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A B S T R A C T
Wind energy maintenance and operation costs can total millions of dollars each year in an average
industrial-size wind park. Therefore, moving from preventive and corrective maintenance to predictive
maintenance is imperative in the wind energy sector. This paper contributes to this challenge by
providing a main bearing early damage detection technique that exclusively uses standard SCADA
data (10-minute average) and a convolutional autoencoder (CAE) with the following contributions.
𝑖) Entirely semi-supervised (not requiring the labeling of data through work order logs and avoiding
the problem of data imbalance between classes) based only on healthy data, thus expanding its range
of application (even when the failure of interest has never occurred in the park before). 𝑖𝑖) Validated
using real-world SCADA data and shown to be resistant to seasonality, operational and environmental
conditions. 𝑖𝑖𝑖) Reliable predictions with minimum false alarms thanks to a specially designed fault
prognosis indicators (FPIs) based on the image mean square error (IMSE) metric. 𝑖𝑣) The early
warning is achieved months in advance, thus providing adequate time for plant operators to plan
properly. 𝑣) The main use of exogenous variables in the model (variables that are not affected by
other variables as for example wind speed, wind turbulence, and ambient temperature) guarantees
detection of damage directly related only to the low-speed shaft temperature (the only non-exogenous
variable used by the stated model). 𝑣𝑖) Finally, the proposed strategy is validated in a wind park made
up of 12 wind turbines.

1. Introduction
The global energy system is undeniably under change.

After the Ukrainian invasion, widespread acceptance and
use of renewable energy is the fastest and cheapest path to
greater energy independence, as well as the key to combating
climate change [1]. Renewable-based electrification, accord-
ing to European Commission forecasts, would be important
for Europe to achieve carbon neutrality by 2050. Wind
energy is a critical component in achieving this objective,
as it is required to account for 50% of the European Union’s
electricity mix, with 81% coming from renewables, [2].
However, the heart of the issue of the success of the wind
industry is the reduction in its levelized cost of energy
(LCOE). The LCOE of a wind park is calculated by inte-
grating many factors [3], with operating and maintenance ex-
penses playing a considerable role (20-25% in onshore wind
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parks and 25-30% in offshore ones). As a result, optimizing
maintenance procedures is a critical aspect.

Energy output losses due to downtime (induced by un-
scheduled asset repair) and the expenses associated with
component replacement can total millions of euros every
year in any industrial wind park. As a result, it is critical
that the wind sector transitions from corrective and pre-
ventive maintenance to predictive maintenance (planned on
an as-needed basis depending on asset condition), see [4].
Condition based maintenance is based on actual and timely
information gathered to monitor the actual asset through
a network of sensors (such as vibration, temperature, oil
analysis, and acoustic emissions) and warns operators before
the catastrophic damage occurs, thus being able to program
maintenance around non-production and replacements avail-
ability intervals. Digitalization and artificial intelligence are
crucial technologies in this approach for improved exploita-
tion of information in enormous amounts of data [5]. The
general goal is to identify changes in condition that represent
deviations from normal operation and signal the develop-
ment of a fault [6].

Predictive maintenance is a broad field of study that has
been effectively applied to a wide range of applications.
However, applying it to complicated systems such as wind
turbines (WTs), which are megastructures that operate un-
der a variety of operational and climatic circumstances, as
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well as in hazardous settings (such as offshore), remains a
challenge. Furthermore, the most recent innovations tend
to require expensive, especially fitted sensors, which are
not economically viable for turbines that are currently in
service, much less if they are toward the end of their lives.
This is significant since 38 GW of wind parks in Europe
are expected to reach the end of their useful lives over the
next five years. According to current trends, approximately
2.4 GW will be retired for re-powering [7], and 7 GW
will be completely decommissioned. The remaining 28.6
GW will remain operational and will be evaluated for life-
extension services. In this area, data-driven maintenance
strategies using existing supervisory control and data acqui-
sition (SCADA) data (found in all industrial-sized WTs) are
a feasible low-cost solution.

Because the SCADA data was originally designed solely
for operation and control, using them for predictive mainte-
nance is a considerable quest [8]. SCADA data can contain
more than 200 variables, have a very low sampling rate
(usually 10-minute averaged), are dependent on the opera-
tional region of the WT as well as the environmental con-
dition, and are temporal series with significant seasonality.
Additionally, when SCADA systems were first implemented,
the value of maintaining maintenance work order records
with comprehensive and standardize comments was unclear
(as artificial intelligence was not pictured to aid in this
application). On top of this, most of the available data are
from healthy operation, making them highly unbalanced
data sets. Despite these difficulties, lately, the topic of using
SCADA data for early fault detection purposes has gained
increased attraction, [9]. However, many challenges are still
to be addressed in current and future research. The next
paragraph highlights the five main challenges in this research
area.

First, supervised algorithms are used in a substantial pro-
portion of papers. Despite their promising performance, [10;
11], in a real application their direct use is almost precluded
as they require historical labeled faulty and healthy data.
This is a significant disadvantage because getting labeled
information from WT operational data is often difficult (as
maintenance records are not standardized), time-consuming
and prone to errors, and results in a severely imbalanced
data set. Although the problem of data imbalance can be
addressed with strategies such as few-shot learning [12],
supervised approaches cannot be applied in those cases
where failure data is not available, that is, they cannot be
used directly to wind parks where the fault of interest has not
yet happened. Second, a considerable amount of references
make use of simulated SCADA data, [13], or experimental
data, [14], to validate the stated methodologies. Although
this is acceptable, it is an important liability, since depending
on these data may not generalize properly to genuine real-
world scenarios. Third, the vast bulk of literature derives
conclusions based on little data, commonly 1 to 4 WTs, [15].
Therefore, again, it is unclear if these strategies will apply
to the entire wind farm. Fourth, some references contribute
strategies that lead to a high number of false alarms, [16],

thus making the contribution not convenient in the real
application. In this area, it is noteworthy the work in [17] on
how to set the alarm triggering control limit. Fifth, but not
least, a non-negligible number of papers detect the damage
with less than a week’s notice, see [15] and [18], being
useless in real-world applications.

On this basis, this work proposes a main bearing early
fault detection strategy based on a convolutional autoen-
coder (CAE) and solely on standard WT SCADA data (10-
minute average) being its main contribution that addresses,
all at the same time, the following seven main challenges
found in the literature. 𝑖) It uses only standard SCADA
data (10 minute average); thus, it can be applied to any
wind turbine. Installation of additional sensors specifically
tailored for condition monitoring can be costly as it involves
the purchase and installation of new hardware, as well as the
ongoing maintenance and calibration of these sensors. Using
data from existing SCADA sensors is a more cost-effective
way to predict failures, as it avoids the need to purchase and
install new sensors. 𝑖𝑖) It is a normal behavior model; that
is, to be constructed (trained) only requires normal (healthy)
data. Since it does not require any faulty data, any wind
park (even those where the failure of interest has not yet
occurred) can benefit from it (thus expanding its range of
application), and it avoids the problem of highly unbalanced
datasets. 𝑖𝑖𝑖) It is validated on real (not simulated or ex-
perimental) SCADA data and has been shown to be robust
to seasonality and operating and environmental conditions
(since it is trained using the complete data in one year of
operation) and also tested over a whole year of operational
SCADA data. 𝑖𝑣) Mainly exogenous variables are used to
construct the model (variables whose cause is external to
the wind turbine itself, such as ambient temperature, wind
speed, and wind turbulence) together with the low-speed
shaft temperature, which is the closest SCADA variable to
the main bearing. In this manner, only faults that affect
the low-speed shaft temperature will be detected. 𝑣) The
warning is given months in advance of the fatal fault, thus
allowing wind park operators to program the maintenance,
in contrast to a non-negligible number of papers based
on SCADA data that detect the fault less than a week in
advance, thus not being helpful in a real application. The
conceived methodology allows for this early prediction as
the vast majority of different main bearing failure modes are
associated with heat release; that is, when a crack initiates
or propagates, when friction or wear is present, there is heat
release. With the stated methodology, that relies on SCADA
data associated with temperature variables, these events (of
heat release) can be detected. Note that the low sampling rate
of SCADA data (10-minute average) hinders information in
variables with a fast dynamic (e.g., vibrations); however, as
temperature variables have a slow dynamic, their SCADA
data still contain relevant information. 𝑣𝑖) It advances an
indicator based on an exponential weighted moving average
filter, depending on the weekly number of anomalies, to
reduce the number of false positive alerts contrary to a
substantial number of references that result in a significant
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Figure 1: Components and subsystems of a WT.

number of false alerts, making the contribution inconvenient
in the real world, as it would result in alarm fatigue for
operators. 𝑣𝑖𝑖) The validation is done at the wind farm level
that includes 12 WT, unlike the majority of the literature
that bases their results on a relatively small amount of data
(usually only 1 to 4 wind turbines).

The paper is organized as shown below. Section 2 gives
a succinct statement of the wind park under study, as well
as introduces the primary forms of bearing damage. Section
3 introduces the available SCADA data and work order
records, as well as a full explanation of data preprocessing.
In Section 4 the methodology is described in full, as well as
the approach of the suggested FPI to minimize false positive
alarms. The findings are explained in Section 5. In the end,
the conclusions are reached in Section 6.

2. Wind Park and Main Bearing Fault Review
The wind park consists of twelve WTs which are 1.5

MW power and have 77 m rotor diameter. The main WT
systems are shown in Figure 1. In [8] more detailed technical
specifications for this kind of WTs and the characteristic
double spherical main roller bearing that is used on them
are explained in depth.

Because of main bearing fault is the fault under study, it
is critical to comprehend the many ways a spherical roller
bearing might fail. This type of bearing is a significant
mechanical component, as it is utilized to provide mobil-
ity to other prominent and massive components, such as
shafts. SKF, a Swedish bearing and seal manufacturer, has
categorized various bearing failure modes using ISO-15243
standard [19]. For more details, see [8] where it is deeply
described each bearing failure mode and several illustrative
pictures are also included.

3. Real SCADA Data Preprocessing
Wind park’s data are gathered from February 2017 to

November 2018. Data rely on various WT components,

reaching approximately 160 variables (see [8] for checking
a complete classification of these variables). However, as
established in Section 1, only exogenous variables are used
as part of the proposed methodology that also joins the low
speed shaft temperature. Actually, the last one is the most
important variable, since it is the most related to the fault
under study. Those exogenous variables are closely related
to environment, which have a direct impact on the variable
of interest. For example, ambient temperature can drastically
affect the low-speed shaft temperature due to the season
transition, from winter to summer, or vice versa. Actually,
there are different possibilities to take into account the effect
of ambient temperature. One option is subtracting ambient
temperature from all other related-temperature variables to
avoid seasonality, like in [20]. Another option is to retain this
variable as part of the input variables set to add information
to the model about data seasonality, as is proposed in this
work.

On the other hand, the operational region of a WT is
determined by the wind speed, which is associated with
the output power [21]. Considering the sample rate of an
SCADA system (10 min), for each variable there are the fol-
lowing statistical measurements available: mean, minimum,
maximum, and standard deviation. Next, the environmental
variables for the wind park are listed:

• TempAmb: ambient temperature, in ◦ C.
• VelViento: wind speed, in m/s.
• IndTurbul: turbulence index, which is non-dimensional.
Note that the proposed methodology is based on a WT’s

normal behavior model (NBM), i.e., it is trained only with
healthy (normal) SCADA data to learn the normal behavior
of the asset. Aside from SCADA data, information on repair
work orders is also provided. The occurrence of failures,
when they were resolved, and which components or subsys-
tems were involved are detailed in these records. In detail,
over the whole wind park, during 2018 there were two major
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Table 1
Range of values for the selected SCADA variables based on the geographic location.

Variable Description Range Units
TempEjeLento Low-speed shaft temperature (mean) [0, 120] ◦C
IndTurbulMean Turbulence index (mean) [0, 40] -
IndTurbulSdev Turbulence index (standard deviation) [0, 40] -
IndTurbulMin Turbulence index (min) [0, 40] -
IndTurbulMax Turbulence index (max) [0, 40] -
TempAmbMean Ambient temperature (mean) [−5, 40] ◦C
TempAmbSdev Ambient temperature (standard deviation) [−5, 40] ◦C
TempAmbMin Ambient temperature (min) [−5, 40] ◦C
TempAmbMax Ambient temperature (max) [−5, 40] ◦C
VelVientoMean Wind speed (mean) [−5, 60] m/s
VelVientoSdev Wind speed (standard deviation) [−5, 60] m/s
VelVientoMin Wind speed (min) [−5, 60] m/s
VelVientoMax Wind speed (max) [−5, 60] m/s

faults (including replacement of components) that are listed
as follows:

• WT2: main bearing fault –the subject of study in this
work–, occurred on May 21, 2018.

• WT8: gearbox fault, occurred on March 22, 2018.
Furthermore, working with real data faces several chal-

lenges like missing data and outliers [22]. Handling these
tasks determines the final quality of the data, and thus the
success of the predictive model. Next, the steps to treat real
data are described, that is, pre-processing of real SCADA
data.
3.1. Data Cleaning and Imputation

Outliers (extreme values) are not routinely deleted in
this study because, as mentioned in [23], it can result in
loss of relevant information for damage detection, and even
more when considering that time series play the main role
in this work and save sequential information, that is, data
values do not work only individually, but also as sequences
or data series. In contrast, using manually set ranges based on
realistic data received by several sensors may be a superior
technique. For instance, in environmental variables there are
certain conditions based on the weather of a geographic
location to decide which measurement is valid or not. In
the case of low-speed shaft temperature, this variable is
generally known to be above 0◦; therefore, any negative
values must be eliminated, resulting in missing data that
will be addressed later. Following this strategy, in Table 1
are shown the variables employed in this study with their
respective ranges. Similarly, Figure 2 shows the outliers
presented for the low-speed shaft temperature in a certain
WT.

As outliers are eliminated, the amount of missing data
increases, requiring the use of a data imputation approach
to deal with this issue. In this paper, the piecewise cubic
Hermite interpolation polynomial is used [24] to preserve
the data’s monotonicity and to guarantee the continuity of the
first derivative. Figure 3 shows how this imputation strategy

works in missing data areas in the interior. When missing
data occurs towards the beginning or finish of a data set, the
closest value before or after the missing values is used to fill
in the gaps, correspondingly.
3.2. Data Split

Data split is commonly used to detect if a model is suffer-
ing from one of two machine learning’s common problems:
underfitting or overfitting. In this work, real SCADA data
are split in train, validation, and test data sets. The goal of
this work is to develop a defect prediction approach that is
insensitive to both operating and environmental variables;
therefore, training and test datasets must include data from
all working situations (all different regions of operation).
Furthermore, to ensure that the detected anomalies are not
due to seasonality the training (plus validation) and test
datasets were split in such a way that each set had almost
one year of data. In particular, the training and validation
data sets cover from February 2017 to December 2017. The
first 70% (33120 samples) of data is for training, while the
remaining 30% (14256 samples) is for validation. Further-
more, data for the almost-full year 2018 (47808 samples) are
available for testing.
3.3. Data Normalization

In a data set, variables are common to come from differ-
ent sources and, therefore, their magnitudes are different. For
instance, in this work variables involve speeds, temperatures,
indices, etc. If this situation is not handled appropriately, the
model output might be influenced by large-scale variables
[22]. Thus, one imperative task in data pre-processing is
normalization. There are several methods to standardize
or normalize data, such as Z-score standardization, robust
normalization, Min-Max normalization, among others. The
last one is the selected strategy to be applied in this work.
Equation 1 details this scaling:

�̂� =
𝑥 −𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 −𝑋𝑚𝑖𝑛
, (1)

where �̂� is the normalized value, 𝑥 is the value to be normal-
ized along the values’ column (each variable), 𝑋𝑚𝑖𝑛 is the
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Figure 2: Outliers detected (in red) in the low-speed shaft temperature, where only positive values are valid.
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Figure 3: Imputed data (in red) in the low-speed shaft temperature by applying the pchip function in internal missing-data areas.
X-axis is shortened for a better visualization of the data imputation technique.

minimum value of the variable (values’ column) and 𝑋𝑚𝑎𝑥is the maximum one. It is noteworthy to mention that the
first normalization is applied to the train data set, then with
the maximum and minimum values extracted from the train
data set, the validation and test data sets are normalized, i.e.,
data normalization must be applied after data split to avoid
filtering information between data sets and adding bias to the
model.

3.4. Feature Selection
When there are several variables which come from a

same source like Table 1 shows, feature selection is useful
since it is possible to find out those which contribute most
to a model [22]. A variance threshold feature picker is
employed in this case to eliminate low-variance features
from each external variable. Features with higher variance
are thought to provide more important information. One key
point of this method is that the analysis is made on individual
variables, not between features or with respect to any specific
variable.
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Figure 4: Selection of features based on the variance threshold.

Figure 4 illustrates the variance comparison. The main
intention is to select one representative variable for each
type of variable, that is, one related to low-speed shaft
temperature, another one to wind speed, and so on. Fi-
nally, by applying this filtering strategy the variables se-
lected are: TempEjeLento, IndTurbulMax, TempAmbMax,
and VelVientoMin. Note that the idea of using also min-
imum, maximum and standard deviation of the SCADA-
collected measurements, and not only the mean, has been
demonstrated to be highly beneficial for data-driven model-
ing in [25]. Figure 5 shows the time series for each variable
that has a different behavior according to its source. Then,
these data are organized in a matrix (data set) where there
are rows as the number of samples in each data set (train,
validation, or test) and four columns corresponding to the
above-mentioned variables.
3.5. Data Reshaping

One of the main ideas in this work is to convert the time
series data at disposal into image information. Recalling that
time series save quite important sequential information, it is
needed to define the temporal length (like one day, one week,
one month) of each time series (i.e., image dimension). In
this way, a specially designed CAE can be utilized to capture
the temporal features of the image to reconstruct the input.
Considering that there are 4 inputs and one day (temporal
length chosen) contains 144 samples (as the sample rate is
10 min) the constructed image has a size of 12 × 12 × 4, that
is 12 × 12 images with 4 channels. Figure 6 illustrates the
data reshaping process. Finally, the result of data reshaping
is 230 matrices for training, 99 for validation, and 332 for
testing.

4. Fault Detection Methodology
In this section, two key parts of this work are described:

the setup of the proposed CAE model and the logic of the
metric used as an FPI. The next subsection will not be
devoted to developing or discussing CAE networks in detail;
however, certain fundamental concepts will be revisited in
order to introduce the nomenclature used.
4.1. Introduction to CAE neural networks

First, it is essential to mention the paradigm of an
encoder-decoder structure [26]. Generally, the input is trans-
formed to a lower-dimensional space (encoder) and subse-
quently reconstructed to duplicate the original input (de-
coder). Recalling the principles of an autoencoder (AE) [27],
it takes an input 𝑥 ∈ ℝ𝑠 and codes it into the so-called latent
representation ℎ ∈ ℝ𝑠′ using a mapping ℎ = 𝑓(𝑊 ,𝑏)(𝑥) =
𝜎(𝑊 𝑥 + 𝑏). Then, this code is used to rebuild the input
based on a reverse mapping of 𝑓 , that is, 𝑦 = 𝑓(𝑊 ′,𝑏′)(ℎ) =
𝜎(𝑊 ′ℎ + 𝑏′), where 𝑊 ′ = 𝑊 𝑇 . To sum up, each input
𝑥𝑖 is outlined on its code ℎ𝑖 and then reconstructed as 𝑦𝑖.Obviously, during this process, the weights are optimized
by trying to minimize the cost function performed.

Convolutional neural networks (CNNs), on the other
hand, are hierarchical models in which convolutional layers
shift with subsamplig layers, with latent feature represen-
tations that retain the links between input’s neighborhood
and spatial locality [28]. Convolutional layers, max-pooling
layers, and the classification layer [29] are the three well-
defined blocks of a CNN. Actually, inside a CNN each
layers’ group has specific functions, for instance, the initial
layers learn to detect edges and curves, and further layers
combine these to detect geometric shapes, until the detecting
section of the image ends up. In general, due to CNN’s
complexity and capacity, they have a spatial invariance prop-
erty, which means CNNs learn to recognize image features
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Figure 5: Time series for each selected variable where the imputed data are included. The period of time shown in the 𝑥-axis
covers train, validation, and test data sets.

1 1

2 2

1

2

1

2

1212 12 12

13 13 1313

144 144

145 145

144

145

144

145

NN N N

145 146

157 158

148

160

147

159

156

168

288

145 146

157 158

148

160

147

159

156

168

288

145 2

157 158

148

160

147

159

156

168

288

146

145 146

157 158

148

160

147

159

156

168

277 278 280 288279

1 2

13 14

4

16

3

15

12

24

144

1 2

13 14

4

16

3

15

12

24

144

1 2

13 14

4

16

3

15

12

24

144

2

1 2

13 14

4

16

3

15

12

24

133 134 136135 144

reshape

Te
m

pE
je

Le
nt

o

In
dT

ur
bu

lM
ax

Ve
lV

ie
nt

oM
in

Te
m

pA
m

bM
ax

channel 1

channel 2

channel 3

channel 4

sample 1 sample 2

next
samples

sample 1

Figure 6: Real SCADA data reshape from a matrix to images with 4 channels.

anywhere in any image. For these and more reasons, CNNs
are among the best image classification models and set the
standard in various benchmarks [30; 29].

CAEs, which combine an AE and a CNN, do not ignore
the 2D picture structure as other architectures such as AEs
or denoising autoencoders (DAEs) do. Adding duplication
to the parameters and requiring each feature to be global
is a major issue. The goal of CNNs is to locate localized
features that duplicate themselves across the input [31].
CAEs, unlike AEs, share their weights between all input
locations, preserving spatial location. Except for the weights
[32], the structure of a CAE is similar to that of an AE, as
stated above. For example, considering a one-channel input

𝑥, its latent representation of the 𝑗𝑡ℎ feature map is,
ℎ𝑗 = 𝜎(𝑥 ∗ 𝑊 𝑗 + 𝑏𝑗), (2)

where 𝑏𝑗 is distributed to the whole map, 𝜎 is the hyperbolic
tangent function (used as an activate function), and ∗ rep-
resents the 2D convolution. Each latent map uses a single
bias since each filter is intended to specialize in features
of the entire input. Then, the reconstruction of the latent
representation is shown in Equation 3,

𝑦 = 𝜎

(

∑

𝑗∈𝐻
ℎ𝑗 ∗ �̂� 𝑗 + 𝑑

)

, (3)

where 𝑑 is the bias per input channel, the latent feature map
is represented by 𝐻 , and the flip operation is defined by �̂� .
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Finally, the typical cost function 𝐽 (𝜃) used to minimize the
error is the mean squared error (MSE) as Equation 4 shows,

𝐽 (𝜃) = 1
𝑛

𝑛
∑

𝑖=1
(�̂�𝑖 − 𝑦𝑖)2, (4)

where 𝜃 are the learned parameter values or weights (𝜃1,
𝜃2, ⋯, 𝜃𝑘), 𝑛 is the number of training samples, �̂�𝑖 is the
prediction for the 𝑖𝑡ℎ training sample using the parameters 𝜃,
and 𝑦𝑖 is the class label for the 𝑖𝑡ℎ training sample.

On the other hand, recalling, the intention in this work is
to perform early fault detection, then the temporal patterns
due to seasonality of the environment or failure progress are
key points to be taken into account. As stated above, the
proposed methodology is based on a CAE to process the
real SCADA data, where those data are disposed as matrices
(embedding one day of data, that is, 144 samples) with
different channels. Moreover, CNNs find spatial patterns,
which are similar to finding temporal patterns in time series.

With the approach of CNNs and considering that the
model is based on a NBM, that is, only healthy SCADA data
are used, CAEs let to learn from that and try to reproduce the
input in the output as well as possible. Then, if an image with
failure patterns is introduced as input in the trained model,
the output will have a higher error being this indicative of a
developing fault.
4.2. Setup of the proposed CAE model

Figure 7 shows the suggested CAE model architecture. It
includes two 2D convolutional layers and two 2D transpose-
convolutional layers. All hidden layers employ the ReLu
function, while the output layer uses the Sigmoid function
to scale the data in a range of [0, 1]. The Adam optimiza-
tion technique was used to optimize the model parameters,
settling some of its hyperparameters. An initial learning rate
of 𝛼0 = 0.001 is set, which is a common value selected for
most training models. Furthermore, a gradient decay factor
is used equal to 𝛽1 = 0.9, while a squared gradient decay
factor is also used equal to 𝛽2 = 0.999, and a 𝜖 = 10−8.

The number of epochs is an essential hyperparameter
that defines how many times the model trains. If the model
trains with a few epochs, it may not select the best workout.
However, if it trains a lot the computational cost and training
increase, and even the model may fall in overfitting. Thus, to
handle a trade-off, 3000 epochs were chosen. However, the
3000th model is not necessarily the best and in consequence
is not saved, but to assure that the best one is saved, in each
epoch it is checked if the current validation loss is less than
the saved last smallest one. If that occurs, the model is saved
as the best one. For instance, Figure 8 shows on WT2 the
error curve of the training and validation data sets. Note that
the validation loss decreases (and it is generally less than
the training loss) as the number of epochs increases. The
red line marks where that mentioned condition was fulfilled
for the last time, that is, in the 2982nd epoch, i.e., when the
model was also saved as the best one within the 3000 elapsed
epochs.

Thus, recalling that this model is based on an NBM, a
good reconstruction indicates that the sample is healthy, but
if the reconstruction error is high, it is very likely that the
sample represents a fault alarm.

To summarize, Figure 9 resumes the explained subsec-
tions that correspond to the training stage.
4.3. FPI based on IMSE Metric

It is well known that an image is basically a matrix of
pixel values [33] and there are several methods to measure
the distance (how much difference) between images. Thus,
in this work, the image mean square error (IMSE) is utilized
between the input and output images of the CAE. Equation
5 details the IMSE:

IMSE =
𝑁
∑

𝑘=1

(𝑎𝑘 − 𝑏𝑘)2

𝑁
, (5)

where 𝑎𝑘 and 𝑏𝑘 are the values of the 𝑘𝑡ℎ pixel of two images
A and B, respectively, while N is the total number of pixels
in the matrix. As it was above-mentioned, the input of the
model has 4 channels and one of them is the low-speed
shaft temperature. Because this variable refers to a sensor
closer to the component of interest, this channel is taken in
the input and output to apply the IMSE. The fact that the
other channels are not included in the metric might cause a
certain doubt; however, recall that through convolutions in
the model, all four channels affected the reconstruction of
the image.

Now, if the computed IMSEs are used directly to estab-
lish a threshold, a large number of false positives may be gen-
erated, which would represent a decrease in the effectiveness
of the methodology and lead to alarm fatigue. To avoid this
problem, a technique may be used to compute the persistence
over the threshold of the samples over time. To accomplish
this, the exponential weighted moving average (EWMA) is
proposed, since with this strategy it is possible to smooth the
original spiky residual errors and keep the trend of data. In
addition, EWMA deals with aging of data by assigning less
weight to data as they get older. In Equation 6 is shown how
an EWMA value is computed:

�̂�𝑡+1 = �̂�𝑡 + 𝜆(𝑇𝑡 − �̂�𝑡), (6)
where �̂�𝑡+1 is the estimated value at time 𝑡 + 1, �̂�𝑡 is the
estimated value at time 𝑡, and 𝑇𝑡 is the real SCADA measured
value at time 𝑡. Note that 𝜆 is present also in the equation,
and this parameter leads to the memory depth of EWMA
computation. 𝜆 is calculated based on its relation with 𝑠, the
so-called spans, which is the period of time on which the
EWMA is computed. For example, if the sampling rate of
the data is 10 min and the EWMA must be calculated in a
one-hour window, the value of 𝑠 is 6. Equation 7 shows how
𝑠 and 𝜆 are related:

𝜆 = 2
𝑠 + 1

, (7)

where 0 < 𝜆 < 1, and 𝑠 ≥ 1.
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Figure 7: Architecture of the proposed CAE model.
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Figure 8: Training and validation loss curve during model
training on WT2.

It is desirable to have weekly residual errors even after
computing the EWMA where the spans were based on a
weekly window, and thus the residual errors were averaged
weekly (7 days). Actually, this selection is influenced by
the findings of McKinnon et al. [34]. Their research, on
the influence of time history on WT failures using SCADA
data, tests three distinct moving windows: daily, weekly,
and monthly. Compared to the others, the weekly moving
window performs best at identifying failures. On the one
hand, a daily window contains too much noise, leading
to a large percentage of false alarms. On the other hand,
a monthly window removes much information and does
not allow any specification of when an anomaly occurred.
Finally, to define whether a residual error represents a fault
alarm or not, another step is required. In this case, with

the computed averaged errors over the train data set, a
threshold is calculated by using the mean (𝜇) of the values
and their standard deviation (𝜎). Equation 8 resumes this
computation:

threshold = 𝜇 + 𝜅𝜎, (8)
where 𝜅 represents the spacing of 𝜎 with respect to 𝜇.
Finally, Figure 10 shows the flow diagram of this stage along
with the CAE model testing.

5. Results and Discussion
In this section, the stated methodology is tested on a

real wind park. The results of the proposed FPI are shown
(in the train, validation, and test datasets) and discussed.
Moreover, the results on the test dataset are compared to the
ones obtained in [8] where the same wind park was used.

Before to delve in the test-dataset results’ discussion of
Figure 11, it is essential to explore how to set the threshold.
The training error, given in Figure 12, is certainly an impor-
tant measure related to the future performance of the model.
On the one hand, it is desired that similar order training
errors are obtained for the different wind turbines. However,
some differences are perfectly allowed between training
errors of different wind turbines, as they are compensated
by the threshold where each wind turbine uses its own mean
(bigger training errors lead to higher values of the mean
error) and deviation from the training data. On the other
hand, when a WT model has a high training error, the data
might have some anomalous behavior even if no work orders
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Figure 9: Real SCADA data preprocessing previous to train the CAE model.

Table 2
Assessment of false-positive alarms (checkmarks) on the train-
ing and validation data sets (varying 𝜅 values in the threshold
definition).

WT ID 𝜇 + 3𝜎 𝜇 + 6𝜎 𝜇 + 9𝜎

WT1 ✓

WT2 ✓

WT3 ✓

WT4 ✓ ✓

WT5
WT6 ✓

WT7 ✓

WT8
WT9
WT10
WT11
WT12

are reported. In this case, it is highly recommended to double
check whether this turbine had issues during the year used as
training. Table 2 resumes false positive alarms triggered in
the model assessment using only the training and validation
data set. It should be noted that there is no information on the
test data set during that process. During calibration, several
values of 𝜅 such as 3, 6, and 9, were tested because 𝜅 is
related to 𝜇 and 𝜎, so this parameter is typically changing
as a multiple of 3. Finally, the 𝜅 value that fits better is the
smallest one (since it is not suitable to have larger deviations
from 𝜇) and that triggers the least number of false positives
(alarms), thus in this case 𝜅 is set to 6.

Note that the selected value for 𝜅 is empirically derived
just based on the observation of the training and validation
dataset where the WTs are healthy. The value of 𝜅 is set
to minimize the number of false alarms over these datasets
(training and validation). Therefore, there is no information
from the test set (or from the knowledge of the occurred fault
on the test set) to decide the 𝜅 value. Once the 𝜅 value is
selected and the FPI’s threshold is defined, the results on the
wind park test set are shown in Figure 11.

In Figure 11, the red dotted lines correspond to the
thresholds, while the green solid lines outline the weekly
residual errors. Of the 12 tested WTs, eight of them are
correctly predicted as healthy over the test data sets (which
cover almost the entire year 2018), and four of them (WT2,
WT6, WT8 and WT11) show prominent peaks above the
threshold that would indicate (not yet conclusive) a fault
alarm corresponding to the main bearing. In the following
paragraphs, each of these fault alarms is analyzed in a
comprehensive way.

On the one hand, for WT2, this alarm is correct, since,
as detailed in Section 3.2, on this WT a main bearing fault
occurred on 21 May 2018 and, precisely at the beginning
of February 2018 two large peaks (spanning two continuous
weeks) are triggered, indicating the onset of an abnormal
behavior. This alarm must be used to alert maintenance team
and plan ahead an inspection on the main bearing compo-
nent. Also, note that between February and May, there is a
decreasing trend in the residuals until they remain below the
threshold. It does not mean that after the great temperature’s
peak everything returns to normal; by contrast, it is a typical
behavior in bearing degradation. When a bearing failure
mode starts, there is normally a short (but quite significant)
heat release (revered as an unexpected temperature increase)
[19]. Following that, the temperature returns to normal, i.e.,
the crack does not grow, but the bearing degradation slowly
continues if it is not inspected in time. Thus, the relevance
of the proffered methodology is to detect those fault onsets
typically rendered as heat release or temperature increases,
several months before the bearing is entirely damaged.

On the other hand, in the case of WT8 and in inspection
of work orders, there is no record of a main bearing fault,
but there is a record of a gearbox replacement (see Section
3.2 for more details). Thus, this fault alarm (which persists
for three consecutive weeks) is correctly associated with the
occurrence of an abnormal behavior, but not related to the
main bearing, but to the gearbox. Although the main use
of exogenous variables in the model guarantees detection of
damages directly related only to the variable of interest (low-
speed shaft temperature), note that the gearbox is connected
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Figure 10: Fault detection methodology in the testing stage using the trained CAE model.

to the main shaft and thus the method also detects this
abnormal behavior.

Finally, for WT6 and WT11, the triggered peaks would
represent false positives (false alarms), since there is no
record of any faults on those WTs during 2018 period.
However, two false alarms represent a low false alarm rate
considering that the method is validated on 12 WTs over an
almost full year. Furthermore, it is significant to consider
that on WT11 there is only one peak (on February 5, 2018),
that is, there is no persistence (at least for two continuous
weeks) for a long time, as it occurs with the analyzed WTs
mentioned above. Likewise, making-decision process for
triggering fault alarms based on peak’s persistence relies
also on wind park’s holder company, since the methodology
would be quite strict or moderate.

As introduced in this section, Encalada-Dávila et al. [8]
worked with the same wind park by applying a methodology

based on ANN (artificial neural networks) to detect early
the main bearing fault in WT. Their proposed model em-
ploys SCADA data’s variables related to generated power,
rotor speed, and temperatures (gearbox, generator, bearing
coupling side, and bearing non-coupling side), i.e., non-
exogenous variables. To sum up, Table 3 resumes the results
for both works, where hits and mistakes for prediction (if the
WT is healthy or faulty) on test data sets are detailed.

When comparing the results, the ANN-based model
triggered two apparent false positives, while the CAE-based
model triggered three. However, both methodologies agree
that on WT8 there is a notable alarm that effectively corre-
sponds to the gearbox component and needs assistance on
site. For the rest of false positives, each methodology has in-
dependently detected those, and thus they are not completely
conclusive. Moreover, observing the results’ comparison, to
minimize false positives, it would be pertinent to work on
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Figure 11: Results of the proposed FPI on the test dataset for the entire wind park made up of 12 WTs.
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Figure 12: Results of the proposed FPI on the train and validation datasets for the entire wind park made up of 12 WTs.
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Table 3
Comparison of testing results between the current methodology
and the ANN-based one. Note that hits and mistakes of the
prediction are marked as ticks and crosses, respectively.

WT ID Methodology

CAE ANN [8]

WT1 ✓ ✓

WT2 ✓ ✓

WT3 ✓ ✓

WT4 ✓ ✓

WT5 ✓ ✓

WT6 ✗ ✓

WT7 ✓ ✓

WT8 ✗ ✗

WT9 ✓ ✗

WT10 ✓ ✓

WT11 ✗ ✓

WT12 ✓ ✓

an ensemble model which does a making-decision process
before trigger or not fault alarms.

Finally, the proposed methodology could be used to
detect high-speed bearing faults (by selecting SCADA tem-
perature variables close to this bearing), which are more
difficult to isolate with a good advance. As the stated ap-
proach focuses on the detection of a heat release and is not
based on vibration, the bearing speed does not directly affect
the methodology. This is because the methodology relies on
SCADA data associated with temperature variables to detect
failure. Note that the low sampling rate of SCADA data
(10-minute average) hinders information in variables with
a fast dynamic (e.g., vibrations); however, as temperature
variables have a slow dynamic, their SCADA data still con-
tain relevant information. Finally, as indicated previously,
the vast majority of different main bearing failure modes are
associated with heat release, allowing the proposed method-
ology to be widely applicable.

6. Conclusions
In this paper, a fault early detection strategy for WTs is

addressed via a CAE. The main aim of this methodology
is to give an early fault alarm to let operators plan mainte-
nance operations in advance to minimize WT’s downtime.
Furthermore, the model is trained and validated only from
healthy SCADA data, and the test data set contains healthy
and faulty data to properly validate the methodology and
the proposed FPI to detect abnormal behavior. It is note-
worthy that for training and validation the data come from
all possible regions of operation of the WT, and also from
different year seasons (that highly affect temperature related
variables). In consequence, it guarantees that the model is
robust to operational and environmental variations. Finally,
recall that mainly exogenous variables are used, apart from
the low-speed shaft temperature, thus guaranteeing that the

strategy is focused on only detecting faults related to this last
mentioned variable.

This model is tested on an entire wind park of twelve
WTs. The results indicate that the detection system triggers
minimal false alarms, and in some cases those alarms are
related to faults in other components (e.g., gearbox). Note
that after triggering the alarm, there is a distinct downward
trend in residuals. Because when bearing failure begins (or
worsens), there is normally a transient heat escape as temper-
ature rises. According to [19], practically all bearing failure
mechanisms are caused by unanticipated heat release. After
that, the temperature goes back to normal (e.g., when the
crack does not advance). Thus, the objective of the strategy is
to forecast the usual heat liberation in advance, months ahead
of complete breakdown. When there is no heat release, the
methodology returns to small residuals. As a result, even if
the residuals are returned below the threshold, the triggered
alert must be maintained operational.

Unfortunately, the analyzed wind park data contains only
one significant bearing failure, which is insufficient for sta-
tistical analysis. To conduct a more thorough investigation
and derive findings such as a forecast time and confidence
level, the model must be applied to more situations involving
this issue.

The application of predictive maintenance to complex
systems, such as wind turbines, remains an open challenge.
In addition, the latest developments tend to use expensive
specifically tailored sensors, which is not economically vi-
able for turbines already in operation, and even less in
case they are close to reaching the end of their lifespan.
This is relevant, as 38 GW of wind farms in Europe are
expected to reach their life expectancy in the next five
years. In this context, this work has proposed a data-driven
predictive maintenance methodology based only on existing
supervisory control and data acquisition (10-minute aver-
aged SCADA) data available in all industrial-sized wind
turbines that is a promising and cost-effective solution for
life-extension services. In addition, the stated strategy does
not need faulty data or labeling data as it is based on a normal
behavior model (not supervised), thus extending its range
of application to truly all industrial-size wind turbines. Fur-
thermore, the methodology has been tested on real SCADA
data from a wind farm in production, ensuring a high level of
technological readiness of the proposed strategy, obtaining
a very low rate of false alarms and a very early prediction of
the fault (months in advance), thus really allowing wind park
operators to program the maintenance in weather windows
and when replacements are available.
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