

Title: Attention Mechanisms in Deep Learning Models for
Twitter Sentiment Analysis

Author: Elena Blanco González

Advisor: Ferrán Reverter Comes and Esteban Vegas
Lozano

Department: Department of Genetics, Microbiology &
Statistics.

University: University of Barcelona

Academic year: 2022-2023

Interuniversity Master
 in Statistics and

Operations Research
UPC-UB

Master in Statistics and Operations
Research

Attention Mechanisms in Deep
Learning Models for Twitter

Sentiment Analysis

Author:

Elena Blanco González

Advisors:

Ferrán Reverter Comes

Esteban Vegas Lozano

January, 2023

Abstract

Sentiment Analysis on social media such as Twitter can provide us with valuable
information about the users’ opinions. The singularities of these data lie in their
short format and informal language. In the last years, Deep Learning models like
Recurrent Neural Networks and Convolutional Neural Networks have been widely
studied for this task reaching promising results when combined with word embed-
ding mechanisms. In this master thesis, we go through the bases of Sentiment
Analysis and Deep Neural Networks and then some Deep Learning models are
presented. Pursuing improving the performance of these models, attention mech-
anisms like Self Attention of Transformer Encoder are presented and included in
the models. The same dataset is used to train all the presented models in order to
evaluate them and analyze the impact of including attention mechanisms on Deep
Neural Networks in a Sentiment Analysis task.

Keywords

Sentiment Analysis, Deep Learning, Neural Network, Attention Mechanisms, Nat-
ural Learning Processing, Bidirectional Long-Short Term Memory

1

Acronyms

BiLSTM Bidirectional Long-Short Term Memory

BoW Bag of Words

CNN Convolutional Neural Network

DNN Deep Neural Network

LDA Latent Dirichlet Allocation

LSTM Long-Short Term Memory

MHAT Multi-Head Attention

NLP Natural Language Processing

RNN Recurrent Neural Network

SA Sentiment Analysis

SVM Support Vector Machine

2

Contents

1 Introduction 5

2 Deep Neural Networks for Sentiment Analysis 7

2.1 Sentiment Analysis . 7

2.2 Deep Neural Networks . 8

2.3 Word embedding: GloVe . 10

3 Enabled Models 13

3.1 DNN architectures . 13

3.1.1 Convolutional Neural Networks 13

3.1.2 BiLSTM . 15

3.2 Attention Mechanisms . 18

3.2.1 Self-Attention . 18

3.2.2 Transformers . 19

4 Model Applications and Results 23

4.1 Data set . 23

4.2 Models . 26

3

4.2.1 CNN Model . 27

4.2.2 BiLSTM Model . 29

4.2.3 Model combining CNN and BiLSTM 31

4.2.4 Model BiLSTM with Self-attention 33

4.2.5 Model BiLSTM with Transformer Encoder 35

4.3 Results comparison . 38

5 Conclusions and Future Work 42

4

Chapter 1

Introduction

A person wanting to buy a new product, a company worried about how people
feel about its products, political parties concerned about the possibilities they
have in the upcoming elections. There are all situations where someone is looking
for people’s opinions regarding an specific topic. Historically people asked friends
and family before buying something in order to assure they were taking the best
decision, companies did customer satisfaction surveys and political parties chose
a representative part of society and ask them about the main points of their pro-
gram. In all of these cases, the data has to be collected person by person and,
after collecting the data, it should be manually classified in order to can extract
conclusions.

Nowadays, individuals, companies, organizations and governments use the huge
amount of data available in social media for decision making: reviews about the
product you want to buy, tweets or blog posts about a social measure or a company,
etc. Therefore, social media already avoids several manually data collection. The
next step is to find a way to automate their classification in order to make all these
data useful.

Moreover, neural networks, that were widely used for image classification, were
adapted to Natural Language Processing (NLP) tasks by using word embeddings
that allow to have vector representation of words where similar words are close on
the vector space. Deep Neural Networks (DNN) have surpassed in terms of accu-
racy other traditional classification methods. Among all the DNN, Convolutional
Neural Networks (CNN) and Recurrent Neural Networks (RNN) - specially with
the presence of Long-Short Term Memory (LSTM) - are the most popular on text
sentiment analysis.

5

In the last decade, it appears the concept of attention mechanisms and become
a very powerful concept in deep learning improving the performance of neural
networks. Attention mechanisms assign different weights do each token of the
input allowing the neural network to focus on the more relevant parts for the
specific task obtaining a better representation of it.

In this master thesis we will study the power of attention mechanisms when work-
ing with short texts by considering Twitter data. The first chapter is composed by
an introduction of Sentiment Analysis (SA), DNN and GloVe embedding. Then,
on Chapter 2, we present the enabled models divided in two categories: DNN ar-
chitectures and Attention Mechanisms. On the third chapter we start presenting
the data set that will be used to evaluate the five different models described on
the second part of the chapter. Chapter 3 ends by comparing the different models
and, in the final chapter, the reached conclusions and future work are exposed.
There is also an appendix with the full Python code used.

6

Chapter 2

Deep Neural Networks for
Sentiment Analysis

2.1 Sentiment Analysis

From some years to now, the amount of data available has significantly increased
thanks to social media and blogs, where people write their opinion about several
topics or products. Sentiment Analysis is the analysis of a text with the aim of
obtaining people’s opinion regarding an specific topic. For instance, SA provides
an efficient way to determine if the expression in a text is positive or negative.

The increase of available data together with the reduction of computational costs
converts SA in one of the most active research areas in Natural Language Process-
ing. It has been spread form the field of computer science to a wide range of other
disciplines more related with social science such as marketing, finances, politics
or communications. SA has multiple applications on real world where knowing
people’s opinion helps organizations and companies to make better decisions by
analyzing how people feel in a macro scale about a product, a service or even a
brand.

Statistical methods such as Support Vector Machines (SVM), Latent Dirichlet
Allocation (LDA) or Näıve Bayes have been used in text classification tasks. How-
ever, these methods present two main inconveniences first, they should be trained
in a high-dimensional feature space, what decreases the performance of the model
, and also the feature engineering process requires a lot of time and work [4].

7

In order to overcome this limitations, in the last years the community started to
use word embedding that transform text into matrices considering the lexical rela-
tionships between words. By doing this, we can start using Deep Neural Networks
for Natural Language tasks such as sentiment analysis.

2.2 Deep Neural Networks

The structure of DNN has been inspired by the structure of the human brain. DNN
consist on a set of units called neurons organized in layers that work unison. This
type of networks can learn to perform tasks by adjusting the connection weights
between neurons.

Figure 2.1: DNN Structure

Figure 2.1 shows the standard structure of a DNN. It is composed by three types
of layers: one input layer, several hidden layers and an output layer. The values
in the input layer denote the input data supplied to the network while the hidden
and output layers are composed by neurons.

The flow of information between neurons is determining by the weights w and
fitting this weights allows the network to learn features from the data. In each
layer, each neuron takes its input x from the previous layer and it calculates an
output value by applying an activation function g to the weighted sum of inputs
and the bias b. Mathematically it is denoted as

8

g(W tx) = g(
∑
i

Wixi + b)

Activation functions are usually non-linear and the most common are sigmoid,
hyperbolic tangent (tanh) and Rectified linear unit (ReLU).

sigmoid(W tx) =
1

1 + e−W tx

tanh(W tx) =
eW

tx − e−W tx

eW tx + e−W tx

ReLU(W tx) = max(0,W tx)

The choice of the activation function in the output layer depends on the specific
task that the network is performing. In the case of considering a classification
task with more than two categories, the activation function should be the softmax
function, similar to sigmoid function but adequate to handing multi-class prob-
lems, It turns a vector of K real values into a vector of K real values between 0
and 1 that sum 1 such that they can be interpreted as the probability to belong
to each of the K classes. Generally this function is only used in the output layer
and it is defined as follows.

σ(Z)i =
ezi∑K
j=1 e

zj
for i = 1, ..., K

Neural networks are often trained with optimization techniques that need a loss
function in order to estimate the model error. Depending on the learning task the
loss function will be log-likelihood or sum of squares and the network parameters
are optimized with the output of the loss function employing different optimization
techniques. In this thesis, as we are considered a big data set and the models have
a lot of parameters, we will be working with Adam optimization algorithm that
uses Momentum and Adaptive Learning Rates to converge faster.

The most popular types of DNNs in tasks related to text processing are Convo-
lutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). The
cause of this popularity is due to the fact that CNNs can of learning local patterns

9

and RNNs have the ability to analyze sequential data. In the next sections, RNNs
and CNNs models will be considered. There will also be contemplated some hybrid
models that combine both of them.

The next table summarizes some of the publications of the last five using RNNs
and CNNs for sentiment analysis:

Year Study Research Methods
2017 A. Hassan et al. [10] Sentiment analysis on short texts CNN, LSTM
2018 J. Qian et al. [14] Sentiment analysis on weather-related tweets DNN, CNN
2019 A. S. M. Alharbi et al. [2] Twitter sentiment analysis CNN
2019 J. Xie et al. [17] Sentiment analysis on short texts Self Attention based BiLSTM
2021 H. S. Sharaf Al-deen et al. [4] Sentiment analysis on short texts CNN, BiLSTM, Multi-Head Attention

2.3 Word embedding: GloVe

In order to be able to work with text data in DNN, texts need to be converted
somehow to vectors. Traditionally, it has been popular the use of bag-of-words
representation (BoW) that, given a dataset, it forms a “bag” with all the words
appearing and then each entrance (sentence, document, tweet, etc) is transformed
into a vector of length the number of words in the bag that shows how many times
each word appears.

Imagine that we have the following 3 sentences:

• ‘He is my young brother’

• ‘He is a mechanic’

• ‘His young brother is as tall as him ’

The sentences have a total of 17 words that can be summarized in a bag of 11 words:
’He’ , ’is’ , ’my’, ’young’, ’brother’, ’a’, ’mechanic’, ’his’ , ’as’, ’tall’, ’him’. There-
fore each sentence will correspond with a vector of length 10, x = (x1, x2, ..., x10)
with xi the number of times that the word in the ith position of the bag of words
is the sentence:

• ‘He is my young brother’ = (1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0)

• ‘He is a mechanic’ = (1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0)

10

• ‘His young brother is as tall as him’ = (0, 1, 0, 1, 1, 0, 0, 1, 2, 1, 1)

This representation has some inconveniences as the length of the vector corre-
sponds to the vocabulary size so, when having a big data base like several books,
the vectors will be huge and with a lot of 0’s requiring a lot of memory and compu-
tational resources. Moreover, it does not take into account context and sentences
with a very similar meaning can have really different representations.

Word embeddings overcome these problems as they try to map human language
into a geometric space, therefore, words with similar meanings will be close in
the word-embedding space. As we can see on Figure 2.2 the distance between
the representations of ‘brother’ and ‘sister’ is similar to the one between ‘nephew’
and ‘niece’ or ‘aunt’ and ‘uncle’ as, in human language, the difference between
these words is always the same one: the gender. There are several embedding
algorithms: word2vec, ELMO, BERT, GloVe, etc.

Figure 2.2: Distance of words in the word-embedding space [8]

In this thesis all the models considered are using a pre-trained GloVe embedding
that has been trained on Twitter data [8].

GloVe model [13] is based on factorizing a matrix of word co-occurrences statistics.

Given a set of V words, the co-occurrence matrix X will be a matrix where Xij

denotes how many times the word j occurs in the context of word i. The probability
of seeing this two words together is calculated by dividing the number of times i
and k appear together divided by the number of times that the word i appears in
the set of words: Pik = Xik/Xi. Therefore given the three words i, j and k (this
third one is called probe word) if i and j are both similar or both unrelated to the

11

probe word k, Pik/Pjk will be close to one. If i is similar to k but j is not, Pik/Pjk

will be a high number greater than 1 and in the opposite case - j similar to k and
i different from k- the value will be very small.

Figure 2.3: Co-occurrence probabilities [13]

Figure 2.3 presents the co-occurrence probabilities for target words ice and steam
with four other words: solid, gas, water and fashion.

12

Chapter 3

Enabled Models

After a brief description of Sentiment Analysis and the intuition on Deep Neural
Networks, this section will be composed by two main parts. In the first part we
consider different DNN architectures and in the second part attention mechanisms
are presented.

3.1 DNN architectures

3.1.1 Convolutional Neural Networks

Convolutional Neural Networks are able to capture local features of data. The
were initially used in the field of computer vision but they are widely used in other
fields as speech recognition, text mining and sentiment analysis.

In order to classify a tweet according to its sentiment, CNN take as an input the
matrix provided by the embedding layer and outputs the probability of a tweet to
belong to each class.

Convolutional Neural Networks are composed by three type of layers: Convolu-
tional, Pooling and Dense or Fully Connected. Pooling layers are optional but the
other ones are always in the network as the convolutional layer is the one that
captures the local features and dense layer outputs the probabilities of belonging
to each class.

13

Figure 3.1: CNN architecture for sentiment classification [16]

Figure 3.1 represents the architecture of a CNN in the case of sentiment analysis.
As can be seen, each row represents the k-dimensional word embedding of each
word. Hence, if the length of each sentence is n, a matrix of dimension n × k is
provided as input of the network.

Convolutional layers are the main component of a CNN architecture and they
are composed by filters that extract features of the date and whose parameters
should be learned. These filters f are applied over a window of k terms to generate
a convoluted feature ci:

ci = f(xi:[i+k−1]) + b

were b is the bias and f the activation function. Each filter is applied to all possible
window of words in the sequence to generate the feature map.

The Pooling Layer applies some operation over the regions in the input feature
map and extracts some representative value for each of the analyzed regions. By
doing this, pooling layers increases the CNN’s robustness to avoid noise and dis-
tortions. Contrary to convolutional layers, the function in pooling layers is fixed.
Usually what they do is to calculate the average of the features values or the
maximum, determining the essential feature of the map.

Even if Dense Layers can also be on the inside of the neural network, the output
layer is always a Dense Layer. Dense layers perform the classification task. In
a dense layer, each of the outputs of the previous layer is connected with to each
neuron in the layer, which implies that each output dimension depends on each
input dimension.

14

3.1.2 BiLSTM

Recurrent Neural Networks are a type of neural networks that have the form of a
chain with a module that is repeated in such a way that for each step, the output
is generated based on the output of the previous step and the input of the current
one.

Figure 3.2: Long-Short Term Memory network [7]

Long-Short Term Memory is an special type of RNN whose module has a more
complex structure than standard RNNs. LSTM are composed by a chain of recur-
rent memory units as shown on Figure 3.2. Each of the cells has four components:
a memory cell and three gates (forget, input and output). These components in-
teract among them such that the cell records information and the gates control

15

the flow from cell to cell as shown in Figure 3.3 1.

Figure 3.3: LSTM unit

Given the input x = (x1, x2, ..., xn) LSTM will generate the hidden vectors h =
(h1, h2, ..., hn), being n the length of the sentence. The dimension of each vector
xi is the dimension of the embedding and the dimension of hi coincides with the
number of units in a cell. W and U are the weight matrices and b the biases of
LSTM cell during training. The procedure is the following:

First, the forget gate decides what information discard for the cell state by using
sigmoid function:

ft = σ(W fxt + U fht−1 + bf)

ft will be a value between 0 and 1 where 0 will mean completely forget and 1,
completely keep.

Then, the input gate will decide the new information to store in the cell. In order
to do that, first it will calculate

it = σ(W ixt + U iht−1 + bi)

1The image is an adaptation of an schema of L. Zhang et al. [18]

16

and create new candidate values to be added in the cell state c̃t.

c̃t = tanh(W cxt + U cht−1 + bc)

Update the old cell state ct−1 into the new one being ⊙ the element wise multipli-
cation.

ct = ft ⊙ ct−1 + it ⊙ c̃t

Finally the output is decided based on the cell state. The output gate is calcu-
lated using the formula

ot = σ(W oXt + U oht−1 + bo)

that decides which parts of the cell state to output and then, multiplying it by the
cell state, only some parts of the output are shown on the hidden state ht

ht = ot ∗ tanh(ct)

With the procedure described above, the outputs are calculated taking into account
the previous context. Bidirectional LSTM (BiLSTM) includes both the previous
and future context.

Figure 3.4: BiLSTM structure [5]

BiLSTM is represented on Figure 3.4. It is composed by two independent LSTM,
one of them that goes forward thorough the input and anther one backwards

that will obtain two different hidden layers:
−→
ht for the forward LSTM and

←−
ht

for the backwards one. The final hidden vector ht of the BiLSTM is obtained

concatenating
−→
ht and

←−
ht as ht = [

−→
ht ,
←−
ht].

In order to perform classification, the final hidden layer is the input of the dense
layer.

17

3.2 Attention Mechanisms

The Attention Model was fist used in machine translation tasks but, over the
years, it has become very popular in many other fields as NLP, statistical learning,
speech recognition, computer vision or sentiment classification. The application
of attention mechanisms on NLP has been one of the greatest advances of the
last decade, specially after the publication of “Attention is All you Need” by the
Google’s machine translation team in 2017 [15].

In the case of sentiment analysis, given a tweet, not all the words contribute the
same to the context of sentiment polarity. Attention mechanisms, try to imitate
humans brain behaviour and allow the model to learn the parts of the input with
a higher relevance for the specific task they are performing while forgetting the
rest.

3.2.1 Self-Attention

Self-Attention focus on modulating a word representation by using the represen-
tation of related words in the sentence, therefore, self-attention is a context aware
kind of attention.

The mechanism calculate an attention value for each input and then it outputs a
context c, a weighted sum of the inputs according the relevance of each word based
on the attention. First, for every word in the sentence, the algorithm computes
the attention score based on every other word in the same sentence. In order to
do that, it uses the dot product between two vectors (word representations) as a
measure of the strength of their relation. Then a scaling function and softmax
will be applied to the calculate dot product. Lastly, the weighted sum of all word
vectors in the sentence is calculated to obtain the context.

Specifically, when applying an attention layer after BiLSTM, the network will
get the hidden vector ht produced by BiLSTM as an input to obtain the context
information c for each sequence. In order to do that, first the hidden representation
is transformed into another hidden representation ut

ut = tanh(Wwht + bw)

where Ww is a weight matrix and bw a bias vector. Later, the attention value is

18

computed considering ut and a word-level context vector uw that helps to distin-
guish the importance of different words in the sentence.

at =
exp(uT

t uw)∑
t exp(u

T
t uw)

= softmax(uT
t uw)

The sum of the attention values of a sequence must be 1 and the higher the value,
the more relevance the word is in the context of sentiment polarity. Finally the
context value is calculated

c =
∑
t

atht

Ww, bw and uw are randomly initialized and then they are adjusted during the
training process. Figure 3.5 shows an schema of the process.

Figure 3.5: Attention Mechanism

3.2.2 Transformers

Transformers were introduced in the paper “Attention is all you need” [15] and
they were originally developed for machine translation. They consist on two parts:
an encoder that process the input sequence and a decoder that generates the new
sentence in the new language. However, the encoder part can also be used for text
classification because what it does is to create a new representation of the sentence
giving more importance to the most relevant parts.

19

Figure 3.6: Transformer encode schema [3]

As seen in Figure 3.6, the transformer encoder is composed by a Multi-Head At-
tention layer together with some Dense layers and it adds normalization layers and
residual connections.

Multi-Head Attention Mechanism

Multi-Head Attention (MHAT) consists on applying more than one Self-Attention
mechanisms at the same time. Then all the outputs are concatenated, a linear
transformation is applied and the result is utilized as the output of the MHAT.
Figure 3.7 shows the architecture.

20

Figure 3.7: Architecture of the MHAT mechanism [4]

As Transformers were originally designed for translation, the Self-Attention mech-
anism is slightly different to the one described above. In translation, two different
sequences should be considered: the one being translated and the target sequence
it is being converted to. In order to deal with this problem, the query-key-value
model is introduced. Query (Q), key (K) and value (V) are three sentences:

• Query: what the algorithm is looking for

• Value: all the information available in the model

• Key: representation of value that can be compared to the query

so the algorithm match queries and keys, computes how related they are and it
returns a weighted sum of the values, obtaining the following formula:

Attention(Q,K, V) = softmax
QKT

√
dk

V

where dk is the dimension of Q and K and the softmax function normalizes the
obtained weights.

Contrary to the case of translation, in the case of sentiment analysis just one
sentence is considered such that each sentence is being compared to itself in order to
obtain context information of each token. This one sentence available in sentiment
analysis will be at the same time considered as query, key and value so K=V=Q.

21

Dense and Normalization Layers

After the Multi-Head Attention, a Layer Normalization is applied to the set formed
by the inputs and outputs of the MHA. This process normalize the matrix rep-
resentation of each sequence independently from the other sequences, helping to
accelerate and stabilize the learning process. After this step there are two Dense
or Fully Connected Layers and later another Layer Normalization is applied as
shown in Figure 3.6.

22

Chapter 4

Model Applications and Results

In this chapter, five different models are evaluated using a Twitter data set with the
objective of analyzing the relevance of attention mechanism on sentiment analysis.
In the first section the dataset is presented and later the models are described.
Finally, the results for each model are considered and compared.

4.1 Data set

For the last two years, there are an average of 867 million of new tweets per day [11]
what makes Twitter one of the main source of opinionated short texts. However,
in order to create an original dataset for sentiment analysis first classification has
to be done manually so it is very difficult to create new data sets with enough
data to train a neural network. Hence we will be working with Sentiment140[9], a
publicly available data set.

Tweet texts often contain user mentions, hyperlinks, non-letter characters and
punctuation. Before use the texts in the neural networks, some cleaning should
be done. This does not change the sentiment of the sentence and it makes the
embedding easier. It includes

• Convert text to lower case

• Remove symbols of line breaks (\n and \r)

• Remove sings of retweets (re:)

23

• Remove the non utf-8 characters

• Remove mentions, hashtags and hyperlinks

• Remove all punctuation symbols

• Remove numbers

• Remove multiple spaces

Figure 4.1: Sentences with less than three words

After cleaning, duplicated tweets are deleted and we keep in the data set just the
tweets containing three or more words as most of tweets with less than three words
are not full sentences as can bee seen on Figure 4.1. Therefore, the data set is
composed by a total of 1.526.942 distributed in the following way:

Sentiment
Training

Set
Test
Set

Total number
of Tweets

Negative 693.831 77.093 770.924
Positive 680.416 75.602 756.018

Twitter data is very unique due to the informal language being used but also
because of its length as each tweet has a limit of 140 characters1. Figure 4.2 shows
the distribution of tweets according to their number of words. Tweets are very
similar among sentiments regarding length and, in both cases, most of the tweets
are between 5 and 20 words.

1From 2017 this limit is 280 [1] but the data used in this thesis was extracted in 2009

24

Figure 4.2: Number of words in a Tweet

Figure 4.3 shows the most common words in tweets for each sentiment without
considering stopwords (a, all, also, am, else, had, not...). Words associated with
positive feelings like thank, love, fun, nice are among the most common words for
positive tweets while others related with negative feelings like miss, sad or hate
are more common on negative tweets.

Figure 4.3: Most common words for each sentiment

Before inputting the data into the neural network, all the the tweets are split in
words and a padding function is applied in order to being able to convert them
into a matrix by adding 0’s at the beginning of the sentence until reaching the
equivalent to 35 words. Then, GloVe embedding is applied.

In this case, we are using a pretrained GloVe embedding that has been trained

25

using Twitter data to have a better representation of the informal language used
on social media. For instance it includes words like bday or xoxo. This embedding
covers 70.09% of the words that are used in the considered dataset. Some of the
words appearing on the data set not covered by the pretrained GloVe embedding
are shown in Figure 4.4. They are words with repeated characters or misspelled.

Figure 4.4: Example of words not appearing on GloVe database

The performance of the different models will be evaluated by using a test data set
so the original data is split into train and test. Test dataset is selected randomly
by maintaining the proportion of tweets for each sentiment and it contains 10% of
the total data.

4.2 Models

During the training process, a validation data set is randomly chosen and it rep-
resents a 10% of the training data set. In order achieve the best results of the
experiment, some parameters of the different models are selected by using grid
search and cross-validation. Additionally, to avoid over-fitting, an early stopping
mechanisms is used based on the loss of the validation data with a patient of 5
epochs.

26

4.2.1 CNN Model

The first model to be considered is a CNN with the structure shown on Figure
4.5. The number of filters and kernel size were defined by using a greed search
procedure. However model’s accuracy is not highly influenced by the number of
filters or kernel size obtaining a difference between the best and worst model of
less than 1% on the validation data set.

Figure 4.5: Structure of CNN model

Hyperparameter Value
Embedding size 200

Number of words per tweet 35
Number of filters 64

Kernel size 5
Convolutional layer activation function ReLU

Padding same
Kernel regularizer L1

Optimizer Adam
Loss function Binary cross-entropy

Table 4.1: Hyperparameters for CNN Model

The model has been trained using the hyperparameters described on Table 4.1
and Figure 4.6 shows the details of the model where GloVe embedding represents

27

the first layer where the each tweet is converted into a vector of 200 elements for
each word and the sentence maximum length is 35. Therefore, it results a 35 x
200 matrix. The convolutional layer defines 64 filters of kernel size equals to 5,
allowing to train 64 different features. Its activation function is ReLU and it is
considering ‘same’ padding. It also uses a L1 kernel regularizer with a weight of
0.001 to reduce overfitting. After the CNN layer, the global maximum layer is
used to reduce the complexity of the output and prevent overfitting of the training
data. The output matrix has a size of 1 x 64. Lastly, a dense layer with softmax
activation is applied and it outputs a vector with two real numbers between 0
and 1 that represents the probability of the tweet of being negative and positive
respectively.

Figure 4.6: Details of the CNN model

The model has a total of 64,194 trainable parameters and it needed to be trained
for a total of 85 epochs using a batch of 1,000 tweets to obtaining an accuracy
of 79.88% measured on the test data set. Figure 4.7 shows the confusion matrix
normalized for true values where it can be seen that it performs better on classifying
tweets with negative sentiment.

28

Figure 4.7: Confusion matrix for CNN model

4.2.2 BiLSTM Model

The second model is a BiLSTM model with the structure shown on Figure 4.8.
The number of units of the BiLSTM layer has been decided using grid search and
cross-validation in order to find the model with better performance. Similar to the
case of CNN model, the accuracy measured on the validation set is quite stable
regarding the number of filters and the difference of accuracy between the best
and worst model is lower than 1%.

Figure 4.8: Structure of BiLSTM model

29

Figure 4.9 shows the summary of the model. After the embedding layer a BiLSTM
layer is applied with 64 units. There is a dropout of 0.2 inside the BiLSTM layer
and another one of 0.5 after it in order to prevent overfitting. The output of the
BiLSTM is the input of the dense layer.

Hyperparameter Value
Embedding size 200

Number of words per tweet 35
BiLSTM units 64

BiLSTM dropout 0.2
Dropout 0.5

Optimizer Adam
Loss function Binary cross-entropy

Table 4.2: Hyperparameters for BiLSTM Model

Figure 4.9: Details of the BiLSTM model

The model has a total of 135,938 trainable parameters and it needed to be trained
for a total of 26 epochs to obtaining an accuracy of 83.54% measured on the test
data set. Figure 4.10 shows the confusion matrix normalized for true values.

30

Figure 4.10: Confusion matrix for BiLSTM model

4.2.3 Model combining CNN and BiLSTM

After evaluating CNN and BiLSTM in separate models, this model combines both
of them so that, after capturing the features extracted using CNN, a BiLSTM
layer is applied in order to filter the information. The number of filters, kernel size
and units in BiLSTM have been selected by a grid search procedure with cross-
validation and, even if the difference of accuracy among models depending on the
hyperparameters is bigger than in the previous cases, it is under 1.5%.

31

Figure 4.11 shows the summary of the model. In this case, there is a convolutional
layer that takes as input the matrix built by the embedding layer and 64 filters of
size 3 are applied outputting a 35 x 64 matrix. Then a BiLSTM layer with 16 units
is applied to filter the information using its three gates (forget, input and output).
In order to avoid overfitting a dropout of 0.2 is set in the BiLSTM layer and, after
the BiLSTM layer, there is another dropout of 0.5. The output of the BiLSTM is
the input of the dense layer with dimension 2 and softmax as activation function.

Figure 4.11: Details of the CNN-BiLSTM model

Hyperparameter Value
Embedding size 200

Number of words per tweet 35
Number of filters 64

Kernel size 3
Convolutional layer activation function ReLU

Padding same
Kernel regularizer L1

BiLSTM units 16
BiLSTM dropout 0.2

Dropout 0.4
Optimizer Adam

Loss function Binary cross-entropy

Table 4.3: Hyperparameters for CNN-BiLSTM Model

32

As shown in the summary there are a total of 48,898 trainable parameters and it
needed to be trained for 22 epochs obtaining an accuracy measured in the test set
of 79.87%. Figure 4.12 shows the confusion matrix of the model normalized for
true values.

Figure 4.12: Confusion matrix for CNN-BiLSTM model

4.2.4 Model BiLSTM with Self-attention

Figure 4.13: Structure of BiLSTM with Self Attention model

33

The model described in Figure 4.13 uses Self Attention after the BiLSTM layer for
which the number of units has been chosen using grid search with cross-validation.
The difference between models changing the number of units in the BiLSTM is up
to 2% of accuracy (measured on the validation set).

Figure 4.14 shows the summary of the model and Table 4.4 the details of the hyper-
parameters. In this model, Self-Attention is applied to the hidden states produced
by the BiLSTM layer obtaining a new representation of the input sentence. After
the attention application, a global maximum layer and dropout are used to reduce
the complexity of the output and prevent overfitting.

Figure 4.14: Details of the BiLSTM with Self Attention model

Hyperparameter Value
Embedding size 200

Number of words per tweet 35
BiLSTM units 64

BiLSTM dropout 0.3
Dropout 0.4

Optimizer Adam
Loss function Binary cross-entropy

Table 4.4: Hyperparameters for BiLSTM with Self Attention model

34

In this case the number of trainable parameters is 144,195 and it has been trained
for 29 epochs before the early stopping method interrupted the process. When
evaluating this model on the test set, the accuracy obtained is 83,74% and, sim-
ilarly to the previous models, negative tweets are classified better than positive
ones as shown on Figure 4.15. However, compared with the model that applies
just BiLSTM, without attention, the accuracy on negative tweets is the same but
the one for positive tweets is higher now.

Figure 4.15: Confusion matrix for BiLSTM with Self Attention model

4.2.5 Model BiLSTM with Transformer Encoder

The last model combines BiLSTM with a Transformer Encoder. This model is
more complex than the previous ones as can be seen in the number of trainable pa-
rameters that are 576,434 for this model. The number of heads of the transformer
encoder as well as the dimension of the first dense unit inside the transformer are
defined by using grid search and cross-validation. In this case the difference be-
tween the best and worst performing models is of almost 8% in terms of accuracy
measured in the validation set. The hyperparameters chosen to train the model
are shown on Table 4.5.

35

Hyperparameter Value
Embedding size 200

Number of words per tweet 35
BiLSTM units 100

BiLSTM dropout 0.3
Transformer number of heads 2
Transformer dense dimensions 32 and 100

Multi-Head Attention regularization L1
Dropout 0.4

Optimizer Adam
Loss function Binary cross-entropy

Table 4.5: Hyperparameters for BiLSTM with Transformer Encoder model

Figure 4.16 shows the details to the model. In this case, the matrix generated by
the embedding layer is fed into an BiLSTM layer with 100 units. Then the outputs
are taken as the input of the transformer encoder that applies first MHAT with 2
heads, then normalization is applied to the inputs and outputs of MHAT together.
Next step two Dense layers are applied, the first one with dimension 32 and the
second one with 200 in order to match the dimensions of the input. The output is
normalized and passed to the next layer as the output of the transformer encoder
layer. Later a Global Max Pooling and the last Dense layer for classification are
applied.

As it is a complex model with a high number of trainable parameters, it is easy

36

that it overfits the training set. In order to avoid that, several dropouts were
included during the whole process together with the regularization layers and L1
regularization inside the transformer encoder.

Figure 4.16: Details of the BiLSTM with Transformer Encoder model

Figure 4.17 shows the confusion matrix for the model. In this case, unlikely the
previous ones, the performance classifying positive and negative tweets is equal.

37

Figure 4.17: Confusion matrix for BiLSTM with Transformer Encoder model

4.3 Results comparison

In order to evaluate the models and compare them, a test data set containing more
than 153,000 tweets is used. The evaluation standards are Precision (Pr), Recall
(Re), F1 measure and Accuracy (Acc) defined as follows:

• Pr = TP
TP+FP

• Re = TP
TP+FN

• F1 = 2× Pr×Re
Pr+Re

• Acc = Correct classifications
Total Classifications

Where TP, TN, FP and FN stand for true positive, true negative, false positive
and false negative respectively. Table 4.6 shows a summary of all these metrics for
each one of the models considered for comparison.

38

Model Class Precision Recall F1 Accuracy

CNN
Negative 0.79 0.82 0.80

0.7988
Positive 0.81 0.78 0.79

BiLSTM
Negative 0.82 0.86 0.84

0.8354
Positive 0.85 0.81 0.83

CNN + BiLSTM
Negative 0.79 0.82 0.80

0.7987
Positive 0.81 0.78 0.79

BiLSTM with Self Attention
Negative 0.83 0.86 0.84

0.8374
Positive 0.85 0.82 0.83

BiLSTM + Transformer Encoder
Negative 0.84 0.84 0.84

0.8379
Positive 0.84 0.84 0.84

Table 4.6: Results obtained for the different models

Model Number of trainable parameters
CNN 64,194
BiLSTM 135,938
CNN-BiLSTM 48,898
BiLSTM with Self Attention 144,195
BiLSTM + Transformer Encoder 576,434

Table 4.7: Number of trainable parameters for each model

In addition to the evaluation metrics, the number of trainable parameters should
be taken into account when comparing two different models. By doing this, we can
better choose between two models with similar performance but different number
of trainable parameters. This is the case of the models CNN and CNN-BiLSTM
where the difference in terms of accuracy is almost insignificant but, the first one
has almost 20,000 more trainable parameters as shown in Table 4.7. At the same
time, CNN needs to be trained for 85 epochs while CNN-BiLSTM needs just 22
so we can say that applying a BiLSTM after a CNN is a better option than train
a more complex CNN for this dataset.

However, based on the results we can see that BiLSTM works better by itself that
after a CNN layer. The difference on the accuracy of these two models is slightly
higher than 3.5%.

Differences in performance of BiLSTM, BiLSTM with Self Attention and BiLSTM
with Transformer encoder is of less than 0.25% while the difference in the number of
parameters is huge (BiLSTM with Transformer Encoder has around four times the
number of trainable parameters of the other two models). Even if the performance
of these three models is really similar, we can see differences when observing the

39

confusion matrices. If we consider the results for the models that apply attention
after the BiLSTM layer (Figures 4.15 and 4.17) we can see that the one containing
Transformer Encoder performs better than the one with Self Attention for negative
tweets but worst on positive ones.

Figure 4.18 shows the accuracy evolution during the training process in both the
test and validation sets for all the models considered. We can see the difference of
epochs needed for each model to arrive to its better performance. BiLSTM with
Transformer Encoder (Transformer for short in the graph) is the one with a higher
performance and the one requiring less epochs to reach it. However, due to its
complexity, each one of this epochs require more computational time than any of
the other models.

Figure 4.18: Accuracy evolution

Taking the better performing model’s confusion matrix (BiLSTM with Trans-
former Encoder), word clouds of each cell (TP, TN, FP and FN) was done and
it is shown on Figure 4.19. By observing it we can not see big differences in the
most common words for each cell, apart from informal abbreviations of words like
lol, im or u being more common on misclassified tweets. However the word clouds
just present a selection of the most common words but rare words like the ones
misspelled like the ones not covered by the pretrained embedding (Figure 4.4) may
appear more on misclassified tweets.

40

Figure 4.19: Word cloud for each cell of the confusion matrix for BiLSTM-
Transformer Encoder model

Figure 4.20 shows the text of some misclassified tweets together with its real and
predicted values. We can see that some are ambiguous and the sentiment is not
clear like, for instance, the tweet “@terarenee is what something i did ?”. This
tweet is labeled as positive but, without context, it can not be associated to a
sentiment. Additionally, we have the case of tweets that can be seen as wrongly
labeled like “Off I Go! Twitter Is Too Slow Tonight! I’ll Be Back On 2mmorow!”
where the user is complaining about the speed of Twitter so it can be perceived
as something negative even if it is labeled as positive. We can also observe on this
tweets informal abbreviations like commented above (2mmorow, u, polisci or ur)

Figure 4.20: Tweets misclasified for BiLSTM-Transformer Encoder model

41

Chapter 5

Conclusions and Future Work

In this master thesis the objective was to study the impact of attention mech-
anisms in deep learning models for sentiment analysis. In order to do that, 5
models were presented, two of them containing attention mechanisms, and they
were used in sentiment classification for tweets. Even if the final study has been
done considering just positive and negative sentiment, we start trying the models
also considering neutral tweets. The problem was that neutral tweets came form
a different data set and they all belong to very specific topics so the algorithms
have a precision of 99% on neutral tweets as they learn to identify the topic while
the precision for positive and negative tweets were lower than 80% so we decided
discard neutral tweets.

In Chapter 4 we have seen that when comparing the models containing BiLSTM
(with or without attention) with the CNN model there is an improve on the accu-
racy as well as on the number of epochs needed for the model to train. However,
the differences in terms of accuracy between the model just containing BiLSTM
and the ones introducing attention mechanisms are almost insignificant while the
computational cost increase for the last ones.

On conclusion, when using a Twitter data set where all the sentences are under
140 characters and almost 80% of the tweets contain 20 words or less, the memory
of BiLSTM could be enough to capture all the dependencies between words in the
sentences as there is not a big difference in the performance of model with just
a BiLSTM layer and the ones that added attention mechanisms on top while the
computational cost do significantly increase.

42

Next step on this study will be to complete the pretrained GloVe embedding with
the missing words so that all the words in the data set can have a representation
in the embedding-space. Other approach can be to visualize the weights inside the
attention mechanisms in order to understand to which parts of the sentences they
are paying more attention and compare it with BiLSTM.

43

Bibliography

[1] K. Dijkstra et al. A.B Boot E. Tjong Kim Sang. “How character limit affects
language usage in tweets”. In: Palgrave Commun 5 (2019).

[2] A. S. M. Alharbi and E. de Doncker. “Twitter sentiment analysis with a deep
neural network: An enhanced approach using user behavioral information”.
In: Cognitive Systems Research (2019).

[3] F. Chollet. Deep Learning with Python. Manning Publications, (2017).

[4] H. S. Sharaf Al-deen and Z. Zeng et al. “An Improved Model for Analyz-
ing Textual Sentiment Based on a Deep Neural Network Using Multi-Head
Attention Mechanism”. In: Applied System Innovation (2021).

[5] Differences between Bidirectional and Unidirectional LSTM. url: https:
//www.baeldung.com/cs/bidirectional- vs- unidirectional- lstm

(visited on 12/11/2022).

[6] Evaluate the Performance of Deep Learning Models in Keras. url: https://
machinelearningmastery.com/evaluate-performance-deep-learning-

models-keras/ (visited on 09/01/2022).

[7] D. Foster. Generative Deep Learning: Teaching Machines to Paint, Write,
Compose and Play. O’Reil, (2019).

[8] GloVe: Global Vectors for Word Representation. url: https://nlp.stanford.
edu/projects/glove/ (visited on 11/06/2022).

[9] A. Go, R. Bhayani, and L. Huang. “Twitter sentiment classification using
distant supervision”. In: CS224N project report, Stanford 1.12 (2009).

[10] A. Hassan and A. Mahmood. “Deep Learning approach for sentiment analy-
sis of short texts”. In: 3rd International Conference on Control, Automation
and Robotics (ICCAR) (2017).

[11] How Many Tweets per Day 2022 (New Data). url: https://www.renolon.
com/number-of-tweets-per-day/ (visited on 12/26/2022).

44

[12] Illustrated: Self-Attention. url: https://towardsdatascience.com/illustrated-
self-attention-2d627e33b20a (visited on 09/01/2022).

[13] J. Pennington, R. Socher, and C. Manning. “GloVe: Global Vectors for Word
Representation”. In: Proceedings of the 2014 conference on empirical methods
in natural language processing (EMNLP). (2014).

[14] J. Qian, Z. Niu, and C. Shi. “Sentiment Analysis Model on Weather Re-
lated Tweets with Deep Neural Network”. In: Association for Computing
Machinery (2018).

[15] A. Vaswani and N. Shazeer et al. “Attention is All You Need”. In: Curran
Associates Inc. (2017).

[16] R. Wadawadagi and V. Pagi. “Sentiment analysis with deep neural networks:
comparative study and performance assessment”. In: Springer Nature B.V.
2020 (2020).

[17] J. Xie and B. Chen et al. In: Self-Attention-Based BiLSTM Model for Short
Text Fine-Grained Sentiment Classification 7 (2019).

[18] L. Zhang, S. Wang, and B. Liu. “Deep Learning for Sentiment Analysis : A
Survey”. In: CoRR abs/1801.07883 (2018).

45

Python Code

1 ############################

2 ######## Packages ##########

3 ############################

4

5 import numpy as np

6 import pandas as pd

7 import os

8 import operator

9 import nltk

10 import joblib

11 import tensorflow as tf

12 import sklearn.model_selection

13 import re

14 import string

15 import plotly.express as px

16 import matplotlib.pyplot as plt

17 import matplotlib.patches as mpatches

18 %matplotlib inline

19 pd.options.plotting.backend = "plotly"

20

21 from tensorflow.keras import layers

22 from keras.preprocessing.text import Tokenizer

23

24 from sklearn.model_selection import train_test_split , GridSearchCV

, StratifiedKFold

25 from keras.models import Sequential , Model

26 from keras_preprocessing.sequence import pad_sequences

27 from keras.layers import Dense , Embedding , Conv1D , Bidirectional ,

Dropout , LSTM , GlobalMaxPooling1D , MultiHeadAttention ,

LayerNormalization , Layer

28 from keras.regularizers import L1

29 from keras.callbacks import EarlyStopping , ModelCheckpoint

30 from keras.models import load_model

31 from sklearn.metrics import confusion_matrix , f1_score ,

classification_report , ConfusionMatrixDisplay

32 from keras_self_attention import SeqSelfAttention

46

33 from scikeras.wrappers import KerasClassifier

34 from tensorflow.keras.utils import to_categorical

35 from wordcloud import WordCloud , STOPWORDS

36

37 os.chdir(’/home/USERS/elena.blanco.gonzalez/TFM/Data’)

38

39 ############################

40 ###### Loading Data #######

41 ############################

42

43 colnames = [’sentiment ’, ’ID’, ’data’, ’flag’,’user’,’text’]

44 df = pd.read_csv(’training1600000.csv’, names = colnames , header =

None , encoding = ’latin -1’)

45 df = df[[’sentiment ’,’text’]]

46 df[’sentiment ’] = df[’sentiment ’].map ({0:0, 4:1})

47 df.shape

48

49 df.drop_duplicates(subset = ’text’,inplace = True) #Eliminate

duplicates if any

50 df = df.loc[df[’sentiment ’]. isnull () == False] #Keep just labeled

tweets

51 df.shape , df.head()

52

53 ############################

54 ###### Data Cleaning #######

55 ############################

56

57 def clean_text(text):

58 text = str(text)

59 text = text.lower()

60 text = re.sub(’\r|\n’, ’ ’,text) #Remove \n and \r

61 text = re.sub(’re:’,’’,text) #Replace signs of RTs

62 text = re.sub(r’[^\x00 -\x7f]’,r’ ’, text) #remove non utf8

63 text = re.sub(r’"’,r’ ’, text) #remove non utf8

64 text = re.sub(r’http\S+|www\S+| https\S+’, ’ ’, text , flags=re.

MULTILINE) #remove URLs

65 text = re.sub(r’\@\w+|\#’,’ ’, text) #Remove hashtags

66 text = ’’.join([i for i in text if i not in string.punctuation])

67 text = re.sub(r’1|2|3|4|5|6|7|8|9|0 ’, ’ ’,text) #Remove numbers

68 text = re.sub(’\s\s+’ ,’ ’, text) #remove multiple spaces

69 return text

70

71 df[’clean text’] = df[’text’]. apply(clean_text)

72 df.head()

73

74 df[’clean text’]. replace(’’, np.nan , inplace=True)

75 df.dropna(subset = [’clean text’], inplace=True)

76

77 df_short = df[df[’clean text’].str.split ().str.len() <3] #Getting

47

rid of sentences with less than 3 words

78 df = df[df[’clean text’].str.split().str.len() > 2] #Getting rid

of sentences with less than 3 words

79 df.shape

80 df_short.tail (10)

81

82 #################################

83 ### Exploratory Data Analysis ###

84 #################################

85

86 def plot_hist_classes(df , header):

87 fig , (ax1 , ax2) = plt.subplots(1, 2, figsize = (10 ,5))

88 df_split = df[df[’sentiment ’] == 0][’clean text’].str.split ()

89 df_len = df_split.apply(lambda x: len(x))

90 ax1.hist(df_len ,color = ’red’, range = [0, 35],bins = np.

arange(0, 40, 5))

91 ax1.set_ylim ([0, 250000])

92 ax1.set_title(’Negative Tweets ’)

93 df_split = df[df[’sentiment ’] == 1][’clean text’].str.split ()

94 df_len = df_split.apply(lambda x: len(x))

95 ax2.hist(df_len ,color = ’green’, range = [0, 35], bins = np.

arange(0, 40, 5))

96 ax2.set_ylim ([0, 250000])

97 ax2.set_title(’Positive Tweets ’)

98 fig.suptitle(header)

99 fig.tight_layout ()

100 plt.show()

101 plt.close()

102

103 plot_hist_classes(df, header=’Number of Words in a Tweet ’)

104

105 df_negative = df[df[’sentiment ’] == 0][’clean text’]. tolist ()

106 df_positive = df[df[’sentiment ’] == 1][’clean text’]. tolist ()

107 negative = ’ ’.join(df_negative)

108 positive = ’ ’.join(df_positive)

109

110 stopwords = set(STOPWORDS)

111 def plot_WordClouds(df_neg , df_pos):

112 wc = WordCloud(background_color = "white", max_words = 50,

width = 900, height = 500, stopwords = stopwords ,colormap="

autumn")

113 fig ,(ax1 ,ax2) = plt.subplots(1, 2, figsize = (15 ,8))

114 wc.generate(df_neg)

115 ax1.imshow(wc)

116 ax1.axis("off")

117 ax1.set_title(’Negative tweets ’)

118 wc = WordCloud(background_color = "white", max_words = 50,

width = 900, height = 500, stopwords = stopwords ,colormap="

summer")

48

119 wc.generate(df_pos)

120 ax2.imshow(wc , interpolation=’bilinear ’)

121 ax2.axis("off")

122 ax2.set_title(’Positive tweets ’)

123 plt.show()

124 plt.close()

125

126 plot_WordClouds(negative , positive)

127 df[’sentiment ’]. value_counts ()

128

129 #################################

130 ####### Train/Test split ########

131 #################################

132

133 Train_text ,Test_text , Train_sentiment , Test_sentiment=

train_test_split(df[’clean text’],df[’sentiment ’], random_state

=123, stratify=df[’sentiment ’], train_size = .9)

134 Train_text.shape , Test_text.shape

135

136 Train_text.head()

137 Train_sentiment.value_counts ()

138 Test_sentiment.value_counts ()

139

140 #################################

141 ######### Tokenization ##########

142 #################################

143

144 tokenizer = Tokenizer ()

145 tokenizer.fit_on_texts(df[’clean text’])

146

147 word_index = tokenizer.word_index

148 vocab_size = len(word_index) + 1

149 vocab_size

150

151 max_seq_len = 35

152 X_train = pad_sequences(tokenizer.texts_to_sequences(Train_text),

maxlen = max_seq_len)

153 X_test = pad_sequences(tokenizer.texts_to_sequences(Test_text),

maxlen = max_seq_len)

154 X_train.shape , X_test.shape

155

156 Y_train = to_categorical(Train_sentiment , num_classes =2)

157 Y_test = to_categorical(Test_sentiment , num_classes =2)

158 Y_train.shape , Y_test.shape

159

160 #################################

161 ########## Embedding ############

162 #################################

163

49

164 glove_tw = ’glove.twitter .27B.200d.txt’

165 embed_dim = 200

166 embeddings_index = {}

167

168 f = open(glove_tw)

169 for line in f:

170 values = line.split()

171 word = values [0]

172 coefs = np.asarray(values [1:], dtype=’float32 ’)

173 embeddings_index[word] = coefs

174 f.close ()

175

176 count = 0

177 for key in word_index.keys():

178 if key not in embeddings_index:

179 count += 1

180 print(key)

181

182 print(np.round(count/vocab_size *100 ,2), ’%’) #Percentage of the

vocabulary covered by the embedding

183

184 embedding_matrix = np.zeros((vocab_size , embed_dim))

185 for word , i in word_index.items():

186 embedding_vector = embeddings_index.get(word)

187 if embedding_vector is not None:

188 embedding_matrix[i] = embedding_vector

189

190 embedding_layer = Embedding(vocab_size , embed_dim , weights = [

embedding_matrix], input_length = max_seq_len , trainable =

False)

191

192 #################################

193 ########## CNN Model ############

194 #################################

195

196 ######## Grid Search for hyperparameters

197

198 def create_model(filters , kernel_size):

199 # Create model

200 model = Sequential ([

201 embedding_layer ,

202 Conv1D(filters , kernel_size , activation = ’relu’,

kernel_regularizer = L1(l = 0.001) , padding = ’same’),

203 GlobalMaxPooling1D (),

204 Dropout (0.4),

205 Dense(2, activation = ’softmax ’)

206])

207 # Compile model

208 model.compile(loss = ’binary_crossentropy ’, optimizer = ’adam’

50

, metrics = [’accuracy ’])

209 return model

210

211 model = KerasClassifier(model = create_model , epochs = 20,

batch_size = 1000, verbose = 0)

212 # Define the grid search parameters

213 filters = [16 ,32 ,64]

214 kernel_size = [3,5,7]

215 param_grid = dict(model__filters = filters , model__kernel_size =

kernel_size)

216 grid = GridSearchCV(estimator = model , param_grid = param_grid ,

n_jobs = 1, cv = 3)

217 grid_result = grid.fit(X_train , Y_train , validation_split = 0.1)

218 # Summarize results

219 print("Best: %f using %s" % (grid_result.best_score_ , grid_result.

best_params_))

220 means = grid_result.cv_results_[’mean_test_score ’]

221 params = grid_result.cv_results_[’params ’]

222 for mean , param in zip(means , params):

223 print("%f with: %r" % (mean , param))

224

225 ######## Model Definition and Training

226

227 model_cnn = Sequential ([

228 embedding_layer ,

229 Conv1D (64,5, activation = ’relu’, kernel_regularizer = L1(l =

0.001) ,padding = ’same’),

230 GlobalMaxPooling1D () ,

231 Dense(2, activation = ’softmax ’)

232])

233

234 model_cnn.compile(loss = ’binary_crossentropy ’, optimizer = tf.

keras.optimizers.Adam(learning_rate = 0.0001) , metrics = [’

accuracy ’])

235 es = EarlyStopping(monitor = ’val_loss ’, mode = ’min’, verbose =

2, patience = 5)

236 mc = ModelCheckpoint(’cnn.h5’, monitor = ’val_accuracy ’, mode = ’

max’, verbose = 2, save_best_only = True)

237 history_cnn = model_cnn.fit(X_train , Y_train , batch_size = 1000,

epochs = 2000, validation_split = 0.1, callbacks = [es , mc])

238

239 best_cnn = load_model(’cnn.h5’)

240 best_cnn.summary ()

241

242 ######## Model Evaluation

243

244 score_cnn = best_cnn.evaluate(X_test ,Y_test)

245

246 def plot_training_hist(history , title):

51

247 fig , ax = plt.subplots(1, 2, figsize =(10 ,4))

248 ax[0]. plot(history.history[’accuracy ’])

249 ax[0]. plot(history.history[’val_accuracy ’])

250 ax[0]. set_title(’Model Accuracy ’)

251 ax[0]. set_xlabel(’epoch’)

252 ax[0]. set_ylabel(’accuracy ’)

253 ax[0]. legend ([’train’, ’validation ’], loc=’best’)

254 ax[1]. plot(history.history[’loss’])

255 ax[1]. plot(history.history[’val_loss ’])

256 ax[1]. set_title(’Model Loss’)

257 ax[1]. set_xlabel(’epoch’)

258 ax[1]. set_ylabel(’loss’)

259 ax[1]. legend ([’train’, ’validation ’], loc=’best’)

260 fig.suptitle(title , size=15, y=1)

261

262 plot_training_hist(history_cnn , title= ’Model CNN’)

263

264 Y_pred = best_cnn.predict(X_test)

265 y_pred = np.argmax(Y_pred , axis = 1)

266 y_test = np.argmax(Y_test , axis = 1)

267

268 print(’Model CNN’)

269 print(classification_report(y_test , y_pred))

270

271 cm = confusion_matrix(y_test , y_pred , normalize = ’true’)

272 labels = ["Negative", "Positive"]

273 display = ConfusionMatrixDisplay(confusion_matrix = cm ,

display_labels = labels)

274 display.plot(cmap = plt.cm.Blues)

275 display.ax_.set_title("Model CNN", size = 15, y = 1.05)

276

277 #################################

278 ######## BiLSTM Model ###########

279 #################################

280

281 ######## Grid Search for hyperparameters

282

283 def create_model(units):

284 # Create model

285 model = Sequential ([

286 embedding_layer ,

287 Bidirectional(LSTM(units , dropout =0.2)),

288 Dropout (0.5) ,

289 Dense(2, activation=’softmax ’)

290])

291 # Compile model

292 model.compile(loss=’binary_crossentropy ’, optimizer=’adam’,

metrics =[’accuracy ’])

293 return model

52

294

295 model = KerasClassifier(model=create_model , epochs =30, batch_size

=1000 , verbose =0)

296 # Define the grid search parameters

297 units = [16 ,32 ,64 ,128]

298 param_grid = dict(model__units=units)

299 grid = GridSearchCV(estimator=model , param_grid=param_grid , n_jobs

=1, cv=3)

300 grid_result = grid.fit(X_train , Y_train ,validation_split =0.1)

301 # Summarize results

302 print("Best: %f using %s" % (grid_result.best_score_ , grid_result.

best_params_))

303 means = grid_result.cv_results_[’mean_test_score ’]

304 params = grid_result.cv_results_[’params ’]

305 for mean , param in zip(means , params):

306 print("%f with: %r" % (mean , param))

307

308 ######## Model Definition and Training

309

310 model_bilstm = Sequential ([

311 embedding_layer ,

312 Bidirectional(LSTM(64, dropout =0.2)),

313 Dropout (0.5) ,

314 Dense(2, activation=’softmax ’)

315])

316 model_bilstm.compile(loss=’binary_crossentropy ’,optimizer=’adam’,

metrics =[’accuracy ’])

317 es = EarlyStopping(monitor=’val_loss ’, mode=’min’, verbose=2,

patience =5)

318 mc = ModelCheckpoint(’bilstm.h5’, monitor=’val_accuracy ’, mode=’

max’, verbose=2, save_best_only=True)

319 history_bilstm=model_bilstm.fit(X_train , Y_train , batch_size =1000

,epochs =2000, validation_split =0.1, callbacks =[es , mc])

320

321 best_bilstm = load_model(’bilstm.h5’)

322 best_bilstm.summary ()

323

324 ######## Model Evaluation

325

326 score = best_bilstm.evaluate(X_test ,Y_test)

327 plot_training_hist(history_bilstm , title=’Model BiLSTM ’)

328

329 Y_pred = best_bilstm.predict(X_test)

330 y_pred = np.argmax(Y_pred , axis = 1)

331 y_test = np.argmax(Y_test , axis = 1)

332 print(’Model BiLSTM ’)

333 print(classification_report(y_test , y_pred))

334

335 cm = confusion_matrix(y_test , y_pred ,normalize=’true’)

53

336 labels = ["Negative", "Positive"]

337 display = ConfusionMatrixDisplay(confusion_matrix=cm ,

display_labels=labels)

338 display.plot(cmap = plt.cm.Blues)

339 display.ax_.set_title("Model BiLSTM", size=15, y=1.05)

340

341 #################################

342 ###### CNN -BiLSTM Model #########

343 #################################

344

345 ######## Grid Search for hyperparameters

346

347 def create_model(filters , kernel_size , units):

348 # create model

349 model = Sequential ([

350 embedding_layer ,

351 Conv1D(filters , kernel_size , activation=’relu’,

kernel_regularizer=L1(l=0.001) ,padding=’same’),

352 Bidirectional(LSTM(units , dropout =0.2)),

353 Dropout (0.4) ,

354 Dense(2, activation=’softmax ’)

355])

356 # Compile model

357 model.compile(loss=’binary_crossentropy ’, optimizer=’adam’,

metrics =[’accuracy ’])

358 return model

359

360 model = KerasClassifier(model=create_model , epochs =30, batch_size

=1000 , verbose =0)

361 # define the grid search parameters

362 filters =[16 ,32 ,64]

363 kernel_size =[3,5,7]

364 units = [16 ,32 ,64 ,128]

365 param_grid = dict(model__filters=filters , model__kernel_size=

kernel_size ,model__units=units)

366 grid = GridSearchCV(estimator=model , param_grid=param_grid , n_jobs

=1, cv=3)

367 grid_result = grid.fit(X_train , Y_train ,validation_split =0.1)

368 # summarize results

369 print("Best: %f using %s" % (grid_result.best_score_ , grid_result.

best_params_))

370 means = grid_result.cv_results_[’mean_test_score ’]

371 params = grid_result.cv_results_[’params ’]

372 for mean , param in zip(means , params):

373 print("%f with: %r" % (mean , param))

374

375 ######## Model Definition and Training

376

377 model_cnn_bilstm = Sequential ([

54

378 embedding_layer ,

379 Conv1D (64,3, activation=’relu’, kernel_regularizer=L1(l=0.001) ,

padding=’same’),

380 Bidirectional(LSTM(16, dropout =0.2)),

381 Dropout (0.4) ,

382 Dense(2, activation=’softmax ’)

383])

384 model_cnn_bilstm.compile(loss=’binary_crossentropy ’,optimizer=’

adam’,metrics =[’accuracy ’])

385 es = EarlyStopping(monitor=’val_loss ’, mode=’min’, verbose=2,

patience =5)

386 mc = ModelCheckpoint(’cnn_bilstm_.h5’, monitor=’val_accuracy ’,

mode=’max’, verbose=2, save_best_only=True)

387 history_cnn_bilstm=model_cnn_bilstm.fit(X_train , Y_train ,

batch_size =1000 ,epochs =2000 , validation_split =0.1, callbacks =[

es , mc])

388

389 best_cnn_bilstm = load_model(’cnn_bilstm.h5’)

390 model_cnn_bilstm.summary ()

391

392 ######## Model Evaluation

393

394 score = best_cnn_bilstm.evaluate(X_test ,Y_test)

395

396 plot_training_hist(history_cnn_bilstm , title = ’Model CNN & BiLSTM

’)

397

398 Y_pred = best_cnn_bilstm.predict(X_test)

399 y_pred = np.argmax(Y_pred , axis = 1)

400 y_test = np.argmax(Y_test , axis = 1)

401 print(’Model CNN BiLSTM ’)

402 print(classification_report(y_test , y_pred))

403

404 cm = confusion_matrix(y_test , y_pred ,normalize =’true’)

405 labels = ["Negative", "Positive"]

406 display = ConfusionMatrixDisplay(confusion_matrix = cm ,

display_labels = labels)

407 display.plot(cmap = plt.cm.Blues)

408 display.ax_.set_title("Model CNN & BiLSTM", size = 15, y = 1.05)

409

410 ##

411 ### BiLSTM and Self Attention Model ###

412 ##

413

414 ######## Grid Search for hyperparameters

415

416 def create_model(units):

417 # create model

418 model = Sequential ([

55

419 embedding_layer ,

420 Bidirectional(LSTM(units , dropout =0.2, return_sequences=True)

),

421 SeqSelfAttention (),

422 GlobalMaxPooling1D (),

423 Dropout (0.4) ,

424 Dense(2, activation=’softmax ’)

425])

426 # Compile model

427 model.compile(loss=’binary_crossentropy ’, optimizer=’adam’,

metrics =[’accuracy ’])

428 return model

429

430 model = KerasClassifier(model=create_model , epochs =100, batch_size

=1000 , verbose =0)

431 # define the grid search parameters

432 units = [16 ,32 ,64 ,128]

433 param_grid = dict(model__units=units)

434 grid = GridSearchCV(estimator=model , param_grid=param_grid , n_jobs

=1, cv=3)

435 grid_result = grid.fit(X_train , Y_train ,validation_split =0.1)

436 # summarize results

437 print("Best: %f using %s" % (grid_result.best_score_ , grid_result.

best_params_))

438 means = grid_result.cv_results_[’mean_test_score ’]

439 params = grid_result.cv_results_[’params ’]

440 for mean , stdev , param in zip(means , params):

441 print("%f with: %r" % (mean , param))

442

443 ######## Model Definition and Training

444

445 model_bilstm_sa = Sequential ([

446 embedding_layer ,

447 Bidirectional(LSTM(64, dropout =0.3, return_sequences=True)),

448 SeqSelfAttention (),

449 GlobalMaxPooling1D (),

450 Dropout (0.4) ,

451 Dense(2, activation=’softmax ’)

452])

453

454 model_bilstm_sa.summary ()

455 model_bilstm_sa.compile(loss=’binary_crossentropy ’,optimizer=’adam

’,metrics =[’accuracy ’])

456 es = EarlyStopping(monitor=’val_loss ’, mode=’min’, verbose=2,

patience =5)

457 mc = ModelCheckpoint(’bilstm_sa.h5’, monitor=’val_accuracy ’, mode=

’max’, verbose=2, save_best_only=True)

458 history_bilstm_sa=model_bilstm_sa.fit(X_train , Y_train , batch_size

=1000 ,epochs =200, validation_split =0.1, callbacks =[es, mc])

56

459 best_bilstm_sa = load_model(’bilstm_sa.h5’,custom_objects ={’

SeqSelfAttention ’: SeqSelfAttention })

460

461 ######## Model Evaluation

462

463 score = best_bilstm_sa.evaluate(X_test ,Y_test)

464 plot_training_hist(history_bilstm_sa , title = ’Model BiLSTM with

Self Attention ’)

465

466 Y_pred = best_bilstm_sa.predict(X_test)

467 y_pred = np.argmax(Y_pred , axis = 1)

468 y_test = np.argmax(Y_test , axis = 1)

469

470 print(’Model BiLSTM with Self Attention ’)

471 print(classification_report(y_test , y_pred))

472

473 cm = confusion_matrix(y_test , y_pred ,normalize=’true’)

474 labels = ["Negative", "Positive"]

475 display = ConfusionMatrixDisplay(confusion_matrix=cm ,

display_labels=labels)

476 display.plot(cmap = plt.cm.Blues)

477 display.ax_.set_title("Model BiLSTM with Self Attention", size

=15, y=1.05)

478

479 ##

480 ## BiLSTM and Transformer Encoder Model ##

481 ##

482

483 ######## Transformer Encoder layer definition

484

485 class TransformerBlock(layers.Layer):

486 def __init__(self , embed_dim , num_heads , dense_dim , rate

=0.2 ,** kwargs):

487 super(TransformerBlock , self).__init__ (** kwargs)

488 self.att = MultiHeadAttention(num_heads=num_heads , key_dim

=embed_dim , dropout =0.4, kernel_regularizer=L1(l=0.001))

489 self.dense = Sequential ([

490 Dense(dense_dim , activation="relu"),

491 Dense(embed_dim),

492])

493 self.layernorm1 = LayerNormalization(epsilon =1e-6)

494 self.layernorm2 = LayerNormalization(epsilon =1e-6)

495 self.dropout1 = Dropout(rate)

496 self.dropout2 = Dropout(rate)

497

498 def call(self , inputs , training):

499 sa_output = self.att(inputs , inputs) # MHA layer

500 sa_output = self.dropout1(sa_output , training=training)

501 out1 = self.layernorm1(inputs + sa_output) #

57

normalization

502 dense_output = self.dense(out1) #Dense layers

503 dense_output = self.dropout2(dense_output , training=

training)

504 return self.layernorm2(out1 + dense_output) #

normalization

505

506 ######## Grid Search for hyperparameters

507

508 def create_model(num_heads , dense_dim):

509 # create model

510 model = Sequential ([

511 embedding_layer ,

512 Bidirectional(LSTM (100, dropout =0.3, return_sequences=True)),

513 Dropout (0.4),

514 TransformerBlock (200, num_heads , dense_dim),

515 Dropout (0.4) ,

516 GlobalMaxPooling1D (),

517 Dense(2, activation=’softmax ’)

518])

519

520 # Compile model

521 model.compile(loss=’binary_crossentropy ’, optimizer=’adam’,

metrics =[’accuracy ’])

522 return model

523

524 model = KerasClassifier(model =create_model , epochs=5, batch_size

=1000 , verbose =0)

525 # define the grid search parameters

526 num_heads = [2, 4]

527 dense_dim = [16, 32, 64]

528 param_grid = dict(model__num_heads = num_heads , model__dense_dim =

dense_dim)

529 grid = GridSearchCV(estimator=model , param_grid=param_grid , n_jobs

=1, cv=3)

530 grid_result = grid.fit(X_train , Y_train ,validation_split =0.1)

531 # summarize results

532 print("Best: %f using %s" % (grid_result.best_score_ , grid_result.

best_params_))

533 means = grid_result.cv_results_[’mean_test_score ’]

534 params = grid_result.cv_results_[’params ’]

535 for mean , param in zip(means , params):

536 print("%f with: %r" % (mean , param))

537

538 ######## Model Definition and Training

539

540 num_heads = 2

541 dense_dim = 32 #Firs Dense unit inside the Transformer Block

542

58

543 model_bilstm_trans = Sequential ([

544 embedding_layer ,

545 Bidirectional(LSTM (100, dropout =0.3, return_sequences=True)),

546 Dropout (0.4),

547 TransformerBlock (200, num_heads , dense_dim),

548 Dropout (0.4) ,

549 GlobalMaxPooling1D (),

550 Dense(2, activation=’softmax ’)

551])

552

553 model_bilstm_trans.summary ()

554 model_bilstm_trans.compile(loss = ’binary_crossentropy ’, optimizer

= ’adam’,metrics = [’accuracy ’])

555 es = EarlyStopping(monitor = ’val_loss ’, mode = ’min’, verbose =

2, patience = 5)

556 mc = ModelCheckpoint(’bilstm_tran.h5’, monitor = ’val_accuracy ’,

mode = ’max’, verbose = 2, save_best_only = True)

557 history_bilstm_trans = model_bilstm_trans.fit(X_train , Y_train ,

batch_size = 1000, epochs = 2000, validation_split = 0.1,

callbacks = [es, mc])

558 best_bilstm_trans = load_model(’bilsmt_trans.h5’,custom_objects ={"

TransformerBlock": TransformerBlock })

559

560 ######## Model Evaluation

561

562 score = best_bilstm_trans.evaluate(X_test ,Y_test)

563 plot_training_hist(history_bilstm_trans , title= ’Model BiLSTM

Transformer Encoder ’)

564

565 Y_pred = best_bilstm_trans.predict(X_test)

566 y_pred = np.argmax(Y_pred , axis = 1)

567 y_test = np.argmax(Y_test , axis = 1)

568 print(’Model BiLSTM with Transformer Encoder ’)

569 print(classification_report(y_test , y_pred))

570

571 cm = confusion_matrix(y_test , y_pred ,normalize = ’true’)

572 labels = ["Negative", "Positive"]

573 display = ConfusionMatrixDisplay(confusion_matrix=cm ,

display_labels=labels)

574 display.plot(cmap=plt.cm.Blues)

575 display.ax_.set_title("Model BiLSTM & Transformer Encoder", size

=15, y=1.05)

576

577 # Misclassified Tweets

578 errors = (y_pred - y_test != 0)

579 y_pred_errors = y_pred[errors]

580 y_test_errors = y_test[errors]

581 x_errors = Test_text[errors]

582 x_errors.head (30), y_pred_errors [0:30] , y_test_errors [0:30]

59

583

584 # Wordcloud of each cell of the confusion matrix

585

586 tn, fp, fn, tp = confusion_matrix(y_test , y_pred).ravel ()

587 tn, fp, fn, tp

588 Results = {"Text": Test_text , "True": y_test , "Pred": y_pred}

589 res = pd.DataFrame(Results)

590 res.head()

591

592 Positive = res[res["True"]==1][["Text","Pred"]]

593 TP = Positive[Positive["Pred"]==1]["Text"]

594 FN = Positive[Positive["Pred"]==0]["Text"]

595 Negative = res[res["True"]==0][["Text","Pred"]]

596 TN = Negative[Negative["Pred"]==0]["Text"]

597 FP = Negative[Negative["Pred"]==1]["Text"]

598 TN.shape , FP.shape , FN.shape , TP.shape

599 TP.head()

600

601 tp_list = TP.values.tolist ()

602 tp_text = ’ ’.join(tp_list)

603 fp_list = FP.values.tolist ()

604 fp_text = ’ ’.join(fp_list)

605 tn_list = TN.values.tolist ()

606 tn_text = ’ ’.join(tn_list)

607 fn_list = FN.values.tolist ()

608 fn_text = ’ ’.join(fn_list)

609

610 def plot_WordCloudsConfusion ():

611 wc = WordCloud(background_color = "white", max_words = 50,

width = 900, height = 500, stopwords = stopwords ,colormap="

autumn")

612 fig ,((ax1 ,ax2),(ax3 ,ax4)) = plt.subplots(2, 2, figsize =

(15,8))

613 wc.generate(tn_text)

614 ax1.imshow(wc)

615 ax1.axis("off")

616 ax1.set_title(’True Negative ’, size=15, y=1.05)

617 wc = WordCloud(background_color = "white", max_words = 50,

width = 900, height = 500, stopwords = stopwords ,colormap="gray

")

618 wc.generate(fp_text)

619 ax2.imshow(wc , interpolation=’bilinear ’)

620 ax2.axis("off")

621 ax2.set_title(’False Positve ’, size=15, y=1.05)

622 wc = WordCloud(background_color = "white", max_words = 50,

width = 900, height = 500, stopwords = stopwords ,colormap="gray

")

623 wc.generate(fn_text)

624 ax3.imshow(wc)

60

625 ax3.axis("off")

626 ax3.set_title(’False Negative ’, size=15, y=1.05)

627 wc = WordCloud(background_color = "white", max_words = 50,

width = 900, height = 500, stopwords = stopwords ,colormap="

summer")

628 wc.generate(tp_text)

629 ax4.imshow(wc , interpolation=’bilinear ’)

630 ax4.axis("off")

631 ax4.set_title(’True Positive ’, size=15, y=1.05)

632

633 plt.show()

634 plt.close()

635

636 plot_WordCloudsConfusion ()

637

638 ###############################

639 ###### Models Comparison ######

640 ###############################

641

642 # Accuracy of the different models

643 def plot_training_hist ():

644 fig , ax = plt.subplots(1, 2, figsize =(10 ,4))

645 fig.tight_layout(pad =3.5)

646 ax[0]. plot(history_cnn.history[’accuracy ’])

647 ax[0]. plot(history_bilstm.history[’accuracy ’])

648 ax[0]. plot(history_cnn_bilstm.history[’accuracy ’])

649 ax[0]. plot(history_bilstm_sa.history[’accuracy ’])

650 ax[0]. plot(history_transformer.history[’accuracy ’])

651 ax[0]. set_title(’Model accuracy on training set’)

652 ax[0]. set_xlabel(’epoch’)

653 ax[0]. set_ylabel(’accuracy ’)

654 ax[0]. legend ([’CNN’, ’BiLSTM ’, ’CNN + BiLSMT ’, ’BiLSTM + SA’,

’Transformer ’], loc=’best’)

655 ax[1]. plot(history_cnn.history[’val_accuracy ’])

656 ax[1]. plot(history_bilstm.history[’val_accuracy ’])

657 ax[1]. plot(history_cnn_bilstm.history[’val_accuracy ’])

658 ax[1]. plot(history_bilstm_sa.history[’val_accuracy ’])

659 ax[1]. plot(history_transformer.history[’val_accuracy ’])

660 ax[1]. set_title(’Model accuracy on validation set’)

661 ax[1]. set_xlabel(’epoch’)

662 ax[1]. set_ylabel(’accuracy ’)

663 ax[1]. legend ([’CNN’, ’BiLSTM ’, ’CNN + BiLSMT ’, ’BiLSTM + SA’,

’Transformer ’], loc=’best’)

664 fig.suptitle(’Accuracy comparison ’, size=16, y=1.07)

665

666 plot_training_hist ()

61

