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Abstract—This paper aims to estimate the information between
two random phenomena by using consolidated second-order
statistics tools. The squared-loss mutual information, a surrogate
of the Shannon mutual information, is chosen due to its property
of being expressed as a second-order moment. We first review the
rationale for i.i.d. discrete sources, which involves mapping the
data onto the simplex space, and we highlight the links with
other well-known related concepts in the literature based on
local approximations of information-theoretic measures. Then,
the problem is translated to analog sources by mapping the
data onto the characteristic space, focusing on the adaptability
between the discrete and the analog case and its limitations.
The proposed approach gains interpretability and scalability for
its use on large data sets, providing a unified rationale for
the free regularization parameters. Moreover, the structure of
the proposed mapping allows resorting to Szegö’s theorem to
reduce the complexity for high dimensional mappings, exhibiting
a strong duality with spectral analysis. The performance of the
developed estimators is analyzed using Gaussian mixtures.

Index Terms—Data analytics, Canonical correlation analy-
sis, Squared-loss mutual information, Characteristic function,
Information-theoretic learning.

I. INTRODUCTION

ENTROPY and mutual information, introduced by Shan-
non in 1948, are well-known concepts with clear op-

erational significance in the field of information theory and
communications that establish fundamental limits in data com-
pression and data transmission [1]. More generally, Kullback-
Leibler (KL) divergence (also called relative entropy) is a
dissimilarity measure between distributions that includes the
notion of mutual information. In the last decades, some
researchers have used entropy, mutual information, and diver-
gence in a wide class of areas beyond communications, such
as data science, machine learning, neuroscience, economics,
biology, language, and other experimental sciences. These
quantifiers of information have proven their utility as tools for
measuring randomness, dependence, and similarity of random
phenomena [2], [3], substituting or working together with
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the conventional statistical tools of variance and covariance.
As a prominent example, the field of information-theoretic
learning [4] cuts across signal processing and machine learning
by reviewing the learning process under the umbrella of
information theory. This new perspective of knowledge discov-
ering provides the guidelines for the design of nonparametric
universal tools for data analytics [5]. In particular, the wish for
interpretability has become a particularly challenging aspect
in practical applications of machine learning systems due to
their lack of ability to explain their actions to humans [6].
Although these applications exhibit impressive capabilities, the
development of tools for measuring information can provide
ways to diagnose in the case of failures.

By delving into fundamental concepts of information theory
and statistical signal processing, this paper aims at develop-
ing insightful tools for measuring meaningful indicators of
the amount of information contained in raw data with the
objective of leveraging classical and consolidated statistical
signal processing techniques based on second-order statistics.
The main contributions of this work are the following:

1) To review the suitability of the squared-loss mutual in-
formation surrogate for both discrete and analog sources,
focusing on its inherent property of being expressed as
a second-order statistic, and contextualizing in terms
of similar works. We also review its relationship with
mutual information in the small dependence regime.

2) To link the problem of estimating information with
the classical problem of Canonical Correlation Analysis
(CCA), a widely used tool in many fields of statistical
signal processing. By translating the problem of estimat-
ing the squared-loss mutual information to the problem
of estimating covariance and correlation matrices, the
consistency of the estimator is ensured, at least for
discrete sources.

3) The proposal of an explicit mapping from analog sources
to complex steering vectors based on the character-
istic function. This specific transformation leads to a
computationally efficient alternative to the Kernel CCA
(KCCA) and its mechanism for regularization.

4) To provide interpretability to the problem of estimating
information and its regularization, thus endowing the
methodology with insight on the selection of its free
parameters. The proposed structure for estimation allows
for establishing the link between the data size and the
degree of regularization without the need to restore to a
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bias-variance trade-off.
5) The proposal of a reduced complexity approximate es-

timator resorting to the asymptotic behavior of Toeplitz
matrices.

A. Related works and overall organization

While the estimation of information measures such as
mutual information is a challenging problem, its literature has
a long and rich history. Traditionally, plug-in methods have
been widely used for estimating entropy and divergence. These
methods are based on first estimating the distributions of the
observed data and incorporating them into the functional of
interest in a second stage [7]. However, plug-in methods are
generally susceptible to estimation errors when dealing with
random variables with long tails in their distributions [8].
Estimators based on partitioning the observation space have
shown good results by smartly adapting the partitions to the
data samples [9], with no requirement of smoothness or tail
conditions, but a penalty term to reduce the bias is required.
Similarly, the estimators based on the nearest neighbor algo-
rithm provide a different approach on the partitioning criterion,
which is particularly useful for high-dimensional data [10].
These estimators perform well for a small choice of k neigh-
bors, but they can be time consuming for large data sets. A
more detailed guide of empirical estimators has been recently
provided in [3], and for analog sources in particular in [2].
Surrogates of entropy, KL divergence, and mutual information,
such as Rényi entropy, Rényi divergence, and χ2-divergence
have also been of particular interest for estimation purposes.
The cases of second-order Rényi entropy and divergence cope
particularly well with plug-in estimates, which has been shown
in multiple applications [4], [11]. Regarding the surrogates of
mutual information, the estimation of the Squared-Loss Mutual
Information (SMI) has been proposed in [12] by directly
estimating the density ratio between the joint and the product
of marginal probability density functions, albeit its parameters
need to be selected through cross-validation.

Concerning the related works, the presented paper is an
extension of the main ideas briefly provided by the authors
in [13], where a first approach to estimating the SMI was
presented. The idea of local approximations of information
measures exposed in this paper is very similar to the linear
information coupling approach proposed in [5], [14], which
was used there as a tool for developing insights on otherwise
intractable problems in the field of communications. The
study of the modal decomposition of distributions and the
measurement of information through CCA in [15] is parallel
to the development provided in this article. However, here we
focus on their estimation by proposing a particular feature map
in the case of analog sources.

The decomposition of the SMI as the sum of correlation
measures between two transformed random variables is pro-
vided in [17], called the Principal Inertia Components (PICs).
The relationship between the largest PIC and the maximal
correlation coefficient is also provided. However, while in [17]
the focus is on discrete data and privacy applications, the
derivations in this paper concern the estimation of the SMI

itself. The estimation of these features is also studied in [16],
although focused on the information-theoretic interpretation of
deep neural networks.

The proposed method can be cast as a primal form of the
KCCA [18], which uses the dual model by means of the kernel
trick. Thus, we gain intuition and scalability of the overall
data processing by performing a measure of correlation on
the feature space rather than in the infinite-dimensional space
[19]. This approach is particularly useful if the feature space
dimension is smaller than the sample size. Moreover, in [20]
it is suggested that the right choice of mapping function leads
to a better representation of the data in the feature space,
enabling to capture as much information as possible with a
reduced dimensional mapping. The proposed statistic based on
a Frobenius norm of a coherence matrix is related to the local
test proposed in [21] for Gaussian vectors, with the difference
that the results in this article apply to any kind of data
mapped on a specific feature space. The regularization idea
based on Gaussian convolutions is inspired on [22]. Finally,
the use of Szegö’s theorem exploiting the analogy between a
probability density function and a power spectral density was
also explored in [23] for KL divergence estimation by using
autoregressive models for the densities.

This paper is organized as follows. Section II presents an
overview of the SMI and finishes with a short outline of
the proposed overall strategy. Then, Section III focuses on
discrete sources and shows the fundamental link between the
proposed surrogate and classical second-order statistics. Once
the structure of the problem is unveiled, Section IV moves to
analog sources along with the exposition of insightful tools for
regularization and complexity reduction. The performance of
the proposed estimators is illustrated by computer simulations
in Section V, and Section VI summarizes the main conclusions
of this work.

B. Notation

Column vectors: bold-faced lower case letters. Matrices:
bold-faced upper case letters. [A]n,m: element at the n-th
row and m-th column of matrix A. [a]n: [a]n,1. [a]: diagonal
matrix with diagonal elements [[a]]n,n = [a]n. (.)T : transpose.
(.)H : Hermitian transpose. tr(A): trace. ||.||: Frobenius or Eu-
clidean norm of a vector, matrix or function. |.|: absolute value
of a complex number, or cardinality of a set. A ∈ RN×M : real
matrix of dimension N ×M . A ∈ CN×M : complex matrix of
dimension N ×M . a ∈ RN : a ∈ RN×1. a ∈ CN : a ∈ CN×1.
R+: set of positive real numbers. x ∼ N (µ,R): x is a real
Gaussian random vector of mean µ and covariance matrix R.
x ∼ CN (µ,R): x is a complex Gaussian random vector of
mean µ and covariance matrix R. Ep: statistical expectation
operator (Ep[f(x)] =

�
fdP ), where p is the mass function (or

density function for analog variables), and P is the probability
measure (or the cumulative distribution function for analog
variables). â: an estimate of a. ⟨x(l)⟩L = L−1

∑L
l=1 x(l): L-

th length sample mean operator. ID: D ×D identity matrix.
0D: D × 1 vector containing all zeros. 1D: D × 1 vector
containing all ones. 1a: indicator function (1a = 1 if a is true,
and 1a = 0, otherwise). A1/2: Hermitian square root matrix of



the Hermitian matrix A. A−1/2: Hermitian square root matrix
of the Hermitian matrix A−1. aα: element-wise power of a
vector. αa: element-wise power of a scalar. aTα = (aα)

T .
Toe(c): Toeplitz-Hermitian matrix constructed from its first
column c. ⊙: Hadamard product. ∗: convolution operator. δmn:
Kronecker delta. ⌈x⌉: ceiling function.

II. INFORMATION-THEORETIC MEASURES FOR DATA
ANALYTICS

We begin by providing the rationale for identifying a
surrogate that presents the desired properties for estimation.
The derivation of the surrogate from its original measure,
the Mutual Information (MI), is briefly addressed, and the
relationship between both information measures is highlighted.
After that, we outline the key ideas and the concrete goals
of the paper. Through all the article, we will assume that
pX(x), defined on a set X , is either a mass function (for
discrete sources) or a square-integrable density function (for
continuous sources) associated with the random variable X .

A. Squared-loss mutual information as a surrogate

Consider two random sources X and Y defined on the
sets X and Y . The Pearson χ2-divergence from pXY (x, y)
to pX(x)pY (y), both defined on the product set X × Y , is
given by

Dχ2 (pXY ||pXpY ) = EpXY

[
pXY (x, y)

pX (x) pY (y)

]
−1 = Is (X;Y ) ,

(1)
where Is (X;Y ) will be referred to as the Squared-loss Mutual
Information (SMI), a term introduced in [29] for feature
selection1. Alternatively, we can express the SMI as

Is (X;Y ) = EpXY

(pXY (x, y)− pX (x) pY (y)√
pXY (x, y) pX (x) pY (y)

)2


=

∥∥∥∥pXY − pXpY√
pXpY

∥∥∥∥2 , (2)

which will be the definition used in this article. For a more
in-depth exposition of (2), the reader is referred to Appendix
A.

The SMI is also referred to as the mean-square contingency,
a term characterized by Pearson in [31], and also studied by
Rényi as a measure of dependence in [32]. The SMI can
also be deduced from the called normalized cross-covariance
operator (see [33], Eq. (9)), which corresponds to the kernel-
free integral expression that is obtained from measuring de-
pendence between two random variables through the Hilbert-
Schmidt norm of a cross-covariance operator. This alternative
way is of particular interest since it establishes a clear link
between second-order statistics and the SMI, provided that
the data is mapped onto certain feature spaces, as we will see
in the next section.

1Although some researchers have defined the SMI as half of the magnitude
of (2) [12], in this paper we will strictly define the SMI as it resolves from
the χ2-divergence. The half magnitude may be justified as closing the gap
with the MI in the low dependence regime, but it then loses its physical
significance.

In relation to other known measures of statistical depen-
dence, the SMI is lower-bounded by

Is (X;Y ) ≥ I2 (X;Y ) ≥ I (X;Y ) , (3)

where I2(X;Y ) is the second-order Rényi mutual information
and I(X;Y ) is the Shannon MI. Since

I2 (X;Y ) = ln (1 + Is (X;Y )) , (4)

the upper bound of I2(X;Y ) is directly obtained from the
fundamental logarithm inequality ln(1 + x) ≤ x. Meanwhile,
the strict inequality (>) of the MI is a consequence of
the strict concavity of ln(.) for pXY (x, y) ̸= pX(x)pY (y).
The equality (to zero) of both bounds is achieved only if
pXY (x, y) = pX(x)pY (y)

2. This definition of I2(X;Y )
is just the second-order Rényi divergence between the joint
distribution and the product of the marginal distributions [24],
which is in agreement with the definition in [25]. However,
note that the characterization of the Rényi mutual information
from the Rényi divergence can be accomplished differently
[26]–[28].

Given that I2(X;Y ) is an explicit and monotonic function
of Is(X;Y ) from (4), there is no practical difference between
them in terms of computational complexity from data. For this
reason and clarity, we will focus only on the SMI throughout
this paper, having in mind that a tighter upper bound of
I2(X;Y ) can be obtained from Is(X;Y ) via (4) if it were
required for a particular application. It is also worth noting
that, while the MI and the second-order Rényi MI satisfy
the additivity property for independent (i.e. multiplicative)
components, the SMI does not, given that the χ2-divergence
also does not satisfy it. Lastly, by following the general data
processing inequality (see, for example, [34]), the SMI inherits
the invariance property to nonlinear invertible transformations
of the data from the second-order Rényi mutual information
(Rényi divergence). This property constitutes a key point of
the article, as we will rely on this property for estimation
purposes.

B. Local approximation of mutual information

Once we have reviewed the surrogate that we propose for
estimation, we are interested in further contextualizing its
relationship with the MI. In this subsection, we review the
property of the SMI of being a local approximation of the
MI. This approximation becomes relevant for small values of
dependence between random variables, which is a prominent
case for applications in the context of Euclidean information
theory [14].

Consider that pXY (x, y) and pX(x)pY (y) are close to each
other, that is pX(x)pY (y) = pXY (x, y) + ϵ∆(x, y) for some
small quantity ϵ, where ∆(x, y) is defined on the set X × Y
and constrained to have null area. Without loss of generality,
we will particularize the MI and SMI from the KL and χ2

divergences, since they are the measures we are concerned
about. Using the Taylor expansion of ln((1+α)−1) up to the

2Note that these bounds follow from the χ2, Rényi and KL divergence
bounds, as can be seen in [24].



second order, i.e. −α + α2/2 + O(α3), we can write the MI
as follows:

I(X;Y ) =D (pXY ||pXY + ϵ∆)

=EpXY

[
ln

pXY (x, y)

pXY (x, y) + ϵ∆(x, y)

]
=− ϵEpXY

[
∆(x, y)

pXY (x, y)

]
+

1

2
ϵ2EpXY

[(
∆(x, y)

pXY (x, y)

)2
]
+O

(
ϵ3
)
. (5)

The first term is null since ∆(x, y) sums up zero, which
implies that

I (X;Y ) =
1

2
ϵ2EpXY

[(
∆(x, y)

pXY (x, y)

)2
]
+O

(
ϵ3
)
. (6)

Let us now examine the local behavior of the SMI. Using
the Taylor expansion of (1 + α)−1 up to the first order, i.e.
1− α+O(α2), we can write the SMI in (2) as

Is (X;Y )

= Dχ2 (pXY ||pXY + ϵ∆)

= EpXY

[
(−ϵ∆(x, y))

2

pXY (x, y) (pXY (x, y) + ϵ∆(x, y))

]

= ϵ2EpXY

[(
∆(x, y)

pXY (x, y)

)2(
1− ϵ∆(x, y)

pXY (x, y)
+O

(
ϵ2
))]

= ϵ2EpXY

[(
∆(x, y)

pXY (x, y)

)2
]
+O

(
ϵ2
)
. (7)

From (6)&(7), the following fundamental result can be
stated:

I (X;Y ) =
1

2
Is(X;Y ) +O(ϵ3), (8)

which means that half of the SMI, that is 1
2Is, constitutes

a local approximation of the MI for close distributions. This
observation is important because while Is upper-bounds the
MI, 1

2Is is instead a local approximation, but not an upper
bound.

The approximation of the SMI depicted in (8) is also studied
as a relevant scenario in multiple related works. For instance,
in [35] the approximation is analyzed in the problem of co-
clustering contingency tables. On a more general note, we
are particularly interested in the local approximations of the
KL divergence and MI in [14] under the context of Linear
Information Coupling (LIC) problems and Euclidean informa-
tion theory. The main motivation is to translate information
theory problems into linear algebra problems, thus avoiding
computational and mathematical bottlenecks. Likewise, the
relation between MI and SMI under local approximations
has also been expressed in [15] (Eq. (61) and corresponding
footnote), although more focused on providing an insightful
measure of local information geometry. The derivation of the
local approximation of the MI as a simpler problem where only
linear algebra is involved is akin to the objective of this article,
where the observation of the SMI as a second-order statistic
opens the possibility of translating the problem of estimating
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Fig. 1. Half of the SMI versus the MI for multiple distributions. The Student’s
t-distribution has ν = 10 degrees of freedom and the Pareto has location
parameter θ = 1 for both marginal distributions. The GMM distribution and
its parameters are detailed in Section V.

information to a measure of the correlation between random
variables, which is indeed a linear statistical dependency.

In order to illustrate the local approximation in (8), Figure
1 shows the closeness between half of the SMI and the MI
of multiple distributions when they become close to indepen-
dence. While the MI of the Student’s t-distribution and the
Pareto distribution is known (see [36] and [37], respectively),
the SMI of both distributions is unknown. Nevertheless, their
SMI can be estimated by a genie-aided estimator based on
the empirical average of the function of interest under the
knowledge of the marginal and joint distributions [2]. The
Gaussian MI is known with −0.5 ln(1− ρ2) and its SMI can
be obtained analytically and equals to ρ2/(1 − ρ2), where ρ
is the Pearson correlation coefficient. The Gaussian Mixture
Model (GMM) shown in the figure is based on the model
shown in Section V, whose parameter λ determines different
distributions with varying degrees of the local approximation
in (8), as can be seen in the figure. For λ = 0, the SMI is
ρ4/(1− ρ4), otherwise, both MI and SMI are computed with
the genie-aided estimator.

C. Summary of the key idea

After the short review presented above, we can summarize
the goal of this paper. The desired surrogate (2) has been
exhibited, which has the following properties:

1) The surrogate is an upper bound of an information-
theoretic measure of well-known operational meaning.
By being an upper bound, we make sure that relevant
information will not be lost by using surrogates for data
analytics.

2) Half of the magnitude of the surrogate becomes close
to a well-known information measure for the critical
scenario of small dependence. It is then a meaningful
measure in applications that require local approxima-
tions.
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Fig. 2. Block diagram of the proposed data analytics strategy.

3) The surrogate can be expressed as a second-order mo-
ment, that is, as the expectation of a squared ratio of
densities, and no logarithm is involved. The implication
is that, by designing adequate preconditioning of the
data, classical second-order analysis techniques should
be enough for estimating information.

The purpose of what follows is to propose a universal mapping
strategy from the data onto a high-dimensional feature space,
such that the information can be extracted from that space
by standard second-order signal processing techniques. The
ultimate goal is to provide a rationale for the two-step data
analytics strategy depicted in Figure 2. First, we analyze
complex dependencies between two data sources by mapping
L samples of the bivariate data onto a high-dimensional
space3. The dimension N should be high enough to make sure
that the maximum amount of complex associations potentially
present in the data are captured, but it should be sufficiently
small to provide reasonable computational complexity, as well
as regularization capabilities. After that, the second stage is
based on a second-order analysis that is focused on describing
linear dependencies between sets of variables.

III. DISCRETE SOURCES: SECOND-ORDER STATISTICS ON
THE SIMPLEX FEATURE SPACE

First, we focus our attention on discrete sources and the
mapping onto the feature space. The objective is to determine
the adequate preconditioning of the data and its restrictions,
and to contextualize the rationale in terms of similar works.
The results exhibited here will serve as a bridge for the pursuit
of estimating information in the case of analog sources.

Consider that X and Y are discrete random variables with
alphabets X = {xn}n=1,2,...,N and Y = {ym}m=1,2,...,M ,
respectively. Let us define the marginal probability column
vectors p̃ ∈ RN

+ and q̃ ∈ RM
+ with elements [p̃]n = Pr{X =

xn} = pX(xn) and [q̃]m = Pr{Y = ym} = pY (ym).
Similarly, we define the joint probability matrix J̃ ∈ RN×M

+

as [J̃]n,m = Pr{X = xn;Y = ym} = pXY (xn, ym). Then,
the SMI defined in (2) can be expressed as follows:

Is (X;Y ) =

N∑
n=1

M∑
m=1

[
C̃
]2
n,m

= tr
(
C̃T C̃

)
=
∥∥∥C̃∥∥∥2 , (9)

3In this article, we will define the feature space on the complex field
given that the characteristic function will be used as the mapping function
[38]. Nevertheless, a mapping into the space of real numbers can be used if
necessary.

where
C̃ = [p̃]

−1/2
(
J̃− p̃q̃T

)
[q̃]

−1/2
. (10)

Matrix C̃ ∈ RN×M
+ in (10) will be referred to as coherence

matrix due to its intimate link with the well-known CCA tool
in statistical signal processing [39]. The form of matrix C̃ is
also encountered in the areas of information theory under the
context of LIC problems [14] and Hirschfeld-Gebelein-Rényi
(HGR) maximal correlation concept [32], [40]. To see these
links, let us express

C̃ =
(
B− q̃1/2p̃T/2

)T
, (11)

where
B = [q̃]

−1/2
J̃T [p̃]

−1/2
. (12)

We can write the joint probability mass function matrix as
J̃T = W[p̃], where W ∈ RM×N

+ is the channel transition
matrix defined by the conditional probabilities [W]m,n =
Pr{Y = ym|X = xn}. Then we can express (12) as follows:

B = [q̃]
−1/2

W [p̃]
1/2

. (13)

This matrix is called the Divergence Transition Matrix (DTM)
of a discrete channel and it plays a fundamental role as a tool
for translating information theory problems into linear algebra
problems [14], [41]. Moreover, matrix C̃ is the same as the
Canonical Dependence Matrix (CDM) studied in [15] within
the framework of modal decomposition of the joint proba-
bility mass function matrix. In this last case, the authors are
interested in the universal features that define the underlying
relationships among high-dimensional data. This paper strives
to accomplish a similar rationale by translating a measure of
information into a second-order statistics problem, thus with
linear algebra in mind. However, while in [15] it is pursued
as a matter of describing low-dimensional features, especially
for the study of local approximations between distributions, in
this work it is addressed as a mapping onto a high-dimensional
space in order to extract those linear features, akin to kernel
methods for measuring dependence [42].

Hereafter, we describe some important properties of the
DTM and CDM matrices in the framework of this paper.
In particular, in [14] it is shown that the maximum singular
value of the DTM is σ1 = σmax(B) = 1, corresponding to
right and left singular vectors p̃1/2 and q̃1/2, respectively.
The second largest singular value of B corresponds to the
largest singular value of matrix C̃ [15], thus it is the second
and subsequent singular values and vectors those who become
fundamental in LIC problems. As a result from [14] and [15],
the following proposition encompasses the implications of the
singular values of C̃ with the objective of estimating the SMI:

Proposition 1. Let {λi}i=1:min(N,M) be the singular values
of the coherence matrix C̃ in (10). The largest singular value
corresponds to the second largest singular value of matrix B
from (13), and the minimum singular value is zero. Therefore,
the squared-loss mutual information in (9) is upper bounded
by min(N,M)− 1.

Proof: Given that matrix B has singular values σ1 ≥
σ2 ≥ ... ≥ σmin(N,M) ≥ 0, where σ1 has p̃1/2 and q̃1/2 as



left and right singular vectors, it follows directly from (11) that
λmax = σ2. From (9) and the definition of the Frobenius norm,
it can be easily seen that the SMI requires the summation
of all singular values of matrix C̃T C̃, which correspond to
the squared modulus of the singular values of C̃. Since the
maximum singular value is 1 and the minimum is 0, we obtain
the stated upper bound on the SMI.

The intuition behind this proposition is that p̃ and q̃ define
the probability simplex spaces constrained to the unit-sum∑N

n=1 [p̃]n = 1 and
∑M

m=1 [q̃]m = 1. Hence, the contribution
of one of the elements is lost (i.e. a singular value becomes
0) and only N − 1 or M − 1 are relevant. This notion will
become meaningful in the next subsection, where the mapping
onto the simplex contains the core idea of Theorem 1.

A. Relation to Canonical Correlation Analysis
We have seen that the unique expression of the SMI is

featured in multiple areas of work and inherits some interesting
properties. Most remarkably, no logarithm is involved in its
definition, and C̃ is related to the standard CCA method [43].
However, (9) does not contain covariance matrices as those
required by the CCA. In the sequel, we unveil this relation
by defining the required mapping in order to establish the full
link between the SMI and the CCA. This link, jointly with
the ideas provided in this subsection, is a particular derivation
from the PICs between two discrete random variables provided
in [17]. In this article, we will leverage these concepts to
magnify the discussion of the SMI as a second-order statistic,
and to focus on the structure and rank of the given mapping
matrices, instead of the more general view of the SMI as a
decomposition of the dependence among random variables.

First, let us express matrix C̃ as a function of second-order
statistics computed from the available data consisting of a
sequence of L independent and identically distributed (i.i.d.)
pairs {x(l), y(l)} ∈ X ×Y for l = 1, 2, . . . L. Let ˆ̃p, ˆ̃q and ˆ̃J
be estimates of the marginal and joint mass functions. From
(9) we define the estimator of the SMI as

Îs (X;Y ) =
∥∥∥ ˆ̃C∥∥∥2 , (14)

where ˆ̃C = [ˆ̃p]−1/2(ˆ̃J− ˆ̃pˆ̃qT )[ˆ̃q]−1/2 is the sample coherence
matrix. To be specific, let us define the full-rank 4 data matrices
Dx (N × L) and Dy (M × L) as follows:

[Dx]n,l = 1x(l)=xn
, [Dy]m,l = 1y(l)=ym

. (15)

These data matrices are the result of a one-to-one mapping
process from the elements of the sources to the canonical basis
of dimension equal to the set cardinality. That is, column l of
matrix Dx (or Dy) is formed by N − 1 (or M − 1) zeros
and a one in position n (or m). The mass function estimates
required in (14) can be computed through first and second-
order statistics as follows:

ˆ̃p =
1

L
Dx1, ˆ̃q =

1

L
Dy1,

4The data matrices are assumed full-rank for clarity, implying that L is
sufficiently large such that (xn, ym) ∈ {x(l), y(l)}l=1:L for all n = 1 :
N and m = 1 : M . Note that [ˆ̃p] and [ˆ̃q] are therefore invertible under
this assumption. The issue of rank-deficient data matrices will be specifically
addressed later on.

[
ˆ̃p
]
=

1

L
DxD

H
x ,

[
ˆ̃q
]
=

1

L
DyD

H
y ,

ˆ̃J− ˆ̃pˆ̃qT =
1

L
DxP

⊥
1 D

H
y , (16)

where P⊥
1 = I − 11T /L is the projection matrix onto the

orthogonal space spanned by 1. As a result, the mass function
estimates required in the computation of the SMI are just the
two sample mean vectors, the two autocorrelation matrices and
the cross-covariance matrix. The following lemma introduces
a preliminary link with CCA:

Lemma 1. Preliminary link SMI-CCA: Let X ∈ CN×L and
Y ∈ CM×L be data matrices obtained as X = FDx and
Y = GDy , respectively, where F ∈ CN×N and G ∈ CM×M

are full-rank mapping matrices. The estimated squared-loss
mutual information based on a plug-in estimator is given by
the Frobenius norm of a sample coherence matrix, that is:∥∥∥Ĉ∥∥∥2 = Îs (X;Y ) , (17)

where
Ĉ = R̂−1/2

x ĈxyR̂
−1/2
y , (18)

being R̂x = XXH/L and R̂y = YYH/L the sample
autocorrelation matrices, and Ĉxy = XP⊥

1 Y
H/L the sample

cross-covariance matrix.

Proof: Lemma 1 is a direct consequence of the SMI
being invariant to nonsingular transformations. For this par-
ticular derivation, it can easily be proven given ||Ĉ||2 =

tr
(
ĈxyR̂

−1
y ĈH

xyR̂
−1
x

)
, and using R̂x = XXH/L =

F[ˆ̃p]FH , R̂y = YYH/L = G[ˆ̃q]GH and Ĉxy =

XP⊥
1 Y

H/L = F(ˆ̃J − ˆ̃pˆ̃qT )GH from (16). Then, given
that F and G are invertible, one can immediately obtain
||Ĉ||2 = tr

(
F(ˆ̃J− ˆ̃pˆ̃qT )[ˆ̃q]−1(ˆ̃J− ˆ̃pˆ̃qT )T [ˆ̃p]−1F−1

)
. By

taking advantage of the circularity of the trace, we finally
obtain∥∥∥Ĉ∥∥∥2= tr

((
ˆ̃J− ˆ̃pˆ̃qT

) [
ˆ̃q
]−1(ˆ̃J− ˆ̃pˆ̃qT

)T [
ˆ̃p
]−1
)
=
∥∥∥ ˆ̃C∥∥∥2 .

(19)

Lemma 1 sets the link between the SMI surrogate and
second-order statistics. The implication is that we can estimate
the SMI by mapping the events of sources X and Y onto the
columns of matrices F and G. These matrices can be seen
as the code-books that contain all the possible column vectors
{[F]:,n}n=1,2,...,N and {[G]:,m}m=1,2,...,M that compose the
data matrices X and Y, which are then used to construct
the correlation and covariance matrices. It is important to
highlight that F and G need to be full-rank matrices, thus
a sufficient condition for equality in (17) is that F = IN and
G = IM , i.e. to map the data onto the orthonormal canonical
basis. While the rank of the mapping matrices is not restrictive
for discrete sources, this discussion will become relevant for
analog sources.

Following the rationale, matrix Ĉ in (18) is not (appar-
ently) a coherence matrix as that required by CCA, because
it is expressed in terms of autocorrelation matrices instead



Fig. 3. Illustration of the mapping X → R|X|−1 onto the (|X |−1)-simplex.

of autocovariance matrices. However, the following theorem
establishes the full link with CCA:

Theorem 1. Full link SMI-CCA: Let X ∈ CN ′×L (N ′ < N )
and Y ∈ CM ′×L (M ′ < M ) be data matrices obtained as
X = FDx and Y = GDy , respectively, where F ∈ CN ′×N

and G ∈ CM ′×M are full-rank mapping matrices. Let us
define the small-size sample coherence matrix as

K̂N ′,M ′ = Ĉ−1/2
x ĈxyĈ

−1/2
y , (20)

being Ĉx = XP⊥
1 X

H/L and Ĉy = YP⊥
1 Y

H/L the sample
covariance matrices and Ĉxy = XP⊥

1 Y
H/L the sample

cross-covariance matrix. Then:

||K̂N ′,M ′ ||2 = Î ′s (X;Y ) , (21)

where
Î ′s (X;Y ) ≤ Îs (X;Y ) . (22)

In particular, a sufficient condition for the equality in (22) is
that N ′ = N−1, M ′ = M−1 and that the columns of F and
G are given by the (N−1)-simplex and the (M−1)-simplex,
respectively.

Remark 1. In light of Theorem 1, we conclude that
K̂N−1,M−1 is just as valid as Ĉ for estimating the SMI
through their Frobenius norm, particularly for N ′ = N − 1
and M ′ = M − 1. For N ′ < N and M ′ < M , the Moore-
Penrose inverse is generally used to cope with the rank-
deficient matrices [44].

Proof: See Appendix B.
The implication of Lemma 1 and Theorem 1 is that, as Ĉ

(or K̂N−1,M−1) is just the sample coherence matrix required
in CCA, the squared-loss mutual information can be expressed
just as the sum of the squared canonical correlations:

Îs (X;Y ) =

min(N,M)−1∑
i=1

λ̂2
i

(
Ĉ
)
. (23)

The mapping onto the simplex is a direct consequence of
Proposition 1 due to the simplex constraint, which serves as the

interpretation of why the autocorrelation matrices are equally
valid for the estimation of the SMI as the autocovariance
matrices. Figure 3 illustrates the stated notion behind Theorem
1 and the simplex space: binary data (i.e. a discrete source
with two possible outcomes) can be mapped to 1-dimensional
points in the set {−1, 1}; ternary data (i.e. a discrete source
with three possible outcomes) can be mapped to 2-dimensional
points in the set {[1, 0], [−0.5,

√
3/2], [−0.5,−

√
3/2]}, and so

on. Furthermore, this interplay between covariance and corre-
lation for the estimation of the SMI may become advantageous
due to the Toeplitz structure of the autocorrelation matrices,
which arises in multiple applications in the signal processing
field. Later on, this property is exploited in order to construct
an estimator with reduced computational complexity.

In essence, Theorem 1 allows us to construct a desirable
matrix form by mapping the events of the sources onto F and
G, and then we benefit from classical second-order statistics
techniques. Note also that, since the coherence matrix is
invariant under linear invertible transformations, the code-
books used for the SMI computation are irrelevant, provided
that linearly independent vectors (columns of F and G) are
used. Otherwise, if the dimension of one or both of the spaces
spanned after the mapping of X and Y are smaller than
required (i.e. N ′ < N − 1 and/or M ′ < M − 1), the contri-
bution of the smallest canonical correlations may be lost. The
minimum dimension for the mapping of a source to vectors is
then equal to the cardinality minus one. Moreover, the theorem
also states implicitly that using higher dimensionality (i.e.
N ′ > N −1 and/or M ′ > M −1) will yield a low-rank struc-
ture on Ĉx and/or Ĉy . These ideas will take a fundamental
role in the process of leveraging all these notions to the analog
case: as the mapping requires an infinite dimension, the low-
rank structure of the autocorrelation matrices will manifest and
regularization is needed.

Regarding the related works in the literature that study
the decomposition of the SMI, the reader is referred to [15]
and [17]. Specifically, the consequences of Theorem 1 can
also be deduced from [17]. However, the particular derivation
in this paper provides a focused approach to the estimation
of the SMI and the required mapping matrices. Specifically,
the interplay between the marginal covariance and correlation
matrices in terms of the link with CCA is not addressed in
[17]. The final remark in (23) is also stated in [15] for the
study of MI under weakly dependent variables. Furthermore,
it is also shown that the HGR coefficient for discrete sources
corresponds to the first singular value of Ĉ, while the SMI
is given by the sum of the squares of all potentially nonzero
singular values. Therefore, apart from the best single mapping
that the HGR notion provides (i.e. the mapping that provides
the largest correlation coefficient), the SMI looks as well to
other mappings to canonical coordinates of the coherence,
thus becoming more sensitive to complex hidden relationships
between the observed data.

IV. ANALOG SOURCES: SECOND-ORDER STATISTICS ON
THE CHARACTERISTIC FEATURE SPACE

In the previous section we have shown that estimating the
SMI via second-order statistics entails the mapping of events



onto a vectorial space spanning a minimum dimension equal to
the source cardinality minus one. Nevertheless, analog sources
require, in principle, a mapping to the function space to retain
all the information. This key idea, informally stated in Cover’s
theorem on the separability of patterns [45]5, is well known
in the field of machine learning. In particular, kernel methods
have the ability (called kernel trick [46]) of implicitly using
linear algebra on high (infinite) dimensional spaces without
the necessity of explicitly visiting that space.

The objective of this section is to define a SMI estimator for
analog sources based on the use of standard CCA as seen for
discrete sources. To avoid the infinite-dimensional mapping,
we will make use of a fixed dimension as a regularization of
the problem from the beginning. This contrasts with kernel
methods and with their implicit infinite mapping, where it
is not so clear how to implement the inversion of matrices
as those required by CCA (or the KCCA [47]), usually
requiring strategies for decreasing complexity [46]. Besides,
kernel methods also need to be regularized to avoid overfitting.
In this sense, we propose an alternative based on an explicit
mapping onto a space of finite dimension on the complex
field, providing interpretability and computational complexity
savings.

A. Dependence, correlation and characteristic function

To motivate the mapping, let us write the marginal and joint
characteristic functions (CF) (defined as the Fourier transform
of the PDFs with sign reversal in the complex exponential) of
a pair of analog sources X and Y as follows:

φX(ω1) =

�
pX(x)ejω1xdx = EpX

[Z1] ,

φY (ω2) =

�
pY (y)e

jω2ydy = EpY
[Z2] ,

φXY (ω1, ω2)=

�
pXY (x, y)e

j(ω1x+ω2y)dxdy = EpXY
[Z1Z2] ,

(24)
where Z1 = ejω1X and Z2 = ejω2Y are complex random vari-
ables obtained from X and Y through a nonlinear mapping.
Clearly, if X and Y are independent, then φXY (ω1, ω2) =
EpX

[Z1]EpY
[Z2] = φX(ω1)φY (ω2) for all possible values of

ω1 and ω2, implying that Z1 and Z2 are uncorrelated random
variables. Note that the converse is also true: if Z1 and Z2

are uncorrelated for all possible values of ω1 and ω2, then
X and Y are independent. This statement is given by the
uniqueness property of the CF [38], and is a consequence
of the bijective property of the Fourier transform. That is,
if the condition φXY (ω1, ω2) = φX(ω1)φY (ω2) is true, then
it implies that their probability distributions are also equal,
i.e. pXY (x, y) = pX(x)pY (y). This property of the CF has
traditionally been used for the detection of independence
between sources based on the difference between the joint and
the product of marginal CFs [48], [49]. Moreover, the con-
verse statement mentioned above guarantees that any kind of

5“A complex pattern-classification problem, cast in a high-dimensional
space nonlinearly, is more likely to be linearly separable than in a low-
dimensional space, provided that the space is not densely populated” (T. M.
Cover).

statistical dependence between X and Y will be “manifested”
as correlation for some values of ω1 and ω2, which means
that the set of complex exponential functions is not restrictive
for the problem of independence detection via second-order
statistics. In other words, an independence detector can also be
formulated as a problem of detecting correlation by resorting
to the CF, provided that a sufficient number of ω1 and ω2

values are explored [50].
For the case of estimation, we intend to provide an analysis

of how many points of ω1 and ω2 need to be explored, i.e.
which dimensionality is required by the mapping in order to
estimate the SMI, and how small the separation between the
explored points needs to be. For this purpose, we next propose
a finite support for regularization and a uniform sampling of
the CF (Sections IV-B&IV-C), which further yield an efficient
estimation approach (Section IV-D).

B. Regularization through Gaussian convolutions

It is well known that the problem of estimating differential
entropy and mutual information needs to be regularized [2].
In the sequel, we propose a regularization approach based
on the properties of the CF. The core idea is the concept of
Gaussian convolutions, which has been recently proposed in
[22] in the framework of differential entropy estimation to
achieve the parametric rate of convergence (w.r.t. the sample
size) for distributions belonging to any nonparametric class.
In the context of this paper, we also propose the use of
Gaussian convolutions to regularize the estimation process.
By deliberately contaminating the original random variables
by means of a Gaussian CF with a known decay rate, we are
then able to reduce the number of ω1 and ω2 points to be
explored.

Consider that sources X and Y are contaminated by inde-
pendent zero-mean additive Gaussian sources Vx and Vy with
known smoothing variance σ2 and PDF pV :

x′(l) = x(l) + vx(l), y′(l) = y(l) + vy(l). (25)

The purpose is now to estimate the contaminated information
between the virtual sources x′(l) and y′(l) using the data
obtained from the actual sources x(l) and y(l). Note that the
addition of the Gaussian noise is done by the construction of
the estimator, therefore the original sources are still accessible.
Since the PDF of the sum of independent random variables is
the convolution of densities

pX′(x) = pX(x) ∗ pV (x), pY ′(y) = pY (y) ∗ pV (y), (26)

then the CF is just the product of CFs of each term

φX′(ω) = φX(ω)φV (ω), φY ′(ω) = φY (ω)φV (ω), (27)

where
φV (ω) = e−σ2w2/2 (28)

is the CF of both Vx and Vy . This process can be cast as
equivalently windowing the CF with a Gaussian function,
where φV (ω) denotes the window function. The key point is
that the Gaussian shape has an effective support, which allows



focusing on a finite interval given by |ω| ≤ ωmax = kσ−1. In
particular, for any ε > 0, it holds that

|φX′(ω)| < ε, |φY ′(ω)| < ε (29)

for ω > ωmax. This bound can be immediately obtained by
imposing |φV (ω)| < ε for ω > ωmax, and following the
global bound |φX(ω)| ≤ 1 and |φY (ω)| ≤ 1. Similarly, the
joint CF is also bounded with

|φX′,Y ′(ω1, ω2)| < ε2 (30)

for ω1 > ωmax and ω2 > ωmax, which is derived by following
the separability of the CF for independent random variables

φX′,Y ′ (ω1, ω2) = φX,Y (ω1, ω2)φV (ω1)φV (ω2) . (31)

Given |φX,Y (ω1, ω2)| ≤ 1 and |φV (ω1)| < ε, |φV (ω2)| < ε
for ω1 > ωmax, ω2 > ωmax, we obtain (30). Then, we just
need to choose a value of k that provides a considerably
low value of ε given ωmax = kσ−1. In this article, we
propose the value of k = 2.5 as a trade-off between the
effective support of the CF and the number of points to be
explored. The consequence of the contamination is provided
by the general data processing inequality for f -divergences
(see [53] and references therein): the additive perturbation
in both sources regularizes the problem by decreasing and
bounding the amount of mutual information to be measured,
yielding to a negative bias contribution to the estimators. This
behavior will be verified later on with computer simulations.

It is important to note that the higher is σ2, the stronger
is the smoothing effect caused on the PDFs, and the smaller
is the effective support of the contaminated CFs. This prop-
erty exhibits an insightful duality with the classical spectral
estimation problem [51]. Since the objective is to gradually
reduce the values of the CF for increasing values of |ω|, we
may also refer to the window as the taper function [52]. In
summary, the empirical CFs of the contaminated sources can
be obtained by just tapering, or windowing, the sample mean
estimators as follows:

φ̂X′ (ω) =
〈
ejωx(l)

〉
L
φV (ω) ,

φ̂Y ′ (ω) =
〈
ejωy(l)

〉
L
φV (ω) . (32)

The empirical estimation of the CF is known to be consistent
for a reasonable wide class of probability distributions [54],
and since the contaminating Gaussian CF is known, then (32)
are also consistent estimators.

The next step is to determine the number of sampling
points N of the CFs, which at the same time determines the
dimension of the mapping. For this purpose, let us consider
a uniform sampling in the ω domain with sampling period α.
Since CFs and PDFs are Fourier pairs, the sampling of CFs
implies a periodic extension of the PDFs, such that the implicit
density of X becomes

pX′ (x) =

{∑∞
k=−∞ (pX ∗ pV )

(
x− k 2π

α

) −π
α ≤ x ≤ π

α

0 otherwise
,

(33)
and similarly for Y . The smaller is α, the smaller is the
aliasing effect in (33). That is, we want to avoid as much as

possible the overlapping of the replicas in (33). Therefore, the
sampling period α can be roughly determined as the inverse
of the expected dynamic range of the PDFs of the sources
α = 1/(qσx), where σx is the standard deviation of the
random variable X . In contrast to the choice of k, wherein
the Gaussian CF has a well-behaved shape, q needs to be
high enough to contain most of the PDF for a wide class of
probability distributions. Hence, by following the Chebyshev’s
inequality [55], that is Pr (|X − µx| ≥ qσx) ≤ q−2, where
µx is the expected value of X , we propose to use q = 6.
Note that, while lower values may become critical in terms of
overlapping replicas in (33), higher values mainly contribute to
an increase of N . Therefore, while q is chosen as a somewhat
heuristic approach between the overlapping and the sampling
size, it is reinforced by the Chebyshev’s inequality.

Finally, we just need to equal the CF support ωmax = kσ−1

to the highest value of the sampling Kα, where K is the value
to be determined and tied to N . The number of sampling points
of the CFs is then given by

N = 2
⌈ωmax

α

⌉
+ 1 = 2

⌈
kq

σx

σ

⌉
+ 1, (34)

where a CF support of 2ωmax and an odd value of N are
imposed for a symmetric sampling around the origin. As a
consequence, the additive Gaussian perturbation minimizes the
effective support of the contaminated characteristic function
(i.e. the dimension of the feature space) for a given smoothing
variance σ2, which further supports the rationale for using the
tool of Gaussian convolutions as a natural regularization in the
specific methodology explored in this paper. The interpretation
of (34) is that of moving the problem to a finite parametric
representation of the PDFs, which originally belongs to a non-
parametric class. Then, as the implicit number of parameters
of the problem becomes finite, the SMI estimation problem
will turn out to be consistent.

C. Second-order statistics on the characteristic space and SMI
estimate

Given the physical sense of the proposed regularization, we
propose a uniform, symmetric and finite sampling of ω1 and ω2

to define the mappings ϕX(.) : R → CN and ϕY (.) : R → CN

as seen in [13], with

x → x = ejαnx, y → y = ejαny, (35)

respectively, where n ∈ ZN×1 is a vector of integers defined
as n = [−K,−K + 1, · · · ,K]T with N = 2K + 1. To
appreciate the rationale, note that if one lets α → 0 and
N → ∞ simultaneously in such a way that Nα → ∞ as
well (e.g. α = O(N−1/2)), we are then mapping the sources
onto asymptotically orthogonal vectors. If such condition is
achieved, then the SMI estimate developed for discrete sources
(based now on the CCA performed on the new spaces)
will be asymptotically unbiased, according to Theorem 1.
Finally, the feature space dimension is determined by (34) with
K = ⌈kqσx/σ⌉, which explains why using a finite dimension
acts as a natural regularization of the problem.

Consider a sequence of L i.i.d. pairs {x(l), y(l)} ∈ R2

for l = 1, 2, . . . , L. Using the mapping defined in (35), we



obtain the pair of vector sequences {x(l),y(l)} ∈ CN×2 in
the feature space and construct the data matrices X ∈ CN×L

and Y ∈ CN×L as follows:

[X]:,l = x (l) , [Y]:,l = y (l) . (36)

On the one hand, the cross-covariance matrix will be defined
following (32) with

Ĉx′y′ =
〈
ejαnx(l)e−jαnT y(l)

〉
L
⊙
(
wwT

)
− p̂q̂H , (37)

where the weighted first-order statistics are

p̂ =
〈
ejαnx(l)

〉
L
⊙w, q̂ =

〈
ejαny(l)

〉
L
⊙w, (38)

and the symmetric tapering vector is defined as

[w]n = φV ((n−K)α) = e−σ2α2(n−K)2/2 (39)

for n = 0, 1, . . . , N−1. Note that w follows from the concept
of Gaussian convolutions in (28), therefore the matrix in (37)
refers to the contaminated sources X ′ and Y ′.

On the other hand, the elements of the sample autocorrela-
tion matrices can be expressed as[

R̂x′

]
n,m

=
〈
ejα(n−m)x(l)

〉
L
φV (α (n−m)) ,[

R̂y′

]
n,m

=
〈
ejα(n−m)y(l)

〉
L
φV (α (n−m)) (40)

for n,m = 0, 1, . . . , 2K, which endow them with a Toeplitz
structure. As a result, we can construct them as follows:

R̂x′ = Toe (p̂a) , R̂y′ = Toe (q̂a) , (41)

where p̂a and q̂a are defined as the extended weighted first-
order statistics,

p̂a =
〈
ejαnax(l)

〉
L
⊙wa, q̂a =

〈
ejαnay(l)

〉
L
⊙wa, (42)

with na = [0, 1, · · · , N − 1]T , and the asymmetric tapering
vector

[wa]n = φV (nα) = e−σ2α2n2/2 (43)

for n = 0, 1, . . . , N − 1. Similarly with (37), the correlation
matrices also refer from the contaminated sources X ′ and Y ′

due to the effect of the tapering vector.
Finally, once the matrices involved in the estimation of the

SMI for analog sources are defined, from Remark 1 we have
that

Îs (X;Y ) =
∥∥∥Ĉ∥∥∥2 , (44)

with
Ĉ = R̂

−1/2
x′ Ĉx′y′R̂

−1/2
y′ . (45)

Note that we have translated the problem of estimating the
SMI to the problem of estimating the cross-covariance and
autocorrelation matrices, which are known to be consistent for
i.i.d. data. This is a desired property inherited from the case of
discrete sources. Given that the empirical CFs are consistent,
as well as the aforementioned matrices, the convergence of the
estimator (44) is determined only by the parameters N and α.
For a fixed α, the rationale for choosing σ2, and therefore N
following (34), will be detailed in Section V.

As a final remark, the regularization technique proposed
above differs from the classical regularization technique used
in the KCCA based on diagonal loading of autocorrelation
matrices [18]. Although both techniques succeed in solving
the rank-deficient issue, the proposed regularization provides
a physical interpretation of the overall effect on the final
estimate.

D. Large feature space dimension regime approximation
The Toeplitz structure of R̂x′ and R̂y′ can be further

exploited for the computation of the inverses in (45). Szegö’s
theorem (see [56], [57]) establishes that a Toeplitz matrix is
asymptotically diagonalizable by the unitary Fourier matrix,
and its eigenvalues asymptotically behave like samples of the
Fourier transform of its entries for an increasing matrix size.
The most general and relaxed assumption that guarantees the
behavior stated in Szegö’s theorem is that the columns of the
matrices are square-integrable for N → ∞. This condition
is clearly ensured by the tapering operation in (42): as the
Gaussian taper in (43) is square-integrable for any σ2 > 0 and
the sample CFs are upper-bounded, that is |

〈
ejαnx(l)

〉
L
| ≤ 1

and |
〈
ejαny(l)

〉
L
| ≤ 1, then the sample vectors p̂a and q̂a

become square-integrable for N → ∞. This fact motivates a
frequency-domain tool to reduce complexity by leveraging the
approximate diagonalization of the involved Toeplitz matrices
after a Fourier transform.

The following lemma sets the required theoretical frame-
work:

Lemma 2. Let tn ∈ C be an Hermitian sequence such that
t0 = 1 and limN→∞

∑N−1
n=0 |tn|2 < ∞. Let us define vector

t ∈ CN and Hermitian-Toeplitz matrix T ∈ CN×N as [t]n =
tn and T = Toe (t), respectively. Let U ∈ CN×N be the
unitary Fourier matrix and H = UTUH . Then

lim
N→∞

{
[H]n,m −

(
2
√
NRe

([
UH (t⊙ v)

]
n

)
− 1
)
δnm

}
= 0

(46)
for n,m = 0, 1, . . . , N −1, where v is a unilateral triangular
window with elements [v]n = 1− n/N .

Proof: See [57] for a detailed proof concerning the limit
behavior. In addition, in (46) we have used that the Fourier
transform of a Hermitian sequence gn can be written as∑(N−1)

n=−(N−1) gne
−j2πwn = g0+2Re

(∑(N−1)
n=1 gne

−j2πwn
)
=

2Re
(∑(N−1)

n=0 gne
−j2πwn

)
− g0, and that gn = tn(1− n/N)

with g0 = 1.
In light of Lemma 2, we can now build an approximate

and computationally efficient SMI estimator for the large
dimension regime.

Theorem 2. Let Ĉx′y′ ∈ CN×N be the estimated cross-
covariance matrix from (37), p̂a ∈ CN and q̂a ∈ CN the
estimated expected values of the mapped data from (42),
U ∈ CN×N the unitary Fourier matrix and v ∈ CN a
unilateral triangular window. Then, the reduced computational
complexity estimator of the squared-loss mutual information
is as follows:

Îas (X;Y ) =
∥∥∥[p̂′]

−1/2
UĈx′y′UH [q̂′]

−1/2
∥∥∥2 , (47)



where

p̂′ = 2
√
NRe

(
UH (p̂a ⊙ v)

)
− 1,

q̂′ = 2
√
NRe

(
UH (q̂a ⊙ v)

)
− 1. (48)

Proof: From (44), and given that the Frobenius norm is
invariant under unitary transforms, the SMI estimator can be
written as

Îs (X;Y )=
∥∥∥(UR̂x′UH)−1/2UĈx′y′UH(UR̂y′UH)−1/2

∥∥∥2 .
(49)

Then, following Lemma 2, the matrices UR̂x′UH and
UR̂y′UH are approximated by [p̂′] and [q̂′], respectively,
given that [p̂a]0 = [q̂a]0 = 1.

The main advantage of the proposed approximate estimator
in (47) is that the inverses of R̂x′ and R̂y′ are avoided and
only element-wise inverses are required, but a high value of N
is needed to cope with the limit behavior. However, since the
computational complexity of the estimator increases with N ,
the approximate estimator becomes more relevant if a higher
dimensionality is needed, thus reducing complexity.

V. NUMERICAL RESULTS

In this section, the performance of the proposed estimators
and the impact of their free parameters are evaluated by means
of Monte Carlo simulations. Unless otherwise stated, we will
show the performance of the estimator with i.i.d. data modeled
as:

x (l) = hx (l)
(
−
√
λ+ z (l)

√
1− λ

)√
ρ+ wx (l)

√
1− ρ,

y (l) = hy (l)
(√

λ+ z (l)
√
1− λ

)√
ρ+ wy (l)

√
1− ρ,

(50)

where z, wx, wy ∼ N (0, 1) are also i.i.d. random variables.
The variables hx, hy are also independent from each other
and take values hx, hy ∈ {−1, 1} with equal probability.
The joint distribution is then expressed as a GMM, which
is exhibited in Appendix C. While the correlation coefficient
ρ ∈ [0, 1) determines the degree of dependence, the parameter
λ ∈ [0, 1] determines multiple distributions with different
difficulty levels of SMI estimation. Specifically, for λ = 0 the
distribution follows from a GMM with just two zero-mean
Gaussian components of ρ and −ρ correlation coefficients,
and is a distribution that has been used previously as a model
for detecting and measuring dependence (see [58], [13]). This
particular case has the advantage of a known SMI under any
value of the smoothing variance from (28) with

Is (X,Y )σ2,λ=0 =
ρ4

(1 + σ2)
4 − ρ4

, (51)

which allows us to characterize the expected value of the SMI
under a Gaussian regularization.

Overall, the usefulness of the model lies in the fact that
EpXY

[XY ] = 0 for any value of λ. This property is par-
ticularly interesting given that the proposed method is based
on measuring correlation in the feature space, thus forcing the
estimators to discover dependence from originally uncorrelated
data. For simplicity, the model has also been calibrated such

that EpX
[X2] = EpY

[Y 2] = 1. Figure 4 shows the proposed
GMM for λ = 0 and λ = 0.9 in comparison with the other
distributions also illustrated in Figure 1. We use Student’s t-
distribution and the Pareto as examples of distributions with
long tails and, for the Pareto specifically, a unilateral expo-
nential distribution. For illustration purposes, all distributions
parameters have been calibrated to have, approximately, the
same value of SMI.

In terms of parameter choices, smoothing variance σ2

and dimensionality of the mapping N , the rationale is the
following. For the selection of σ2, the estimator uses the
classical Silverman’s rule [59], [60] derived in the context of
nonparametric kernel density functionals estimation, which is
known to provide consistent results for small dimensional data
[4]. According to this rule, the perturbation variance is set to
monotonically decrease with L as

σ2 = pL−2/5, (52)

being p the new free parameter. The rationale behind the
choice of σ2 is that of determining the convergence rate of
the estimator. This relation between data size and perturbation
variance can also be encountered in the context of spectral
density estimation after minimizing the Mean Squared Error
(MSE) with respect to the taper bandwidth [61], recalling
the resemblance between the perturbation based on Gaussian
convolutions and the spectral estimation problem. For clarity,
the rationale for using this rule is shown in Appendix D.
For selecting p it is enough to choose a sufficiently small
value, but it can be increased (thus N decreased) if small
values of SMI are expected since these are more robust to
higher contamination σ2 (for example, see (51)). Then, N is
computed following (34) with the values of q = 6 and k = 2.5
elaborated and provided in Section IV-B.

Figure 5 shows the mean of the proposed SMI estimators
as a function of small (Is (X,Y ) ∈ [0, 0.1]) and moderate
(Is (X,Y ) ∈ (0.1, 1]) values of true SMI for different values
of the parameter p and data size L. The objective is twofold: to
illustrate the inherent negative bias introduced by regularizing,
which increases with σ2 (as N decreases) and is provided
by the genie-aided estimator, and to show that the estimator
becomes asymptotically close from above to the contaminated
SMI value as L → ∞. In short, the small dependence regime
is the data limited regime, and the strong dependence regime
is the dimension limited regime, thus a smaller p is required
as the SMI increases. Moreover, the residual biases associated
with estimates of theoretically null squared canonical correla-
tions cause a ground level for sufficiently small values of p.
In order to compensate this behavior, a reduced bias estimator
Îs (X,Y)− Îs (X,Yind) is also shown, where Yind is i.i.d. data
like Y and obtained by circularly shifting the data sequence
associated to Y by j positions with j ̸= 0 and j ̸= L, thus
improving the impact on the overall bias at the small data
regime regardless of the kind of data statistics.

In order to assess the performance of the estimator for
multiple classes of distributions, Figure 6 shows the expected
value of the estimator for a varying value of data size L,
showing the same distributions depicted in Figure 4. In this
case, we have fixed the value of σ2 and N for any L to
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Fig. 4. Contour plots of the Gaussian distribution, the proposed GMM for two values of λ, Student’s t-distribution and the Pareto Type I distribution.
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Fig. 5. Mean of the estimated SMI (up) and reduced-bias estimators (down)
as a function of the true SMI for p = 1 (σ2 = 10−2, N = 301) and
p = 0.25 (σ2 = 2.5 × 10−3, N = 601), showing the role of σ2 and L,
with N = 2 ⌈qk/σ⌉+1, q = 6 and k = 2.5. The data is modeled following
the GMM with λ = 0.9.

properly show the convergence of the estimator, specified in
the figures caption. Although the rate of convergence may vary
between different distributions, it is shown that all of them tend
to the contaminated value of SMI. This is especially clear for
the GMM with λ = 0.9, which attains a faster convergence
rate and the negative bias is manifested. On the contrary, the
Pareto distribution is specifically challenging since its CF is
not absolutely continuous for all values of ω, which hinders
the estimation through the proposed feature map.

Figure 7 depicts the Normalized Mean Squared Error
(NMSE) versus L of the proposed estimator Îs (X,Y ) along
with its reduced bias version Îs (X,Y ) − Îs (X,Yind). In
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Fig. 6. Mean of the estimated SMI for multiple distributions as a function
of the data size L, and SMI value of 0.1, displayed in the black line. The
parameters are p = 2.5, q = 6 and k = 2.5, which yield σ2 = 2.5× 10−2

and N = 191 with a fixed objective value of L = 105.

this figure, the estimator computes an adequate value of σ2

and N following the rationale from Appendix D. That is,
for each value of L an intermediate perturbation variance
and dimension are computed in order to attain the desired
convergence rate with respect to the MSE. For completeness,
three more estimators are shown: the least-squares mutual
information estimator (LSMI) [29], the estimator based on the
Adaptive Partitioning (AP) of the observation space [9], and
the one based on Kernel Density Estimation (KDE) [7]. While
the LSMI is an explicit estimator of the SMI, both AP and
KDE are plug-in density estimators that have been adjusted to
estimate the SMI. The LSMI parameters are chosen by a cross-
validation procedure as in [29], while the kernel bandwidth of
the KDE is chosen following the rule provided in [60]. The
figure also shows the GMM distribution for two values of λ,
following Figure 4, and therefore the performance is assessed
for different scenarios. Generally speaking, it can be seen
that the proposed estimator and rationale behind parameter
choices are effective for increasing values of L. In terms
of comparative performance, the proposed method generally
attains similar (or better) NMSE values than the other shown
estimators for low values of L, except for the particularly
difficult case λ = 0 and Is = 1. The main advantage
of our estimator is that, contrary to the other methods, its
computational complexity scales with the dimension N rather
than with the sample size L. This is especially true for the
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Fig. 7. NMSE of the estimated SMI as a function of data size L for q = 6, k = 2.5, σ2 = pL−2/5 and N = 2 ⌈qk/σ⌉+ 1. Parameters of choice: (a.1):
p = 2.5, (a.2): p = 5, (b.1): p = 0.1, (b.2): p = 0.25.

KDE and LSMI estimators, whose computational complexity
is O

(
L2
)

[62], and due to the cross-validation step, respec-
tively, while the proposed approach stays at O

(
N2
)
. On the

other hand, the complexity of the AP estimator depends on
the partitioning algorithm [63], although it still scales with L.
The advantage becomes more appealing for the case N ≪ L,
where the proposed method is less computationally intensive
at the cost of performance, thus presenting a trade-off between
complexity and accuracy. The effectiveness of the reduced
bias estimator is also shown, especially for the case λ = 0.9
given that the dimensionality N is higher, thus contributing
to a higher ground value. For the case λ = 0, and lower
values of N , the ground level can be neglected and the
cost of the reduced bias estimator is only a slightly higher
variance. Finally, it can be observed the choice of p: while
easier scenarios require very small values of p (small values
of contamination), more difficult scenarios need higher values
of p, thus a stronger regularization.

Finally, the performance of the approximate frequency-
domain estimator described in Section IV-D is shown in Figure
8 in terms of the bias. It can be seen that, as the dimen-
sion increases, the performance of the approximate estimator

converges to that of the original estimator (provided that a
nonzero smoothing variance is used) with the advantage of a
significantly reduced computational load. Note that the greater
is the smoothing variance, the faster is the convergence rate of
the frequency-domain estimator to the original performance,
at the expense of an increased negative bias. Moreover, the
estimator without regularization is also shown, which corre-
sponds to p = 0. In this case, it can be seen that it diverges
from the true value of SMI for an increasing value of N , which
demonstrates the need of regularizing the proposed estimator.

VI. CONCLUSION

In this paper, we have derived an estimator of the degree
of dependence between a pair of i.i.d. data based solely on
second-order statistics computed after mapping the data onto
a finite-dimensional complex space. The use of second-order
statistics is possible as a result of selecting a surrogate of
mutual information that is a quadratic measure of dependence.

In particular, it is shown that the squared-loss mutual
information used in the field of machine learning corresponds
to second-order statistics based on the Frobenius norm of a co-
herence matrix, which is known to be directly linked with the
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standard CCA tool. Moreover, the selected surrogate has the
property of upper-bounding the Shannon mutual information,
and it behaves as a local approximation of twice the mutual
information in the small dependence regime. The theoretical
background is contextualized within the fields of information
theory and signal processing, where some connections with
well-known concepts in the literature have emerged, such as
the locally optimal detector of correlation for Gaussian data,
the linear information coupling problems, and the spectral
density estimation problems.

While in the case of discrete data it suffices to map the data
onto the (N − 1)-simplex, for analog data the natural feature
space is based on steering vectors and its dimension can be
selected as a regularization parameter of the problem, trading
off performance (bias) and complexity. The main advantage
of avoiding the dual form as in kernel methods is that the
estimators become linearly scalable with respect to the data
size, and that the free parameters can be selected with physical
meaning related to the expected dynamic range and expected
smoothing degree of the true densities. However, the resulting
rule for deciding the free parameters is still vulnerable to
different values of the true squared-loss mutual information,
especially for distributions whose characteristic function is not
absolutely continuous.

Finally, some pending issues are left for future work,
such as the extension of the estimator to the case of data
with memory, as proposed for instance in [64], and a data-
dependent dimensionality reduction strategy prior to CCA,
for which some preliminary results based on the minimum
description length principle have recently been provided in
[65].

VII. APPENDICES

Appendix A: Derivation of (2).

Defining the joint distribution and the product of the
marginal distributions on the product set X × Y and letting

PXY as the probability measure, we have

Is (pXY ||pXpY ) =

� �
pXY

pXpY
dPXY − 1

=

� � (
pXY

pXpY
− 2

)
dPXY + 1

=

� �
p2XY − 2pXY pXpY

pXY pXpY
dPXY

+

� �
p2Xp2Y

pXY pXpY
dPXY

=

� �
p2XY − 2pXY pXpY + p2Xp2Y

pXY pXpY
dPXY

=

� � (
pXY − pXpY√

pXY pXpY

)2

dPXY

= EpXY

(pXY (x, y)− pX(x)pY (y)√
pXY (x, y)pX(x)pY (y)

)2
 , (53)

as it is written in (2).

Appendix B: Proof of Theorem 1

The following properties are used for the proof: ˆ̃pT1N =
ˆ̃qT1M = 1, ˆ̃J1M = ˆ̃p, 1T

N
ˆ̃J = ˆ̃qT , [ˆ̃p]1N = ˆ̃p and [ˆ̃q]1M =

ˆ̃q. Since 1N and 1M are the left and right singular vectors of
matrix (ˆ̃J − ˆ̃pˆ̃qT ) associated to its null singular value, then
we have(

ˆ̃J− ˆ̃pˆ̃qT
)
1M = 0N , 1T

N

(
ˆ̃J− ˆ̃pˆ̃qT

)
= 0T

M . (54)

From (19) we can write∥∥∥ ˆ̃C∥∥∥2 = tr
((

ˆ̃J− ˆ̃pˆ̃qT
)([

ˆ̃q
]−1

+
β

1− β
1M1T

M

)
(
ˆ̃J− ˆ̃pˆ̃qT

)T ([
ˆ̃p
]−1

+
β

1− β
1N1T

N

))
(55)

for any β. From the Woodbury identity, we have([
ˆ̃q
]−1

+
β

1− β
1M1T

M

)−1

=
[
ˆ̃q
]
−

[
ˆ̃q
]
1M1T

M

[
ˆ̃q
]

β + 1T
M

[
ˆ̃q
]
1M

=
[
ˆ̃q
]
− β ˆ̃qˆ̃qT , (56)

([
ˆ̃p
]−1

+
β

1− β
1N1T

N

)−1

=
[
ˆ̃p
]
−

[
ˆ̃p
]
1N1T

N

[
ˆ̃p
]

β + 1T
N

[
ˆ̃p
]
1N

=
[
ˆ̃p
]
− β ˆ̃pˆ̃pT . (57)

In the asymptotic case we then have

lim
β→1

(
[ˆ̃q]− β ˆ̃qˆ̃qT

)
1M = 0M ,

lim
β→1

(
[ˆ̃p]− β ˆ̃pˆ̃pT

)
1N = 0N . (58)

As a result, these two matrices, which are sample covariance
matrices for β → 1, share with matrix (ˆ̃J − ˆ̃pˆ̃qT ) (see
(54)) the same singular vectors associated to null singular
value. Therefore, the equality with the SMI can be achieved



by computing covariance matrices instead of autocorrelation
matrices and using the full-rank matrices F ∈ CN ′×N (with
N ′ = N − 1) and G ∈ CM ′×M (with M ′ = M − 1) for the
limiting case of β = 1. For N ′ < N − 1 and/or M ′ < M − 1,
however, the smallest singular values will be lost, proving the
inequality.

Appendix C: Probability distribution functions of the GMM
model

Following (50), the joint distribution turns out to be a GMM
with

pXY (x, y) =
1

4
N (µ1,Σ1) +

1

4
N (−µ1,Σ1)

+
1

4
N (µ2,Σ2) +

1

4
N (−µ2,Σ2) , (59)

where

µ1 =
[
−
√
λρ

√
λρ

]
, µ2 =

[ √
λρ

√
λρ

]
,

Σ1 =

[
1− λρ (1− λ) ρ
(1− λ) ρ 1− λρ

]
,

Σ2 =

[
1− λρ − (1− λ) ρ

− (1− λ) ρ 1− λρ

]
. (60)

The marginal probability density functions are the following:

pX (x) =
1

2
N
(√

λρ, 1− λρ
)
+

1

2
N
(
−
√
λρ, 1− λρ

)
,

pY (y) =
1

2
N
(√

λρ, 1− λρ
)
+

1

2
N
(
−
√

λρ, 1− λρ
)
.

(61)
Note that ρ is equivalent to a correlation coefficient, but
constrained within 0 ≤ ρ < 1, where 1 would be equivalent
to infinite SMI, and 0 to null SMI. On the contrary, λ defines
the implicit probability distributions and can be used for
generating different degrees of difficulty in terms of SMI
estimation with 0 ≤ λ ≤ 1.

Appendix D: Perturbation variance setting

For large L, the bias and variance of the SMI estimator are
given by

bias
(
Îs

)
= −O

(
σ2
)
+O

(
σ−1L−1

)
(62)

var
(
Îs

)
= O

(
σ−1L−1

)
. (63)

The term O(σ2) ≥ 0 is a result of the data processing inequal-
ity and the consistent (with L) terms O(σ−1L−1) decrease
with σ as a result of (34). Both have also been approximately
confirmed by simulations for a wide range of scenarios. As
the mean squared error is mse(Îs) = bias2(Îs) + var(Îs), the
condition limL→∞ σ2 = limL→∞ σ−1L−1 = 0 is required to
yield limL→∞ mse(Îs) = 0, which moves to choosing σ as
a monotonically decreasing function of L such that σ−1L−1

is also monotonically decreasing. Let us adopt a power law
σ = O(L−γ), for which the condition 0 < γ < 1 guarantees
the desired convergence given by

mse
(
Îs

)
= O

(
L−min[4γ,1−γ]

)
. (64)

Then, the value of γ can finally be optimized by the following
MiniMax rule:

γ = argmax
γ

(min [4γ, 1− γ]) =
1

5
. (65)

The resulting power law acts similar to the Silverman’s rule
for kernel smoothing, which implies setting the perturbation
variance as σ2 = p/

(
L2/5

)
, being p the new relative free

parameter of the estimator.
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