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ABSTRACT The number of nano-sensors connected to wireless electromagnetic nano-network generates
different traffic volumes that have increased dramatically, enabling various applications of the Internet of
nano-things. Nano-network traffic classification is more challenging nowadays to analyze different types of
flows and study the overall performance of a nano-network that connects to the Internet through micro/nano-
gateways. There are traditional techniques to classify traffic, such as port-based technique and load-based
technique, however the most promising technique used recently is machine learning. As machine learning
models have a great impact on traffic classification and network performance evaluation in general, it is
difficult to declare which is the best or the most suitable model to address the analysis of large volumes
of traffic collected in operational nano-networks. In this paper, we study the classification problem of
nano-network traffic captured by micro/nano-gateway, and then five supervised machine learning algorithms
are used to analyze and classify the nano-network traffic from traditional traffic. Experimental analysis of
the proposed models is evaluated and compared to show the most adequate classifier for nano-network traffic
that gives very good accuracy and performance score to other classifiers.

INDEX TERMS Machine learning, micro/nano-gateway, nano-network, traffic classification, traffic
monitoring.

I. INTRODUCTION
Nano-technology has emerged to provide new opportunities
for sensing and actuating [1]. Nano-sensors can sense,
compute and communicate into networks or the Internet,
enabling advanced applications in different fields such as the
biomedical, environmental, industrial and military fields [2].
In the biomedical field, nano-sensors are used in drug delivery
and medical treatment applications [3], [4]. Likewise, nano-
sensors are used in health tracking systems and human
body communication, promotingmedical body area networks
that allow medical personnel to have remote access and
monitoring to the patient’s body [5]. Through wearable health
trackers, doctors can monitor real-time measurements of
the human body like heartbeats rate, blood pressure and
breath tests to get early detection of sickness [4], [6]. In the
environmental field, nano-nodes play a significant role in
monitoring the spread of viruses and diseases in public
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locations. Also, air pollution can be controlled by utilizing
nano-filters to improve the air quality and remove harmful
substances. Nano-networks can support the industrial field
by improving new materials, producing procedures and
quality control strategies. Moreover, they are involved in
the agriculture industry to deliver pesticides, enhance food
quality and water control. While in the military field, nano-
sensors can be used in nuclear, biological and chemical
defense [6], [7].

A Nano-network is a type of network that exchanges
information wirelessly between a group of nano-devices
fabricated at the nano-scale [8]. These nano-devices can
communicate internally with each other in the nano-domain,
or externally on the Internet, forming the Internet of Nano-
Things (IoNT) with the aid of smart hybrid interfaces called
micro/nano-gateways. These gateways can communicate
in dual communication paradigms, i.e., the nano-scale
paradigm and micro/macro-scale paradigm that represents
traditional communication networks [9]. Nano-devices have
many constraints, such as inadequate energy resources,
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topology-unawareness, limited computational power, high
sensitivity for emergency information, redundant data, lim-
ited storage and computational capabilities, besides data
routing without storing routing tables in minimal trans-
mission ranges [10]. In addition to the aforementioned
constraints, interoperability and heterogeneity are the main
features of IoNT, because exchanging different data for-
mats between several communication protocols in diverse
nano-network applications leads to a lack of cooperation
and capability mismatch between devices, which affects
the overall performance of the nano-network [11]. Hence,
the micro/nano-gateway interacts between the nano-network
domain and the traditional network domain by providing
a protocol mapping mechanism that allows an intermedi-
ary data format conversion for various protocols of the
nano-network domain to the traditional domain and vice
versa. Therefore, providing access to the nano-network from
the Internet and facilitating the development of different
applications [11]. The two-sided communication capability
of these micro/nano-gateways causes some compatibility
issues, because of different communication protocols and
data formats in different domains, on top of the heterogeneity
of nano-devices/sensors, i.e., each device can operate with a
certain communication protocol using a specific data format
within a particular application, which adds more challenges
to the micro/nano-gateway functionality [12]. To overcome
these limitations and constraints, the micro/nano-gateway
needs to allocate the main information from each packet
received from nano-domain protocols and convert it to a
suitable data format to enable linking the nano-network with
the Internet by affording a protocol conversion mechanism
to accommodate different data formats coming from various
nano-sensors [11].

Moreover, a data characterization mechanism is needed
to differentiate between different types of traffic, such as
the high-priority and low-priority traffic coming to/from the
nano-network, which results in the loss of high-priority or
critical information during a high data traffic load. During
high data traffic load, packets are randomly dropped and
delayed, which increases the delay and packet loss of high
priority data. Thus, the absence of a data categorization
mechanism can affect the primary requirement of delivering
high-priority information with minimal delay and loss [13].
Therefore, a data characterization mechanism and traffic
classification are essential for the micro/nano-gateway to
ensure traffic monitoring, Quality of Service (QoS) man-
agement and maintaining security access. Besides, traffic
classification can implement a mechanism for different
services that classifies the traffic flow according to the
application type or according to the communication direction,
whether it is from the Internet to the nano-network or vice-
versa. Accordingly, computing resources can be allocated and
QoS can be guaranteed, thus improving networkmanagement
and overall nano-network performance. As a result, and
to address these challenges, the development of novel
Machine Learning (ML) methods has become necessary for

nano-network traffic, where ML can assist in devising novel
methods and accurate ways for better performance evaluation
and traffic classification for nano-networks [14].

Recently, innovative development of new tools from
the field of ML has been considered in several engineer-
ing fields, which enables the analysis of large datasets
through training models. These models can be utilized for
observations, classification or predictions. Computer vision,
natural language processing, speech and image recognition
are among these fields, in addition to telecommunication
networks, such as wireless sensor networks, Internet of
Things, cognitive radio networks, satellite communication,
cloud/edge computing, software-defined networking and
machine-to-machine networks. This frontier is continuing its
expansion by including the nano-communication field, and
it is expected to have a significant impact on the design of
novel nano-materials, nano-scale communication networks
and data-driven biomedicine applications [14].

ML has shown tremendous benefits in solving complex
network problems and providing situation and parameter
predictions. However, heavy resources are required to process
and analyze the data that can be done either offline or using
edge computing, which also requires heavy transmission rates
to provide a timely response. When it comes to the nano-
network, in addition to its role of providing Internet access
to different nano-devices, the micro/nano-gateway represents
the edge of the nano-network [11]. Similar to the progression
from cloud computing to cloud intelligence, a fast evolution
on the edge of the nano-network from edge computing to
edge intelligence or Edge AI that will provide adaptation
for data-driven applications, enhance nano-network access
performance and enable the deployment of quality of expe-
rience, security and privacy targets. Despite all the promises
ahead, the road to realizing Edge AI in nano-network is
still in its early stages. Accordingly, the main objective of
this paper is to extend the intelligence of the micro/nano-
gateway to process and analyze the nano-network traffic at
run time and provide timely and efficient communication
in both the upstream and downstream directions [11]. This
will be achieved by applying traffic classification techniques
based onmachine learning, asMLmodels embed intelligence
into network functions and attract research interest because
of their expected accuracy and efficiency. However, selecting
the best machine learning model that fits a specific problem is
not an easy task. Even if multiple models can be well fitted for
a particular use case, it may be a little bit difficult to figure out
the model/algorithm that provides optimal performance [15].
As a result, the focus so far is to bring intelligence to the
micro/nano-gateway by studying the nano-network traffic
classification problem and its interlock with ML aiming at
providing Edge AI in the nano-network domain, in addition
to figuring out the ML model that best fits the nano-network
traffic, which represents the main motivations behind this
paper. The major contributions of this paper are as follows:
• Develop a nano-network traffic generator that generates
packets in nano-domain format. This traffic combined
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with background traffic represents the traditional net-
work domain to form a synthetic dataset received by
the micro/nano-gateway device. The traffic received by
the micro/nano-gateway is classified into four classes;
i) TCP packet, ii) UDP packet, iii) nano-to-nano-
communication packet (NN0) or iv) nano-to-Internet-
communication packet (NN1).

• Investigate five standard supervised machine learning
algorithms on the generated dataset to figure out which
model is the best fit in the analysis and classification
of the traffic in order to provide efficient performance
for the micro/nano-gateway. These algorithms are Deci-
sion Trees Classifier (DTC), Support Vector Machines
(SVM), the K-Nearest Neighbors (KNN), Random
Forest (RF) and Naïve Bayes (NB).

• Evaluate the five models’ performance using different
metrics before and after manipulating the corresponding
hyper-parameters for each model to achieve optimized
tuning values, then a comparative analysis has been
introduced between all models to select the best model
that provides the best fit for the traffic classification
issue.

The rest of the paper is organized as follows. The literature
review and related work are presented in Section II. The
implementation of the traffic generator and the corresponding
dataset is illustrated in Section III. The experimental results
of the study and the evaluation of the proposed models are
illustrated in Section IV, followed by the conclusion and
future work in Section V.

II. LITERATURE REVIEW AND RELATED WORK
In this section, we briefly discuss the relevant work in the
literature for some approaches related to the scope of the
paper, such as machine learning types, learning algorithms,
performance metrics, traffic classification and prediction
issues and machine learning approaches in IoT and IoNT
communication domains.

A. MACHINE LEARNING TYPES
Machine learning is a subfield of computer science that is
concerned with solving practical problems by gathering a
dataset and building statistical models based on that dataset to
solve these problems. ML enables machines to learn without
explicit programming by applying some learning algorithms
that take a set of samples as an input named a training
set. In general, learning can be supervised, semi-supervised,
unsupervised or reinforcement [16], [17].

In supervised learning, the dataset is the collection of
labeled examples, and the goal of a supervised learning
algorithm is to use the dataset to produce a model that takes
a feature vector as input and outputs information that allows
deducing the label for this feature vector. The objective of
supervised learning is to learn how to predict the appropriate
output vector for a given input vector. In unsupervised
learning, the dataset is a collection of unlabeled examples,
there are no labels required for the training set. The goal

of an unsupervised learning algorithm is to create a model
that takes a feature vector as an input and reconstructs it
into another vector or a value that can be used to solve
a practical problem. In unsupervised learning, no labels
are required for the training set. While, in semi-supervised
learning, the dataset contains both labeled and unlabeled
examples. Usually, the quantity of unlabeled examples is
much higher than the number of labeled examples. The
goal of a semi-supervised learning algorithm is the same
as a supervised learning algorithm, but the concern here is
that using many unlabeled examples can help the learning
algorithm to produce a better model. Reinforcement learning
is a subfield of machine learning where the machine lives in
an environment to perceive its state as a vector of features.
The machine can execute actions in every state. Different
actions bring different rewards and will move the machine
to another state in the environment. It deals with the problem
of learning the appropriate action or sequence of actions to
be taken in a given situation to maximize payoff. The goal
of a reinforcement learning algorithm is to learn a policy that
takes the feature of a certain state as input and outputs an
optimal action to execute that state. The action is optimal if it
maximizes the expected average reward [16], [17].

In machine learning, when the target labels consist of
a finite number of discrete categories, they are known as
classification tasks, while the target labels are composed of
one or more continuous variables are known as regression
tasks [17].

Deep Learning (DL) is considered a specialized subset
of machine learning. It is a series of algorithms founded
on the Artificial Neural Network (ANN) having multiple
layers, where the design of such an ANN is inspired by the
biological neural network of the human brain. DL models
analyze data with a logical structure similar to how humans
conclude [18]. Nowadays, DL is widely used in multiple
topics, having a wide range of applications such as computer
vision, natural language processing, speech recognition,
visual object detection, bioinformatics and biomedicine,
however its applications are quite limited in the data network
domain due to some reasons, such as data availability,
visibility and computing power [15].

It is worth noting that DL models are data-eager. They
require incredibly vast amounts of data to be trained.
For instance, Tesla’s autonomous driving software needs
millions of images and video hours to function properly,
which is difficult to apply in a nano-network that has
limited processing capacity.Moreover, DLmodels have some
problems with visibility and interpretation. Although they
perform feature selection from input data and predict the
output with high accuracy, it is very difficult to understand
their internal functionalities, as they are like black boxes [15].
Furthermore, DL needs substantial computational power to
be trained. However, with the emergence of cloud computing
infrastructure and high-performanceGraphic ProcessingUnit
(GPU), the time of training a deep learning network could
be reduced from weeks to hours. Although the GPU can
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provide a faster calculation in the training phase, it is not quite
suitable to be adopted on nano-networks due to their limited
computing capabilities [15].

B. MACHINE LEARNING ALGORITHMS
In general, there are various standard ML algorithms, which
can be applied to almost any data problem. Each algorithm
has its benefits and limitations. In this paper, we are trying to
answer a simple question: which type of machine learning
model should be generally used in the analysis of electro-
magnetic nano-network traffic that crosses the micro/nano-
gateway. So, we discuss the most common and the most
popular algorithms that were previously used in the literature
for the analysis and classification of wireless network traffic.
They are decision tree classifier, support vector machines,
K-nearest neighbors, random forest and naïve bayes. Each
learning algorithm has certain hyper-parameters or values,
which can be tuned to get better results by experimentally
finding the best combination of values per hyper-parameter.

1) DECISION TREES
A decision tree is an acyclic graph used to make decisions.
These graphs are composed of leaves/branches and nodes,
where inner nodes correspond to a specific feature of the
input vector and leaves are the outcome. If the value of
the feature is below a certain threshold, the left branch is
followed; otherwise, the right branch is followed. At the end
of a leaf node, the class to which the example belongs ismade.
Classification trees are very popular classification algorithms
due to their simplicity, as they can be easily converted into
a rule-based classification system. Moreover, they can be
graphically represented. The training follows a top-down
greedy algorithm that works by iteratively splitting the nodes,
using normally an information gain-based metric as an
optimization criterion. DTC is mostly used for classification
problems. Surprisingly, it works for both categorical and
continuous-dependent variables [16], [19].

2) SUPPORT VECTOR MACHINES (SVM)
SVMs are non-probabilistic binary classifiers. They are
considered one of the most powerful supervised classification
algorithms, as they work by representing each feature vector
in a multidimensional space and trying to find a linear
separation for the classes. In some cases, a linear separation
of the space is not possible and cannot provide a solution,
hence the kernel trick is used by increasing the dimensionality
of space, making an easier separation in a much higher
dimensional space [16], [19].

3) K-NEAREST NEIGHBORS (K-NN)
The K-NN algorithm is a non-parametric approach used
for either classification or regression. In both scenarios, the
output consists of the K-closest training examples in the
feature space. In the K-NN classification, the output is a class
membership. An object is classified by a majority vote of its

neighbors, with the object being assigned to the class most
common among its K-nearest neighbors [16], [19].

4) RANDOM FOREST (RF)
RF is an ensemble learning algorithm that consists of the
aggregation of a large number of decision trees, each one
based on a different part of the training set. They are randomly
selected. These instances are called bootstrapped samples,
and the outcome is generally decided by majority voting
among all the boot-strapped samples. RF is one of the most
widely used ensemble learning algorithms, and it provides
a reduction of variance compared to a single decision
tree [16], [19].

5) NAÏVE BAYES (NB)
NB is a simple classifier algorithm based on Bayesian
statistics. It is popularly used because of its efficiency in
multiple scenarios, especially in high-dimensional datasets.
Its functionality uses maximum likelihood estimation by
assuming that data features are mutually independent, which
is not true in most cases. This assumption provides an easy
calculation for the class-conditional probabilities [16], [19].

C. PERFORMANCE METRICS
In general, it is difficult to measure the quality of a given
model without quantifying its performance in the training
and testing phases. This is typically achieved by using some
type of performance metric, whether it is through calculating
some type of error, the goodness of the model fit, or some
other useful measurement. When performing classification
predictions, there are four types of outcomes that could occur.
These outcomes control the performance metrics and form a
matrix called the confusion matrix, which is used to evaluate
the quality of the output of a classifier. The diagonal elements
represent the number of points for which the predicted label is
equal to the true label, while off-diagonal elements are those
that are mislabeled by the classifier. The higher the diagonal
values of the confusion matrix, the better the indicator for
many correct predictions. These outcomes are as follows:
i) true positives occur when the model predicts an observation
belongs to a class and it truly does belong to that class,
ii) true negatives occur when the model predicts an observa-
tion does not belong to a class and it truly does not belong to
that class, iii) false positives occur when the model predicts
an observation belongs to a class when in reality it does
not and iv) false negatives occur when the model predicts
an observation does not belong to a class when in fact it
does [19].

The three main metrics used to evaluate a classification
model are accuracy, precision, and recall. The accuracy is
defined as the percentage of correct predictions for the test
data. Precision is defined as the fraction of relevant examples
(true positives) among all of the examples that were predicted
to belong in a certain class, while recall is defined as the
fraction of examples that were predicted to belong to a class
with respect to all of the examples that truly belong in the
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class. Fscore is a way of combining the precision and recall
of the model, and it is defined as the harmonic mean of the
model’s precision and recall. It has a β factor, which indicates
how much more important the recall is than the precision
or vice-versa. For example, if the recall is considered to be
twice as important as precision, then β equals two, while
if both recall and precision have equal importance, then β

equals one, which is the standard F1score or usually known as
Fscore [16], [19].

D. TRAFFIC CLASSIFICATION AND PREDICTION
Traffic classification is an important process for telecom-
munication networks to observe a wide range of operations,
measurements and management activities [19]. In nano-
networks, traffic classification can be useful for performance
monitoring, resource provisioning, traffic prioritization, self-
configuration devices, network management, QoS and secu-
rity by identifying unknown traffic or detecting anomaly
behavior to maintain adequate nano-communication.

Generally, traffic classification techniques can be catego-
rized based on port number, payload, or host behavior, but
these techniques are considered traditional approaches, and
they are not widely applicable. As port-based techniques
are unreliable due to the use of dynamic port assignment,
tunneling and port number changes to avoid firewalls. While
payload-based techniques are computationally intensive and
complicated due to encryption. Similarly, host-based traffic
classification techniques are highly susceptible to routing
asymmetries. In contrast to these legacy approaches, machine
learning is the most widespread technique used for traffic
classification recently. As supervised and unsupervised,
ML has been successfully employed for traffic classifi-
cation, showing high accuracy and applicability to large
datasets [19].

Different studies in the literature provide analysis of traffic
classification based on machine learning and investigate QoS
support using different datasets. The authors in [20] proposed
a classification method to discover traffic characteristics
and dynamically assign service classes to IP packets.
They applied semi-supervised machine learning techniques,
considering packet characteristics such as the unbalanced
traffic distribution between classes. While the authors in [21]
used SVM to classify the network traffic in campus backbone
networks. In their study, SVM achieved reliable and accurate
results using biased and unbiased test samples. However,
they only analyzed one ML algorithm, neglecting other
algorithms.

The authors in [22] compared six supervised machine
learning algorithms for traffic classification in the back-
bone network. Their datasets contain Internet Service
Provider (ISP) data traffic, and they used principal component
analysis for feature extraction and analyzed its influence
on the classification results. While the authors in [23]
compared six supervised learning algorithms for traffic
classification. Their experiments were conducted using two
feature selection methods and five traffic classes. While the

authors in [24] proposed a traffic classification technique
for smart cities using four supervised machine learning
algorithms on datasets containing campus data traffic aiming
to improve the QoS in smart city networks.

In electromagnetic nano-networks, traffic prediction and
classification are active research fields. Exploring the traf-
fic features enables intelligent resource management and
provisioning. Different applications of nano-networks and
the heterogeneity of their nano-devices provide a high-level
diversity in the generated traffic types. This diversity results
in growing randomness in traffic and makes it increasingly
difficult to be accurately predicted and classified. Therefore,
the high-accuracy prediction of wireless traffic is important
to allow automatic network resource allocation with real-time
demands [25].

E. MACHINE LEARNING IN IoT AND IoNT DOMAINS
Rapid developments in hardware, software and commu-
nication technologies have facilitated the emergence of
Internet-connected sensor devices, which provide observa-
tions and data measurements from the physical world. In this
manner, the IoT and IoNT systems will be able to access raw
data from different resources over the network and analyze
this information to extract knowledge [17].

Since IoT and IoNT are among the most significant
sources of new data, data science provides a considerable
contribution to making their applications more intelligent.
Data science is a combination of different scientific fields
that use data mining, machine learning and other techniques
to find patterns and new insights from data by applying
analytics methods to particular areas, involving defining data
types such as volume, variety and velocity; data models such
as neural networks, classification and clustering methods.
Also, applying efficient algorithms that match the data
characteristics [17].

Due to the growth in the development of smart objects,
IoT and IoNT have enriched almost all aspects of our daily
lives and are continuously doing so with a diverse range of
novel, innovative and intelligent applications. Recently, there
has been a surge in the application of ML-based techniques
for various IoT and IoNT applications. These applications
include smart healthcare, smart cities, smart agriculture and
military services [26]. ML techniques have been adopted
to solve several challenges in IoT and IoNT. When a huge
number of sensors/nodes are randomly deployed in a nano-
network, vital issues need to be considered while designing
the network such as topology changes, communication link
failures, memory constraints of nano-sensors, computational
capabilities, decentralized management, localization, cluster-
ing, data aggregation, query processing, real-time routing,
data integrity and fault detection. Therefore, sophisticated
ML techniques make it possible to solve these issues
by allowing the nano-network to learn from the previous
example scenarios, adapt itself to the dynamic environment,
reduce the complexity and extend the network lifetime by
saving the energy of nano-nodes [27].
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Nano-technology in medicine has a recent notable impact
on hospital systems, where the placement of sophisticated
nano-scale devices inside the human body can provide remote
health monitoring and telemedicine services [10]. One of the
emergent applications of telehealth monitoring is the Internet
of Medical Things (IoMT), which integrates low-powered
nodes to collect, monitor, process and transfer bio-signals
providing interconnection of healthcare devices and sensors
to the Internet to enable a new class of applications relying on
medical data processing and storage [28], [29]. By implanting
these nano-scale devices inside the human body, a network
called Intrabody Nano-network (IBNN) appeared. This
network has tremendous potential for revolutionizing the
healthcare structure, as it has a wide range of medical
applications by collecting and monitoring physiological
parameters for diagnostic and treatment purposes [10], [30].

Over the past years, AI and ML have gained popularity as
promising techniques to overcome the complexity, scalability
and decision accuracy challenges of resource constraint
sensor networks, which can resolve complex problems and
provide simple and understandable solutions for dynamic
environments and distributed systems [13]. Authors in [13]
integrated the characteristics of artificial intelligence to boost
the computational intelligence of IBNN. They presented a
study motivated by the aforementioned constraints of IBNN
and discussed a novel data aggregation scheme for IBNN.

On the other hand, machine learning and deep learning
algorithms that are applied in the healthcare domain allow
health professionals to monitor, diagnose, focus and highlight
the region of the problem and propose the required and
accurate solution in the shortest duration possible [28].
In healthcare solutions, the integration of ML algorithms
is imperative. As smart-connected wearables collect data
on an unprecedented scale, ML techniques are used to
perform complex analysis, intelligent judgments and creative
problem-solving on the big data generated from these smart
wearables/sensors [26]. Moreover, with the aid of ML
algorithms, valuable information can be extracted from the
acquired data and draw useful inferences [31].

ML models can be trained and tested using large volumes
of data, then through inductive conclusion, they can assist
medical people in assessing risk and designing the appropri-
ate treatment, thus improving efficiency and reducing errors
compared to manual efforts. Also, monitoring, managing
and analyzing medical reports will be easier as ML models
can process large sets of biological data and detect specific
patterns and mutations involved in various diseases. As a
result, health monitoring services and consulting can be
provided digitally to a certain limit [31].

Authors in [32] collected a large volume of big data
with different types such as image, text and categorical data
through IoT devices and stored it in a secure cloud envi-
ronment that can be accessible by healthcare applications.
Then, they applied a new machine learning algorithm for
proceeding the learning process which maps the data into
two classes; normal class and disease affected. While the

authors in [33] proposed a traffic classification method for
smart cities in IoT networks to remove the manual selection
of network traffic features. Their method relied on DL.

Authors in [34] studied the ability to track the location and
monitor the health of the soldiers in real-time to know who is
lost and getting injured on the battlefield to reduce searching
time and minimize rescue operation efforts of the army
control unit. They proposed a systemwith a control unit using
the Global Positioning System (GPS) and Wireless Body
Area Sensor Networks (WBASNs) that enables tracking the
location, monitoring the health of soldiers and collecting
their body measurements such as temperature, heartbeat, etc.
In their model, the data comes from sensors while a GPS
receiver is transmitting wirelessly using a ZigBee module.
Their collected data is uploaded to the cloud for further
data analysis and predictions are achieved by the K-Means
Clustering algorithm.

Recent advances in artificial intelligence and machine
learning promise to address emerging communication sys-
tems, as they change the conventional operation and
structure of legacy networks in many aspects, such as
design, infrastructure management, cost reduction and per-
formance improvement [35]. ML techniques have been
recently involvedwith nano-scale communication to optimize
and enhance its performance. Generated datasets from
nano-communication systems are too vast and complex to
parse without computational assistance, so ML can play this
vital role effectively by analyzing and extracting new insights.
The employment of ML with nano-communication can be
classified intomultiple distinctive categories such as structure
and material design, signal processing and biomedicine
applications [14].

In electromagnetic nano-communication architecture [8],
Micro/nano-gateways are important devices to ensure the
interoperability between different communication protocols
and communication domains. They are responsible for encap-
sulation/decapsulation of packets, translation of addresses,
enabling data storage, providing traffic prioritization and
forwarding packets to allow proper communication tech-
niques between nano-devices themselves or the Internet [36].
As a result, these gateways process different data formats
and traffic patterns from various communication domains.
Accordingly, ML-enabled micro/nano-gateways will provide
massive communication facilities to the nano-network taking
into consideration the limited computing resources and
capabilities of nano-devices due to their nano-scale size [37].
Although big data analytics and machine learning have
been extensively researched, there is a lack of studies that
exclusively focus on the evolution of ML-based techniques
for big data analysis in the IoNT domains [26].

F. SUMMARY
Data-driven nano-network can be optimized by enabling
automatic analysis of the traffic volume and data measure-
ments generated from nano-sensors/devices. Because of the
complexity of nano-networks and their limited computing
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resources, special attention has been introduced to ML
methodologies to analyze and extract new insights supporting
nano-scale communications and their applications. Because
nano-sensors generate data in various types with different
packet formats towards the micro/nano-gateways, it is impor-
tant to develop a machine learning model that can handle
this heterogeneity and provide a proper traffic classification
scheme. This is a very important procedure that unleashes the
intelligence of the micro/nano-gateway and adds remarkable
advantages for nano-network communication. As illustrated
in Table 1, there are multiple works in the literature
discussing traffic classification using machine learning on
different datasets generated from various networks, such as
IP backbone networks, IoT and WBASN supporting various
applications. None of the reviewed papers discuss using
machine learning techniques to classify nano-network traffic
or support IoNT applications, which is the main motivation
behind the proposed work of this paper.

III. TRAFFIC GENERATION AND DATASET FEATURES
In this section, we propose the implementation of the
electromagnetic nano-network traffic generator and provide
a brief illustration of the generated dataset and its features.

A. THE PROPOSED TRAFFIC GENERATOR
We developed a packet generator to generate nano-network
traffic combining TCP and UDP traditional network traffic
to simulate the traffic received by a micro/nano-gateway. The
gateway receives both types of traffic from the nano-scale
communication side and the traditional network side. It is
worth noting that in AI/ML there is a heavy reliance on a real
dataset, as it has more certainty when compared to synthetic
data. However, the main reason why synthetic data is used
through a generation model is that synthetic data may be
more cost-effective and efficient than collecting real-world
data in some cases. At present, real-world nano-network
traffic is costly to collect due to the lack of availability
and the difficulty of having fully operational nano-sensors
work in functional nano-network. Accordingly, at the time of
simulating this model, there was no access to certain datasets
representing the real nano-network traffic and its packet
format. So, to overcome this challenge, and as the quality
of synthetic data is highly dependent on the quality of the
model that creates it, the design of the proposed nano-network
traffic generator has been motivated by an existing nano-
network simulator, i.e., NanoSim that is discussed in [38].
Hence, a synthetic dataset has been created and used
in the simulation. This synthetic data can mimic many
properties of authentic data from the NanoSim simulator,
especially the packet header format of the nano-sensor
payload.

NanoSim simulator is an event-based NS3 simulator used
for modeling electromagnetic nano-network communication
and its protocol stack. In this simulator, the message process-
ing unit creates random packets generated periodically with a
packet size adjusted by the end-user. The network layer adds

FIGURE 1. Nano-network message header format [38].

a network header independent of the routing technique, while
the MAC layer follows a certain strategy that has no kind
of control, hence the packet is transmitted from the network
layer to the physical interface of the nano-router directly
based on a technique called transparent-MAC [38].

In this simulator, the generated message from the
nano-device has a fixed header structure consisting of five
fields. They are the flag field, the source Dev-ID, the
destination Dev-ID, the packet-ID and the Time To Live
(TTL). Figure 1 illustrates the nano-network header packet
blueprint, where the flag field has been added to indicate
if the packet is forwarded to the micro/nano-gateway or
a nano-router. Source and destination Dev-IDs are set to
the Dev-ID of the local nano-machine and the receiver,
respectively. Dev-ID is a unique identifier, and it is assigned
to nano-devices, e.g., nano-gateway, nano-router and nano-
machine. The structure of the header added by the network
layer, as well as the value and the length of each field,
can be modified depending on the use case. The packet
ID is assigned by the message process unit sequentially,
whereas the TTL is set to a value between (100-1000), and
it is decreased by one after each hop. The high value of
TTL is considered under the assumption that a message
on a wireless nano-network can reach its destination after
traversing hundreds of nano-devices [38], [39]. Accordingly,
the generated bytes stream from a nano-router includes the
nano-network packet header associated with the encapsulated
payload, then this stream is transmitted through the physical
interface of the nano-router towards the micro/nano-gateway.

Our proposed traffic generator generates data flow, which
consists of multiple random packets composed of four
types. They are TCP packets, UDP packets and nano-
network packets, which can be classified into two types,
nano-to-nano-communication packets (NN0) and nano-to-
Internet-communication packets (NN1). The first type of
nano-packet represents the communication scenario between
nano-routers, i.e., when a nano-router transmits a packet to
another nano-router, while the second type of nano-packets
represents the communication scenario with the Internet, i.e.,
when a nano-router transmits a packet to the Internet or the
cloud. Figure 2 illustrates the flowchart of the methodology
used by the proposed traffic generator algorithm, which
provides the synthetic dataset used in our analysis.
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TABLE 1. Some of the proposed work in the literature discussing traffic classification using machine learning.

FIGURE 2. Flowchart represents the general structure of the algorithm
used by the proposed traffic generator.

B. DATASET FEATURES EXPLORATION
Input representation of the data is a key element to be
considered when building the ML model. We take two types
of raw input representations: packets and flows. Figure 3
illustrates the flow representation of the input data (N,m,n),
where (N) represents the number of flows, (m) represents
the number of packets and (n) represents the number of
bytes inside a certain packet. The generated dataset we
investigate here is composed of one flow, which consists

FIGURE 3. Flow representation of the input traffic.

of 300 packets or sample points. Each sample represents a
random packet received by the micro/nano-gateway whether
from the nano-network domain or the traditional network
domain. This synthetic dataset is used for training and
validation tests. Every sample consists of 17 features and one
label, which is the target output of the classifier.

Table 2 describes the specific set of 17 features, which
are computed for every sample/bin in the proposed dataset.
The set includes the number of collected packets and the
corresponding fields for each one. There are some features
related to nano-network traffic that are characterized by a
vector of features containing the source device identifica-
tion, the sender device identification, the next-hop device
identification, the packet identification, besides the flag
identification and time to live value. While other features
belong to the traditional network traffic, such as source
and destination MAC addresses, source and destination IP
addresses, transport protocol numbers, and finally, source and
destination port numbers. Moreover, other input values are
calculated from these fields based on the observation and
characteristics of each received packet, such as header size,
payload size and packet size.

Table 3 describes the label for every packet, which is
the desired output. They are classified into four categories.
Two categories are related to traditional network traffic, i.e.,
TCP and UDP packets, and the other two packets are related
to nano-network traffic, i.e., nano-to-nano-communication
packet and nano-to-Internet-communication packet.
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TABLE 2. Input features for micro/nano-gateway traffic classification and
prediction.

TABLE 3. Output labels for the micro/nano-gateway traffic classification
and prediction.

Feature selection primarily focuses on removing non-
informative features that are not useful or relevant for the
model in the classification problem. Intuition suggests that
the ttl, the packet_id and the payload are non-informative
features for the classification. While the payload_size,
the header_size, the packet_size, the source_dev_id, the
sender_dev_id, the next_hop_dev_id, the source_mac, the
destination_mac, the source_IP and the destination_IP are
the main features needed to classify the packet, whether it
is a nano-domain packet or a traditional network packet. Fur-
thermore, inside the nano-domain classification, the flag_id
plays a vital role in deciding whether the packet is a nano-
to-nano-communication packet (NN0) or a nano-to-Internet-
communication packet (NN1). Whereas features such as the
transport_protocol, the source_port, the destination_port, the
payload_size, the header_size and the packet_size are very
important to classify if the packet is TCP or UDP.

Data preprocessing is applied to provide cleaned, for-
matted and restructured data before using it with the ML
algorithms. As learning algorithms expect the input to be
numeric, some adjustments of certain non-numeric and
categorical features need to be converted. One popular way to
convert categorical variables is by using the one-hot encoding
scheme. This preprocessing step provides predictive power
for all learning algorithms. After categorical variables have
been converted into numerical features, all numerical features
have been normalized. The dataset (both features and their
labels) will be split into training and testing sets. In our
experiment, 75% of the data is used for training and 25% for
testing. Typically, the data is also shuffled into a random order

when creating the training and testing subsets to remove any
bias in the ordering of the dataset.

IV. PERFORMANCE EVALUATION OF LEARNING MODELS
In this section, we develop the tools and techniques
necessary for a model to make the micro/nano-gateway able
to classify the nano-network traffic properly. The model
will classify traditional traffic from nano-network traffic,
where traditional traffic can be classified into TCP or UDP
packets, while nano-network traffic can be classified into
nano-to-nano-communication domain packets or nano-to-
Internet communication domain packets. We investigate five
different algorithms, all of which are supervised learners
and determine which is best at modeling the data. These
models are decision tree classifier, support vector machines,
the K-nearest neighbors, random forest and naïve bayes.
We start by evaluating the performance achieved by the
five learning models and then present an optimization
technique for all approaches by tuning their corresponding
hyper-parameters. After that, a full comparison between all
approaches has been presented. For the sake of training and
testing, we consider 10-fold cross-validation in all the results
presented in this section. Parameters on each optimized
algorithm are calibrated based on the best-performance grid
search test.

In this simulation, we answer the question of which
type of machine learning model is optimal for the analysis
and classification of micro/nano-gateways traffic. This is
achieved by calculating the accuracy, Fscore and confusion
matrix for each model to quantify its performance. These
metrics are very useful in the analysis, as they describe how
good the model is at making predictions and classifications.
Moreover, we draw the learning curves for both training
and cross-validation sets to diagnose and visualize the
performance during the learning phase, i.e., to figure out how
much a machine learning model benefits from adding more
training data or samples, and whether the estimator suffers
from a high bias (underfitting) or high variance (overfitting).
We achieve these objectives by implementing the following
steps for each classifier:
• Calculate the accuracy and Fscore for the unoptimized
model and check its learning curves.

• Tune the corresponding hyper-parameters of the model.
• Calculate the accuracy and Fscore for the optimized
model and check its learning curves.

• Calculate the normalized confusion matrix for the
optimized model.

A. DECISION TREE CLASSIFIER
By fitting the decision tree classifier model, Figure 4
visualizes the learning curves of the unoptimized model
for both training and cross-validation sets as the size of
the training set increases. It is obvious that the model
goes to overfitting after almost 50 training points, showing
100% accuracy and Fscore for both training and testing sets.
Overfitting is a problem that a model can exhibit, where the
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FIGURE 4. Learning curves for unoptimized DTC model.

FIGURE 5. Learning curves for optimized DTC model.

model predicts very well the training data but poorly predicts
the testing set. Some reasons can lead to overfitting, such as
the complexity of the model for the data, and the existence of
many features with a small number of training examples.

In order to avoid overfitting, we manipulate the
hyper-parameters of the model using the grid search
optimization method to enhance its accuracy and Fscore.
We use maximum depth, minimum samples per leaf
and minimum samples per split as tuning parameters.
Figure 5 shows the learning curves of the optimized model.
By increasing the training model points/samples, the training
score and cross-validation score converge to almost a score
that equals 87% at reaching 110 training samples. With more
increase in training points, the DTC model will suffer from
overfitting.

After calculating the performance metrics for the opti-
mized model, the overall accuracy equals 87.11%, while
Fscore equals 82.29% for the training set. Meanwhile, for the
testing set, it shows 77.33% and 70.94% for the accuracy
and Fscore respectively. Moreover, the optimized values for
the hyper-parameters are; maximum depth equals 2, the

FIGURE 6. Normalized confusion matrix for optimized DTC model.

minimum samples per leaf equal 1 and the minimum samples
per split equal 2.

To dig deep into the out-performance of the model,
Figure 6 depicts the corresponding normalized confusion
matrix obtained with the DTC model. This shows that the
model perfectly classifies TCP, UDP andNN1 packets.While
it fails to recognize any NN0 packet, as it predicts all of them
to be NN1 packets. This means that the model can distinguish
traditional traffic from nano-network traffic correctly, but
it cannot determine the exact type of packet within nano-
domain communication.

B. SUPPORT VECTOR MACHINES
By fitting the support vector machine model, Figure 7 illus-
trates the learning curves for the unoptimized model. As the
training points increase, both the training and cross-validation
score will increase until it converges between (85%-90%) at
almost 150 training points. With more increase in training
points, the SVM model will suffer from overfitting. This
unoptimized model shows that the overall accuracy equals
87.11% and Fscore equals 82.29% for the training set, while
for the testing set it shows 77.33% and 70.94% for the
accuracy and Fscore respectively.
By tuning the hyper-parameters of the SVM model using

the grid search optimization method, we obtain better values
for the performance metrics. We use the C-parameter, kernel
and degree as hyper-parameters for the model. Figure 8
shows the learning curves of the optimized model. As the
training points increase, the training score decreases and the
cross-validation score increases without overlapping for all
training samples. After calculating the performance metrics
of the optimized model, the overall accuracy percentage
equals 91.11% and Fscore equals 90.11% for the training set.
While for the testing set, it shows 80% and 78.55% for the
accuracy and Fscore respectively. Moreover, the optimized
values for the hyper-parameters are; C-parameter equals 20,
the kernel is poly and the degree equals 2.
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FIGURE 7. Learning curves for unoptimized SVM model.

FIGURE 8. Learning curves for optimized SVM model.

Figure 9 shows the normalized confusion matrix for the
optimized SVM model. This shows that the model perfectly
classifies all traditional network traffic, i.e., TCP and UDP
packets. While it provides correct predictions for 82% of the
received NN1 packets, and only 24% of the received NN0
packets. This means that the model can distinguish traditional
traffic from nano-network traffic correctly, however it gives
some faulty predictions for the packet class of nano-domain
communication. It is obvious that the model is biased more
towards the NN1 packet class, and it predicts 76% of the NN0
class to be NN1.

C. THE K-NEAREST NEIGHBORS
By fitting the K-nearest neighbors model, Figure 10 shows
the learning curves for the unoptimized model. It shows that
as training points increase, the score of both the training
and cross-validation sets increases without overlapping for
all training points. The unoptimized mode shows accuracy
equals 89.33% and Fscore 88.77% in the training set, while
for the testing set it shows 82.66% and 82.06% for accuracy
and Fscore respectively. After manipulating the number of
neighbors as a hyper-parameter for the KNN model, the
performance metrics of the model have been enhanced.

FIGURE 9. Normalized confusion matrix for optimized SVM model.

FIGURE 10. Learning curves for unoptimized KNN model.

Figure 11 shows the learning curves of the optimized KNN
model, the model can avoid overfitting and underfitting for
all training points with overall accuracy equals 91.11% and
Fscore equals 90.88% in the training set, while for the testing
set it shows 82.66% and 82.06% for accuracy and Fscore
respectively. Besides, the optimized number of neighbors
equals 3.

Figure 12 shows the normalized confusion matrix for the
optimized KNN model. It shows that the model classifies
perfectly TCP and UDP packets. While it provides correct
predictions for 82% of the received NN1 packets, and 35%
of the received NN0 packets. This means that the model
can distinguish traditional traffic from nano-network traffic
correctly, however it gives some faulty predictions for the
packet class of nano-domain communication. The model
is biased towards the NN1 packet class, but with better
performance than the optimized SVM model. Because the
KNN model provides correct predictions for 35% of the
received NN0 packets, but it fails to classify the rest of them
successfully, which are predicted wrongly under the NN1
class.
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FIGURE 11. Learning curves for the optimized KNN model.

FIGURE 12. Normalized confusion matrix for optimized KNN model.

D. RANDOM FOREST
By fitting the random forest model, Figure 13 visualizes the
learning curves for the unoptimized model, which goes to
overfitting at 100 training points for both training and cross-
validation sets. The model shows 100% overall accuracy
and Fscore for both training testing sets. To avoid overfitting,
we manipulate some of the corresponding hyper-parameters
of the RF model such as maximum depth, minimum samples
per leaf and minimum samples per split.

Figure 14 shows the learning curves for the optimized RF
model with overall accuracy equals 87.11% and Fscore equals
82.29% in the training set, while for the testing set it shows
77.33% and 70.94% for accuracy and Fscore respectively.
Moreover, the optimized values for the hyper-parameters are;
maximum depth equals 2, the minimum samples per leaf
equal 9 and the minimum samples per split equal 8.

Figure 15 shows the normalized confusion matrix for the
optimized RF model. This shows that the model perfectly
classifies TCP, UDP and NN1 packets. While it fails to
recognize any NN0 packet, as it predicts all of them to be
NN1 packets. This means that the model can distinguish

FIGURE 13. Learning curves for unoptimized RF model.

FIGURE 14. Learning curves for optimized RF model.

FIGURE 15. Normalized confusion matrix for optimized RF model.

traditional traffic from nano-network traffic correctly, but it
cannot determine the exact type of packet within the nano-
domain communication, which is the same case as the DTC
model.
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FIGURE 16. Learning curves for unoptimized NB model.

FIGURE 17. Learning curves for optimized NB model.

E. NAÏVE BAYES
By fitting the naïve bayes model, Figure 16 illustrates the
learning curves for the unoptimized model, which goes
to overfitting showing 100% accuracy and Fscore for both
training and testing sets after almost 30 training points.

After manipulating the hyper-parameter smoothing of the
NB model, Figure 17 shows the learning curves for the opti-
mized NB model. By increasing the training points, the
score of the training set is decreased while the score of the
cross-validation set is increased for all training points until
they converge around 96%. The NB model shows that the
overall accuracy equals 97.77% and Fscore equals 79.73% in
the training set, while for the testing set it shows 90.66%
and 90.58% for accuracy and Fscore respectively. Moreover,
the optimized values for smoothing hyper-parameter equals
0.0001.

Figure 18 illustrates the normalized confusion matrix for
the optimized NBmodel. This shows that the model perfectly
classifies all TCP, UDP and NN1 packets. While it provides
correct predictions for 59% of the total received NN0 packets.
This means that the model can distinguish traditional traffic

FIGURE 18. Normalized confusion matrix for optimized NB model.

FIGURE 19. Accuracy and Fscore for testing dataset of the optimized ML
models.

from nano-network traffic correctly, moreover it provides
quite reasonable predictions for the packet class of the
nano-domain communication. The NB model provides better
performance compared to the SVM and KNN models, as it
can predict 59% of the received NN0 packets, but it fails
to classify the rest of them (41%) successfully, which are
predicted wrongly under the NN1 class.

Table 4 provides a summarized comparison between
accuracy and Fscore for all optimized and unoptimized five
models, while Figure 19 visualizes the accuracy and Fscore
for the testing set of all optimized models. It is obvious
that both the optimized NB and KNN models provide a
better fit for the micro/nano-gateway traffic classification
problem with higher accuracy and Fscore values from DTC,
SVM and RF models. In addition, both models show a good
fit for the dataset during the training and cross-validation
phases without overfitting or underfitting for all training
bins/samples. However, the NB model outperforms the KNN
model, as it provides better accuracy, Fscore and normalized
confusion matrix. Hence, the NB model is the best fit for the
micro/nano-gateway traffic classification problem.
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TABLE 4. Comparison between accuracy and Fscore for optimized and
unoptimized ML models.

V. CONCLUSION AND FUTURE WORK
AI/ML integration with different levels of telecommunication
networks enables operators to predict information, adapt
to network changes and manage network resources to
achieve a high level of performance targets. Empower-
ing nano-networks with AI/ML functionalities will make
a dramatic improvement in their operational techniques,
as ML plays a significant role in shaping electromag-
netic nano-network functionalities in resource management,
monitoring and prediction. In this paper, we develop a
nano-network traffic generator to generate nano-network
packets combined with traditional background traffic, then
we employ five supervised ML algorithms to accurately
model and classify micro/nano-gateway traffic using the
generated synthetic dataset. The main objective is to
construct a model that accurately classifies nano-network
traffic received by a micro/nano-gateway. The dataset is
collected from the developed packet generator, which gen-
erates nano-packets representing the nano-network traffic
associated with background traffic composed of multiple
TCP and UDP packets that represent traditional traffic.
We have demonstrated the outstanding performance of the
DTC, SVM, KNN, RF and NB algorithms for the analysis
of traffic received by micro/nano-gateway from both macro
and nano wireless communication domains. Performance is
evaluated for all models in terms of global classification
accuracy, i.e., correctly classified instances, Fscore, learning
curves and normalized confusion matrix. Both NB and KNN
models showed in general better results in terms of accuracy
and prediction than DTC, SVM and RF, however the NB
model is nominated to be the best ML model that fits
the traffic classification problem due to its higher diagonal
confusion matrix. Therefore, the NB model represents a
very appealing ML model for electromagnetic nano-network
traffic analytics as results suggest it to be the most accurate
to address this problem.

Our future work will look at more complex models based
on ensemble learning methods, which use multiple learning
algorithms to obtain better predictive performance than could
be obtained from any of the learning algorithms, hence
expanding the corresponding ML studies to improve the
detection and prediction accuracy with more enhancement in
the performance evaluation metrics.
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