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Abstract
The recent surge in the availability of sensor data and computational resources
has fostered the development of technologies for optimization, control, andmon-
itoring of large infrastructures, integrating data and numerical modeling. The
major bottleneck in this type of technologies is the model response time, since
repetitive solutions are typically required. To reduce the computational time,
reduced ordermodels (ROMs) are used as surrogates for expensive finite element
(FE) simulations enabling the use of complexmodels in this type of applications.
In this work, ROMs are explored for the solution of the fully coupled hydro-
mechanical system of equations that governs the water flow through partially
saturated soil. The POD-based Reduced Basis Method and the Discrete Empiri-
cal Interpolation Method (DEIM), as well as its localized version (LDEIM), are
examined in solving a parametrized problem simulating the mechanical loading
of an embankment dam. Hydraulic and mechanical soil properties are consid-
ered as parameters. It is shown that the combination of these methods results in
simulations that require 1∕10 to 1∕100 of the FE response time. Moreover, the
method is shown to yield scaling efficiency gains with increasing problem size.

KEYWORDS
coupled hydro-mechanical problem, discrete empirical interpolation, embankment dams,
partially saturated soil, Reduced Basis method

1 INTRODUCTION

Enhancing the computational efficiency in solving nonlinear parametric models is crucial in many engineering appli-
cations such as the monitoring and control of large geostructures. Rapid model response allows exploring the solution
manifold in the parametric space and eventually to identify the influence of important parameters on the behavior of
modeled structures or systems. This is useful in applications like data assimilation, partial differential equation (PDE)-
constrained optimization and control, uncertainty quantification1 and generally in applications when repetitive or fast
model evaluation is required.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
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668 NASIKA et al.

In the context of monitoring of geostructures like earthfill dams, these types of applications facilitate informed deci-
sion making based on sensor data. That is, an efficient model of the structure may be calibrated with respect to sensor
measurements via data assimilation, a process that typically requires multiple model solutions. The updated model may
then be employed in applications related to optimization and control, that also require fast model response, andmay yield
valuable information regarding the assessment and functioning of the structure.
This work addresses the issue of obtaining a highly efficient numerical model, in order to enable such applications for

earthfill dams. In this setting, a transient, nonlinear, coupled hydro-mechanical system of PDEs is examined. The system
describes groundwater flow through partially saturated soil.
Reduced order models (ROMs) allow for such a speedup of the model response as they seek an approximation of the

full-order (in this case FE) solution in a low-order space. The system of equations of the reduced problem is of significantly
smaller size (𝑁r) than the original one (𝑁r << 𝑁h) and is, therefore, solved numerically in less time.
There are several methods for creating ROMs. In the context of the POD-based Reduced Basis (RB) method,2–5 which

is used in this work, a ROM is obtained by using proper orthogonal decomposition (POD) to recover a set of orthonormal
vectors that span a low order space where the solution approximation can be sought for. This set of basis vectors is the
POD basis, or RB. The POD basis is an orthonormal basis for the space that is spanned by a set of snapshots of the full
order solution.
In a transient nonlinear problem, a low-order system of equations must be solved multiple times within each time step,

as the linearization scheme converges to a solution. This implies the repetitive assembly of FE operators and force/residual
vectors that result from nonlinear terms of the PDE. The cost of every FE iteration is related to two expensive processes:
the assembly of said operators and the solving procedure. POD-based ROMs decrease the cost associated to the latter, but
does not affect the cost of the former. The cost of assembling the operators scales with the dimension of the full-order
problem (𝑁h), and by consequence, the efficiency gains that can be achieved with ROMs are limited. This drawback is
often referred to as the lifting bottleneck, reflecting the fact that the evaluation of the nonlinear terms implied a lift back
to the original dimension of the full-order problem and then a projection to the reduced order.6
To remedy this issue, several techniques have been developed, attempting to decouple the ROM size from the full-order

size. Rather commonmethods among them include missing point estimation7 that extracts certain system equations that
correspond to specially selected grid points where the nonlinearity is computed, and the Trajectory Piecewise-Linear
method (TPWL)8,9 which represents a nonlinear system as a piecewise-linear one, and approximating it as a weighted
sum of a small set linearized models at selected points along a state trajectory.
In this work, the Discrete Empirical Interpolation Method (DEIM) is used. DEIM was originally developed in Chat-

urantabut and Sorensen10 to treat nonlinear problems in a POD context. DEIM is somewhat related to missing point
estimation in the sense that both methods avoid the costly evaluation of inner products that correspond to nonlinear
terms, by selecting a few grid points, andmerely evaluating the nonlinearities on these points. However, theDEIMmethod
involves the construction of a PODbasis for each nonlinear term, in addition to the PODbasis related to the state variables.
That is, in DEIM, a system approximation is defined, in addition to the solution space approximation. The approximation
is constructed by projection on the POD basis and interpolation based on the selected grid points.
The central idea of DEIM is similar to that of the POD-based RB method. Assembling and solving the system at very

reduced computational cost is feasible if the RO operators are independent of the FE order 𝑁h. This can be done by
obtaining an affine approximation of the nonlinear or nonaffinely parametrizedFEoperators in the offline stage, therefore,
constructing a linear system approximation. Similarly to the construction of the solution space approximation, the system
approximation is based on the recovery ofNd arrays that are stored during the offline stage, and can be linearly combined
in the online stage in order to quickly obtain an approximation of the matrix or vector operator. This set of arrays is a POD
basis for the space that is spanned by a set of snapshots of the approximated function, and it will referred to as a DEIM
basis in the following.
The size of the DEIM basis depends on the complexity of the problem, that is, it depends on the type of underlying non-

linearity, and the range of different states, or behaviors, that the system undergoes. The DEIM basis must be appropriate
for accurately approximating any of the possible states of the system. If that range is too wide, the resulting size of the
approximation is large, and the efficiency gains obtained by the method remain limited.
One of the developed methods that aims to tackle this issue is the Localized Discrete Empirical Interpolation (LDEIM),

a variation of DEIM that was introduced in Peherstorfer et al.11 This approach aims to the construction of even more
efficient ROMs, by minimizing the size of the DEIM basis that is used for system approximation. LDEIM uses machine
learning-based methods in order to identify not one, but several local subspaces where the approximation of a nonlinear
function can be sought for. Each of the resulting subspaces correspond to a particular region of system behavior. Two
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NASIKA et al. 669

approaches to LDEIM were proposed in Peherstorfer et al.,11 one which associates the different local DEIM bases to para-
metric subdomains, and one that associates subspaces to sets of characteristic system states. The second one is used in
this work. The resulting subspaces may be smaller in size compared to the global approximation space that is obtained
with conventional DEIM. Therefore, the size of the resulting system approximation problem that is solved online in every
iteration is smaller and the assembly of the approximated operator can be performed faster.
In geomechanics, the use of POD-based reduction has been mostly motivated by subsurface flow applications. The

authors of Ref.12 appear to be the first to implement POD-based solution space reduction, without the integration of a
hyper-reduction technique, to geomechanical problems. The most commonly used hyper-reduction method is TPWL in
the context of pure two-phase flow (oil/water or oil/gas) analysis13–16 for reservoir simulation. In Jin et al.,17 the coupled
hydro-mechanical problemwith two-phase oil/water flow is treated in a POD-TPWL approach, again in the context of sub-
surface flows. In all cases, the motivating applications are related to production optimization, uncertainty quantification,
history matching, and many-query problems in general.
The authors of Ref.18 developed amethod that is similar to a POD-DEIMapproach in the context of finite volumemethod

for the two-phase (water, oil) pure fluid flow through a porous media. Similarly, the authors of Ref.19 used a POD-DEIM
approach for finite volumes in the uncoupled flow problem, and additionally performed a comparison of POD-based and
TPWL methods. The LDEIMmethod was examined in a similar context of two-phase fluid flow analysis in Ghasemi and
Gildin.20 A POD-DEIM approach has not been applied so far to the coupled flow/geomechanics problem to the knowledge
of the authors of the present.
The novel contribution of this work lies in the implementation of a POD-DEIM and POD-LDEIM ROMs to the fully

coupled hydro-mechanical problem is examined in the context of FE analysis for embankment dams. The adopted physical
model assumes linear elasticity for the porousmedia and describes the behavior of partially saturated soils. Nonlinearities
are introduced to the problem due to the fact that when unsaturated soil is considered, certain hydraulic and mechanical
properties depend on the value pressure. The resulting system of PDEs is transient and nonlinear.
This contribution is structured as follows. In Section 2, the adopted physical and FE models are described. Moreover,

the applied Model Order Reduction methodologies, that is, RB, DEIM, and LDEIM, are detailed and some precisions
are reported regarding their implementation to the treated problem. In Section 3, ROMs are created to solve a hydro-
mechanical problem featuring the mechanical loading of a 3D embankment dam. The problem is described, and results
pertaining to the computational efficiency and the accuracy of the ROMs solution are reported, and compared to the FE
model. Finally, in Section 4, the results of this study are summarized, some important conclusions regarding the examined
methods are discussed, and comments are made regarding the limitations of the method.

2 METHODOLOGY

2.1 Constitutive relations and governing equations

In this section, the equations that govern the hydro-mechanically coupled problem of groundwater flow through an unsat-
urated soil are presented. The authors of the present have previously published work on the Model Order Reduction of
this problem.34 This work presents additional methods to the previous publication. However, for the sake of readability
of the present, the equations are presented here again.
The equation of mechanical equilibrium reads

�̃�⊺𝝈 + ρ(𝑝)𝐠 = 𝟎, (1)

where 𝝈 = [𝜎𝑥, 𝜎𝑦, 𝜎𝑧, 𝜏𝑥𝑦, 𝜏𝑥𝑧, 𝜏𝑦𝑧]
⊺ is the vector of total stresses, the differential operator �̃� is defined as

�̃�⊺ =

⎡⎢⎢⎢⎢⎢⎢⎣

𝜕
𝜕𝑥

0 0
𝜕
𝜕𝑦

0
𝜕
𝜕𝑧

0
𝜕
𝜕𝑦

0
𝜕
𝜕𝑥

𝜕
𝜕𝑧

0

0 0
𝜕
𝜕𝑧

0
𝜕
𝜕𝑦

𝜕
𝜕𝑥

⎤⎥⎥⎥⎥⎥⎥⎦
, (2)
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670 NASIKA et al.

𝐠 = [0, 0, −𝑔]⊺ is the gravity acceleration vector, and 𝜌 is the density of themultiphase medium, comprised of soil particles
and water, evaluated as a function of pore water pressure 𝑝, and related to the density of soil particles and water (ρs, ρw)
according to the relation

𝜌(𝑝) = (1 − 𝜂)𝜌s + 𝜂𝑆𝑒(𝑝)𝜌w = (1 − 𝜂)𝜌s + Θ(𝑝)𝜌w, (3)

where 𝜂 denotes the soil porosity. The volume water content (VWC) Θ(𝑝) and effective degree of saturation, or
dimensionless water content 𝑆𝑒(𝑝)21 are evaluated according to a hydraulic model detailed in Section 2.2.
The air pressure is considered equal to the atmospheric pressure, as commonly assumed in geotechnics. The constitutive

stress22 is defined as

𝝈′ = 𝝈 − 𝑆𝑒(𝑝)𝑝�̃�, (4)

where 𝝈′ = [𝜎′𝑥, 𝜎
′
𝑦, 𝜎

′
𝑧, 𝜏

′
𝑥𝑦, 𝜏

′
𝑥𝑧, 𝜏

′
𝑦𝑧]

⊺ is the vector of effective stresses, and �̃� = [1, 1, 1, 0, 0, 0]⊺ is a column vector with 1 at
normal stress entries and 0 at shear stress entries.
Linear elasticity is assumed for the soil skeleton’s response. In that framework, the constitutive stress–strain relation

reads

𝝈′ = 𝐃el𝜺(𝐮), (5)

where 𝐮 is the displacement vector, 𝜺 = [𝜀𝑥, 𝜀𝑦, 𝜀𝑧, 𝛾𝑥𝑦, 𝛾𝑥𝑧, 𝛾𝑦𝑧]
⊺ denotes the infinitesimal strain vector, calculated as

𝜺(𝐮) =
𝛁𝐮+𝛁⊺𝐮

2
, 𝐸 is the Young’s modulus and 𝜈 the Poisson’s ratio. 𝐃el is the elastic stress–strain matrix, which for the

general 3D case is defined as

𝐃el =
𝐸

(1 + 𝜈)(1 − 2𝜈)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 𝜈 𝜈 𝜈 0 0 0

𝜈 1 − 𝜈 𝜈 0 0 0

𝜈 𝜈 1 − 𝜈 0 0 0

0 0 0
1 − 2𝜈
2

0 0

0 0 0 0
1 − 2𝜈
2

0

0 0 0 0 0
1 − 2𝜈
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

Introducing the stress-strain relation, the mechanical equilibrium can be written in the form

�̃�⊺
(
𝐃el𝜺(𝐮) + 𝑆e(𝑝)𝑝�̃�

)
+ 𝜌(𝑝)𝐠 = 𝟎. (7)

Let ΓuD and ΓuN be two partitions of the boundary ∂Ω of the domain Ω on which Dirichlet and Neumann boundary
conditions are applied, respectively. The boundary conditions are

𝐮 = �̂� on ΓuD, (8)

σ ⋅ 𝐧 = �̂� on ΓuN, (9)

where 𝐧 is the outward pointing unit normal vector along ∂Ω, and �̂� is the imposed surface traction.
Considering themass balance of pore fluids leads to the continuity equation for flow, stating that thewater outflow from

a representative elementary volume is equal to the changes in mass concentration. Neglecting the deformations of solid
particles due to effective stress and pore pressure, as well as the density gradients of water, and introducing the Darcian
definition for fluid velocity, the strong form of the continuity equation reads

𝛁⊺
[
k(𝑝)
γw

(𝛁𝑝 + 𝐛w)

]
+

(
C(𝑝) −

Θ(𝑝)
𝐾w

)
�̇� = Θ(𝑝)�̃�𝛁 ⋅ �̇�, (10)

 10969853, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nag.3487 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [14/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



NASIKA et al. 671

where γw is the specific weight of water, 𝐛w = ρw𝐠 are the body water forces, and Kw is the water bulk modulus. The
hydraulic conductivity k(𝑝), the specific moisture capacityC(𝑝), and the volumetric water content (VWC)Θ(𝑝) estimated
using the soil water retention relations that are presented in Section 2.2.
Typical boundary conditions that arise in the case of earthfill damsmay be either of Dirichlet, Newmann, or Robin type.

For the flow equation, Dirichlet conditions may be used to prescribe a known hydraulic head, Neumann conditions for a
known outflow, inflow or a hydraulically closed (impervious) boundary.
A particular case arises in the description of a seepage face, which occurs when a water table touches an open down-

stream boundary.23,24 The length of the seepage surface is pressure-dependent,25 and can be prescribed as a nonlinear
Robin condition.
Let ΓpD, Γ

p
N, and Γ

p
R be three partitions of the boundary ∂Ω of the domain Ω on which Dirichlet, Neumann, and Robin

boundary conditions are applied respectively, for the flow part of the problem. The boundary conditions are

𝑝 = �̂� on ΓpD, (11)

𝐪 ⋅ 𝐧 = q̂ on ΓpN, (12)

𝐪 ⋅ 𝐧 = ⟨β𝑝⟩ on ΓpR (13)

where 𝐧 is the outward pointing normal vector and q̂ is the fluid flux on the boundary. Equation (13) refers to the seepage
condition, where the nonlinear function of 𝑝 that is denoted with angular brackets prescribes a flux that is equal to 𝛽𝑝,
when 𝑝 > 0 and vanishes for negative pressure.26 The coefficient 𝛽 depends on the hydraulic conductivity and geometry
of the domain and defines the water runoff on a boundary in seepage conditions. This is a nonlinear Robin type condition.

2.2 Soil water characteristics

Awidely used hydraulicmodel for thewater content—porewater pressure relation in unsaturated soils is the one proposed
by Van Genuchten.27 The effective saturation Se—or dimensionless water content—is given by

𝑆𝑒(𝑝) =

⎧⎪⎪⎨⎪⎪⎩

1[
1 +

(
𝛼| 𝑝

𝛾w
|) 1

1−𝑚

]𝑚 𝑝 < 0

1 𝑝 ≥ 0

, (14)

where 𝛼 is a parameter related to the air entry suction value expressed in capillary pressure heads, andm is a curve fitting
parameter. The VWC is then given by

Θ(𝑝) = 𝑆𝑒(𝑝)(Θs − Θr) + Θr, (15)

where Θs,Θr are soil characteristics: the VWC for fully saturated conditions, and the residual VWC. Differentiation of
Equation (15) with respect to pore water pressure gives

C(𝑝) =
𝜕Θ(𝑝)

𝜕𝑝
=
−𝛼𝑚(Θs − Θr)

1 − 𝑚
𝑆𝑒(𝑝)

1∕𝑚
(
1 − 𝑆𝑒(𝑝)

1∕𝑚
)𝑚
. (16)

The relation between the hydraulic conductivity of the soil–water system and the pore water pressure as proposed by van
Genuchten27 reads

k(𝑝) = 𝑘𝑠
√
𝑆𝑒(𝑝)

[
1 −

(
1 − 𝑆e(𝑝)

1∕𝑚
)𝑚]2

, (17)

where ks is the hydraulic conductivity for saturated conditions.
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672 NASIKA et al.

2.3 Finite Element method for hydro-mechanical groundwater flow problems in
unsaturated conditions

Equation (7) is multiplied with a vector test function 𝐯 ∈ 𝑽, where the function space 𝑽 is defined in Appendix A,
integrated over the domain Ω, and is discretized applying the Galerkin approach.
The equation is discretized applying the Galerkin approach. The discretized equation reads

𝐊𝐮 − 𝐐𝐩 = 𝐟𝐮, (18)

where

𝐊 = ∫Ω 𝐁𝐮
⊺𝐃el𝐁𝐮 𝑑x, (19)

𝐐 = ∫Ω 𝐁𝐮
⊺𝑆𝑒�̃�𝐍p 𝑑x, (20)

𝐟𝐮 = ∫Ω𝐍𝐮𝐛𝑑x + ∫Γ𝑢𝑁
𝐍𝐮�̂� 𝑑s. (21)

𝐍𝐮 ∈ ℝ(𝑑×(𝑑⋅𝑛)), 𝐍p ∈ ℝ𝑛, where 𝑑 is the dimension of the problem and 𝑛 the number of element nodes, are displacement
and water pressure shape function matrices, respectively, and 𝐮 and 𝐩 are unknown nodal value vectors for displacement
and pressure, such that 𝐮 ≈ 𝐍𝐮𝐮 and p ≈ 𝐍p𝐩 , 𝐁𝐮 = �̃�𝐍𝐮 is the gradient matrix relating displacements to strains.
Similarly, Equation (10) is multiplied by scalar test function w ∈ 𝑊, where the space 𝑊 is defined in Appendix A,

integrated over the domain Ω, and is discretized applying the Galerkin approach.
The discrete form is written as

𝐇𝐩 + 𝐂�̇� − 𝐒�̇� = 𝐟p, (22)

where

𝐇 = ∫Ω 𝛁𝐍
⊺
p
𝑘
𝛾𝑤
𝛁𝐍p 𝑑x + ∫Γp𝑅,𝑝>0

𝐍
⊺
p𝛽𝐍p 𝑑s, (23)

𝐂= ∫Ω𝐍
⊺
pΘ�̃�

⊺𝐁𝐮 𝑑x, (24)

𝐒= ∫Ω𝐍
⊺
p

(
C −

Θ
𝐾w

)
𝐍p 𝑑x, (25)

𝐟p= ∫Ω 𝛁𝐍p
𝑘
𝛾w

𝐛w 𝑑x. (26)

To solve Equations (22) and (18), time stepping is implemented by a generalized 𝜃-scheme, which approximates
𝐱⊺ = [𝐮 𝐩]⊺ at time i + θ as

�̇�i+θ ≃
𝐱i+1 − 𝐱i

Δt
, 𝐱i+θ ≃ (1 − θ)𝐱i + θ𝐱i+1, (27)

where Δ𝑡 = 𝑡𝑖+1 − 𝑡𝑖 is the time step. Parameter 𝜃 takes values in [0, 1]. Implicit time integration schemes with 𝜃 ≥ 0.5
result in unconditionally stable solutions and allow for the use of large time increments.28 In this work, the value 𝜃 = 0.75
is selected in accordance to Selvadurai and Suvorov.29
Finally, the fully coupled discretized system at each time step using a monolithic approach reads[

�̂� �̂�

�̂� �̂�

][
𝐮

𝐩

]
=

[
𝐟𝐮

𝐟p

]
, (28)

where the components �̂�, �̂�, �̂�, �̂�, 𝐟𝐮, 𝐟p of the global matrix and the right-hand side vector result from the time
discretization of operators𝐊,𝐐,𝐇,𝐂, 𝐒, 𝐟p, 𝐟𝐮, and are evaluated as
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NASIKA et al. 673

�̂� = θ𝐊, (29)

�̂� = −θ(1 − θ)𝐐i − θ2𝐐i+1, (30)

𝐟𝐮 = −𝐊(1 − θ)𝐮i + [θ(1 − θ)𝐐i+1 + (1 − θ)2𝐐i]𝐩i + (1 − θ)𝐟𝐮
i + θ𝐟𝐮

i+1, (31)

�̂� = θ𝐂i+1 + (1 − θ)𝐂i, (32)

�̂� = Δt(1 − θ)θ𝐇i + Δtθ2𝐇i+1 − (1 − θ)𝐒i − θ𝐒i+1, (33)

𝐟p = −[Δt(1 − θ)2𝐇i + Δt(1 − θ)θ𝐇i+1θ + (1 − θ)𝐒i + θ𝐒i+1]𝐩i + [θ𝐂i+1 + (1 − θ)𝐂i]𝐮i + Δt(1 − θ)𝐟 ip + θ𝐟 i+1p . (34)

From the above matrices, �̂�, �̂�, �̂�, 𝐟𝐮, and 𝐟p are related to nonlinear terms, and, therefore, will be approximated while
constructing the ROM. Matrix �̂� is linear and independent of time, therefore, it may be assembled once and used in
every iteration.
The nonlinear system of equations is solved using a Picard iterative scheme, a method that is often used in this type of

problem.30,31

2.4 Solution space reduction with the POD-based Reduced Basis method

Model Order Reduction by POD aims at creating a small basis that is able to represent the family of solutions spanned
by the parameters variations.2,32,33 The full-order FE problem is solved for a set of parametric values that considered
characteristic of the entire parametric domain. Each solution is typically referred to as snapshot.
A low-order basis is constructed by ortho-normalizing the set of snapshots and discarding thosewith amplitudes smaller

than a certain threshold. This process is referred to as the offline stage of the POD method, as it is done once and aims
at identifying an appropriate low-order approximation space. It is, therefore, a preprocess in the solution of a many-
query problem.
In the online phase, the solution of the problem for any point in the parametric space is obtained as a linear combina-

tion of the low-order basis vectors. Therefore, the computational cost is largely reduced as the number of unknowns to
determine (i.e., the coefficients of this linear combination) is typically several orders of magnitude smaller than the size
of the original FE problem.
The implementation of themethod for coupled hydro-mechanical problems in groundwater flow is briefly summarized

next. The reader is referred to Nasika et al.34 for further details.
In the following, the parameter vector is denoted by 𝝁 ∈  ⊂ ℝ𝑃 where the parameter space  represents a closed

and bounded subset of the Euclidean space ℝ𝑃, 𝑃 ≥ 1.The field variable given by the finite element (FE) solution of a
parametrized PDE can be seen as amap 𝐱 ∶  → 𝑉, that to any 𝝁 ∈  associates the solution 𝐱(𝝁) belonging to a suitable
functional space 𝑉 ∈ ℝ𝑁ℎ .
The full-order approximation of a nonlinear PDE for a given 𝝁 ∈  can be represented in the generic form

𝐀(𝐱, 𝝁)𝐱 = 𝐟 (𝐱, 𝝁), (35)

where𝐀(𝐱, 𝝁) ∈ ℝ𝑁ℎ×𝑁ℎ and 𝐟 (𝐱, 𝝁) ∈ ℝ𝑁ℎ are a 𝐱, 𝝁-dependentmatrix and vector, respectively, representing the stiffness
matrix and the right-hand side vector. The system has Nh degrees of freedom.
Implementing the POD method for the problem at hand, the full-order system (28) is replaced by a problem of lower

dimension 𝑁𝑟 < 𝑁ℎ. For any given 𝝁 ∈  , the solution field is approximated as 𝐱 ≈ 𝐁𝜶 , where 𝐁 ∈ ℝ𝑁ℎ×𝑁𝑟 is a 𝝁-
independent transformation matrix built during the offline phase, the columns of which collect the RB vectors and 𝜶(𝝁)
is the reduced vector of degrees of freedom to be determined. The low-order system reads

𝐁⊺𝐀(𝐱, 𝝁)𝐁𝜶 = 𝐁⊺𝐟 (𝐱, 𝝁). (36)

 10969853, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nag.3487 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [14/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



674 NASIKA et al.

The form𝐁𝜶 represents the approximation of the FE solution 𝐱, in the low-order spaceℝ𝑁𝑟 . The full-order approximation
of the system of PDEs at hand, for a given 𝝁 ∈  in its fully coupled discretized form, at any time step, can be written as[

�̂�(𝝁) �̂�(𝐩, 𝝁)

�̂�(𝐩, 𝝁) �̂�(𝐩, 𝝁)

][
𝐮

𝐩

]
=

[
𝐟𝐮(𝐩, 𝝁)

𝐟p(𝐩, 𝝁)

]
. (37)

The key idea of POD is to replace this system with another one of lower dimension (𝑁p
𝑟 + 𝑁𝐮

𝑟 ) < (𝑁
p
ℎ + 𝑁𝐮

ℎ ), 𝑁
p
𝑟 ,𝑁

𝐮
𝑟

denoting the number of unknowns in the reduced problem that correspond to the pressure and displacement field, respec-
tively, and 𝑁p

ℎ,𝑁
𝐮
ℎ the unknowns in the full-order problem for the two fields. For the problem at hand, two separate

low-order bases are built to approximate each unknown field.35–37 Transformationmatrices𝐁𝐮 ∈ ℝ𝑁ℎ
𝐮×𝑁𝐮

𝑟 , 𝐁𝑝 ∈ ℝ𝑁ℎ
p×𝑁

p
𝑟

correspond to the displacement and pressure fields, respectively. They are 𝝁-independent matrices, the columns of which
collect the reduced bases vectors.
In the following, the indicator of dependence of operators on the parameter vector (𝝁) and the pressure field 𝐩 has been

omitted for brevity. The unknown vectors are approximated as

𝐮 ≈ 𝐁𝐮𝜶𝐮, (38)

𝐩 ≈ 𝐁p𝜶p, (39)

and the reduced dimensional system to be solved, at time step i + 1 reads,[
𝐁𝐮

⊺�̂�𝐁𝐮 𝐁𝐮
⊺�̂�𝐁p

𝐁𝐩
⊺�̂�𝐁𝐮 𝐁𝐩

⊺�̂�𝐁p

][
𝜶𝐮

𝜶p

]
=

[
𝐁𝐮

⊺𝐟𝐮

𝐁𝐩
⊺𝐟p

]
. (40)

The unknowns in this new system are vectors 𝜶𝐮 and 𝜶p that contain the coefficients for linearly combining the elements
in the reduced bases to approximate the high-fidelity solution for any parametric value.
The basis vectors are identified in the offline stage, where snapshot matrices𝐌𝐮 and𝐌p are populated with 𝐮 and 𝐩

solution vectors, respectively, obtained by solving the problem for various parametric values. To obtain the transformation
matrices, singular value decomposition is applied to each matrix𝐌𝐮 = 𝕌𝐮𝚺𝐮𝕍

⊺
𝐮 ,𝐌p = 𝕌p𝚺p𝕍

⊺
p, thus obtaining matrices

𝕌𝐮 and𝕌p. These contain orthonormal basis vectors for the spaces spanned by the snapshots of each solution field. These
vectors are sorted in decreasing order of their corresponding singular values. Each vector is associated to a singular value
that provides a measure of the information embedded in that vector, that is needed to describe the snapshot set. Matrices
𝐁𝐮 and 𝐁p contain the 𝑁𝐮

𝑟 and 𝑁
p
𝑟 vectors with the largest singular values for displacement and pressure, respectively.

That is to say

𝐁𝐮 = first 𝑁𝐮
𝑟 columns of 𝕌𝐮 (41)

𝐁p = first 𝑁p
𝑟 columns of 𝕌p (42)

Onemajor weakness of the POD-based RBmethod is related to the evaluation of components �̂�, �̂�, �̂�, 𝐟𝐮, 𝐟p in Equation
(40) that are associated to nonlinear terms in every iteration of every time step. The assembly of these operators implies
snapping back to the full size of the FE problem, which poses a limit to the time efficiency gains that the RB method
can yield.
All the models used in this work have been developed in the FEniCS platform,38 a collection of free and open-source

software components with the common goal to enable automated solutions of differential equations.

2.5 Hyper-reduction of the right-hand side vector with the Discrete Empirical
Interpolation Method

The key objective of DEIM is the efficient evaluation of the reduced vector 𝐁⊺𝐟 (𝐱, 𝝁) found in the right-hand side of the
reduced problem in Equation (36). Without the use of a hyper-reduction technique, the evaluation of right-hand side
vector 𝐟 (𝐱, 𝝁) necessarily implies access to the full-order problem and projection to the reduced space after assembly.

 10969853, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nag.3487 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [14/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



NASIKA et al. 675

The DEIM method follows a similar strategy to that of the POD-based RB method. The idea is to identify a low-order
space where a nonlinear function may be approximated with acceptable accuracy. In the present case, the nonlinear
function is the right-hand-sized vector.𝑁𝑑 denotes the dimension of that low-order space. This space is different from the
solution approximation space with basis vectors 𝐁, but it is determined in the same manner, that is, in an offline stage
where POD is applied to snapshots of the nonlinear function.
Similarly to the RB method previously described, a snapshot matrix containing actualizations of the full-order vector 𝐟

is populated as

𝐌d =
[
𝐟 1 … 𝐟𝑁𝑠

]
, (43)

where 𝑁𝑠 is the number of snapshots taken, as in, the number of full-order vectors evaluated and saved in the
snapshot matrix.
In the context of an RB/DEIM approach where the objective is to construct both a solution approximation and an

approximation of the system, the snapshot matrix 𝐌d can be populated in the offline stage, either simultaneously or
sequentially to the collection of solution snapshots. In this work, both offline processes are performed simultaneously
with the solution of the full FE problem for different parametric values.
SVD is applied to the snapshot matrix to obtain orthonormal singular vectors for the space that is spanned by the

snapshots. The matrix decomposition reads

𝐌d = �̂�𝐒𝐖⊺, (44)

where �̂� ∈ ℝ𝑁ℎ×𝑁𝑠 a matrix whose columns are the singular basis vectors and 𝐒 contains the singular values that corre-
spond to each vector. Similarly to the procedure described in Section 2.4, the first 𝑁𝑑 columns of �̂� are selected based on
the relative magnitude of their respective singular value as

𝐕 = first Nd columns of �̂�, (45)

where the reduced dimension 𝑁𝑑 is determined given that the subsequent singular values are negligible,||||| 𝜎1𝜎𝑁𝑑
||||| ≤ tol (46)

in which 𝜎1 is the first and largest singular values found in 𝐒 and 𝜎𝑁𝑑 the singular value corresponding to the last
selected vector. tol is a tolerance selected based on the level of accuracy required in the system approximation. Based
on the experience obtained in this work, the DEIM tolerance has to be equal to, or smaller than the one selected in the
solution approximation.
The right-hand side vector approximation in the 𝑁𝑑-sized linear space is defined,

𝐟 (𝐱, μ) ≈ 𝐕𝐜(𝐱, μ) = 𝐯1c1 + 𝐯2c2 + … + 𝐯NdcNd , (47)

where 𝐜(𝐱, 𝝁) ∈ ℝ𝑁𝑑 is a vector of coefficients used for the linear combination of basis vectors contained in 𝐕. In the
following, the dependence of 𝐟 and 𝐜 on (𝐱, 𝝁) is suppressed for clarity.
In the online stage, at each iteration of the solution procedure applied to the transient nonlinear problem, the evaluation

of the combination coefficients 𝐜(𝐱, 𝝁) ∈ ℝ𝑁𝑑 is required in order to fully determine the approximation (47). To achieve
that, an𝑁𝑑-sized problemmust be solved in every iteration. DEIM proposes to identify the coefficients by imposing exact
equality of the approximation and the full-order function on 𝑁𝑑 points. In other words, DEIM allows the construction of
an approximation of 𝐟 , given the precise value of𝑁𝑑 entries of the full-order operator 𝐟 . That is,𝑁𝑑 components of 𝐟 that
allow computing the 𝑁𝑑 values c1, c2, … , c𝑁𝑑 . The assembly of the vector at only 𝑁𝑑 points is expected to be faster than
full assembly.
What is left is to determine those 𝑁𝑑 entries of 𝐟 which, for the case of a right-hand side vector, correspond to degrees

of freedom of the full-order system. This is another task that is completed in the offline stage. In a DEIM context, in all
iterations, the evaluated entries are the same. The indices corresponding to these entries are written ℘⃗ = [℘1, … ,℘𝑁𝑑]

⊺ ∈
ℝ𝑁𝑑 .
𝐏 ∈ ℝ𝑁ℎ×𝑁𝑑 is a selection matrix, the columns of which are selected columns of 𝑁𝑑-sized identity matrix. If the 𝑖th

column of𝐕 corresponds to selected index℘𝑖 , then the 𝑖th column of 𝐏 is the℘𝑖th column of the identity matrix. In other
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676 NASIKA et al.

ALGORITHM 1 DEIM algorithm

Input: {𝐯𝓁}
Nd

𝓁=1
∈ ℝNh linearly independent

Output: ℘⃗ = [℘1, … ,℘𝑁𝑑
]⊺ ∈ ℝ𝑁𝑑

1: ℘1 = max{|𝐯1|}
2: 𝐏 = [𝐞℘1

], ℘⃗ = [℘1]

3: for 𝓁 = 2 to 𝑁𝑑 do
4: �̃� = first 𝓁 − 1 columns of 𝐕
4: Solve (𝐏⊺�̃�)𝐜 = 𝐏⊺𝐯𝓁

5: 𝐫 = 𝐯𝓁 − �̃�𝐜

6: ℘𝓁 = max{|𝐫|}
7: 𝐏 ← [𝐏 𝐞℘𝓁

], ℘⃗ ←

[
℘⃗
℘𝓁

]
8: end for

words,

𝐏 = [𝐞℘1
, … , 𝐞℘𝑁𝑑

] ∈ ℝ𝑁ℎ×𝑁𝑑 , (48)

where 𝐞℘𝑖
= [0, … , 0, 1, 0, … , 0]⊺ ∈ ℝ𝑁ℎ is the℘𝑖th column of the identity matrix. In other words,

𝐏⊺𝐟 = 𝐏⊺𝐕𝐜. (49)

Therefore, the coefficient vector that must be identified at each iteration of the online stage becomes

𝐜(𝐱, μ) = (𝐏⊺𝐕)−1𝐏⊺𝐟 , (50)

and introducing this expression to Equation (47), we obtain

𝐟 ≈ 𝐕𝐜 = 𝐕(𝐏⊺𝐕)−1𝐏⊺𝐟 , (51)

where the product 𝐕(𝐏⊺𝐕)−1 can be precomputed and stored in the offline stage. In the online stage, only the product
𝐏⊺𝐟 must be evaluated, that is, the 𝑁𝑑 selected components of 𝐟 . The operator 𝐏⊺ sets zeros to all the entries of 𝐟 except
for the 𝑁𝑑 selected ones, so that, in order to compute the product, it is enough to evaluate 𝐟 in the selected entries.
To identify the selected indices and the matrix 𝐏, a routine that requires the vectors of𝐕 as input has been proposed by

the authors of Ref.10 The steps are described in Algorithm 1.
Algorithm 1 constructs a set of indices based on the provided POD basis 𝐕. The procedure assumes that the input

basis vectors {𝐯𝓁}
𝑁𝑑
𝓁=1

are in decreasing order of their corresponding singular value. The first index is selected based on
the first basis vector. It is the index that corresponds to the largest in magnitude entry of 𝐯1. This selection is justified by
considering the approximation error in the first direction of the POD basis. If onemust pick only one component in which
to sample, or, precisely evaluate the function, then it is only logical to pick the largest in magnitude, so that the resulting
approximation error is as small as possible.39
Then, sequentially, the algorithm selects for each vector 𝐯𝓁 the entry where the residual between 𝐯𝓁 and its approxima-

tion using the previously selected interpolants is largest (line 5 ofAlgorithm 1). In otherwords, the algorithmgreedily seeks
to reduce the approximation error by selecting for precise evaluation the point that is worse approximated by interpolating
the basis {𝐯1, … , 𝐯𝓁−1} at interpolation points {℘1, … ,℘𝑙−1}.10
It is worth noting that the DEIM interpolation is uniquely determined by the POD basis𝐕, as the selected interpolation

indices depend on the basis.
Based on the described steps so far, the 𝐕(𝐏⊺𝐕)−1 is fully defined and stored. The system of equations to be solved in

the online phase, as defined in Equation (36), after introducing the DEIM approximation of the right-hand side vector,
becomes

𝐁⊺𝐀(𝐱, μ)𝐁α(μ) = 𝐁⊺𝐕(𝐏⊺𝐕)−1𝐏⊺𝐟 (𝐱, μ), (52)

where the only term of the right-hand side that must be evaluated online is 𝐟 ∈ ℝ𝑁ℎ with 𝑁𝑑 nonzero entries.
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NASIKA et al. 677

2.6 DEIM for matrix operators (MDEIM)

The nonlinear matrix FE operator 𝐀(𝐱, 𝝁) in Equation (35) can be approximated using a combination of projection to a
low-order space and interpolation, in a similar way as shown for the vector function 𝐟 (𝐱, 𝝁).
A convenient way to implement the method for matrix operators is to express the matrices as vectors, by vertically

stacking their columns one on top of the other. In the following, the vectorized matrix operator is written, 𝐚(𝐱, 𝛍) =
vec(𝐀(𝐱, 𝝁)) ∈ ℝ𝑁2

ℎ and the dependence on (𝐱, 𝝁)) is suppressed for clarity. The approximation of the operator then reads

𝐚 ≈ 𝐕A(𝐏
⊺
A𝐕A)

−1𝐏
⊺
A𝐚, (53)

where 𝐕𝐴 ∈ ℝ𝑁2
ℎ
×𝑁𝑑 contains the POD basis adopted for the approximation of the operator. Its vectors are vectorized

matrix elements to be linearly combined to approximate the matrix operator in an 𝑁𝑑 dimensional space. To identify the
basis𝐕A, we follow the same steps as described above, after collectingmatrix snapshots and storing them in vector format
as

𝐌A = [vec(𝐀1)… vec(𝐀𝑁𝑠 )] = [𝐚1 … 𝐚𝑁𝑠 ]. (54)

The POD basis 𝐕A is constructed by applying SVD to the snapshot matrix𝐌A and selecting the 𝑁𝑑 singular vectorized
matrices with the largest corresponding singular values.
𝐏A ∈ ℝ𝑁ℎ×𝑁𝑑 is the selection matrix that defines the interpolation points selected by the DEIM algorithm. The vector-

ized operator 𝐚 ∈ ℝ𝑁2
ℎ features the precisely estimated values that correspond to the selected interpolation points, and

must be populated in the online phase.
The matrix approximation reads

𝐀 ≈ vec−1
(
𝐕A
(
𝐏
⊺
A𝐕A

)−1)
vec−1

(
𝐏
⊺
A𝐚
)
, (55)

where vec−1 denotes the process of reverting the vectorized operators tomatrix ones, by horizontally stacking the vertically
stacked columns. The product vec−1(𝐕A(𝐏

⊺
A𝐕A)

−1) is precomputed and stored in the offline stage. Finally, by introducing
the stiffness matrix approximation to Equation (52), the problem becomes

𝐁⊺vec−1
(
𝐕A
(
𝐏
⊺
A𝐕A

)−1)
vec−1

(
𝐏
⊺
A𝐚(𝐱, μ)

)
𝐁α(μ) = 𝐁⊺𝐕(𝐏⊺𝐕)

−1
𝐏⊺𝐟 (𝐱, μ), (56)

where 𝐁 is the POD basis constructed for the solution state approximation.

2.7 DEIM for the reduction for hydro-mechanical groundwater flow problems

In the following, the vectorization of matrices by stacking columns is implied, as explained above, but is not always
explicitly indicated for clarity of notation.
To apply the DEIMmethod to all the nonlinear terms in the coupled system at hand, each component in Equation (40)

must be approximated separately. The system becomes[
𝐁𝐮

⊺�̂�𝐁𝐮 𝐁𝐮
⊺𝐕Q(𝐏

⊺
Q𝐕Q)

−1𝐏
⊺
Q�̂�(p)𝐁𝐩

𝐁𝐩
⊺𝐕C(𝐏

⊺
C𝐕C)

−1𝐏
⊺
C�̂�(p)𝐁𝐮 𝐁𝐩

⊺𝐕H(𝐏
⊺
H𝐕H)

−1𝐏
⊺
H�̂�(p, ks)𝐁𝐩

][
𝜶𝐮

𝜶p

]i+1
=

[
𝐁𝐮

⊺𝐕𝐮(𝐏𝐮
⊺𝐕𝐮)

−1𝐏𝐮
⊺𝐟𝐮(p)

𝐁𝐩
⊺𝐕p(𝐏

⊺
p𝐕p)

−1𝐟p(p, ks)

]
, (57)

where the matrices 𝐕Q,𝐕C,𝐕H contain POD bases for the three components of the global matrix that contain nonlinear-
ities, and 𝐏Q, 𝐏C, 𝐏H are the respective selection operators that determine the selected entries to be evaluated online for
the construction of each submatrix approximation. In Equation (57), the notation for matrices �̂�, �̂�, �̂� does not explicitly
indicate that in the online computations, vectorized versions containing the exact values of only the selected entries are
to be computed, but it is implied.
To elaborate on the implementation of DEIM for matrices (MDEIM), the focus is brought to the approximation for

one of the submatrices, �̂�(p) ∈ ℝ𝑁𝐮
ℎ
×𝑁

p
ℎ , where𝑁𝐮

ℎ
is the number of degrees of freedom of the high-fidelity (FE) problem

 10969853, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nag.3487 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [14/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



678 NASIKA et al.

that are related to the description of the displacement, and 𝑁p
ℎ
the ones that are related to pressure. Then the POD basis

𝐕Q ∈ ℝ(𝑁𝐮
ℎ
⋅𝑁

p
ℎ
)×𝑁𝑑𝑄 has𝑁𝑑𝑄 columns and𝑁𝐮

ℎ
⋅ 𝑁

p
ℎ
rows, as it is a basis for the vectorized operator. The product (𝐏⊺Q𝐕Q)

−1 ∈

ℝNdQ×NdQ is a square matrix of the size of the DEIM approximation. Therefore, the quantity

𝐁𝐮
⊺𝐕Q(𝐏

⊺
Q𝐕Q)

−1,

cannot be computed and stored at this stage where the DEIM interpolants are vectorized, due to dimension mismatch.
That is, in Equation (57), the operators are in matrix unvectorized form as in

vec−1(𝐕Q(𝐏
⊺
Q𝐕Q)

−1) ∈ ℝ𝑁𝐮
ℎ
×𝑁

p
ℎ
×𝑁𝑑𝑄 .

This is not explicitly indicated in Equation (57), and will be implied in the following, to avoid overwhelming notation.
Then, the dimensions of the following product satisfy

𝐁𝐮
⊺𝐕𝑄(𝐏

⊺
𝑄𝐕𝑄)

−1 ∈ ℝ𝑁𝐮
𝑟 ×𝑁ℎ

p×𝑁𝑑𝑄 ,

where 𝑁𝐮
𝑟 is the size of the RB for the displacement field. This product may be stored in the form of a three-dimensional

tensor, that has a depth of the DEIM approximation sizeNdQ. In that sense, and with the goal of eventually evaluating the
term

𝐁𝐮
⊺𝐕Q(𝐏

⊺
Q𝐕Q)

−1

⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
𝑁𝐮
𝑟 ×𝑁ℎ

p×𝑁𝑑𝑄

𝐏
⊺
Q�̂�(p)

⏟⎴⏟⎴⏟
𝑁𝑑𝑄×1

𝐁𝐩
⏟⏟⏟

1×𝑁ℎ
p×𝑁

p
𝑟

one may evaluate each component of the 3D tensor in the sense of𝑁𝑑𝑄 separately. Then, for every component of the term
in the 𝑁𝑑𝑄 sense, the product 𝐏

⊺
Q�̂�(p) is a scalar and can be permuted with the matrix 𝐁𝐩 ∈ ℝ𝑁ℎ

p×𝑁
p
𝑟 . So finally, for each

direction 𝑖 of the 𝑁𝑑𝑄 directions of the MDEIM approximation space, the product

𝐁𝐮
⊺
(
𝐕Q(𝐏

⊺
Q𝐕Q)

−1
)
𝑖

⏟ ⎴⎴⎴⎴⎴⏟ ⎴⎴⎴⎴⎴⏟
𝑁𝐮
𝑟 ×𝑁ℎ

p

𝐁𝐩
⏟⏟⏟
𝑁ℎ

p×𝑁
p
𝑟

= 𝐁𝐮
⊺𝐕Q(𝐏

⊺
Q𝐕Q)

−1𝐁𝐩
⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟

𝑁𝐮
𝑟 ×𝑁

p
𝑟

(58)

can be precomputed and stored. Thus, 𝑁𝑑𝑄 matrices of size 𝑁𝐮
𝑟 × 𝑁

p
𝑟 must be stored, as opposed to 𝑁𝑑𝑄 matrices of size

𝑁𝐮
𝑟 × 𝑁ℎ

p and 𝑁𝑑𝑄 matrices of size 𝑁ℎ
p × 𝑁

p
𝑟 , resulting to a less memory intensive algorithm, and a more efficient one,

since the tasks performed online for the reconstruction of the approximation do not depend on the original problem size
𝑁
p
ℎ
.

2.8 Notes on the implementation of vector and matrix DEIM

Algorithm 1 results in a selection of𝑁𝑑 entries of the nonlinear function 𝐟 (𝐱, 𝛍) or 𝐚(𝐱, 𝛍) that must be precisely evaluated
in the online stage, that is, the functions 𝐟d and 𝐚d that are computed onlinemust be equal to 𝐟 or 𝐚 on the selected entries.
To precisely evaluate these entries, some of the elements of the FE must be accessed. The less the elements that need be
accessed online, the higher the computational gains of the method. This implies certain interventions to the FE assembly
routines that ensure that the loop over all finite elements is restricted to the few necessary ones, or in other words, to the
reduced mesh. In Figure 1, the concept of the reduced mesh is illustrated for the case of a matrix operator. Depending on
the selected matrix entry, one or two nodes may have nonzero contributions to the value of the function there, and all the
adjacent elements of these nodes must be included in the loop over the reduced mesh.
Since a selected entry might correspond to multiple elements in the reduced mesh, the size of the mesh increases faster

than the number of selected entries needed to approximate a nonlinear function. This has a computational cost that may
counteract the benefits of the DEIM and MDEIM. To remedy this issue, an unassembled variant of DEIM (UDEIM) has
been developed in Antil et al.51 that aims to approximate the unassembled nonlinear quantities. The main advantage
of this method is that it results in more sparse reduced meshes, as for every selected entry, only one element is related.
However, this method is more memory-intensive than the conventional DEIM as it requires the storage of each element
contribution to every node separately. In the offline stage, where multiple snapshots must be stored and SVD must be
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NASIKA et al. 679

F IGURE 1 Illustration of the concept of
the reduced mesh in a FE-MDEIM context.
On the left, a sparse matrix FE. Two selected
entries of the function by the DEIM
algorithm are in red circles. To precisely
evaluate these entries, all the adjacent
elements of the involved nodes that have a
nonzero contribution to the selected matrix
entry must be accessed. For each dof, several
elements, illustrated on the right with pink
color must be accessed

applied to large snapshot matrices, this can prove to be a significant issue, especially for large problems. Moreover it
requires modifications to the assembly routine of the FE code. In this case, in order to reap the benefits of the FEniCs
platform and its fast, automatic assembly routine, the conventional DEIM is preferred.
One of the major challenges in implementing DEIM is the fact that the offline stage of the method can be particularly

memory-intensive. For the approximation of a matrix operator �̂� ∈ ℝ𝑁𝐮
ℎ
×𝑁

p
ℎ , the method requires the evaluation and stor-

age of snapshot matrices sized (𝑁𝐮
ℎ
⋅ 𝑁

p
ℎ
) × Ns. If sparse matrix structures are used, the size of the stored matrices is the

number of nonzero elements, Nnz. However, depending on the software that is used, performing some of the required
operations on sparse matrices can be very inefficient. The implementation of SVD, DEIM algorithm, or other tasks that
require changing the structure of the involved matrices are very demanding when performed on sparse structures. How-
ever, as suggested inNegri et al.,40 auxiliary densematrices that contain only the nonzero elements of the original snapshot
matrices can be used. This is done by eliminating all the zero rows of the snapshot matrix. Since the columns of thematrix
contain vectorized snapshots of the same operator, the sparsity structure of each row is bound to be the same. Therefore,
all the tasks are now performed on Nnz-sized dense matrices.
Another issue that should be commented on here is the choice to apply DEIM to the system matrices �̂�, �̂�, and �̂�,

instead of applying it to the various terms that make up each component of the global stiffness matrix. Both options were
tested, and the one that provided the fastest final ROM was selected.
The original assumption was that the singular values that correspond to each component of the system matrices sep-

arately should decay faster, and therefore, lead to a faster ROM with less DEIM bases vectors. For the purposes of this
discussion, the terms 𝐒 and𝐇 (Equations 23 and 25) are further broken down as

𝐇𝟏 = ∫Ω 𝛁𝐍
⊺
p
𝑘
𝛾w

𝛁𝐍p 𝑑x,

𝐇𝟐 = ∫ΓpR,p>0
𝐍
⊺
p𝛽𝐍p 𝑑s,

𝐒𝟏= ∫Ω𝐍
⊺
p(C)𝐍p 𝑑x,

𝐒𝟐= −∫Ω𝐍
⊺
p

(
Θ
Kw

)
𝐍p 𝑑x.

It was found that even though the singular values of some of the components that make up the system matrices decay
faster, that is not true for all of the terms. As can be seen in Figure 2, the singular values of the component �̂� decrease
slower than the singular values of most of the terms that make up this component, but that is not true for 𝐒𝟏. Therefore,
a similar number of modes would be required in either approach.
Moreover, applyingDEIM to thematrices without hats separately implies added costs that relate to obtaining the assem-

bled matrices for each term separately, instead of directly assembling the matrices as addition of various terms. This
would result to a slower ROM overall. Therefore, applying DEIM to the final systemmatrices (the ones with the hats) was
considered as the optimal choice.
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680 NASIKA et al.
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F IGURE 2 Singular value decrease for
components𝐇𝟐,𝐇𝟏, 𝐒𝟏, 𝐒𝟐, �̂�

2.9 State-based localized discrete empirical interpolation (LDEIM) for a generic
nonlinear function 𝐟

An important limitation of DEIM is that for some nonlinear systems, particularly when the system exhibits a wide range
of behaviors, a large number of DEIM basis vectors is needed for an accurate approximation of the function. This limits
the efficiency of the resulting ROM. In the Localized Discrete Interpolation method, a nonlinear function approximation
is constructed by creating not one, but several reduced spaces. Each subspace is appropriate for the approximation of a
certain region of states. Hence, the subspace dimension becomes smaller than the global DEIM approximation space,
which translates to a smaller reduced mesh and higher ROM efficiency.
To accomplish that, LDEIM utilizes machine learning techniques both in the offline and the online space. In the offline

space, clustering methods are used to identify these state subregions among all possible system states. Essentially, similar
snapshots are grouped together based on unsupervised learning. In the online stage, classification algorithms are used to
identify which subspace is most suitable for the approximation of the current system state as the computation proceeds.
The method can handle a large number of large-sized snapshots and a large number of local approximation spaces,

thanks to the use of a DEIM-based feature extraction that results in a low-dimensional representation of the snapshots
that is used for the clustering and the classification processes.
It is worth noting that the idea of localized DEIM and localized PODhas been explored in various settings. Two versions

of LDEIM are presented in Peherstorfer et al.,11 a parameter-based and a state-based one. In the parameter-based LDEIM,
the local spaces are defined based on subregions of parametric values, and the online selection of an appropriate subspace
is also based on the parameters. Moreover, groups of snapshots can be created based on time for a transient problem.41 In
the problem of groundwater flow through porous media however, the studied parameters result into similar solutions and
system states, making the parameters an unfit criterion for clustering and classification. Furthermore, the authors found
that for this problem, a time-based division of the snapshots does not result in smaller approximation spaces. Hence, the
state-based version of LDEIM is selected and presented here.
The implementation of the state-based localized DEIM method as proposed in Peherstorfer et al.11 implies the precon-

struction of a global DEIM scheme as described in Section 2.7. In the offline stage, a snapshotmatrix𝐌d of fully assembled
functions must be populated as in Equation (43) and the global 𝑁𝑑-sized DEIM interpolants 𝐕 and 𝐏must be computed.

2.9.1 Offline stage: snapshot clustering and subspaces identification

Once the global DEIM scheme is constructed, the subspaces that correspond to subregions of system states must be iden-
tified by clustering the snapshots of 𝐌d into groups based on their similarity. The measure of similarity is in this case
based on the Euclidean distance of a DEIM-based representation of the snapshots, as opposed to a Euclidean distance of
the full snapshots. To create the low-order representation of the snapshots, the interpolation points of the global-DEIM

 10969853, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nag.3487 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [14/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



NASIKA et al. 681

ALGORITHM 2 K-means algorithm

Input: Number of clusters 𝑘, dataset [𝐏⊺𝐟1 …𝐏⊺𝐟𝑁𝑠
] ∈ ℝ𝑁𝑑×𝑁𝑠 , stopping tolerance tol

Output: Clusters of snapshots𝐌i
ld, centroids i

1: Initialize clusters with centroids i distant from each other
2: Assign each element 𝐏⊺𝐟j to nearest centroid cluster: minimize

i∈[1,k]
|𝐏⊺𝐟j − i|2

3: Compute new centroids i as mean of all elements of cluster i
4: Repeat steps 2–3 until |old

i − new
i | ≤ tol

scheme are selected as

𝐌ld =
[
𝐏⊺𝐟 1 …𝐏⊺𝐟𝑁𝑠

]
∈ ℝ𝑁𝑑×𝑁𝑠 . (59)

This selection of entries is called feature extraction in the context of machine learning.
Subsequently, a clustering algorithm is used to group the elements of 𝐌ld. In this work, the K-means algorithm is

used, and more particularly the python implementation of the scikit-learn package is used.42 The basic steps in K-means
algorithm are summarized in Algorithm 2.
The method requires as input the number 𝑘 of groups of snapshots, or clusters of snapshots to be created. Initially 𝑘

centroids i are selected from the dataset𝐌ld such that they are distant from each other. This technique typically yields
better results than random initialization.42 Themethod iteratively optimizes the clusters by assigning each snapshot to the
cluster with the nearest centroid. Then the centroids are updated taking the mean value of all elements of their respective
cluster. The difference between the old centroids and the new centroids is computed and the process is repeated until this
value is smaller than a threshold.
The result of the clustering technique is a partition 𝐌1

ld ⊎𝐌
2
ld ⊎ … ⊎𝐌k

ld of the snapshot matrix 𝐌ld and the corre-
sponding centroids. The clusters contain low-order approximations of the originally collected snapshots. Snapshot subsets
𝐌1

d ⊎𝐌
2
d ⊎ … ⊎𝐌k

d = 𝐌d are obtained from the associated full-order snapshots.
POD bases and interpolation points are identified for each subset of snapshots 𝐌i

d, implementing SVD and
the DEIM algorithm as described in Section 2.7. The resulting approximations spaces and selection matrices read
(𝐕1, 𝐏1), … , (𝐕k, 𝐏k).
This process must be performed for all vector andmatrix operations that need be approximated with DEIM. Eventually,

the interpolants that correspond to all subspaces must be stored. Re-examining the approximation of the component �̂� of
the global matrix, Equation (58) now becomes

𝐁𝐮
⊺
(
𝐕i
Q(𝐏

i
Q

⊺
𝐕i
Q)

−1
)
𝑖

⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟
𝑁𝐮
𝑟 ×𝑁ℎ

p

𝐁𝐩
⏟⏟⏟
𝑁ℎ

p×𝑁
p
𝑟

= 𝐁𝐮
⊺𝐕i

Q(𝐏
i
Q

⊺
𝐕i
Q)

−1𝐁𝐩
⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟

𝑁𝐮
𝑟 ×𝑁

p
𝑟

, 𝑖 ∈ [1, 𝑘], (60)

where 𝐕i
Q and 𝐏

i
Q correspond to the ith local DEIM approximation space. That is, 𝑘 tensors of size 𝑁𝐮

𝑟 × 𝑁
p
𝑟 × 𝑁𝑑𝑄 must

be prestored.

2.9.2 Online stage: identification of appropriate approximation space

To efficiently assemble nonlinear operators in the online phase, the appropriate cluster must be identified in every time-
step or iteration. To identify the cluster, the lastly evaluated functionmust be classified and assigned to one of the k clusters.
This can be done using a classification algorithm. In this case, the Nearest Neighbor Search was used, more particularly
the implementation found in the scikit-learn python package.42 This is a simple algorithm that assigns an element to a
cluster based on its proximity to the precomputed centroids 1, … ,k, in a Euclidean context. It is very similar to step 2
of the K-means Algorithm 2.
Note that the computed centroids are in the form of low-order DEIM-based representations. Therefore, for the clas-

sification, a similar representation of the new element must be evaluated, based on the global DEIM approximation. In
this work, the classification process occurs once in every time step and not within the time steps. This is because it has
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682 NASIKA et al.

been observed that repeating the classification process after each iteration of the Picard scheme results in the same cluster
selection, that is, the cluster does not change within a time step, but rather it typically changes from time step to time step.
Therefore, to assemble the function 𝐟 i+1, where i + 1 denotes the current time-step, one must classify the element 𝐏⊺𝐟 i,

where 𝐟 i is the last evaluated function. The function actualization 𝐟 i is approximated using the previously selected DEIM
subspace, that may or may not be different than the one selected in the current time step i + 1.

3 APPLICATION

In this section, a ROM is created based on the methodologies that are discussed in Section 2. A parametric problem is
setup and solved using FEM and ROM, for the purpose of comparing and evaluating the ROM performance in terms of
efficiency and accuracy.

3.1 Problem setup

The examined problem is relevant in the context of tailings dams.34 This is a type of earthfill embankment dam designed
for the permanent storage of mining waste. Those dams are typically constructed near mining facilities, and it is usual
practice that their crest level is raised by adding layers of fill-material on top of the existing embankment, in order to
increase the reservoir capacity, to accommodate increased waste production.43 Hence, the problem that is studied here is
one in which a distributed load is applied on the top boundary of a three-dimensional domain that represents a dam. The
added load simulates the deposition of a fill material layer in the process of raising the dam level. Literature suggests that
two-dimensional models cannot reflect the complex and variating seepage field.44 Thus, three-dimensional models have
been proposed for the stability study of tailings dams.45,46
This illustrative problem has been examined in a previous publication by the authors.34 All the details of the problem

setup, such as the dimensions of the domain and the values of the physical properties and numerical parameters used in
the model are identical to the ones used in the previous publication.
The domain is a 50-m-long prism, with two axes of symmetry and a variating cross-section along the Y axis. The details

and dimensions of the geometry used are not specified here since the same problem has been treated before in a previous
publication of the authors of the present. The interested reader is encouraged to refer to Ref.34
A 3D tetrahedral mesh was created in Gmsh open-source mesh generating software.47 The initial condition is evaluated

by solving the steady state problem for a fixed upstream water level, and a tailings depositions upstream that reaches
the crest of the dam. The dam is gradually loaded over the course of 10 days. In the first 5 days, a first 50-cm layer of fill
material is added on the top of the existing structure. This layer of material is gradually deposited along the length of the
structure, from one founding slope to another. Next, another 50-cm layer of fill material is deposited in the same manner.
The bottom boundary is mechanically constrained and considered hydraulically impermeable. In Figures 3A and 3B, this
loading sequence is illustrated for clarity. The gradual loading of the embankment simulates the level raise of a tailings
dam by 1 m.
The values of the physical properties and numerical parameters used in the model are given in Table 1. The values were

chosen such that they fall into ranges that are usually observed in tailings dams.48,50
The parameters that are considered to vary in this work are both hydraulic soil properties. Namely, the saturated

hydraulic conductivity 𝑘s, the parameter 𝛼, which is related to the air entry value of the soil, and the Young’s modu-
lus 𝐸 are considered as variating parameters. These three properties are chosen due to the high level of uncertainty they
often feature in geotechnical applications that renders them appropriate objects of examination using data assimilation
methods. As explained in Section 1,ModelOrder Reduction is particularly advantageous in the context of data assimilation
or other many-query problems, it, therefore, seems fitting to study uncertain parameters using a ROM.
The parametric domain is taken such that the extreme values of ranges are realistic in the framework of earthfill dams.48
In the following, three setups will be examined. The first parametric problem that is presented considers only one

parameter, namely 𝑘s, the second considers all three parameters, 𝑘s, E, 𝛼 and the final setup considers one parameter
but a denser FE mesh. For every setup, both a global DEIM and a local DEIM approach are used. The goal of the study is
to examine how the computational efficiency achieved with a ROM scales with increasing number of parameters and an
increasing size of the original problem.
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NASIKA et al. 683

F IGURE 3 Deposition of the two 50-cm-thick layers of fill material on the top and upstream side of the structure. The first layer is
shown in dark green color and the second in light green color. After 2, 5 days of loading half of the first layer has been deposited. After 7, 5
days the first layer and half of the second layer have been deposited. Upstream is in the direction of the x axis. Unsaturated tailings are
depicted in orange, saturated tailings in gray. The lateral foundation slopes are not depicted

ROMs created using different reduction methods are referenced with the abbreviations RB, RB-DEIM, RB-LDEIM.
The first one refers to a ROM with low-order solution space approximation using the POD-based RB method and no
hyper-reduction. The other two refer to ROMs with hyper-reduction using the global and localized versions of DEIM,
respectively.

3.2 ROM for a problem with one parameter: Saturated hydraulic conductivity

In this section, only the saturated hydraulic conductivity is considered as a parameter. The other twomentioned properties
remain stable at 𝐸 = 80MPa and α = 0.1 m−1.
The solution space reduction is performed as explained in Section 2.4 using the POD-based RB method. In this case,

to create the RB, snapshots were taken for 𝑘s = [10−9, 5 × 10−9, 10−8, 5 × 10−8, 10−7] m∕s. These five values are enough
to create an accurate basis. For this and all the following cases, the truncation tolerance for the solution space basis is
10−4. Based on this tolerance, the most relevant orthonormal vectors are selected to form a low-order space basis, as
indicated in Equation (46). In Figure 4, the fast decay of the singular values that correspond to the vectors that result from
applying SVD to the snapshot matrices for both fields is illustrated. The authors experience using DEIM has led to the
conclusion that for this type of problem, more snapshots are required for the identification of a low-order space for system
approximation than for solution space approximation. Therefore, more snapshots were taken after the RB was identified,
this time using a ROM. Note that, in this ROM, we only apply the POD-based RB, with no hyper-reduction. Snapshots of
the fully assembled submatrices �̂�, �̂�, �̂� and the right-hand side vector [𝐟𝐮, 𝐟p]⊺ were taken for 10 parametric values. The
assembled operators that correspond to every iteration of every time-step were saved in snapshot matrices.
In Figure 5, the singular values that correspond to each approximated function are plotted. The final number of

orthonormal vectors in the POD basis for each function depends on the selected truncation tolerance and the rate at
which the singular values decrease. Figure 5 shows how the singular values that correspond to coupling matrices �̂� and
�̂� decrease much faster than those that correspond to matrix �̂� and the right-hand side vector [𝐟𝐮, 𝐟p]⊺ . The experience
of the authors shows that a tolerance as large as 10−4 yields sufficient accuracy for the coupling matrices, and very few
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684 NASIKA et al.

TABLE 1 Values of physical soil properties used in the model

Parameter Symbol Units Value
Gravitational acceleration 𝑔 m∕s 10
Water bulk modulus 𝐾w MPa 2.2 × 103

Specific weight of water γw kN∕m3 10
Embankment fill soil material
Particle density ρs kg∕m3 2.7 × 103

Young’s Modulus 𝐸 MPa [50, 150]

Poisson’s ratio 𝜈 - 0.3
Porosity 𝜂 - 0.38
Saturated VWC Θs - 0.38
Residual VWC Θr - 0.038
Parameter (≈ inverse of air entry suction head) 𝛼 m−1 [0.01, 1]

Fitting Parameter 𝑚 - 0.184
Saturated hydraulic conductivity 𝑘s m∕s [10−9, 10−7]

Tailings and added fill material
Added fill material specific weight γf kN∕m3 21
Tailings specific weight γt kN∕m3 21
Tailings friction angle 𝜙 ◦ 35
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(B) Snapshot truncation based on singular values: Pressure

F IGURE 4 Snapshot truncation based on singular values. The y axis is a log plot of the normalized singular values that correspond to
the first singular vectors. The red line represents the truncation tolerance 10−4

vectors are selected to approximate them. Specifically, for the tested cases, that are presented in the following, the POD
bases for matrices �̂� and �̂� were of size as small as two vectors.
It is worth noting here that even though there is no criterion to select the number of vectors in a PODbasis a priori, there

are methods that utilize greedy techniques in order to adaptively add basis vectors in every iteration of a time-dependent
problem.37,49
For the approximation of matrix �̂� and the right-hand side vector, the singular values drop slower. This may be related

to the fact that these functions result from parametrically dependent variational forms. The number of vectors needed in a
POD basis generally depends on how complex the manifold of all possible values of the underlying function is. It appears
that �̂� and the vector [𝐟𝐮, 𝐟p]⊺ can take a wide range of values in the examined parametric problem. Therefore, the size of
the reduced mesh used to solve the problem depends on the truncation tolerance applied for these two terms.
In Figure 6, the numbers of elements that are selected by the DEIM procedure (Algorithm 1) are shown. This example

corresponds to the case where the first singular vectors of the snapshot matrix that corresponds to the �̂� component and
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Singular value decreaseF IGURE 5 Singular values for the
functions that are approximated using
DEIM. Truncation tolerances that are used
for the different functions and range from
10−8 to 10−4 are illustrated with dashed lines

F IGURE 6 Illustration of the reduced mesh that is yielded using a truncation tolerance of 10−8 for singular values that correspond to the
�̂� global matrix component. The elements that must be accessed online are highlighted with red color

the right-hand side vector are retained, based on a tolerance of 10−8. The tolerance used for the other matrices, �̂� and �̂�,
is larger, namely 10−4.
In the following, ROMs that result from different tolerances are presented. All refer to a variation of the tolerance for

component �̂� and right-hand side vector [𝐟𝐮, 𝐟p]⊺.
It is worth noting that the elements selected as a result of the implementation of Algorithm 1 to the POD bases that

correspond to all components are similar. They are mostly located in the unsaturated part of the domain, and close to
the phreatic line. Given the fact that the nonlinearities examined are activated only in the unsaturated part, this result is
reasonable and in accordance to expectations.
In Table 2, several different models are compared in terms of efficiency for the solution of the problem introduced in

Section 3.1. The problem is solved for a parametric value that was not sampled in the offline stage, namely 𝑘s = 5.5 ×
10−8 m∕s.
In the first column, the truncation tolerance for the DEIM bases for terms �̂� and 𝐟 is listed. In the second column,

the number of finite elements that are visited online for the assembly of matrix and vector operators are listed. The total
number of elements in the full mesh is listed in the last two rows. The problem has 54 unknowns that result from the
POD-based RB method, except for the case where the problem is solved with plain FE. Of these 54 unknowns, 30 are
related to the description of the pressure field, and 24 to the displacement field.
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686 NASIKA et al.

TABLE 2 Results for solving a hydro-mechanical parametric problem with one parameter, ks, using different Model Order Reduction
schemes (described in Section 2). A FE model is compared to a ROM where merely solution state reduction has been performed with the
POD-based Reduced Basis method (written RB), ROMs using DEIM or Localized DEIM with different truncation tolerances for functions �̂�
and 𝐟

Truncation
tolerance

Elements
for
assembly

Problem
unknowns
(H +M)

Total
iterations

Total
duration
(s)

Time
gain
T𝐑𝐎/T𝐅𝐎

Assembly
duration
(s)

Solving
duration
(s)

Global DEIM
+RB

1e − 8 10,269 30 + 24 114 418.28 1/20.27 1.67 0.0003
1e − 7 10,115 30 + 24 114 419.03 1/20.23 1.48 0.0003
1e − 6 8417 30 + 24 280 887.31 1/9.56 1.30 0.0003
1e − 5 4725 30 + 24 456 Loss of convergence

Local DEIM 5
clusters
+RB

1e − 8 7797 30 + 24 126 405.53 1/20,91 1.25 0.0003
1e − 7 7696 30 + 24 121 450.30 1/18.83 1.07 0,0003
1e − 6 6329 30 + 24 128 365.63 1/23.19 1.07 0,0003
1e − 5 4717 30 + 24 859 Loss of convergence

Local DEIM
10 clusters
+RB

1e − 8 8078 30 + 24 151 757.58 1/11.19 1.56 0.0003
1e − 7 6525 30 + 24 174 801.87 1/10.57 1.35 0.0003
1e − 6 5971 30 + 24 117 306.15 1/27.70 0.92 0.0004
1e − 5 4480 30 + 24 Loss of convergence

RB 41,477 30 + 24 112 1411.54 1/6.01 10.86 0.0003
FEM 41,477 212,075 383 8479.53 1 3.988 9.6730

The total iterations needed for the problem to be solved (note that there are 40 time steps, with a stable time step over
10 days), are usually less when the problem is solved with the POD-based RB method. When DEIM is used, in some
cases in which a larger truncation tolerance is used, more iterations are needed for convergence. Similar results have been
reported in Antil et al.51 for a Newton–Raphson scheme. The fact that the RB-DEIM model may require more iterations
can be an issue for the resulting efficiency of the model, as it counteracts the gains that are related to fast assembly. This is
possibly related to the accuracy of the approximated functions. Nevertheless, it seems that when an appropriate tolerance
is selected for hyper-reduction, the number of additional iterations required is small enough and the final computational
gain is still significant.
The column titled “Time gain 𝑇RO/TFO” shows the ratio between the durations of each ROM and the FEM—subscript

RO stands for Reduced Order and FO for Full Order.
The column titled “Assembly duration” features the time it takes for the reduced operators to be assembled, which, in

the case of the RBmodel, includes the full assembly of the matrices and vectors and their projection to the reduced space,
and in the case of RB-DEIM models, it includes assembly in the reduced mesh and projection to the system approxima-
tion spaces, and the solution approximation space. This column, and the next one, titled “Solving duration” refers to per
iteration times and the values are calculated as the average of all needed iterations.
A review of the results shows that for this case with one parameter, both the RB-DEIM and the RB-LDEIM mod-

els yield significant efficiency gains. The fastest case is achieved using a tolerance of 10−6 to construct a model with
LDEIM.
The error in most cases remains within acceptable levels, in the order of magnitude of 10−4, as is shown in Figure 7.

This is not the case for schemes with a too large truncation tolerance for hyper-reduction (all schemes with 10−5, global
DEIM scheme with 10−6 tolerance). There, the approximation error is too large and eventually the convergence is lost.
The error at a given timestep is estimated as

e = |𝑋RB − 𝑋FEM
𝑋FEM

|2, (61)

where 𝑋RB and 𝑋FEM represent the approximation and the high-fidelity solution, respectively.
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F IGURE 7 Relative error ROM-FEM for pressure (left) and displacement (right) fields. Results for 𝑘s = 5.5 × 10−8 m∕s

3.3 ROM for a problem with three parameters

In this section, a similar parametric problem is solved, this time considering three parameters, the saturated hydraulic
conductivity 𝑘s, the coefficient 𝛼, which is related to the air entry value of the soil and appears in Equation (15), and the
soil’s Young’s modulus 𝐸. The examined value ranges for these parameters are given in Table 1.
The offline stage, collecting snapshots of solution vectors to create the solution space approximation is run all over again,

this time sampling values in the three-dimensional parametric space. Specifically, to build the PODbasis for solution space
approximation, three values were sampled for each parameter, resulting to a total of 27 parametric value combinations,
selected such that they are evenly spaced along the log scale of each parametric domain.
For the construction of the system approximation spaces (hyper-reduction), more values were sampled. Specifically,

five values for each parameter were selected in a similar way, resulting to 125 sampled values. In this case, the calculations
were performed using the RBmodel that had been previously constructed. It is worth noting that the offline stage for this
case that examines a multidimensional parametric space is significantly longer than in the previous case. However, as can
be seen in Table 3, the resulting ROMs do not drastically differ in size from the ones created in Section 3.2.
The RB method results in a POD basis with 75 vectors, which is, as expected, larger than the 54-vector basis used in

Section 3.2, but remains in the same order of magnitude. The same holds true for the reduced mesh used in each scheme
that is presented in Table 3. The resulting number of visited elements is in some cases larger but not in a different order
of magnitude than in the 1-parameter case. This indicates that even though more parameters are examined, the solution
manifold and the system statemanifold do not featuremuch larger variation, allowing for the costs of ROMs to remain low.
Reviewing Table 3, it seems that LDEIM has a more pronounced comparative advantage compared to the global DEIM

in this case, where three parameters are considered. In some cases, using a localized POD basis for system approximation
results in faster convergence. This observation is in accordance to previous studies that report more accurate and robust
results using localized bases reduced order schemes, instead of global ones, for systemswith large parameter variation.20,52
In Figure 8, the error between the resulting ROM and the FEM are shown for one set of parametric values, and for the

different hyper-reduction schemes that are studied. In this case, parametric values 𝑘s = 5.5 × 10−8 m∕s, 𝐸 = 100 MPa,
and α = 0.5 m−1 were selected to demonstrate the error levels. These values have not been sampled in the offline stage
and are not very close to other sampled values.
The expectation when dealing with ROMs is that on the training parametric values, the approximation error should

be smaller than for the values that are not within the snapshots. That is because the exact information that relates to the
FEM operators of the solution for the snapshot values is described in the DEIM low-order approximation basis. However,
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688 NASIKA et al.

TABLE 3 Results for solving a hydro-mechanical problem with different model order reduction schemes (described in Section 2). In this
problem, three parameters are consideredks, 𝛼, and 𝐸. This table contains data about the problem solution for values ks = 7e − 8 m∕s,
α = 0.1 m−1, and 𝐸 = 80MPa. A FE model is compared to a ROM where merely solution state reduction has been performed with the
POD-based reduced basis method (written RB), ROMs using DEIM or localized DEIM with different truncation tolerances for functions �̂�
and 𝐟

Truncation
tolerance

Elements
for
assembly

Problem
unknowns
(H +M)

Total
iterations

Total
duration
(s)

Time
gain
𝑻𝐑𝐎/T𝐅𝐎

Assembly
duration
(s)

Solving
duration
(s)

Global DEIM
+RB

1e − 8 12,379 51 + 24 250 917.28 1/9.24 1.67 0.0004
1e − 7 11,966 51 + 24 244 896.88 1/9.45 1.60 0.0004
1e − 6 10,474 51 + 24 Loss of convergence
1e − 5 6616 51 + 24 Loss of convergence

Local DEIM 5
clusters
+RB

1e − 8 10,216 51 + 24 132 554.57 1/15.29 1.58 0.0004
1e − 7 9672 51 + 24 121 372.70 1/22.75 1.61 0.0004
1e − 6 9418 51 + 24 121 385.42 1/22.00 1.08 0.0004
1e − 5 7884 51 + 24 Loss of convergence

Local DEIM
10 clusters
+RB

1e − 8 10,823 51 + 24 152 657.29 1/12.90 1.31 0.0004
1e − 7 10,741 51 + 24 117 367.03 1/23.10 1.33 0.0004
1e − 6 9219 51 + 24 123 389.19 1/21.79 1.36 0.0004
1e − 5 8047 51 + 24 Loss of convergence

RB 41,477 51 + 24 102 1385.40 1/6.12 11.24 0.0004
FEM 41,477 212,075 383 8479.53 1 3.988 9.6730

the authors of this work have found that when hyper-reduction via DEIM or LDEIM is introduced, the error levels for
all parametric values, sampled and not, remains similar, and rather small when a sufficiently small truncation tolerance
is used.

3.4 Scaling with full-order model size

In this section, the problem is solved with a much denser FEM mesh, in order to examine how the efficiency gain scales
with the size of the full-order problem. One parameter, 𝑘s is considered, and aside from the mesh, every other aspect in
the setup of the problem remains the same. The most notable conclusion to be drawn from Table 4 relates to the gain in
computational efficiency achieved in this scheme. A comparison of the time gain columns in Tables 4 and 2 shows clearly
that DEIM results in a significantly higher speedup factor when applied to FE problems with a larger size.
Moreover, as shown in Figure 9, the gain in computational efficiency does not entail a loss of accuracy with respect to

the RB model. Again, the method yields accurate results provided a small enough truncation is used for the creation of
POD bases in the hyper-reduction process.
Finally, it seems once again that raising the number of clusters does not result to notably more efficient models.

Discussion on the offline stage duration.
For the mesh considered in this part of the work, the duration of each simulation using conventional FEM is roughly
9–10 h, and the duration using a ROM without hyper-reduction is 50–70 min. Applying SVD to the solution snapshot
matrices, that in this case have sizes of (25, 565 × 200) for pressure, and (543, 285 × 200) for displacement, turns out to
have a relatively small cost, taking only a fewminutes when run in our system. The cost of storing the significantly larger
snapshots of the assembled components of the stiffness matrix is also rather small, thanks to our efficient implementation
that uses dense matrices as explained in Section 2.8. Overall, the duration of this part of the offline stage was close to
3 days.
The additional cost that is related to implementing SVD to the snapshot matrices of the nonlinear terms and imple-

menting Algorithm 1 is small compared to the cost of populating the snapshot matrices. Particularly, SVD and the DEIM
algorithm for this problem had a duration of approximately 30 min for each of the coupling matrices �̂� and �̂� and around
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F IGURE 8 Relative error ROM-FEM for pressure (left) and displacement (right) fields. Results for 𝑘s = 5.5 × 10−8 m∕s, 𝐸 = 100MPa,
α = 0.5 m−1

TABLE 4 Results for solving a hydro-mechanical parametric problem with one parameter, ks, using different model order reduction
schemes (described in Section 2). A FE model is compared to a ROM where merely solution state reduction has been performed with the
POD-based reduced basis method (written RB), ROMs using DEIM or localized DEIM with different truncation tolerances for functions �̂�
and 𝐟

Truncation
tolerance

Elements
for
assembly

Problem
unknowns
(H +M)

Total
iterations

Total
duration
(s)

Time
gain
𝐓𝐑𝐎∕𝐓𝐅𝐎

Assembly
duration
(s)

Solving
duration
(s)

Global DEIM
+RB

1e − 8 12,419 30 + 25 108 498.95 1/66.88 2.21 0.0003
1e − 7 12,213 30 + 25 111 494.59 1/67.47 1.99 0.0003
1e − 6 8579 30 + 25 163 576.53 1/57.88 1,67 0,0003
1e − 5 3667 30 + 25 Loss of convergence

Local DEIM 5
clusters
+RB

1e − 8 9629 30 + 25 120 604.07 1/55.24 2.21 0.0004
1e − 7 9477 30 + 25 126 572.58 1/58.28 2.02 0.0004
1e − 6 6885 30 + 25 105 486.81 1/68.55 1.61 0.0004
1e − 5 3904 30 + 25 Loss of convergence

Local DEIM
10 clusters
+RB

1e − 8 7985 30 + 25 118 539.41 1/61.86 1.81 0.0004
1e − 7 7646 30 + 25 99 464.00 1/71.92 1.69 0.0004
1e − 6 6398 30 + 25 110 466.17 1/71.58 1.56 0.0004
1e − 5 3904 30 + 25 Loss of convergence

RB 117,088 30 + 25 106 3863,55 1/8.64 31,87 0,0002
FEM 117,088 568,850 526 33369,55 1 10,70 53,1154

40 min for component �̂�. It is worth noting that the coupling components �̂� and �̂� have manymore nonzero entries than
matrix �̂�. Specifically, the sparse representation of the snapshot matrix that corresponds to component �̂� has 2775, 715
and the one that corresponds to component �̂� has 4164, 444 rows, whereas for component �̂�, only 336, 625 rows are
needed, since this component only relates to the size of the pressure field, which is smaller. Therefore, the SVD for snap-
shot matrices �̂� and �̂� takes more time. However, after truncation, much fewer vectors are retained in the case of the
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F IGURE 9 Relative error ROM-FEM for pressure (left) and displacement (right) fields. Results for 𝑘𝑠 = 5.5 × 10−8 m/s

TABLE 5 Offline stage duration for setting up the RB + DEIM model. The number of snapshots refers to the number of parametric
values, or the number of sets of parametric values that have been sampled. The break-even number of simulations refers to the number of
simulations in the online stage that would make the process of setting-up the RB-DEIM scheme worthwhile, despite the cost of the offline
stage. This break-even number of simulations is computed based on the optimal time gains that are computed in Tables 2–4

Problem
Number of
snapshots

Offline stage
duration

Duration of 1
FEM
simulation

Break-even number
of online
simulations

1 parameter coarser mesh 5 FEM + 10 RB ≈ 18 h 130 − 140min 8
3 parameters coarser mesh 27 FEM + 125 RB ≈ 5 days 130 − 140min 54
1 parameter finer mesh 5 FEM + 10 RB ≈ 3 days 9 − 10 h 7

coupling components, since the singular values that correspond to these terms drop very fast. Therefore, the DEIM algo-
rithm, which is a greedy process examining one vector at a time, takes longer for the �̂�matrix, and so, the additional costs
for DEIM implementation end up being similar for all three components.
In Table 5, the total durations of the offline stage for each case are listed for comparison.
ROMs are constructedwhen amany query-problemmust be solved, such as an parameter identification problem. These

problems are solved using optimization techniques that require multiple evaluations of the model until the method con-
verges to an optimal solution. The exact number of model evaluations depends on the specific problem that is being
treated. However, the number can be rather high, and certainly larger than a few tens of simulations.
It can be seen in Table 5 that for a larger number of parameters considered, the offline stage duration increases sig-

nificantly. However, in an optimization problem, the number of evaluations required to reach a solution also increases
with the size of the parametric space considered, and may require hundreds of evaluations. Many parametric problems
are nonconvex, which means that a genetic algorithm or another nongradient-based optimization method is required for
their solutions. Thesemethods are typically computationally expensive as they requiremany evaluations. As it can be seen
in Table 5 , the break-even point, that is, the number of evaluations in the online stage, that justifies the costs of the offline
stage is very small for all three problems. If the online stage requires more evaluations than the ones listed in Table 5, the
ROM scheme starts paying off.

4 CONCLUSIONS AND DISCUSSION

In this work, Model Order Reduction was implemented for the coupled system of hydro-mechanical equations that gov-
erns the water flow through partially saturated soil. Combinations of the RBmethod with the DEIM and LDEIMmethods
were implemented, and their benefits were examined and compared. A 3Dparametric illustrative problemwas solvedwith
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the ROMs that results from implementing RB, DEIM, and LDEIM, in order to compare their performances. The problem
consists of mechanically loading the top boundary of an embankment dam. Three variations of this problemwere consid-
ered: one considering a single parameter, another with three parameters, and a third were the single parameter problem
which was solved with a denser FE mesh.
It was found that POD-based ROMs particularly when combined with hyper-reduction via DEIM and LDEIM result in

a significant increase of the computational efficiency in solving the examined problem. Specifically, it was shown that for
the single-parameter case, the solution was up to 27 times faster than when solved with FEM. For the original problem
with three parameters, it was up to 23 times faster, while for the single parameter case with a denser mesh, it was up to 72
times faster. These results imply that themethod yields a speedup that scaleswith increasing size of the full-order problem.
It was shown that the size of POD-basis chosen for nonlinear function approximation affects the accuracy and the effi-

ciency of the resulting model. An approximation space of lower order may result in a smaller number of visited elements
by DEIM, and consequently to faster assembly. However, selecting a smaller basis may also lead to slower convergence
and thereby, to a slower solver overall.
Finally, it was shown that LDEIM yields in all cases the fastest solution among the examined ROMs, and is particularly

advantageous with respect to DEIM for cases in which a higher parametric space is considered. Increasing the number of
clusters from 5 to 10 does not particularly speedup the solution.
All things considered, the combination of RB and DEIM is an appropriate method for problems of hydro-mechanically

coupled flow through porous media. The choice of truncation tolerance and, in the case of localized DEIM, the choice of
number of clusters, is not straightforward. Moreover, there is no specific criterion to select these numbers a priori. The
experience that was acquired through the present work is that the truncation tolerance should be chosen smaller than
what is used in the solution approximation POD basis.
It is worth noting here that the performance of ROMs in terms of efficiency are highly dependent on the specific problem

under investigation. Depending on the specific setup, the method may result to faster or slower ROMs. This remains to be
explored in future implementations of the method for other types of hydro-mechanical coupled problems.

ACKNOWLEDGMENTS
This work has received funding from the European Union’s Horizon 2020 research and innovation programme under
the Marie Sklodowska-Curie Grant agreement No. 764636, for the research project ProTechTion. Pedro Díez and Sergio
Zlotink are grateful for the financial support provided by the Spanish Ministry of Economy and Competitiveness (Grant
agreement No. DPI2017-85139-C2-2-R), by the Generalitat de Catalunya (Grant agreement No. 2017-SGR-1278), and by
project H2020-RISE MATH-ROCKS GA no 777778.

DATA AVAILAB IL ITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.

ORCID
ChristinaNasika https://orcid.org/0000-0002-2761-1990
SergioZlotnik https://orcid.org/0000-0001-9674-8950

REFERENCES
1. Bonomi D, Manzoni A, Quarteroni A. A matrix DEIM technique for model reduction of nonlinear parametrized problems in cardiac

mechanics. Comput Meth Appl Mech Eng. 2017;324:300-326. https://doi.org/10.1016/j.cma.2017.06.011
2. Florentin E, Díez P. Adaptive reduced basis strategy based on goal oriented error assessment for stochastic problems. Comput Meth Appl

Mech Eng. 2012;225-228:116-127. https://doi.org/10.1016/j.cma.2012.03.016
3. Maday Y, Rønquist EM. A reduced-basis element method. CRMath. 2002;335(2):195-200. https://doi.org/10.1016/S1631-073X(02)02427-5
4. Maday Y, Ronquist EM. The reduced basis element method: application to a thermal fin problem. SIAM J Sci Comput. 2004;26(1):240-258.

https://doi.org/10.1137/S1064827502419932
5. Rozza G, Huynh DBP, Patera AT. Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive

partial differential equations. ARCO. 2007;15(3):1-47. https://doi.org/10.1007/BF03024948
6. Kirsten G, Simoncini V. A matrix-oriented POD-DEIM algorithm applied to semilinear matrix differential equations. 2021. Accessed

November 4, 2021. http://arxiv.org/abs/2006.13289
7. Astrid P. Reduction of Process Simulation Models: A Proper Orthogonal Decomposition Approach. 2004. https://doi.org/10.6100/IR581728
8. Rewienski M, White J. A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and

micromachined devices. IEEE Trans Comput Aided Des Integr Circuits Syst. 2003;22(2):155-170. https://doi.org/10.1109/TCAD.2002.806601

 10969853, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nag.3487 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [14/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0002-2761-1990
https://orcid.org/0000-0002-2761-1990
https://orcid.org/0000-0001-9674-8950
https://orcid.org/0000-0001-9674-8950
https://doi.org/10.1016/j.cma.2017.06.011
https://doi.org/10.1016/j.cma.2012.03.016
https://doi.org/10.1016/S1631-073X(02)02427-5
https://doi.org/10.1137/S1064827502419932
https://doi.org/10.1007/BF03024948
http://arxiv.org/abs/2006.13289
https://doi.org/10.6100/IR581728
https://doi.org/10.1109/TCAD.2002.806601


692 NASIKA et al.

9. RewieńskiM,White J.Model order reduction for nonlinear dynamical systems based on trajectory piecewise-linear approximations.Linear
Algebra Appl. 2006;415(2-3):426-454. https://doi.org/10.1016/j.laa.2003.11.034

10. Chaturantabut S, Sorensen DC. Nonlinear model reduction via discrete empirical interpolation. SIAM J Sci Comput. 2010;32(5):2737-2764.
https://doi.org/10.1137/090766498

11. Peherstorfer B, ButnaruD,WillcoxK, BungartzHJ. Localized discrete empirical interpolationmethod. SIAMJSci Comput. 2014;36(1):A168-
A192. https://doi.org/10.1137/130924408

12. Vermeulen PTM,HeeminkAW, Te Stroet CBM. Reducedmodels for linear groundwater flowmodels using empirical orthogonal functions.
Adv Water Res. 2004;27(1):57-69. https://doi.org/10.1016/j.advwatres.2003.09.008

13. Cardoso MA, Durlofsky LJ. Linearized reduced-order models for subsurface flow simulation. J Comput Phys. 2010;229(3):681-700. https://
doi.org/10.1016/j.jcp.2009.10.004

14. He J, Sætrom J, Durlofsky LJ. Enhanced linearized reduced-ordermodels for subsurface flow simulation. J Comput Phys. 2011;230(23):8313-
8341. https://doi.org/10.1016/j.jcp.2011.06.007

15. He J, Durlofsky LJ. Reduced-order modeling for compositional simulation by use of trajectory piecewise linearization. SPE J.
2014;19(05):858-872. https://doi.org/10.2118/163634-PA

16. He J, Durlofsky LJ. Constraint reduction procedures for reduced-order subsurface flowmodels based on POD-TPWL. Int J NumerMethods
Eng. 2015;103(1):1-30. https://doi.org/10.1002/nme.4874

17. Jin ZL, Garipov T, Volkov O, Durlofsky LJ. Reduced-order modeling of coupled flow and quasistatic geomechanics. SPE J. 2020;25(01):326-
346. https://doi.org/10.2118/193863-PA

18. Esmaeili M, Ahmadi M, Kazemi A. A generalized DEIM technique for model order reduction of porous media simulations in reservoir
optimizations. J Comput Phys. 2020;422:109769. https://doi.org/10.1016/j.jcp.2020.109769

19. Gildin E, GhasemiM, Romanovskay A, Efendiev Y. Nonlinear Complexity Reduction for Fast Simulation of Flow inHeterogeneous Porous
Media. In: All Days. SPE. 2013:SPE-163618-MS. https://doi.org/10.2118/163618-MS

20. Ghasemi M, Gildin E. Localized model order reduction in porous media flow simulation. J Pet Sci Eng. 2016;145:689-703. https://doi.org/
10.1016/j.petrol.2016.06.030

21. NuthM, Laloui L. Advances inmodelling hysteretic water retention curve in deformable soils.Comput Geotech. 2008;35(6):835-844. https://
doi.org/10.1016/j.compgeo.2008.08.001

22. Nuth M, Laloui L. Effective stress concept in unsaturated soils: clarification and validation of a unified framework. Int J Numer Anal
Methods Geomech. 2008;32(7):771-801. https://doi.org/10.1002/nag.645

23. Pinyol NM, Alonso EE, Olivella S. Rapid drawdown in slopes and embankments. Water Resour Res. 2008;44(5). https://doi.org/10.1029/
2007WR006525

24. Gerard P, Leonard A, Masekanya JP, Charlier R, Collin F. Study of the soil-atmosphere moisture exchanges through convective drying
tests in non-isothermal conditions. Int J Numer Anal Methods Geomech. 2009;34(12):1297-1320. https://doi.org/10.1002/nag.866

25. Alonso EE, Olivella S, Pinyol NM. A review of Beliche Dam. Géotechnique. 2005;55(4):267-285. https://doi.org/10.1680/geot.2005.55.4.267
26. Gerard P, Charlier R, Chambon R, Collin F. Influence of evaporation and seepage on the convergence of a ventilated cavity.Water Resour

Res. 2008;44(5). https://doi.org/10.1029/2007WR006500
27. van Genuchten MTh. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils1. Soil Sci Soc Am J.

1980;44(5):892. https://doi.org/10.2136/sssaj1980.03615995004400050002x
28. Booker JR, Small JC. An investigation of the stability of numerical solutions of Biot’s equations of consolidation. Int J Solids Struct. 1975;11(7-

8):907-917. https://doi.org/10.1016/0020-7683(75)90013-X
29. Selvadurai APS, Suvorov AP. Thermo-Poroelasticity and Geomechanics. Cambridge University Press; 2017. https://doi.org/10.1017/

CBO9781316543832
30. Celia MA, Bouloutas ET, Zarba RL. A general mass-conservative numerical solution for the unsaturated flow equation.Water Resour Res.

1990;26(7):1483-1496. https://doi.org/10.1029/WR026i007p01483
31. List F, Radu FA. A study on iterative methods for solving Richards’ equation. Comput Geosci. 2016;20(2):341-353. https://doi.org/10.1007/

s10596-016-9566-3
32. Quarteroni A, Manzoni A, Negri F. Reduced Basis Methods for Partial Differential Equations. Vol 92. Springer International Publishing;

2016. https://doi.org/10.1007/978-3-319-15431-2
33. Hesthaven JS, Rozza G, Stamm B. Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer International

Publishing; 2016. https://doi.org/10.1007/978-3-319-22470-1
34. Nasika C, Díez P, Gerard P,Massart TJ, Zlotnik S. Towards real time assessment of earthfill dams viamodel order reduction.Finite Elements

Anal Des. 2022;199:103666. https://doi.org/10.1016/j.finel.2021.103666
35. Quarteroni A, Rozza G, eds. Reduced Order Methods for Modeling and Computational Reduction. Springer International Publishing; 2014.

https://doi.org/10.1007/978-3-319-02090-7
36. Ortega-Gelabert O, Zlotnik S, Afonso JC, Díez P. Fast Stokes flow simulations for geophysical-geodynamic inverse problems and sensitivity

analyses based on reduced order modeling. J Geophys Res: Solid Earth. 2020;125(3):25. https://doi.org/10.1029/2019JB018314
37. LarionY, Zlotnik S,Massart TJ, Díez P. Building a certified reduced basis for coupled thermo-hydro-mechanical systemswith goal-oriented

error estimation. Comput Mech. 2020;66(3):559-573. https://doi.org/10.1007/s00466-020-01865-7
38. Alnaes MS, Blechta J, Hake J, et al. The FEniCS Project Version 1.5. Arch Numer Softw. 2015;3:9-23. https://doi.org/10.11588/ans.2015.100.

20553

 10969853, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nag.3487 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [14/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1016/j.laa.2003.11.034
https://doi.org/10.1137/090766498
https://doi.org/10.1137/130924408
https://doi.org/10.1016/j.advwatres.2003.09.008
https://doi.org/10.1016/j.jcp.2009.10.004
https://doi.org/10.1016/j.jcp.2009.10.004
https://doi.org/10.1016/j.jcp.2011.06.007
https://doi.org/10.2118/163634-PA
https://doi.org/10.1002/nme.4874
https://doi.org/10.2118/193863-PA
https://doi.org/10.1016/j.jcp.2020.109769
https://doi.org/10.2118/163618-MS
https://doi.org/10.1016/j.petrol.2016.06.030
https://doi.org/10.1016/j.petrol.2016.06.030
https://doi.org/10.1016/j.compgeo.2008.08.001
https://doi.org/10.1016/j.compgeo.2008.08.001
https://doi.org/10.1002/nag.645
https://doi.org/10.1029/2007WR006525
https://doi.org/10.1029/2007WR006525
https://doi.org/10.1002/nag.866
https://doi.org/10.1680/geot.2005.55.4.267
https://doi.org/10.1029/2007WR006500
https://doi.org/10.2136/sssaj1980.03615995004400050002x
https://doi.org/10.1016/0020-7683(75)90013-X
https://doi.org/10.1017/CBO9781316543832
https://doi.org/10.1017/CBO9781316543832
https://doi.org/10.1029/WR026i007p01483
https://doi.org/10.1007/s10596-016-9566-3
https://doi.org/10.1007/s10596-016-9566-3
https://doi.org/10.1007/978-3-319-15431-2
https://doi.org/10.1007/978-3-319-22470-1
https://doi.org/10.1016/j.finel.2021.103666
https://doi.org/10.1007/978-3-319-02090-7
https://doi.org/10.1029/2019JB018314
https://doi.org/10.1007/s00466-020-01865-7
https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.11588/ans.2015.100.20553


NASIKA et al. 693

39. Nadal E, Chinesta F, Díez P, Fuenmayor FJ, Denia FD. Real time parameter identification and solution reconstruction from experimental
data using the proper generalized decomposition. Comput Meth Appl Mech Eng. 2015;296:113-128. https://doi.org/10.1016/j.cma.2015.07.
020

40. Negri F, Manzoni A, AmsallemD. Efficient model reduction of parametrized systems bymatrix discrete empirical interpolation. J Comput
Phys. 2015;303:431-454. https://doi.org/10.1016/j.jcp.2015.09.046

41. Pagani S, Manzoni A, Quarteroni A. Numerical approximation of parametrized problems in cardiac electrophysiology by a local reduced
basis method. Comput Meth Appl Mech Eng. 2018;340:530-558. https://doi.org/10.1016/j.cma.2018.06.003

42. Pedregosa F, Varoquaux G, Gramfort A, et al. scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825-2830.
43. LedesmaO, SfrisoA,Manzanal D. Procedure for assessing the liquefaction vulnerability of tailings dams.ComputGeotech. 2022;144:104632.

https://doi.org/10.1016/j.compgeo.2022.104632
44. Lyu Z, Chai J, Xu Z, Qin Y, Cao J. A comprehensive review on reasons for tailings dam failures based on case history. Adv Civ Eng.

2019;2019:1-18. https://doi.org/10.1155/2019/4159306
45. Cui L. Three-dimensional seepage analysis for complex topographical tailings dam. Rock Soil Mech. 2006;27:1176-1180.
46. Zhang C, Chai J, Cao J, Xu Z, Qin Y, Lv Z. Numerical simulation of seepage and stability of tailings dams: a case study in Lixi, China.

Water. 2020;12(3):742. https://doi.org/10.3390/w12030742
47. Geuzaine C, Remacle JF. Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities: the Gmsh paper. Int

J Numer Methods Eng. 2009;79(11):1309-1331. https://doi.org/10.1002/nme.2579
48. Bhanbhro R. Mechanical Properties of Tailings: Basic Description of a Tailings Material from Sweden. 2014. Accessed January 24, 2022.

https://doi.org/10.13140/2.1.1338.2082
49. Chellappa S, Feng L, Benner P. Adaptive basis construction and improved error estimation for parametric nonlinear dynamical systems.

Int J Numer Methods Eng. 2020;121(23):5320-5349. https://doi.org/10.1002/nme.6462
50. Qiu Y, Sego DC. Laboratory properties of mine tailings. Canadian Geotech J. 2001;38(1):183-190. https://doi.org/10.1139/t00-082
51. Antil H, Heinkenschloss M, Sorensen DC. Application of the discrete empirical interpolation method to reduced order modeling of non-

linear and parametric systems. In: Quarteroni A, Rozza G, eds. Reduced Order Methods for Modeling and Computational Reduction. Vol 9.
Springer International Publishing; 2014:101-136. https://doi.org/10.1007/978-3-319-02090-7

52. Amsallem D, Zahr MJ, Farhat C. Nonlinear model order reduction based on local reduced-order bases. Int J Numer Methods Eng.
2012;92(10):891-916. https://doi.org/10.1002/nme.4371

How to cite this article: Nasika C, Díez P, Gerard P, Massart TJ, Zlotnik S. Discrete empirical interpolation for
hyper-reduction of hydro-mechanical problems in groundwater flow through soil. Int J Numer Anal Methods.
2023;47:667–693. https://doi.org/10.1002/nag.3487

APPENDIX A: FUNCTION SPACES FOR GALERKIN APPROXIMATION
Given a domain Ωwith boundary ∂Ω, the following function spaces are introduced:

𝐿2(Ω) =
{
𝑝 ∶ ∫Ω |𝑝2|𝑑x < +∞

}
,

𝐻1(Ω) =
{
𝑝 ∶ 𝑝 ∈ 𝐿2(Ω), D𝑝 ∈ 𝐿2(Ω)

}
,

𝑯(𝑑𝑖𝑣,Ω) =
{
𝐮 ∶ 𝐮 ∈ 𝐿2(Ω)𝑑, 𝛁 ⋅ 𝐮 ∈ 𝐿2(Ω)

}
,

where 𝑑 denotes space dimension. Water pressure 𝑝 should be sought in function space 𝐻1(Ω) and displacement 𝐮 in
𝑯(𝑑𝑖𝑣,Ω). The following subset spaces are also defined:

𝑊 =
{
w ∈ 𝐻1(Ω) ∶ w|||ΓpD = 0

}
,

𝑽 =
{
𝐯 ∈ 𝑯(𝑑𝑖𝑣,Ω) ∶ 𝐯|||Γ𝐮D = 0

}
,

where ΓpD and Γ𝐮D are partitions of the boundary ∂Ω where Dirichlet boundary conditions are applied for pressure and
displacement, respectively.
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