweets with less
J\ \\ than 4 words
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‘\ \ Tokenization
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Y
Softmax Global Max SelfAttention
Classifier Pooling Layer

Figure 4.13: Structure of BiLSTM with Self Attention model
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The model described in Figure 4.13 uses Self Attention after the BiLSTM layer for
which the number of units has been chosen using grid search with cross-validation.
The difference between models changing the number of units in the BiLSTM is up
to 2% of accuracy (measured on the validation set).

Figure 4.14 shows the summary of the model and Table 4.4 the details of the hyper-
parameters. In this model, Self-Attention is applied to the hidden states produced
by the BiLSTM layer obtaining a new representation of the input sentence. After
the attention application, a global maximum layer and dropout are used to reduce
the complexity of the output and prevent overfitting.

Layer (type) Output Shape Param #
embedding (Embedding) (None, 35, 280) 78682200
bidirectional_5 (Bidirectio (None, 35, 128) 135680
nal)

seq_self attention_3 (SeqSe (None, 35, 128) 8257
1fAttention)

global_max_poolingld_5 (Glo (None, 128) e
balMaxPoolinglD)

dropout_5 (Dropout) (None, 128) 8
dense_7 (Dense) (None, 2) 258

Total params: 78,826,395
Trainable params: 144,195
Non-trainable params: 78,682,260

Figure 4.14: Details of the BIiILSTM with Self Attention model

Hyperparameter Value
Embedding size 200
Number of words per tweet 35
BiLSTM units 64
BiLSTM dropout 0.3
Dropout 0.4

Optimizer Adam

Loss function Binary cross-entropy

Table 4.4: Hyperparameters for BiILSTM with Self Attention model
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In this case the number of trainable parameters is 144,195 and it has been trained
for 29 epochs before the early stopping method interrupted the process. When
evaluating this model on the test set, the accuracy obtained is 83,74% and, sim-
ilarly to the previous models, negative tweets are classified better than positive
ones as shown on Figure 4.15. However, compared with the model that applies
just BiLSTM, without attention, the accuracy on negative tweets is the same but
the one for positive tweets is higher now.

Model BiLSTM with Self Attention

0.8
Negative 0.7

0.6

05

Tue label

o4

Positive 1 L o3

F02

Negative Positive
Predicted label

Figure 4.15: Confusion matrix for BiLSTM with Self Attention model

4.2.5 Model BiLSTM with Transformer Encoder

The last model combines BiLSTM with a Transformer Encoder. This model is
more complex than the previous ones as can be seen in the number of trainable pa-
rameters that are 576,434 for this model. The number of heads of the transformer
encoder as well as the dimension of the first dense unit inside the transformer are
defined by using grid search and cross-validation. In this case the difference be-
tween the best and worst performing models is of almost 8% in terms of accuracy
measured in the validation set. The hyperparameters chosen to train the model
are shown on Table 4.5.
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Pre-processing
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\_ / \_ % \_ %
Hyperparameter Value
Embedding size 200
Number of words per tweet 35
BiLSTM units 100
BiLSTM dropout 0.3
Transformer number of heads 2
Transformer dense dimensions 32 and 100
Multi-Head Attention regularization L1
Dropout 0.4
Optimizer Adam

Loss function Binary cross-entropy

Table 4.5: Hyperparameters for BiLSTM with Transformer Encoder model

Figure 4.16 shows the details to the model. In this case, the matrix generated by
the embedding layer is fed into an BiLLSTM layer with 100 units. Then the outputs
are taken as the input of the transformer encoder that applies first MHAT with 2
heads, then normalization is applied to the inputs and outputs of MHAT together.
Next step two Dense layers are applied, the first one with dimension 32 and the
second one with 200 in order to match the dimensions of the input. The output is
normalized and passed to the next layer as the output of the transformer encoder
layer. Later a Global Max Pooling and the last Dense layer for classification are
applied.

As it is a complex model with a high number of trainable parameters, it is easy
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that it overfits the training set. In order to avoid that, several dropouts were
included during the whole process together with the regularization layers and L1
regularization inside the transformer encoder.

Layer (type) Output Shape Param #
“enbedding (Embedding)  (Nome, 35, 200) 78682200
bidirectional_99 (Bidirecti (None, 35, 288) 2409808
onal)

dropout_382 (Dropout) (None, 35, 2@8) e
transformer_block_97 (Trans (None, 35, 200) 335232

formerBlock)

dropout_385 (Dropout) (None, 35, 2ee) e
global_max_poolingld_95 (Gl (None, 268) Z]
obalMaxPoolinglD)

dense_296 (Dense) (None, 2) 402

Total params: 79,258,634
Trainable params: 576,434
Non-trainable params: 78,682,200

Figure 4.16: Details of the BiILSTM with Transformer Encoder model

Figure 4.17 shows the confusion matrix for the model. In this case, unlikely the
previous ones, the performance classifying positive and negative tweets is equal.
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Figure 4.17: Confusion matrix for BILSTM with Transformer Encoder model

4.3 Results comparison

In order to evaluate the models and compare them, a test data set containing more
than 153,000 tweets is used. The evaluation standards are Precision (Pr), Recall
(Re), F1 measure and Accuracy (Acc) defined as follows:

_ TP
* Pr=gpirp
_ TP
* Re = 7515w

. PrxRe
o F1=2x Pr+Re

__ Correct classifications
o Acc= Total Classifications

Where TP, TN, FP and FN stand for true positive, true negative, false positive
and false negative respectively. Table 4.6 shows a summary of all these metrics for
each one of the models considered for comparison.
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Model Class Precision Recall F1 Accuracy

Negative 0.79 0.82  0.80
e, Postive 081 o018 o079 M
. Negative 0.82 0.86 0.84
g Positive 085 081 083
. Negative 0.79 0.82 0.80
ONNeBmLsMo Postive 081 o018 o079 M
. . . Negative 0.83 0.86 0.84
(DILSTM with Self Adtention  positive 085 082 0sy M
. Negative 0.84 0.84 0.84
BiLSTM + Transformer Encoder Positive 0.84 0.84 0.84 0.8379
Table 4.6: Results obtained for the different models
Model Number of trainable parameters
CNN 64,194
BiLSTM 135,938
CNN-BIiLSTM 48,898
BiLSTM with Self Attention 144,195
BiLSTM + Transformer Encoder 576,434

Table 4.7: Number of trainable parameters for each model

In addition to the evaluation metrics, the number of trainable parameters should
be taken into account when comparing two different models. By doing this, we can
better choose between two models with similar performance but different number
of trainable parameters. This is the case of the models CNN and CNN-BiLSTM
where the difference in terms of accuracy is almost insignificant but, the first one
has almost 20,000 more trainable parameters as shown in Table 4.7. At the same
time, CNN needs to be trained for 85 epochs while CNN-BiLSTM needs just 22
so we can say that applying a BILSTM after a CNN is a better option than train
a more complex CNN for this dataset.

However, based on the results we can see that BiLSTM works better by itself that
after a CNN layer. The difference on the accuracy of these two models is slightly
higher than 3.5%.

Differences in performance of BILSTM, BiLSTM with Self Attention and BiLSTM
with Transformer encoder is of less than 0.25% while the difference in the number of
parameters is huge (BiLSTM with Transformer Encoder has around four times the
number of trainable parameters of the other two models). Even if the performance
of these three models is really similar, we can see differences when observing the
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confusion matrices. If we consider the results for the models that apply attention
after the BiILSTM layer (Figures 4.15 and 4.17) we can see that the one containing
Transformer Encoder performs better than the one with Self Attention for negative
tweets but worst on positive ones.

Figure 4.18 shows the accuracy evolution during the training process in both the
test and validation sets for all the models considered. We can see the difference of
epochs needed for each model to arrive to its better performance. BiLSTM with
Transformer Encoder (Transformer for short in the graph) is the one with a higher
performance and the one requiring less epochs to reach it. However, due to its
complexity, each one of this epochs require more computational time than any of
the other models.

Accuracy comparison

Model accuracy on training set Model accuracy on validation set
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0821 0.82 —— CNN + BiLSMT
—— BiLSTM + SA
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0781 BiLSTM 078
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0.72 1 Tansformer 0.76
0 20 40 ] B0 0 20 40 60 80
epoch epoch

Figure 4.18: Accuracy evolution

Taking the better performing model’s confusion matrix (BiLSTM with Trans-
former Encoder), word clouds of each cell (TP, TN, FP and FN) was done and
it is shown on Figure 4.19. By observing it we can not see big differences in the
most common words for each cell, apart from informal abbreviations of words like
lol, tm or u being more common on misclassified tweets. However the word clouds
just present a selection of the most common words but rare words like the ones
misspelled like the ones not covered by the pretrained embedding (Figure 4.4) may
appear more on misclassified tweets.
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Figure 4.19: Word cloud for each cell of the confusion matrix for BiLLSTM-
Transformer Encoder model

Figure 4.20 shows the text of some misclassified tweets together with its real and
predicted values. We can see that some are ambiguous and the sentiment is not
clear like, for instance, the tweet “@terarenee is what something i did ?”. This
tweet is labeled as positive but, without context, it can not be associated to a
sentiment. Additionally, we have the case of tweets that can be seen as wrongly
labeled like “Off I Go! Twitter Is Too Slow Tonight! I'll Be Back On 2mmorow!”
where the user is complaining about the speed of Twitter so it can be perceived
as something negative even if it is labeled as positive. We can also observe on this
tweets informal abbreviations like commented above (2mmorow, u, polisci or ur)

Tweet R_eal Pred_icted
Sentiment Sentiment
(@terarenee is what something i did ? Positive Negative
I'm usually right all the time____ And when I'm wrong, I'm right for being wrong! Positive Negative
@_CorruptedAngel my god, reallyl Really? 50? Christ Negative Positive
Off | Gol Twitter Is Too Slow Tonight! I'll Be Back On 2mmorow! Positive Negative
@bobmcwhirter I've had 11% and 18%+ beer just last week, and it was indeed - .
evill Positive Negative
%n;?]trl'r:f;gua:r:)avfyhow u put a smiley face after studying for polisci. Goed luck! Ur Negative o
| will try. She doesn't seem in the mood to go though. We'll see Positive Negative

Figure 4.20: Tweets misclasified for BiLSTM-Transformer Encoder model
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Chapter 5

Conclusions and Future Work

In this master thesis the objective was to study the impact of attention mech-
anisms in deep learning models for sentiment analysis. In order to do that, 5
models were presented, two of them containing attention mechanisms, and they
were used in sentiment classification for tweets. Even if the final study has been
done considering just positive and negative sentiment, we start trying the models
also considering neutral tweets. The problem was that neutral tweets came form
a different data set and they all belong to very specific topics so the algorithms
have a precision of 99% on neutral tweets as they learn to identify the topic while
the precision for positive and negative tweets were lower than 80% so we decided
discard neutral tweets.

In Chapter 4 we have seen that when comparing the models containing BiLSTM
(with or without attention) with the CNN model there is an improve on the accu-
racy as well as on the number of epochs needed for the model to train. However,
the differences in terms of accuracy between the model just containing BiLSTM
and the ones introducing attention mechanisms are almost insignificant while the
computational cost increase for the last ones.

On conclusion, when using a Twitter data set where all the sentences are under
140 characters and almost 80% of the tweets contain 20 words or less, the memory
of BiILSTM could be enough to capture all the dependencies between words in the
sentences as there is not a big difference in the performance of model with just
a BiLSTM layer and the ones that added attention mechanisms on top while the
computational cost do significantly increase.
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Next step on this study will be to complete the pretrained GloVe embedding with
the missing words so that all the words in the data set can have a representation
in the embedding-space. Other approach can be to visualize the weights inside the
attention mechanisms in order to understand to which parts of the sentences they
are paying more attention and compare it with BiLSTM.
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Python Code

| HHHAHAHAH R RAH AR R R AR A RS HEH
######H## Packages #H#HHH#A##HHH#H
HHAHAH B RAH AR B BAH RSB HAHAHSH

V]

5 import numpy as np

¢ import pandas as pd

7 import os

s import operator

9 import nltk

10 import joblib

11 import tensorflow as tf

2 import sklearn.model_selection

13 import re

14 import string

5 import plotly.express as px

16 import matplotlib.pyplot as plt

17 import matplotlib.patches as mpatches
15 %hmatplotlib inline

19 pd.options.plotting.backend = "plotly"

21 from tensorflow.keras import layers
22 from keras.preprocessing.text import Tokenizer

24 from sklearn.model_selection import train_test_split, GridSearchCV
, StratifiedKFold

25 from keras.models import Sequential, Model

26 from keras_preprocessing.sequence import pad_sequences

27 from keras.layers import Dense, Embedding, ConvlD, Bidirectional,
Dropout , LSTM, GlobalMaxPoolinglD, MultiHeadAttention,
LayerNormalization, Layer

22 from keras.regularizers import L1

20 from keras.callbacks import EarlyStopping, ModelCheckpoint

30 from keras.models import load_model

31 from sklearn.metrics import confusion_matrix, fl_score,
classification_report, ConfusionMatrixDisplay

32 from keras_self_attention import SeqSelfAttention
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from scikeras.wrappers import KerasClassifier
from tensorflow.keras.utils import to_categorical
from wordcloud import WordCloud, STOPWORDS

os.chdir (’/home/USERS/elena.blanco.gonzalez/TFM/Data’)

o HERHHARHHARHHARHHAHHBRAHERSH
a0 ###### Loading Data #H#H#####

HHEAHAHBHHAHAHBHBAH RSB HAHAHH

colnames = [’sentiment’, ’ID’, ’data’, ’flag’,’user’,’text’]
df = pd.read_csv(’trainingl1600000.csv’, names = colnames, header =
None, encoding = ’latin-17)

df = df [[’sentiment’,’text’]]
s df [’sentiment’] = df[’sentiment’].map({0:0, 4:1})

df . shape
10 df .drop_duplicates (subset = ’text’,inplace = True) #Eliminate
duplicates if any
df = df.loc[df[’sentiment’].isnull() == False] #Keep just labeled
tweets

df . shape , df.head()

3 HHHHHBHAHARRHHH BB HARA RS HHH
###### Data Cleaning #H#H#####
HAERBRAHHFBRHAHHRRRBRBHFHBRRH

7 def clean_text (text):

text = str(text)
text = text.lower ()

text = re.sub(’\rl\n’, ’ ’,text) #Remove \n and \r

text = re.sub(’re:’,’’,text) #Replace signs of RTs

text = re.sub(r’["\x00-\x7f]’,r’ ’, text) #remove non utf8

text = re.sub(r’&quot’,r’ °’, text) #remove non utf8

text = re.sub(r’http\S+|www\S+|https\S+’, > ’, text, flags=re.
MULTILINE) #remove URLs

text = re.sub(r’\@\w+|\#’,’> ’, text) #Remove hashtags

text = ’’.join([i for i in text if i not in string.punctuation])

text = re.sub(r’1121314151617181910°, > ’,text) #Remove numbers

text = re.sub(’\s\s+’ ,’ ’, text) #remove multiple spaces

return text

df [’clean text’] = df[’text’].apply(clean_text)
df .head ()

df [’clean text’].replace(’’, np.nan, inplace=True)
df .dropna(subset = [’clean text’], inplace=True)

df _short = df[df[’clean text’].str.split().str.len() <3] #Getting
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90

rid of sentences with less than 3 words

df = df[df[’clean text’].str.split().str.len() > 2] #Getting rid
of sentences with less than 3 words

df . shape

df _short.tail (10)

HHAHAH B HAHAHBH BB AHBHRAHAHAHRH RS

3 ### Exploratory Data Analysis ###

HHAHAHBHHAHAHBH BB AHHH BB AR AR BA RS

; def plot_hist_classes(df, header):

fig, (axl, ax2) = plt.subplots(l, 2, figsize = (10,5))

df _split = df[df[’sentiment’] == 0][’clean text’].str.split()
df _len = df_split.apply(lambda x: len(x))
axl.hist(df_len,color = ’red’, range = [0, 35],bins = np.

arange (0, 40, 5))
axl.set_ylim ([0, 250000]1)
axl.set_title(’Negative Tweets’)
df _split = df[df[’sentiment’] == 1][’clean text’].str.split()
df _len = df_split.apply(lambda x: len(x))
ax2.hist(df_len,color = ’green’, range = [0, 35], bins = np.

arange (0, 40, 5))
ax2.set_ylim ([0, 250000])
ax2.set_title(’Positive Tweets’)
fig.suptitle (header)
fig.tight_layout ()
plt.show ()
plt.close ()

plot_hist_classes(df, header=’Number of Words in a Tweet’)

df [df [’sentiment’] == 0][’clean text’].tolist ()
df [df [’sentiment’] == 1][’clean text’].tolist ()

df _negative
df _positive

7 negative = ’ ’.join(df_negative)

positive = ’ ’.join(df_positive)

stopwords = set (STOPWORDS)

def plot_WordClouds(df_neg, df_pos):
wc = WordCloud (background_color = "white", max_words = 50,
width = 900, height = 500, stopwords = stopwords,colormap="
autumn")
fig,(axl,ax2) = plt.subplots(l, 2, figsize = (15,8))
wc.generate (df _neg)
axl.imshow (wc)
axl.axis("off")
axl.set_title(’Negative tweets’)

wc = WordCloud(background_color = "white", max_words = 50,
width = 900, height = 500, stopwords = stopwords,colormap="
summer "
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wc.generate (df _pos)

ax2.imshow(wc, interpolation=’bilinear’)
ax2.axis("off")

ax2.set_title(’Positive tweets’)
plt.show ()

plt.close ()

i plot_WordClouds (negative, positive)
7 df [’sentiment’].value_counts ()

HAHBHAHHHAAAAAA AR AR BB BHHHAFFHAAHH
####4#4 Train/Test split ########
HuddhnnHHAASHSSSH AR BB BB HHHSSSRS S

Train_text ,Test_text , Train_sentiment, Test_sentiment=
train_test_split(df[’clean text’],df[’sentiment’], random_state
=123 ,stratify=df [’sentiment’], train_size = .9)

Train_text.shape, Test_text.shape

; Train_text.head ()

Train_sentiment.value_counts ()
Test_sentiment.value_counts ()

HHAHAHBHHAHAHBHBAHAHBHBAHAHAHHA RS
#H######HE Tokenization #H#H#HH#A#HH#AHH#H
HHEAHAHBHHAHAH SR BB AH AR B HAHAHBHHH

tokenizer = Tokenizer ()

5 tokenizer.fit_on_texts(df[’clean text’])

word_index = tokenizer.word_index

;, vocab_size = len(word_index) + 1

vocab_size

max_seq_len = 35

X_train = pad_sequences (tokenizer.texts_to_sequences(Train_text),
maxlen = max_seq_len)

X_test = pad_sequences (tokenizer.texts_to_sequences(Test_text),
maxlen = max_seq_len)

X_train.shape , X_test.shape

s Y_train = to_categorical(Train_sentiment, num_classes=2)

Y_test = to_categorical (Test_sentiment, num_classes=2)
Y_train.shape, Y_test.shape

HHAHAHBHHAHAHBH B BAHBH BB AH AR HHHS

H######H### Embedding ##H#H###H####HH
HHAHAHHSHAHAH AR BB HAH AR BB HAHAHHAHH
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164 glove_tw = ’glove.twitter .27B.200d.txt’
165 embed_dim = 200
166 embeddings_index = {}

16s £ = open(glove_tw)
169 for line in f£:

170 values = line.split ()

171 word = values [0]

172 coefs = np.asarray(values[1:], dtype=’float32’)
173 embeddings_index [word] = coefs

174 £.close ()

175

176 count = 0

177 for key in word_index.keys():

178 if key not in embeddings_index:

179 count += 1

180 print (key)

181

152 print (np.round(count/vocab_size=*100,2), ’%’) #Percentage of the

vocabulary covered by the embedding

152 embedding_matrix = np.zeros((vocab_size, embed_dim))

185 for word, i in word_index.items () :

186 embedding_vector = embeddings_index.get(word)

187 if embedding_vector is not None:

188 embedding_matrix[i] = embedding_vector

189

100 embedding_layer = Embedding(vocab_size, embed_dim, weights = [
embedding_matrix], input_length = max_seq_len, trainable =
False)

191

102 HHEHHHBBHAHBHAHBR AR AR AHHHHBHBAHHRS

193 ##########t CNN Model #H######H#H#H#HH

104 HHEHRHHAHAHAHHHARARAHAHHHARAHAHHHHH

195

196 ###H##### Grid Search for hyperparameters
197

19s def create_model (filters, kernel_size):
199 # Create model

200 model = Sequential ([
201 embedding_layer,
202 ConviD(filters, kermel_size, activation = ’relu’,
kernel _regularizer = L1(1 = 0.001), padding = ’same’),
203 GlobalMaxPoolingilD (),
204 Dropout (0.4) ,
205 Dense (2, activation = ’softmax’)
206 1)
207 # Compile model
208 model.compile(loss = ’binary_crossentropy’, optimizer = ’adam’

20



216

, metrics = [’accuracy’])
return model

model = KerasClassifier (model = create_model, epochs = 20,
batch_size = 1000, verbose = 0)
# Define the grid search parameters

3 filters = [16,32,64]

kernel_size = [3,5,7]

param_grid = dict (model__filters = filters, model__kernel_size =
kernel_size)
grid = GridSearchCV(estimator = model, param_grid = param_grid,

n_jobs = 1, cv = 3)

grid_result = grid.fit(X_train, Y_train, validation_split = 0.1)

# Summarize results

print ("Best: %f using %s" % (grid_result.best_score_, grid_result.
best_params_))

means = grid_result.cv_results_[’mean_test_score’]

params = grid_result.cv_results_[’params’]

for mean, param in zip(means, params):
print ("%f with: Y%r" % (mean, param))

5 ######## Model Definition and Training

model_cnn = Sequential ([
embedding_layer,
ConviD (64,5, activation = ’relu’, kernel_regularizer = L1(1 =
0.001) ,padding = ’same’),
GlobalMaxPoolingiD () ,

Dense (2, activation = ’softmax’)
D

model_cnn.compile(loss = ’binary_crossentropy’, optimizer = tf.
keras.optimizers.Adam(learning_rate = 0.0001), metrics = [’
accuracy’])

es = EarlyStopping(monitor = ’val_loss’, mode = ’min’, verbose =
2, patience = 5)

s mc = ModelCheckpoint (’cnn.h5’, monitor = ’val_accuracy’, mode = ’

max’, verbose = 2, save_best_only = True)

history_cnn = model_cnn.fit(X_train, Y_train, batch_size = 1000,

epochs = 2000, validation_split = 0.1, callbacks = [es, mc])

best_cnn = load_model (’cnn.h5’)
best_cnn. summary ()

o H####### Model Evaluation

score_cnn = best_cnn.evaluate(X_test,Y_test)

def plot_training_hist (history, title):
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289
290

291

293

fig, ax = plt.subplots(l, 2, figsize=(10,4))

ax [0] .plot (history.history[’accuracy’])

ax [0] .plot(history.history[’val_accuracy’]
ax [0] .set_title(’Model Accuracy’)

ax [0] .set_xlabel (’epoch’)

ax [0] .set_ylabel (’accuracy’)

)

ax [0].legend ([’train’, ’validation’], loc=’best’)

ax [1].plot(history.history[’loss’])

ax [1] .plot (history.history[’val_loss’])
ax[1] .set_title (’Model Loss’)

ax [1] .set_xlabel (’epoch’)

ax[1] .set_ylabel(’loss’)

ax[1] .legend ([’train’, ’validation’], loc=

fig.suptitle(title, size=15, y=1)
plot_training_hist (history_cnn, title= ’Model
Y_pred = best_cnn.predict(X_test)

y_pred np.argmax (Y_pred, axis = 1)
y_test = np.argmax(Y_test, axis = 1)

print (’Model CNN’)
print(classification_report(y_test, y_pred))

’best’)

CNN’)

cm = confusion_matrix(y_test, y_pred, normalize = ’true’)

labels = ["Negative", "Positive"]

display = ConfusionMatrixDisplay(confusion_matrix = cm,

display_labels = labels)
display.plot(cmap = plt.cm.Blues)
display.ax_.set_title("Model CNN", size = 15,

HHAHAHHAHAHAH SR BB HAH AR BB HAHAHHAHH

g ######## BiLSTM Model #H##H####HH#H#H#H

HAAAHHHHH AR AR AR AR B R AR AR A HHHHBHAH
######## Grid Search for hyperparameters

def create_model (units):
# Create model
model = Sequential ([
embedding_layer,
Bidirectional (LSTM(units, dropout=0.2)
Dropout (0.5) ,
Dense (2, activation=’softmax’)
D
# Compile model
model.compile(loss=’binary_crossentropy’,
metrics=[’accuracy’])
return model

52
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294

295

296
297
298

299

300

301

302

319

model = KerasClassifier (model=create_model, epochs=30, batch_size
=1000, verbose=0)

# Define the grid search parameters

units = [16,32,64,128]

param_grid = dict(model__units=units)
grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs
=1, cv=3)

grid_result = grid.fit(X_train, Y_train,validation_split=0.1)

# Summarize results

print ("Best: %f using %s" % (grid_result.best_score_, grid_result.
best_params_))

3 means = grid_result.cv_results_[’mean_test_score’]

params = grid_result.cv_results_[’params’]
for mean, param in zip(means, params):
print ("%f with: %r" % (mean, param))

s ######## Model Definition and Training

model_bilstm = Sequential ([
embedding_layer,
Bidirectional (LSTM (64, dropout=0.2)),
Dropout (0.5) ,
Dense (2, activation=’softmax’)

5 1)

model _bilstm.compile(loss=’binary_crossentropy’,optimizer=’adam’,
metrics=[’accuracy’])

es = EarlyStopping(monitor=’val_loss’, mode=’min’, verbose=2,
patience=5)
mc = ModelCheckpoint(’bilstm.h5’, monitor=’val_accuracy’, mode=’

max’, verbose=2, save_best_only=True)
history_bilstm=model_bilstm.fit(X_train, Y_train, batch_size=1000
,epochs=2000, validation_split=0.1,callbacks=[es, mc])

best_bilstm = load_model(’bilstm.h5?’)
best_bilstm.summary ()

######## Model Evaluation

score = best_bilstm.evaluate(X_test,Y_test)
plot_training_hist (history_bilstm, title=’Model BiLSTM’)

Y_pred = best_bilstm.predict(X_test)

y_pred = np.argmax(Y_pred, axis = 1)

y_test = np.argmax(Y_test, axis = 1)

print (’Model BiLSTM’)

print (classification_report(y_test, y_pred))

5 cm = confusion_matrix(y_test, y_pred,normalize=’true’)

23



336 labels = ["Negative", "Positive"]

337 display = ConfusionMatrixDisplay(confusion_matrix=cm,
display_labels=1labels)

335 display.plot(cmap = plt.cm.Blues)

330 display.ax_.set_title("Model BiLSTM", size=15, y=1.05)

341 HEHAHBAHAHAHHAHAHAHBARAHAH B HAHEH
342 ###### CNN-BiLSTM Model #########
3143 HAHAHHAHAHAHHAHAHAHBHBAHAHBHRAHEH

345 ######H## Grid Search for hyperparameters

347 def create_model (filters, kernel_size, units):

348 # create model

349 model = Sequential ([

350 embedding_layer,

351 ConviD(filters, kernel_size, activation=’relu’,
kernel _regularizer=L1(1=0.001) ,padding=’same’),

352 Bidirectional (LSTM (units, dropout=0.2)),

353 Dropout (0.4) ,

354 Dense (2, activation=’softmax’)

355 ] )

356 # Compile model

357 model.compile (loss=’binary_crossentropy’, optimizer=’adam’,
metrics=[’accuracy’])

358 return model

359

360 model = KerasClassifier (model=create_model, epochs=30, batch_size

=1000, verbose=0)
361 # define the grid search parameters
362 filters=[16,32,64]
363 kernel_size=[3,5,7]
364 units = [16,32,64,128]

365 param_grid = dict(model__filters=filters, model__kernel_size=
kernel_size ,model__units=units)

366 grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs
=1, cv=3)

367 grid_result = grid.fit(X_train, Y_train,validation_split=0.1)

36s # summarize results

360 print ("Best: %f using %s" % (grid_result.best_score_, grid_result.
best_params_))

370 means = grid_result.cv_results_[’mean_test_score’]

371 params = grid_result.cv_results_[’params’]

s72 for mean, param in zip(means, params):

373 print ("%f with: %r" % (mean, param))

375 ######## Model Definition and Training

377 model_cnn_bilstm = Sequential ([

o4



378 embedding_layer,

379 Conv1iD (64,3, activation=’relu’, kernel_regularizer=L1(1=0.001),
padding=’same’),

380 Bidirectional (LSTM (16, dropout=0.2)),

381 Dropout (0.4) ,

382 Dense (2, activation=’softmax’)

383 1)

334 model_cnn_bilstm.compile(loss=’binary_crossentropy’,optimizer=’
adam’ ,metrics=[’accuracy’])

385 s = EarlyStopping(monitor=’val_loss’, mode=’min’, verbose=2,
patience=5)

356 mc = ModelCheckpoint (’cnn_bilstm_.h5’, monitor=’val_accuracy’,
mode=’max’, verbose=2, save_best_only=True)

357 history_cnn_bilstm=model_cnn_bilstm.fit(X_train, Y_train,
batch_size=1000 ,epochs=2000, validation_split=0.1,callbacks=[
es, mc])

380 best_cnn_bilstm = load_model(’cnn_bilstm.h5’)
300 model_cnn_bilstm.summary ()

3020 H#####H#H# Model Evaluation
3014 score = best_cnn_bilstm.evaluate(X_test,Y_test)

306 plot_training_hist (history_cnn_bilstm, title = ’Model CNN & BiLSTM
7))

308 Y_pred = best_cnn_bilstm.predict(X_test)

300 y_pred = np.argmax(Y_pred, axis = 1)

wo y_test = np.argmax(Y_test, axis = 1)

201 print (’Model CNN BiLSTM’)

202 print (classification_report(y_test, y_pred))

w4 cm = confusion_matrix(y_test, y_pred,normalize =’true’)
05 labels = ["Negative", "Positive"]
106 display = ConfusionMatrixDisplay(confusion_matrix = cm,

display_labels = labels)
w7 display.plot (cmap = plt.cm.Blues)
s display.ax_.set_title("Model CNN & BiLSTM", size

109

16, y = 1.05)

10 HEHHHHSHHSHSAH SRS HS RS S HF RSB SHS SRS RS S
111 ### BiLSTM and Self Attention Model ###
412 HEHHHHSHHSHBAHSHBSHFAHSHB SRS B SHS S HSHHBSH

114 #####A###F Grid Search for hyperparameters
116 def create_model (units):

417 # create model
118 model = Sequential ([
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156

embedding_layer,
Bidirectional (LSTM(units, dropout=0.2,return_sequences=True)

SeqSelfAttention (),
GlobalMaxPoolingilD (),
Dropout (0.4) ,
Dense (2, activation=’softmax’)
D
# Compile model
model.compile (loss=’binary_crossentropy’, optimizer=’adam’,
metrics=[’accuracy’])
return model

model = KerasClassifier (model=create_model, epochs=100, batch_size
=1000, verbose=0)

# define the grid search parameters

units = [16,32,64,128]

; param_grid = dict(model__units=units)
grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs
=1, cv=3)

5 grid_result = grid.fit(X_train, Y_train,validation_split=0.1)

# summarize results

print ("Best: %f using %s" % (grid_result.best_score_, grid_result.
best_params_))

means = grid_result.cv_results_[’mean_test_score’]

params = grid_result.cv_results_[’params’]

for mean, stdev, param in zip(means, params):
print ("%f with: %r" % (mean, param))

######## Model Definition and Training

model_bilstm_sa = Sequential ([
embedding_layer,
Bidirectional (LSTM (64, dropout=0.3,return_sequences=True)),
SeqSelfAttention (),
GlobalMaxPoolinglD (),
Dropout (0.4) ,
Dense (2, activation=’softmax’)

i)

model_bilstm_sa.summary ()

5 model _bilstm_sa.compile(loss=’binary_crossentropy’,optimizer=’adam

> ,metrics=[’accuracy’])

es = EarlyStopping(monitor=’val_loss’, mode=’min’, verbose=2,
patience=5)
mc = ModelCheckpoint(’bilstm_sa.h5’, monitor=’val_accuracy’, mode=

’max’, verbose=2, save_best_on1y=True)

s history_bilstm_sa=model_bilstm_sa.fit(X_train, Y_train, batch_size

=1000 ,epochs=200, validation_split=0.1,callbacks=[es, mc])

26



159

160
461
462

163

188

489
190
191

192

494
495
196
197
198
499
500

501

best_bilstm_sa = load_model(’bilstm_sa.h5’,custom_objects={"

SeqSelfAttention’:

SeqSelfAttention})

######## Model Evaluation

score =

Y_pred
y_pred =
y_test =

best_bilstm_sa.evaluate(X_test,Y_test)
plot_training hist(history_bilstm_sa, title = ’Model BiLSTM with
Self Attention’)

best_bilstm_sa.predict(X_test)
np.argmax (Y_pred, axis = 1)
np.argmax(Y_test, axis = 1)

print (’Model BiLSTM with Self Attention’)
print(classification_report(y_test, y_pred))

cm = confusion_matrix(y_test, y_pred,normalize=’true’)
labels = ["Negative", "Positive"]
display = ConfusionMatrixDisplay(confusion_matrix=cm,

display_labels=labels)

display.plot (cmap = plt.
7 display.ax_.set_title("Model BiLSTM with Self Attention", size

=15,

y=1.

05)

cm.Blues)

HHHHHHHS A HHB S HH B S HH B S HH GG HH B S SHH B S HH
## BiLSTM and Transformer Encoder Model ##
HEHHHHSHAHH LS A HH B HH B S B HHH S S AR BB SR HH B S #H

def

=embed_dim,

def

__init__(self,
=0.2,**xkwargs) :

super (TransformerBlock, self).

self

self

D

self.
self.
self.

self

call

outl

3 ######## Transformer Encoder layer definition

5 class TransformerBlock(layers.Layer):
embed_dim, num_heads, dense_dim, rate

init__ (x*xkwargs)

.att = MultiHeadAttention(num_heads=num_heads, key_dim

dropout=0.4,kernel _regularizer=L1(1=0.001))

.dense = Sequential ([

Dense (dense_
Dense (embed_

layernorml
layernorm?2
dropoutl
.dropout2

dim, activation="relu"),
dim),

LayerNormalization(epsilon=1e-6)
= LayerNormalization(epsilon=1e-6)
Dropout (rate)
Dropout (rate)

(self, inputs, training):

sa_output = self.att(inputs, inputs) # MHA layer
sa_output = self.dropoutl(sa_output, training=training)
= self.layernorml (inputs + sa_output) #

o7



normalization
502 dense_output = self.dense(outl) #Dense layers

503 dense_output = self.dropout2(dense_output, training=
training)
504 return self.layernorm2(outl + dense_output) #

normalization
s06 ######## Grid Search for hyperparameters

508 def create_model (num_heads, dense_dim):

509 # create model

510 model = Sequential ([

511 embedding_layer,

512 Bidirectional (LSTM (100, dropout=0.3,return_sequences=True)),

513 Dropout (0.4),

514 TransformerBlock (200, num_heads, dense_dim),

515 Dropout (0.4) ,

516 GlobalMaxPoolinglD (),

517 Dense (2, activation=’softmax’)

518 1)

519

520 # Compile model

521 model.compile (loss=’binary_crossentropy’, optimizer=’adam’,
metrics=[’accuracy’])

522 return model

523

524 model = KerasClassifier (model =create_model, epochs=5, batch_size

=1000, verbose=0)
525 # define the grid search parameters
506 num_heads = [2, 4]
507 dense_dim [16, 32, 64]

528 param_grid = dict(model__num_heads = num_heads, model__dense_dim =
dense_dim)
520 grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs
=1, cv=3)

530 grid_result = grid.fit(X_train, Y_train,validation_split=0.1)

531 # summarize results

532 print ("Best: %f using %s" % (grid_result.best_score_, grid_result.
best_params_))

533 means = grid_result.cv_results_[’mean_test_score’]
531 params = grid_result.cv_results_[’params’]

535 for mean, param in zip(means, params):

536 print ("%f with: %r" % (mean, param))

538 ######## Model Definition and Training

2
32 #Firs Dense unit inside the Transformer Block

540 num_heads

541 dense_dim

o8



543

5 €8

model_bilstm_trans = Sequential ([
embedding_layer,
Bidirectional (LSTM (100, dropout=0.3,return_sequences=True)),
Dropout (0.4),
TransformerBlock (200, num_heads, dense_dim),
Dropout (0.4) ,
GlobalMaxPoolingiD (),
Dense (2, activation=’softmax’)

D

model_bilstm_trans.summary ()

model_bilstm_trans.compile(loss = ’binary_crossentropy’, optimizer

= ’adam’,metrics = [’accuracy’])

= EarlyStopping(monitor = ’val_loss’, mode = ’min’, verbose =
2, patience = 5)

mc = ModelCheckpoint(’bilstm_tran.h5’, monitor = ’val_accuracy’,
mode = ’max’, verbose = 2, save_best_only = True)

history_bilstm_trans = model_bilstm_trans.fit(X_train, Y_train,
batch_size = 1000, epochs = 2000, validation_split = 0.1,
callbacks = [es, mc])

s best_bilstm_trans = load_model(’bilsmt_trans.h5’,custom_objects={"

TransformerBlock": TransformerBlock})

######## Model Evaluation

score = best_bilstm_trans.evaluate(X_test,Y_test)
plot_training hist(history_bilstm_trans, title= ’Model BiLSTM
Transformer Encoder’)

Y_pred = best_bilstm_trans.predict(X_test)
y_pred = np.argmax(Y_pred, axis = 1)

7 y_test = np.argmax(Y_test, axis = 1)

print (’Model BiLSTM with Transformer Encoder’)
print(classification_report(y_test, y_pred))

cm = confusion_matrix(y_test, y_pred,normalize = ’true’)
labels = ["Negative", "Positive"]
display = ConfusionMatrixDisplay(confusion_matrix=cm,

display_labels=1labels)

display.plot(cmap=plt.cm.Blues)

display.ax_.set_title("Model BiLSTM & Transformer Encoder", size
=15, y=1.05)

# Misclassified Tweets

errors = (y_pred - y_test != 0)

y_pred_errors = y_pred[errors]

y_test_errors = y_test[errors]

x_errors = Test_text[errors]

x_errors.head (30), y_pred_errors[0:30], y_test_errors[0:30]

29



583

584 # Wordcloud of each cell of the confusion matrix

ss6 tn, fp, fn, tp = confusion_matrix(y_test, y_pred).ravel()

s¢7 tn, fp, fn, tp

sss Results = {"Text": Test_text, "True": y_test, "Pred": y_pred}
50 res = pd.DataFrame (Results)

500 res.head ()

502 Positive = res[res["True"]==1][["Text","Pred"]]
503 TP = Positive [Positive["Pred"]==1]["Text"]

504 FN = Positive[Positive["Pred"]==0]["Text"]

505 Negative = res[res["True"]==0][["Text","Pred"]]
506 TN = Negative [Negative["Pred"]==0]["Text"]

507 FP Negative [Negative ["Pred"]==1]["Text"]

508 TN.shape, FP.shape, FN.shape, TP.shape

500 TP .head ()

601 tp_list = TP.values.tolist ()
602 tp_text = ° ’.join(tp_list)
6os fp_list = FP.values.tolist ()
6oa fp_text = ’ ’.join(fp_list)
605 tn_list = TN.values.tolist ()
606 tn_text = ’ ’.join(tn_list)
607 fn_list = FN.values.tolist ()
cos fn_text = ° ’.join(fn_list)

610 def plot_WordCloudsConfusion () :

611 wc = WordCloud (background_color = "white", max_words = 50,
width = 900, height = 500, stopwords = stopwords,colormap="
autumn")

612 fig,((axl,ax2),(ax3,ax4)) = plt.subplots(2, 2, figsize =
(15,8))

613 wc.generate (tn_text)

614 axl.imshow (wc)

615 axl.axis("off")

616 axl.set_title(’True Negative’, size=15, y=1.05)

617 wc = WordCloud (background_color = "white", max_words = 50,
width = 900, height = 500, stopwords = stopwords,colormap='"gray
")

618 wc.generate (fp_text)

619 ax2.imshow (wc, interpolation=’bilinear’)

620 ax2.axis ("off")

621 ax2.set_title(’False Positve’, size=15, y=1.05)

622 wc = WordCloud(background_color = "white", max_words = 50,
width = 900, height = 500, stopwords = stopwords,colormap="gray
")

623 wc.generate (fn_text)

624 ax3.imshow (wc)
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ax3.axis ("off")
ax3.set_title(’False Negative’, size=15, y=1.05)

wc = WordCloud(background_color = "white", max_words = 50,
width = 900, height = 500, stopwords = stopwords,colormap="
summer"

wc.generate (tp_text)

ax4.imshow (wc, interpolation=’bilinear’)
ax4.axis("off")

ax4.set_title(’True Positive’, size=15, y=1.05)

plt.show ()
plt.close ()

plot_WordCloudsConfusion ()

HAEHHHAHHFAAA AR AR AR B R BHARASAAAHH
###### Models Comparison #H#####
Huddhnn#HSSHSSS SRR B HHHSSSSSHY

# Accuracy of the different models
def plot_training_hist ():
fig, ax = plt.subplots(l, 2, figsize=(10,4))
fig.tight_layout (pad=3.5)
ax [0] .plot(history_cnn.history[’accuracy’])
ax [0] .plot(history_bilstm.history[’accuracy’])
ax [0] .plot (history_cnn_bilstm.history[’accuracy’])
ax [0] . plot (history_bilstm_sa.history[’accuracy’])
ax [0] .plot (history_transformer.history[’accuracy’])
ax [0] .set_title(’Model accuracy on training set’)
ax [0] .set_xlabel (’epoch’)
ax [0] .set_ylabel (’accuracy’)
ax [0].legend ([’CNN’, ’BiLSTM’, ’CNN + BiLSMT’, ’BiLSTM + SA’,
>Transformer’], loc=’best’)
ax [1] .plot (history_cnn.history[’val_accuracy’])
ax [1] .plot(history_bilstm.history[’val_accuracy’])
ax [1] .plot (history_cnn_bilstm.history[’val_accuracy’])
ax [1] .plot(history_bilstm_sa.history[’val_accuracy’])
ax[1] .plot (history_transformer.history[’val_accuracy’])
ax[1] .set_title(’Model accuracy on validation set’)
ax [1].set_xlabel (’epoch’)
ax [1] .set_ylabel (’accuracy’)
ax[1].legend ([’CNN’, ’BiLSTM’, ’CNN + BiLSMT’, ’BiLSTM + SA’,
>Transformer’], loc=’best’)
fig.suptitle(’Accuracy comparison’, size=16, y=1.07)

plot_training_hist ()
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