
1

Static Placement and Dynamic Assignment of SDN
Controllers in LEO Satellite Networks

Jianming Guo, Lei Yang, David Rincón, Member, IEEE, Sebastià Sallent, Life Member, IEEE, Quan Chen,
and Xianfeng Liu

Abstract—Software-defined networking (SDN) logically sepa-
rates the control and data planes, thus opening the way to
more flexible configurations and management of low-Earth orbit
(LEO) satellite networks. Since one or, more generally, multiple
distributed controllers are needed, a significant challenge in SDN
is the controller placement problem (CPP). Due to characteristics
such as the dynamic network topology, limited bandwidth and
traffic variations, the CPP is quite complex in SDN-based satellite
networks. In this paper, we propose solving the CPP by means
of a static placement with dynamic assignment (SPDA) method
for LEO satellite networks. The SPDA method has two parts:
the first is to incorporate SDN controllers into some fixed
satellites by formulating a mixed integer programming model;
the second is to dynamically assign switches to existing controllers
according to the switch-controller latency and the traffic load of
controllers. The SPDA method takes the topological dynamics
into account by effectively dividing time snapshots, and it has a
lower bandwidth consumption compared with methods involving
controller migrations. Real satellite constellations are used to
evaluate the performance of our controller placement solution.
The results show that SPDA outperforms existing methods in
terms of reducing the switch-controller latency, and it also has
good load balancing performance.

Index Terms—software-defined networking, low-Earth orbit,
controller placement, satellite network, dynamic topology, load
balancing.

I. INTRODUCTION

A IMING to provide global Internet services, low-Earth
orbit (LEO) satellite networks have gained more atten-

tion in recent years. Some LEO constellation projects with
hundreds or thousands of satellites are being invested in and
developed, such as Telesat, OneWeb, and Starlink, to name a
few. However, due to the rigidity of the legacy architecture,
existing satellite networks also face challenges [1]. On the one
hand, network management and configuration lack flexibility
due to the inherent coupling of software and hardware in

This work was supported in part by the National Natural Science Foundation
of China No. 11725211 and No. 12002383, and by the Agencia Estatal de
Investigación of Ministerio de Ciencia e Innovación of Spain under project
PID2019-108713RB-C51 MCIN/ AEI/10.13039/501100011033.

Jianming Guo is with the College of Aerospace Science and Engineering,
National University of Defense Technology, Changsha, Hunan 410073, China,
and also with the Science and Technology on Complex Aircraft System Sim-
ulation Laboratory, Beijing 100094, China. E-mail: gjm08110@hotmail.com.

Lei Yang, and Quan Chen are with the College of Aerospace Science and
Engineering, National University of Defense Technology, Changsha, Hunan
410073, China. E-mail: {yanglei, chenquan11}@nudt.edu.cn.

David Rincón and Sebastià Sallent are with the Department of Network En-
gineering, Universitat Politècnica de Catalunya (UPC), Castelldefels, 08860,
Barcelona, Spain. E-mail: {drincon, sallent}@entel.upc.edu.

Xianfeng Liu is with the Beijing Institute of Tracking and Telecommunica-
tions Technology, Beijing 100094, China. E-mail: liuxianfeng_edu@163.com.

Control plane

Data plane

Users and ground

infrastructure

Abstract controllers

Fig. 1. Architecture of an SDN-based LEO satellite network.

traditional satellite networking devices [2]. On the other hand,
satellite networks are hindered from directly merging with
new terrestrial network technologies (e.g., 5G) because their
protocols evolve differently and are developed independently
[3]. The introduction of software-defined networking (SDN)
into satellite networks may overcome the aforementioned
problems. With a logically centralized control plane that is
decoupled from the data plane, SDN provides the capability
of simplifying network programming and management. The
architecture of an SDN-based LEO satellite network is de-
picted in Fig. 1, where controllers are co-located with switches
on LEO satellites in the data plane and compose the control
plane. The ground infrastructure comprises gateways as well
as telemetry, tracking and control (TT&C) stations, while users
consist of fixed or mobile devices using specific modems, such
as vehicles, aircraft, sensors and actuators, among others.

Nonetheless, embracing SDN can also incur new challenges.
The logically centralized control plane often has multiple con-
trollers that are physically distributed for catering to network
scale expansion, which gives rise to the controller placement
problem (CPP). CPP generally consists in deciding how many

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3184989

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

2

controllers are needed for network management and where
to locate them along with other considerations such as SDN
global reliability. CPP also involves the mapping of controllers
and switches (assigning the appropriate switches to a spe-
cific controller). Controller placement can determine switch-
controller latency, which mainly affects network resilience and
quality of service (QoS) [4].

Although some studies have been conducted on CPP in
both terrestrial and satellite networks, they rarely consider the
intrinsic characteristics of satellite networks, such as dynamic
topology, bandwidth limitations, and traffic variations. As LEO
satellites fly around the Earth, the network topology changes
quickly and frequently, which indeed influences the switch-
controller latency. Thus, static controller placement (SCP)
methods like those described in [5], [6] cannot be directly
adopted in satellite scenarios. On the other hand, dynamic
controller placement (DCP) methods for satellite networks
(like in [7]) adopt a controller migration strategy, which
considers the topological dynamics exactly and also adapts
to traffic variations. However, the limited bandwidth of on-
orbit satellites makes it costly to frequently migrate controllers
from one satellite to another, thereby preventing the practical
implementation of DCP. Moreover, the switch-controller map-
ping has not been thoroughly analyzed. SCP methods maintain
static assignment between switches and controllers while DCP
methods migrate controllers, thus causing a dynamic switch-
controller assignment. Nevertheless, neither SCP nor DCP
methods can provide explicit guidance on how to determine a
new controller for a given switch.

This paper aims to develop a new method that combines
both DCP and SCP in order to avoid their aforementioned
shortcomings. We solve the CPP in LEO satellite networks
by considering their specific characteristics, including the
dynamic topology, limited bandwidth and traffic variability.
The main contributions of this paper are listed as follows:

• A static placement and dynamic assignment method is
proposed to solve CPP in LEO satellite networks.

• A snapshot division method is developed to deal with the
dynamic topology of LEO satellite networks.

• An arrival traffic estimation model is presented to esti-
mate the traffic load of controllers and switches in LEO
satellite networks.

The rest of the paper is organized as follows. In Section II,
we summarize the existing works on CPP in both terrestrial
and satellite networks. In Section III, we describe an SDN-
based LEO satellite constellation architecture, and provide
a set of parameters to represent the constellation. We then
describe the switch migration model, illustrate the migration
process, and outline the costs. Moreover, we analyze the
changeable and periodical topology of satellite constellations
and present an improved scheme for dividing time snapshots.
We also provide a traffic estimation model for controllers. Ac-
cordingly, Section IV proposes a new method for solving CPP,
namely static placement with dynamic assignment (SPDA),
which involves two parts: statically placing controllers on
certain nodes and then dynamically assigning switches to them
according to switch-controller latency and controller traffic

load. We formulate the static controller placement into a
mixed-integer programming (MIP) model, develop the static
placement schemes, and then obtain the dynamic assignment
results in terms of latency and load balancing. In Section
V, we adopt two types of real constellations to test SPDA
and compare it with methods developed in previous works.
The results indicate that our method outperforms both SCP
and DCP, because SPDA not only reduces the bandwidth
consumption of controller migrations but also solves the highly
dynamic topology problem in satellite networks. Finally, we
conclude the paper in Section VI.

II. RELATED WORKS

To the best of our knowledge, the first attempt at solving
CPP is the research in [8], which proposes a min-cut based
graph partitioning algorithm to maximize the resilience be-
tween the controller and switches. [8] points out that CPP
basically consists of selecting a subset for connecting several
controllers that meet some requirements (e.g., maximizing
the total network resilience). Since then, researchers have
explored CPP mainly for terrestrial networks, which can be
divided into roughly two categories: SCP and DCP. In general,
SCP aims to deploy controllers on fixed nodes and maintain
stationary switch-controller assignment. An example of SCP
is given in [9], where controllers are statically placed on the
ground together with satellite gateways. By contrast, DCP
allows a controller to migrate from one node to another, and
thus the switch-controller assignment is changeable [10]. The
remainder of this section will briefly summarize SCP and DCP
in both terrestrial and satellite networks, respectively.

Most studies on terrestrial CPP focus on SCP methods.
Heller et al. [5] first use switch-controller latency to evaluate
controller placement schemes in terrestrial networks. Hu et al.
[6] study CPP from the perspective of maximizing the relia-
bility of SDN control networks, where they define a control
path as the path either between a switch and its controller
or between different controllers. The expected percentage of
control path loss is adopted as the evaluation metric. Yao et
al. [11] take the traffic load of controllers into account in
order to obtain a more traffic-balanced controller placement
solution. Jiménez et al. [12] aim to find the minimum number
of controllers and their locations, which involves both network
robustness and load balancing. Since there are many objectives
for CPP, Lange et al. [13] create a Pareto-based framework
to find a balanced trade-off between different objectives, or
in other words, performance metrics, for optimal controller
placement solutions. Apart from the above, other objectives
such as QoS-guaranteed and energy consumption are also
discussed in [14], [15] and [16], respectively. A survey on
controller placement in terrestrial SDN is presented in [4],
where a classical CPP formulation is described as an integer
linear programming (ILP) model. Different CPP objectives
are summarized and discussed, mainly control latency, load
balancing, resiliency, reliability, and cost efficiency, among
others. Furthermore, the authors sum up both heuristic and
optimal methods to solve CPP, among which the greedy
algorithm and ILP are the most popular methods. Moreover,

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3184989

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

3

Wang et al. [17] propose a clustering-based network partition
algorithm to address CPP, which partitions a network into
subnetworks to shorten the propagation latency between con-
trollers and their associated switches. However, these methods
cannot be adopted directly to a satellite scenario due to the
dynamic network topology.

There are also a few studies concerned with DCP in
terrestrial networks. Bari et al. [10] propose a multi-controller
placement framework that dynamically adjusts the number
of active controllers and assigns switches to each controller
according to topological dynamics. Two heuristic (greedy-
based and simulated annealing-based) algorithms are devel-
oped in order to ensure a minimal flow setup time and
communication costs. He et al. [18] present a DCP model
to simultaneously optimize controller locations and switch-
to-controller assignments for minimum average flow setup
time with respect to the network’s different traffic conditions.
However, controller migration costs are neglected in these
works. Furthermore, Torkzaban et al. [19] aim to minimize the
failure probability of SDN control paths to ensure reliability
between controllers and switches by deploying controllers
close to satellite gateways, which would be a good choice
for terrestrial controller placement but not necessarily for the
on-board controllers in satellites.

Both SCP and DCP struggle to adapt to the characteristics
of LEO satellite networks. Because satellites fly around the
Earth, the links between them may change with time, thereby
leading to a highly dynamic topology. As a result, SCP
cannot satisfy all the topological configurations, which causes
long switch-controller latency in some time instances. On the
other hand, although applying DCP migrations can meet the
requirements of network topology changes, it undoubtedly
consumes excessive time, bandwidth and power. When a
satellite periodically orbits around the Earth, its traffic load
will change over time due to the dynamic topology and the
Earth’s regular rotation. Thus, in order to balance the traffic
load, previous studies tend to dynamically migrate controllers
[20], [21], which requires frequent and synchronous migrating
operations that consume high bandwidth and a large number
of calculations for the real-time controller placement scheme.
Therefore, traffic-based DCP might not be entirely appropriate
for satellite networks. A combined static-dynamic method for
CPP is proposed in [22], where controllers are statically placed
on ground control centers and geostationary orbit (GEO)
satellites but dynamically placed on two LEO satellites for
each orbit closest to 0◦ latitude. Nevertheless, [22] does not
consider the mobility of LEO satellites and provides no details
on the controller migration process. In a word, existing SCP
and DCP methods are not quite suitable for LEO satellite
networks.

Apart from SCP and DCP, some studies propose dynamic
assignment methods for changing the mapping between con-
trollers and switches for the sake of latency constraint, load
balancing, etc. Dixit et al. [23] provide an elastic distributed
controller architecture, i.e., ElastiCon, in which the controller
pool can automatically grow or shrink as traffic conditions
change over time. ElastiCon enables the switch migration
process to better distribute the controller load, and it also

implements a minimal disruption migration protocol. Wang
et al. [24] propose a dynamic controller assignment model
and develop an efficient online algorithm to reassign switches
to controllers according to network conditions. The proposed
method mainly aims to solve the problem of long response
times caused by traffic variations in data center networks.
Based on the dynamic assignment strategy, the load-balancing
problem is considered in controller placement schemes. Hu et
al. [25] assume that the control traffic demands of switches are
the same and thus use the number of assigned switches as a
metric to evaluate the traffic load. Furthermore, Ma et al. [26]
propose a load-balancing mechanism for controllers in terres-
trial SDNs by eliminating the bottleneck of centralized control,
which is based solely on controller traffic. Hu et al. [27] also
provide a load-balancing controller deployment scheme while
considering the reliability of nodes and links, which can be
easily affected by controller deployment results in terrestrial
networks. Lan et al. [28] bring up a load balancing mecha-
nism for terrestrial networks, which can dynamically migrate
switches from heavily-loaded to lightly-loaded controllers. Xu
et al. [29] propose two switch migration schemes not only
to achieve load balance among controllers but also to reduce
migration costs and provide low computation overhead. Apart
from that, software-defined wide area networks (SDWANs)
also study load-balancing methods for controller placement
based on network topology, minimum-cost flow [30] and flow
traffic distribution [31]. Due to the intrinsic characteristics of
LEO satellite networks, these load-balancing methods cannot
be adopted directly. To the best of our knowledge, there is no
such research on dynamic controller assignment in satellite
networks, and thus ours is the first work that combines static
controller placement and dynamic assignment together.

III. SYSTEM MODEL

Before confronting the CPP in LEO satellite networks, we
need to address some issues with the system model con-
cerning the constellation architecture, switch migration model,
dynamic topology, and traffic estimation.

A. SDN-based Satellite Constellation Architecture

Our model takes into account both Walker-𝛿 and Walker-
Polar constellations, which cover almost all existing systems.
A Walker-𝛿 constellation usually has inclined orbits, while a
Walker-Polar constellation’s inclination angle is around 90◦
[32]. The architecture of a typical LEO satellite network is
depicted in Fig. 2. In a LEO constellation, all satellites are
organized into several orbit planes. Let us assume there are 𝑃
planes and 𝑆 satellites in each plane; thus, the total number of
satellites is 𝑁 = 𝑃×𝑆. A LEO constellation can be denoted by
a set of parameters, i.e., ℎ:𝑖:𝑃/𝑆/𝐹, which is slightly different
from Walker’s classical notation ℎ:𝑖:𝑁/𝑃/𝐹. Here, ℎ is the
orbit altitude, 𝑖 is the inclination angle, and 𝐹 is an integer
phase factor, representing the inter-plane phase difference of
two neighboring satellites, namely Δ𝜔 𝑓 (see Fig. 2). For a
Walker-𝛿 constellation, 𝐹 = 0, 1, ..., 𝑃−1, and Δ𝜔 𝑓 = 2𝜋𝐹/𝑁 ,
while for a Walker-Polar constellation, Δ𝜔 𝑓 = 𝜋/𝑆, which
is half of the intra-plane phase difference of neighboring

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3184989

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

4

Satellite

switch

Satellite

controller

Orbit

trajectory

ISL

Polar region

boundary

Switched-

off ISL
f

Fig. 2. Architecture of a typical LEO satellite network (Walker-
Polar constellation). Some ISLs and satellites in the polar
region are omitted for simplicity.

satellites. Moreover, ΔΩ is the longitude difference between
adjacent planes, and it usually equals 2𝜋/𝑃 or 𝜋/𝑃 for,
respectively, Walker-𝛿 and Walker-Polar constellations.

Inter-satellite links (ISLs) are established between neigh-
boring satellites in either the same orbit or adjacent orbits,
which are called, respectively, intra-orbit and inter-orbit ISLs.
It should be noticed that, in our model, inter-orbit ISLs exist
only between two satellites moving in the same direction;
otherwise they become unstable due to high Doppler shift and
have a short duration, which incurs a so-called seam between
two counter-rotating orbits in Walker-Polar constellations. We
can define a time-varying graph G(V, E) to describe the
network topology of the constellation, where V and E are
two sets of satellite nodes and ISLs, respectively.

In our model, all satellites are SDN switches and form
the potential controller set, but only some of them will take
the function of SDN controllers. In other words, controllers
are physically co-located with satellite switches but logically
separated from them. Switches that are assigned to a certain
controller constitute the controller’s domain; the controller is
in charge of them and manages their flow tables. Switches only
need to handle data packets in accordance with the instructions
of their controllers. Let us assume that a controller 𝑐𝑖 co-
locates with the switch 𝑣 𝑗 , where 𝑐𝑖 , 𝑣 𝑗 ∈ V and the total
number of satellite nodes is 𝑁 . We can thereby define an 𝑁-
dimensional vector of 0-1 elements, i.e., x = (𝑥1, 𝑥2, ..., 𝑥𝑁),
to represent controller locations,

𝑥𝑖 =

{
1, if 𝑐𝑖 exists
0, otherwise (1)

The switch-controller assignment matrix Y is defined as

𝑦𝑖 𝑗 =

{
1, if 𝑣 𝑗 is assigned to 𝑐𝑖
0, otherwise (2)

where index 𝑖 represents controller 𝑐𝑖 and 𝑗 represents switch
𝑣 𝑗 . Therefore, both x and Y are regarded as the design
variables of the CPP.

Controller A Switch X Controller B

P
h

a
se

 1
P

h
a
se

 2
P

h
a
se

 3
P

h
a
se

 4

A
 o

w
n

s X
B

 o
w

n
s X

Fig. 3. Switch migration process in four phases.

B. Switch Migration Model

The SPDA method includes a dynamic assignment process
requiring switch migrations, which means that a switch is
detached from its original controller and reassigned to a new
controller. This process occurs when a controller is overloaded
and the network topology changes, thus increasing the switch-
controller latency. Assume that we migrate switch 𝑋 from
controller 𝐴 to controller 𝐵, and the switch migration process
operates in four phases according to [23], [29] as shown in
Fig. 3:

• In phase 1, controller 𝐴 first sends a start-migration
message to controller 𝐵, which then sends a role-request
message to switch 𝑋 and changes its role to equal. After 𝐵
receives a role-reply message from 𝑋 , it then immediately
sends a ready-for-migration message to inform 𝐴 that it
can now receive 𝑋’s messages but will just ignore them.

• In phase 2, 𝐴 first sends the flow states of 𝑋 to 𝐵 to make
sure 𝐵 can take over immediately after the migration. 𝐴
inserts a dummy flow to switch 𝑋 , and then 𝑋 deletes
it for the purpose of sending a flow-removed message as
an event signal to both 𝐴 and 𝐵. After that, 𝐵 will be
in charge of processing messages (caching at first) from
𝑋 while 𝐴 ignores them, although both 𝐴 and 𝐵 are in
equal mode.

• In phase 3, 𝐵 will wait until 𝐴 finishes its pending
requests that arrived before the flow-removed message.
After processing all the pending requests, 𝐴 sends a
barrier-request message to 𝑋 and waits for the barrier-
reply message, which will induce an end-migration signal
sent from 𝐴 to 𝐵.

• In phase 4, 𝐵 will send a role-request message to 𝑋 , and
𝑋 will change the role of 𝐴 to slave and that of 𝐵 to

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3184989

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

5

master. All messages from 𝑋 cached at 𝐵 in phase 3 can
now be processed.

We denote C = {𝑐𝑖 ∈ V|𝑐𝑖 = 1} to represent the controller
set, and for ∀𝑐𝑖 ∈ C, it has an assignment switch set S𝑖 ⊂ V.
For ∀𝑣 𝑗 ∈ S𝑖 , we have 𝑦𝑖 𝑗 = 1. If 𝑣 𝑗 should be reassigned to
a new controller denoted by 𝑐 𝜉 at some time, the assignment
matrix Y should be updated as{

𝑦𝑖 𝑗 ← 0
𝑦 𝜉 𝑗 ← 1 (3)

Meanwhile, the flow tables concerning the reassigned switch
should also be migrated to the new controller. The switch mi-
gration cost defined in [29] is the number of switches that need
to migrate, which is much smaller than the number needed for
migrating a controller because a controller generally contains
flow tables of more switches. It can be roughly estimated
that an Openflow switch can have 256 tables with 256 flow
entries. Each rule record (flow entry) is on average 100 bytes.
If all the tables of the switch are full, there will be about 6-
10 MB of data. If the link’s data rate is 1 Gbps, the switch
migration time will be less than 80 ms. By comparison with
the controller migration process illustrated in [21] and [33],
the total data storage size of a controller is estimated to be 100
MB on average. Although the bandwidth of migration links is
set to 1 Gbps (too large for current satellites), the time cost of
controller migration is at least 800 ms, which will be larger if
we consider the propagation delay between the previous and
newly selected controllers.

C. Topological Dynamics and Snapshot Division

Due to the relative motion of satellites, a LEO satellite
network has a dynamic topology. We take here a Walker-
Polar constellation as an example to elaborate on. As shown
in Fig. 4, before flying into the polar region at 𝑡1, satellite
𝑆0 can maintain inter-orbit ISLs 𝐿1 and 𝐿2 with 𝑆1 and
𝑆2, respectively. When these satellites enter the polar region
at 𝑡2, 𝐿1 and 𝐿2 will be temporarily switched off, because
their range, azimuth and elevation angles change too fast
and antenna tracking thus becomes difficult. After passing
through the polar region, 𝑆0 reestablishes 𝐿1 and 𝐿2 at 𝑡3,
but their targeting nodes are exchanged. Similarly, the ISL
switch-off will still exist in a Walker-𝛿 constellation, because
adjacent orbits intersect each other at the latitude near the orbit
inclination angle. For the sake of simplicity, we will likewise
use the polar region to represent the orbit intersection area of
Walker-𝛿 constellations in the following paragraphs.

In order to deal with the dynamic topology, existing studies
have proposed two kinds of methods, namely virtual node
(VN) and virtual topology (VT) [34]. Although the VN
methods shield the topological dynamics by dividing the
Earth’s surface into several cells and binding them with certain
satellites, they cannot reflect the intrinsic changes in ISLs
and, thus, the dynamic network topology. By contrast, VT
methods maintain the topological changes by dividing the
satellite motion period into several time snapshots, which is
indeed an effective way to deal with CPP. However, dividing
the snapshots evenly by a fixed time step Δ𝑡 (as in [7])

S0

S2

S1
S0

S2

S1

S1

S2 L1

L2S0

S1

S2 L1

L2S0S1

S0

S2
L2

L1

S1

S0

S2
L2

L1

t1 t2 t3

Fig. 4. Inter-orbit ISLs 𝐿1 and 𝐿2 are switched off in the polar
region (in grey) where two orbits intersect each other (from
the view of the North/South pole).

might be unable to capture some topological configurations
with a duration shorter than Δ𝑡. On the other hand, if we
divide the time period by topological changes and choose one
instance for each time snapshot [20], the network topology
in each time period will be stable. Nonetheless, each time
instance will contribute the same to the CPP model and, thus,
the duration of each time period (which represents a steady
network topological configuration) will be useless and cannot
affect the CPP results.

To address the snapshot division problem, we modify the
VT method in our model. Let us assume that the time period
that a satellite cycles around the Earth is 𝑇 , which is also the
period of the constellation, and the network topology changes
at a sequence of time instances 𝑇𝑖 (𝑖 = 1, 2, ...𝑀) (𝑀 is the
total number of time instances). Then the network snapshots
are intervals between two consecutive time instances, and we
use the snapshot length 𝛿𝑖 to represent it, which satisfies
𝛿𝑖 = 𝑇𝑖+1−𝑇𝑖 . We first calculate the minimum snapshot length,
namely 𝛿𝑚𝑖𝑛 = min∀𝑖<𝑀 𝛿𝑖 , based on the method described in
[32], where a virtual orbital plane is created, and all satellites
in the LEO constellation are mapped onto it. Then we set
the fixed time step that satisfies Δ𝑡 < 𝛿𝑚𝑖𝑛. Thus, we can
sample a sequence of time instances, i.e., 𝑡𝑘 (𝑘 = 1, 2, ...),
and 𝑡𝑘+1 − 𝑡𝑘 = Δ𝑡. 𝑡𝑘 will be the instances chosen for solving
the CPP.

D. Arrival Traffic Estimation

When satellites move along their orbits, their traffic load
will change with the coverage area, which may cause overload
or idleness on switches and, specially, on controllers. Hence,
it is important to estimate the time-varying traffic load of
controllers.

According to [35], data packets arriving at an SDN switch
can be divided into two types, i.e., local packets coming from
the switch’s own domain and forwarded packets from other
neighboring switches. The local arrival rate of switch 𝑣 𝑗 within
its coverage area at time instance 𝑡𝑘 is denoted as 𝜆𝑘𝑗 , where
𝑗 = 1, 2, ..., 𝑁 . The probability that a packet belongs to a new
flow and needs to be sent to the controller is assumed to be
𝑝
𝑛 𝑓
𝑗 ; thus the traffic sent from 𝑣 𝑗 to its controller is

𝛾𝑘𝑗 = 𝑝
𝑛 𝑓
𝑗 𝜆𝑘𝑗 (4)

The proportion of data that switch 𝑣 𝑗 forwards from switch
𝑣𝑚 is 𝑞𝑚𝑗 . Because each switch has an independent coverage

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3184989

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

6

C1

C2

C1

C2

t1 t2

S0

S0

Fig. 5. Switches are reassigned to controllers when network
topology changes. Here, solid and dashed lines represent ISLs
and indirect connections of satellites, respectively.

area on the Earth and the traffic rates of each coverage area
are independent for a certain time, any two switches will have
independent arrival rates at the same time. Hence, the net data
packet arrival rate of switch 𝑣 𝑗 is

Λ𝑘
𝑗 =

𝑁∑
𝑚=1

𝜆𝑘𝑚𝑞𝑚𝑗 (5)

where we assume that 𝑞 𝑗 𝑗 = 1.
Therefore, the traffic arrival rate of the controller 𝑐𝑖 , denoted

by Γ𝑘
𝑖 is given by

Γ𝑘
𝑖 =

𝑁∑
𝑗=1
𝛾𝑘𝑗 𝑦𝑖 𝑗 (6)

Once we obtain the real-time local arrival rate of switches
(i.e., 𝜆𝑘𝑗) and the switch-controller mapping 𝑦𝑖 𝑗 , we can
calculate the controller traffic load Γ𝑘

𝑖 . While 𝑦𝑖 𝑗 needs further
investigation, we can directly compute 𝜆𝑘𝑗 , which is the sum
of user traffic within the coverage area of satellite 𝑣 𝑗 at time
instance 𝑡𝑘 .

IV. STATIC PLACEMENT AND DYNAMIC ASSIGNMENT
METHOD

We aim to statically place controllers on fixed nodes while
dynamically assigning switches to controllers. Therefore, the
SPDA consists mainly of two parts: first, we choose appropri-
ate controller locations within a constellation period; second,
we calculate the dynamic switch-controller assignment accord-
ing to the topological changes and traffic variations. We will
illustrate this using the example of the switch reassignment
process caused by topological dynamics. As shown in Fig. 5,
where solid lines represent ISLs and dashed lines represent
indirect connections, some satellites exist between 𝑆0 and
others. Satellite 𝑆0 is initially managed by controller 𝐶1 in
𝑡1. When the topology changes between 𝑡1 and 𝑡2, the latency
between 𝑆0 and 𝐶1 may be longer than that between 𝑆0 and 𝐶2.
Hence, switch 𝑆0 will be detached from the previous controller
𝐶1 and reassigned to its new controller 𝐶2 in 𝑡2. On the
other hand, the reassignment caused by traffic happens whether
the controller is overloaded or low-load, so an evaluation
process for traffic load should take place before calculation.
The overall flow diagram of the SPDA algorithm is depicted
in Fig. 6.

Start

End

x

kY

INPUT:
Constellation parameters h:i:P/S/F

Obtain optimal static
placement solution

Calculate dynamic
assignment for

topological changes

Calculate overload
reassignment

Calculate low-load
reassignment

(,), , k i j thd c v K

Y

Evaluate traffic load

Y

Fig. 6. Flow diagram of the SPDA algorithm.

In terms of the evaluation metrics, the switch-controller
latency is most commonly used for CPP [5]. It is also
intrinsically equivalent to the flow setup time defined in [7],
which is the sum of twice the switch-controller propagation
latency plus the end-to-end flow forwarding latency, because
the latter actually has no effect on controller placement. We
adopt the switch-controller latency as the evaluation metric,
and consider the optimal trade-off between the worst-case
and average-case of latency. Although heuristic algorithms can
find feasible solutions [4], we apply the linear programming
framework and formulate the CPP as a MIP model.

A. Static Placement Problem Formulation

The latency between controller 𝑐𝑖 and switch 𝑣 𝑗 will change
when satellites are orbiting, and it is denoted as 𝑑𝑘 (𝑐𝑖 , 𝑣 𝑗)
in time instance 𝑡𝑘 . We use the satellite orbit elements to
generate the orbit files containing satellite positions at each
time instance, and the switch-controller latency can thus be
calculated. We use 𝑓1 to represent the average latency of
switch-controller pairs in all time instances:

𝑓1 =
1
|V|

∑
𝑣𝑗 ∈V

𝑑 (𝑐𝑖 , 𝑣 𝑗)𝑦𝑖 𝑗 (7)

where 𝑑 (𝑐𝑖 , 𝑣 𝑗) = 1
𝑇

∑
𝑘 𝑑𝑘 (𝑐𝑖 , 𝑣 𝑗). Thus, the first objective is

to minimize 𝑓1.
Similarly, we denote 𝑓2 as the maximum latency of switch-

controller pairs in all time instances:

𝑓2 = max
𝑖, 𝑗

𝑑max (𝑐𝑖 , 𝑣 𝑗)𝑦𝑖 𝑗 (8)

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3184989

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

7

where 𝑑max (𝑐𝑖 , 𝑣 𝑗) = max
𝑘
𝑑𝑘 (𝑐𝑖 , 𝑣 𝑗). The second objective

aims to minimize 𝑓2, i.e., min(max
𝑖, 𝑗

𝑑max (𝑐𝑖 , 𝑣 𝑗)𝑦𝑖 𝑗). Due to the

min max(∗) function, 𝑓2 needs to be linearized by introducing
a new continuous variable 𝑧, which satisfies 𝑓2 = 𝑧. Thus, new
constraints should be added as follows:

𝑧 ≥ 𝑑max (𝑐𝑖 , 𝑣 𝑗)𝑦𝑖 𝑗 , ∀𝑐𝑖 , 𝑣 𝑗 ∈ V (9)

The constraints come from several different aspects [4].
First, the total number of controllers 𝐾 should be:

𝑁∑
𝑖=1

𝑥𝑖 = 𝐾 (10)

Second, we need to ensure that one switch is assigned to
exactly one controller:

∀𝑣 𝑗 ∈ V,
∑
𝑐𝑖 ∈V

𝑦𝑖 𝑗 = 1 (11)

Third, 𝑐𝑖 should exist if switch 𝑣 𝑗 is assigned to it:

∀𝑐𝑖 , 𝑣 𝑗 ∈ V, 𝑦𝑖 𝑗 ≤ 𝑥𝑖 (12)

Fourth, the latency between each switch-controller pair should
be smaller than a preset threshold Δ𝑡ℎ:

∀𝑐𝑖 , 𝑣 𝑗 ∈ V, 𝑡𝑘 ∈ 𝑇, 𝑑𝑘 (𝑐𝑖 , 𝑣 𝑗)𝑦𝑖 𝑗 ≤ Δ𝑡ℎ (13)

Here, Δ𝑡ℎ is introduced because the switch-controller latency
should be as small as possible, and a threshold can reduce the
feasible solution space to accelerate the optimization process.

The static placement problem can then be transformed into
the following standard linear programming formulation:

find x,Y, 𝑧

min
{
𝑓1 = 1

|V |
∑

𝑣𝑗 ∈V 𝑑 (𝑐𝑖 , 𝑣 𝑗)𝑦𝑖 𝑗
𝑓2 = 𝑧

s.t.

∑𝑁
𝑖=1 𝑥𝑖 = 𝐾∑
𝑐𝑖 ∈V 𝑦𝑖 𝑗 = 1, ∀𝑣 𝑗 ∈ V
−𝑥𝑖 + 𝑦𝑖 𝑗 ≤ 0, ∀𝑐𝑖 , 𝑣 𝑗 ∈ V
𝑑𝑘 (𝑐𝑖 , 𝑣 𝑗)𝑦𝑖 𝑗 ≤ Δ𝑡ℎ , ∀𝑐𝑖 , 𝑣 𝑗 ∈ V, 𝑡𝑘 ∈ 𝑇
𝑑max (𝑐𝑖 , 𝑣 𝑗)𝑦𝑖 𝑗 − 𝑧 ≤ 0, ∀𝑐𝑖 , 𝑣 𝑗 ∈ V

(14)

Furthermore, we can define a total objective function f =
𝑤1 𝑓1 + 𝑤2 𝑓2 to demonstrate the trade-off between 𝑓1 and 𝑓2,
where 𝑤1 and 𝑤2 are their weight coefficients. Given the MIP
model in Eqn. (14), we will use a linear programming solver
called Gurobi to deal with it. This will be elaborated on in
Section V.

B. Dynamic Assignment for Topological Changes

When network topology changes drastically, switch-
controller latency may become much longer at some point,
which requires the implementation of dynamic assignment to
reduce latency. In other words, when controllers enter or leave
the polar region, switches probably need to be reassigned
to new controllers. Because satellites move regularly and
periodically, we can pre-calculate the dynamic assignment
to conserve on-orbit computing resources. With the static
controller placement result x, we calculate the time periods
that require dynamic assignment. Based on that, we develop

a shortest-path based dynamic assignment (SDA) algorithm to
calculate the new assignment 𝑦𝑖 𝑗 in those time instances while
keeping 𝑥𝑖 constant.

Algorithm 1 Shortest-path based dynamic assignment.

Input: x, 𝑑𝑘 (𝑐𝑖 , 𝑣 𝑗)
Output: Y𝑘

1: 𝑅𝑒𝑠𝑁𝑜𝑑𝑒𝑚 ← 1 ∀𝑚 ∈ [1, 𝑁], 𝐻𝑜𝑝𝑠← 1
2: for 𝑚 = 1 to 𝑁 do
3: if 𝑥𝑚 = 1 then
4: 𝑅𝑒𝑠𝑁𝑜𝑑𝑒𝑚 ← 0
5: end if
6: end for
7: while

∑
𝑚 𝑅𝑒𝑠𝑁𝑜𝑑𝑒𝑚 ≠ 0 do

8: for all 𝑐𝑖 ∈ C do
9: Find neighboring set of 𝑐𝑖 within 𝐻𝑜𝑝𝑠, 𝐴𝑑𝑗𝑆𝑎𝑡

10: for all 𝑣 𝑗 ∈ 𝐴𝑑𝑗𝑆𝑎𝑡 do
11: 𝑃𝑎𝑡ℎ𝐿𝑒𝑛← 𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ(𝑑𝑘 (𝑐𝑖 , 𝑣 𝑗), x, 𝑣 𝑗)
12: if 𝑅𝑒𝑠𝑁𝑜𝑑𝑒 𝑗 ≠ 0 then
13: 𝑅𝑒𝑠𝑁𝑜𝑑𝑒 𝑗 ← 0, and assign 𝑣 𝑗 to controller 𝑐𝑖
14: else
15: Calculate current path length of 𝑣 𝑗 , 𝑂𝐿𝑒𝑛
16: if 𝑃𝑎𝑡ℎ𝐿𝑒𝑛 < 𝑂𝐿𝑒𝑛 then
17: Assign 𝑣 𝑗 to controller 𝑐𝑖
18: end if
19: end if
20: Update Y𝑘

21: end for
22: end for
23: 𝐻𝑜𝑝𝑠← 𝐻𝑜𝑝𝑠 + 1
24: end while

The SDA algorithm is executed for each time instance 𝑡𝑘
that requires dynamic assignment. As illustrated in Algorithm
1, SDA uses 𝑅𝑒𝑠𝑁𝑜𝑑𝑒 to label the residual switches that are
not assigned and 𝐻𝑜𝑝𝑠 to represent the hops between two
satellite nodes. According to Eqn. (1), 𝑅𝑒𝑠𝑁𝑜𝑑𝑒𝑚 is initially
set to 0 if controller 𝑐𝑚 exists; otherwise, it is set to 1.
In Algorithm 1, 𝐾 controllers find their assigned switches
simultaneously within a given number of hops. While there
exist unassigned switches, we first find the neighboring node
set, 𝐴𝑑𝑗𝑆𝑎𝑡, within given 𝐻𝑜𝑝𝑠 for a certain controller 𝑐𝑖 ∈ C.
Then for each 𝑣 𝑗 ∈ 𝐴𝑑𝑗𝑆𝑎𝑡, we use the shortest path algorithm
to calculate the current 𝑃𝑎𝑡ℎ𝐿𝑒𝑛, which is recorded as the
shortest if node 𝑣 𝑗 is unassigned; otherwise, we compare
𝑃𝑎𝑡ℎ𝐿𝑒𝑛 with the current path length 𝑂𝐿𝑒𝑛 and choose the
best controller. Once we obtain the best controller for 𝑣 𝑗 , we
update the switch-controller mapping Y𝑘 . The computational
complexity of SDA is 𝑂 (𝑁), which is better than that of
traversing all node pairs, i.e., 𝑂 (𝑁2).

C. Dynamic Assignment for Load Balancing

The traffic load of controllers varies when satellites fly
over different terrestrial regions and may sometimes exceed
the capacity of controllers, thereby causing traffic congestion.
Moreover, a significant amount of bursty traffic may also incur
controller overload, which must be handled by a dynamic

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3184989

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

8

assignment process. On the other hand, a controller with low
traffic load could be shut down to save power, thus requiring
reassignment of its switches. Therefore, we expect to keep
controller traffic balanced; maintain acceptable latency be-
tween controllers and newly-reassigned switches; and reduce
the reassignment times as much as possible.

Unlike the optimal SDA method implemented in dynamic
assignment due to topology, we develop heuristic algorithms
for load balancing to obtain the dynamic assignment solutions
instead of optimal balancing. The reasons are stated as follows:
• Optimal methods generally consume large computational

resources. Although the SDA algorithm can be executed
before satellite launch, load balancing is still needed for
practical operations. Therefore, optimal methods may not
be a reasonable choice for load balancing.

• Optimal balancing may require multiple switch migra-
tions, which also increases total migration cost. Instead,
a relatively good balancing result with fewer migrations
is more suitable for our case.

• Optimal balancing may lead to higher latency results. It
is difficult to achieve both low latency and load balancing
at the same time, so, to some extent, it is unnecessary to
seek optimal balancing.

Therefore, we will consider both latency and load balancing
in the dynamic assignment of switches, and discuss the trade-
off between them. The problem with dynamically assigning
switches for load balancing has two aspects: overload and
idleness. The former requires migrating switches from over-
loaded controllers to those with low load in order to maintain
load balancing. The latter requires shutting down idle or low-
load controllers and migrating their switches to neighboring
controllers to save energy. Hence, we can assume that the
threshold traffic load for a controller is either Γ𝑚𝑎𝑥 or Γ𝑚𝑖𝑛

for, respectively, overload or idleness.
The case of overload can be assumed to happen to a

controller 𝑐𝑖 for a certain time period [𝑡𝑎, 𝑡𝑏], and one or
more of its switches should be reassigned to a new controller;
in other words, given that the switch set of 𝑐𝑖 is S𝑖 ⊂ V,
our aim is to determine which switches (e.g., 𝑣𝑚 ∈ S𝑖) should
be reassigned to which controller (e.g., 𝑐 𝜉). The time period
[𝑡𝑎, 𝑡𝑏] can be determined by comparing the real traffic load
of controllers with the thresholds Γ𝑚𝑎𝑥 and Γ𝑚𝑖𝑛. It can be
inferred that the chosen switch 𝑣 𝑗 should have a relatively
large amount of traffic, and thus it can significantly influence
the traffic load of 𝑐𝑖 . On the other hand, the reassignment
should not increase the switch-controller latency by too much,
which means that the latency between 𝑣 𝑗 and 𝑐 𝜉 should
not be much longer than the latency between 𝑣 𝑗 and 𝑐𝑖 .
Therefore, the chosen switch 𝑣 𝑗 should have a relatively
long switch-controller latency before the migration. Based on
that, we have developed a load-latency product-based overload
reassignment (LPOR) algorithm as shown in Algorithm 2. The
computational complexity of LPOR is 𝑂 (𝑁2) for the worst
case.

There are three main steps for the overload case in Algo-
rithm 2. First, we aim to find the most suitable switch that
needs to be reassigned. Given that the latency between 𝑐𝑖 and
𝑣 𝑗 in time instance 𝑡𝑘 is 𝑑𝑘 (𝑐𝑖 , 𝑣 𝑗), and the amount of traffic

Algorithm 2 Load-latency product-based overload reassign-
ment.
Input: x, Y, 𝑐𝑖 , [𝑡𝑎, 𝑡𝑏]
Output: Y

1: Calculate the average traffic load of 𝑐𝑖 , Γ𝑖

2: while Γ𝑖 ≥ Γ𝑚𝑎𝑥 do
3: Calculate 𝑑𝜆 (𝑐𝑖 , 𝑣 𝑗) according to Eqn. (16)
4: C𝑒𝑥 = {𝑐𝑖}, V𝑒𝑥 = ∅
5: Find the potential switch 𝑣𝑚 ← arg max 𝑑𝜆 (𝑐𝑖 , 𝑣 𝑗),

where 𝑣𝑚 ∈ V −V𝑒𝑥

6: ∀𝑐𝜒 ∈ C−C𝑒𝑥 , calculate 𝑑𝑎𝑏 (𝑐𝜒, 𝑣𝑚) according to Eqn.
(18)

7: Find the best controller 𝑐 𝜉 ← arg min 𝑑𝑎𝑏 (𝑐𝜒, 𝑣𝑚)
8: while 𝑡𝑘 ∈ [𝑡𝑎, 𝑡𝑏] do
9: if 𝑑𝑘 (𝑐 𝜉 , 𝑣𝑚) ≤ Δ𝑡ℎ then

10: V𝑒𝑥 ←V𝑒𝑥 + 𝑣𝑚, Goto Line 5
11: end if
12: end while
13: Calculate the average traffic load of 𝑐 𝜉 , Γ𝜉

14: if Γ𝜉 ≥ Γ𝑚𝑎𝑥 then
15: C𝑒𝑥 ← C𝑒𝑥 + 𝑐 𝜉 , Goto Line 7
16: else
17: Update Y according to Eqn. (3)
18: end if
19: Calculate the average traffic load of 𝑐𝑖 , Γ𝑖

20: end while

sent from 𝑣 𝑗 to 𝑐𝑖 is 𝛾𝑘𝑗 , we have the traffic-weighted latency
of switch-controller pair 𝑐𝑖 and 𝑣 𝑗 ,

𝑑𝜆 (𝑐𝑖 , 𝑣 𝑗 , 𝑘) = 𝑑𝑘 (𝑐𝑖 , 𝑣 𝑗)𝛾𝑘𝑗 (15)

Thus, we can define a load-latency product function in
[𝑡𝑎, 𝑡𝑏]:

𝑑𝜆 (𝑐𝑖 , 𝑣 𝑗) =
1
𝑁𝑡

∑
𝑡𝑘 ∈[𝑡𝑎 ,𝑡𝑏]

𝑑𝜆 (𝑐𝑖 , 𝑣 𝑗 , 𝑘) (16)

where 𝑁𝑡 is the number of time instances in [𝑡𝑎, 𝑡𝑏]. We adopt
𝑑𝜆 (𝑐𝑖 , 𝑣 𝑗) to evaluate the suitability of the switch reassignment
before implementing the dynamic assignment method, and the
best switch 𝑣𝑚 is thus determined by

𝑣𝑚 = arg max𝑣𝑗 ∈V𝑑𝜆 (𝑐𝑖 , 𝑣 𝑗) (17)

After determining the switch 𝑣𝑚 that requires reassignment,
the second step is to find a new controller for 𝑣𝑚. We calculate
the average latency between 𝑣𝑚 and other controllers (e.g., 𝑐𝜒)
in [𝑡𝑎, 𝑡𝑏]:

𝑑𝑎𝑏 (𝑐𝜒, 𝑣 𝑗) =
1
𝑁𝑡

∑
𝑡𝑘 ∈[𝑡𝑎 ,𝑡𝑏]

𝑑𝑘 (𝑐𝜒, 𝑣𝑚) (18)

The potential controller denoted by 𝑐 𝜉 , to which 𝑣𝑚 is
reassigned, should have relatively small latency and is thus
determined by

𝑐 𝜉 = arg min𝑐𝜒 ∈C𝑑𝑎𝑏 (𝑐𝜒, 𝑣𝑚) (19)

We then check the switch-controller latency between 𝑐 𝜉 and
𝑣𝑚 to find whether it is smaller than the threshold Δ𝑡ℎ . The

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3184989

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

9

algorithm will go back to find another switch if the threshold
constraint is not satisfied. Since the LPOR algorithm adopts
a load-latency product function, the latency between 𝑐 𝜉 and
𝑣𝑚 is expected to be only slightly longer than the latency
between 𝑐𝑖 and 𝑣𝑚, which generally guarantees the threshold
requirement. On the other hand, we need to ensure that the
traffic load of new controller 𝑐 𝜉 after reassignment does not
exceed the limitation Γ𝑚𝑎𝑥 . We can calculate the average
traffic load of 𝑐 𝜉 in [𝑡𝑎, 𝑡𝑏] according to Eqn. (6),

Γ𝜉 =
1
𝑁𝑡

∑
𝑡𝑘 ∈[𝑡𝑎 ,𝑡𝑏]

Γ𝑘
𝜉 (20)

If Γ𝜉 exceeds the traffic limitation, we repeat the second
step and choose another controller.

The final step is to migrate switch 𝑣 𝑗 from 𝑐𝑖 to 𝑐 𝜉
according to Eqn. (3). After switch migration, we calculate the
average traffic load of 𝑐𝑖 in [𝑡𝑎, 𝑡𝑏], i.e., Γ𝑖 = 1

𝑁𝑡

∑
𝑡𝑘 ∈[𝑡𝑎 ,𝑡𝑏] Γ

𝑘
𝑖 .

If Γ𝑖 still exceeds the traffic limitation, we return to the first
step and find another switch in S𝑖 to operate.

Algorithm 3 Minimal-latency based low-load reassignment.

Input: x, Y, 𝑐𝑖 , [𝑡𝑎, 𝑡𝑏]
Output: Y

1: for all 𝑣 𝑗 ∈ S𝑖 do
2: C𝑒𝑥 = {𝑐𝑖}
3: ∀𝑐𝜒 ∈ C−C𝑒𝑥 , calculate 𝑑𝑎𝑏 (𝑐𝜒, 𝑣 𝑗) according to Eqn.

(18)
4: Find the best controller 𝑐 𝜉 ← arg min 𝑑𝑎𝑏 (𝑐𝜒, 𝑣 𝑗)
5: Calculate the average traffic load of 𝑐 𝜉 , Γ𝜉

6: if Γ𝜉 ≥ Γ𝑚𝑎𝑥 or 𝑑𝑘 (𝑐 𝜉 , 𝑣𝑚) ≥ Δ𝑡ℎ then
7: C𝑒𝑥 ← C𝑒𝑥 + 𝑐 𝜉
8: Goto Line 4
9: else

10: Update Y according to Eqn. (3)
11: end if
12: end for

Similarly, we develop the minimal-latency based low-load
reassignment (MLR) algorithm for the idleness case, as shown
in Algorithm 3. The computational complexity of MLR is
𝑂 (𝑁2) for the worst case. Given a controller 𝑐𝑖 that is idle
or has low load and for a switch 𝑣 𝑗 within its domain, i.e.,
𝑣 𝑗 ∈ S𝑖 , we first use Eqn. (18) to calculate 𝑑𝑎𝑏 (𝑐𝜒, 𝑣 𝑗), where
𝑐𝜒 is a controller that is not 𝑐𝑖 . Second, we find the best con-
troller 𝑐 𝜉 that has the minimum value of 𝑑𝑎𝑏 (𝑐𝜒, 𝑣 𝑗). Third,
we calculate the average traffic load of the best controller, i.e.,
Γ𝜉 . If Γ𝜉 is not smaller than Γ𝑚𝑎𝑥 or the latency threshold
is exceeded, we continue trying to find another controller
until these two conditions are satisfied. Hence, we update the
switch-controller mapping Y according to Eqn. (3) and finish
the low-load reassignment.

V. CASE STUDY

In this section, we will provide the simulation settings and
will then evaluate the performance of the SPDA algorithm
specifically in terms of three aspects: the static placement
scheme; the reduction in switch-controller latency; and the
load-balancing effects.

TABLE I
Parameters of the constellations

Constellation 𝑁 𝑃 𝑆 ℎ(km) 𝑖(◦)

Iridium 66 6 11 780.0 86.4
Celestri 63 7 9 1400.0 48.0

A. Simulation Settings

We adopt Iridium and Celestri (a Walker-Polar and Walker-𝛿
constellation, respectively) to evaluate our SPDA method. The
parameters of the two constellations as defined in Section III-A
are listed in Table I, and the phase factor 𝐹 of Celestri is set
to 1 for simplicity. Based on the constellation parameters, we
develop a MATLAB program script to automatically generate
the satellite orbit elements in STK, an aerospace simulation
software, and export the orbit files containing satellite posi-
tions at each time instance. As a result, we can calculate the
switch-controller latency by adopting the orbit files. We then
build the MIP model on a computer with Intel Core i7-6560U
CPU @2.2 GHz and 8 GB RAM, and then use Gurobi 9.0.1
to solve the static placement model as illustrated in Eqn. (14).
The simulation settings for Iridium and Celestri, respectively,
are given as follows:

• The polar region is defined by a latitude boundary, 𝛽,
which is smaller than 𝑖. Here, we set 𝛽 to 80◦ and 45◦,
respectively.

• The simulation time is set to the period of constellations
𝑇 , i.e., 6030 s and 6840 s. The minimum time interval of
snapshots, 𝛿𝑚𝑖𝑛, is calculated as 38.6 s and 24.8 s.

• The fixed step for sampling time instances, Δ𝑡, is set to
30 s and 20 s to obtain a more precise snapshot division.
Subsequently, the number of time instances is calculated
as 202 and 343.

• Because there is at least one controller in the satellite net-
work, the geometric distance of any switch and controller
is at most half of the orbit perimeter, i.e., about 20000 km
and 24000 km for Iridium and Celestri, which results in
a latency of about 0.06 s and 0.08 s given the lightspeed
3×105 km/s. Although multiple hops occur through ISLs
between switches and controllers and thus cause longer
delays, it is reasonable to set the switch-controller latency
threshold, Δ𝑡ℎ , at 60 ms and 80 ms for Iridium and
Celestri, respectively, without loss of generality.

• The number of controllers, 𝐾 , is initially set to 6, and
this will change in our following simulations.

It is reasonable to use the world population distribution to
represent the arrival traffic of users [36]. The world population
density data with resolution of 1◦ are generated from [37],
which is the first version in 2020. We use a log scale map
to illustrate it as shown in Fig. 7. We denote P as the world
population distribution matrix, and 𝑝𝑠 will be an element of P,
where the subscript 𝑠 denotes the element location (see [36]).
Assuming that the coverage area of 𝑣 𝑗 is B 𝑗 , whose position
and range can be calculated through constellation parameters,
the traffic load of satellite 𝑣 𝑗 in 𝑡𝑘 , namely 𝜆𝑘𝑗 , is therefore

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3184989

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

10

-180 -120 -60 0 60 120 180
Longitude (°)

-90

-60

-30

0

30

60

90
La

tit
ud

e
(°

)

103

104

105

106

107

Fig. 7. The world population density distribution in 2020.
Colors represent the population in an area of 1◦ by 1◦.

measured by
𝜆𝑘𝑗 =

∑
𝑠∈B 𝑗

𝜖 𝑝𝑠 (21)

where 𝜖 is the traffic demand of a single user, which can
be set at 100 Kbps [36]. In order to test the load balancing
performance of both LPOR and MLR, the traffic limitations
of a controller, i.e., Γ𝑚𝑖𝑛 and Γ𝑚𝑎𝑥 are set at 1% and 200%
of the average value of the overall traffic load, respectively.

B. Results and Discussion

We first verify the static placement model, and then show
the results of both the Iridium and Celestri in Fig. 8, where
the abstracted network topology is captured in a certain time
instance. The satellites are numbered globally from 1 to 𝑁 for
the sake of simplicity, and the red squares represent controllers
while the blue circles are switches. Fig. 8 (a) clearly has 6
orbit planes, with 6 controllers (Nos. 12, 15, 19, 46, 50, 54)
deployed in 2 orbit planes, i.e., 𝑃 = 2 and 𝑃 = 5, respectively.
In each plane, three satellites are distributed evenly. All the
chosen controllers are in different phase for each plane, which
ensures that no two of them will come into the polar regions at
the same time. In Fig. 8 (b), the network topology seems more
complicated with 6 controllers (Nos. 7, 19, 22, 40, 43, 55)
distributed in 4 planes: one for each plane of 𝑃 = 1 and 𝑃 = 7,
and two for each plane of 𝑃 = 3 and 𝑃 = 5. The locations of
these controllers are also symmetric and in different phases.

Fig. 9 shows the plots for the two objective functions 𝑓1 and
𝑓2 in Eqn. (14), using one period for each constellation. For the
Iridium case in Fig. 9 (a), 𝑓1 is about 20 ms while 𝑓2 mostly
remains at about 44 ms; nonetheless, 𝑓2 can sometimes reach
around 52 ms. In terms of Celestri in Fig. 9 (b), 𝑓1 is about 30
ms while 𝑓2 is usually between 55 and 60 ms, but it sometimes
exceeds 75 ms. The peak values in both Iridium and Celestri
are due to controllers entering polar regions, where inter-orbit
ISLs are switched off and thus cause longer switch-controller
latencies. The results reveal good periodic variations in 𝑓1 and
𝑓2 for both Iridium and Celestri. It should be noticed that both
the average and maximum latencies of Iridium are smaller than
those of Celestri, which can be explained by the length of the
ISLs: Iridium generally has shorter ISLs than Celestri. To sum

(a) Iridium

(b) Celestri

Fig. 8. Static placement results of Iridium and Celestri con-
stellations illustrated in graphic topology. The red squares are
regarded as controllers.

up, our SCP model shows good results in spite of the latency
peaks caused by the dynamic topology of satellite networks.

In order to evaluate the trade-off between the average and
worst cases in our static placement model, we set the number
of controllers 𝐾 = 8 and change the weight coefficients 𝑤1 and
𝑤2 for the two objectives. As the values of 𝑓1 and 𝑓2 are on
the same order of magnitude, 𝑤1 and 𝑤2 should differentiate
the two objectives from each other. We also need to guarantee
that the value of the total objective f is normalized so that
we can set three pairs of weights: (1, 9), (5, 5), (9, 1) for
(𝑤1, 𝑤2). Moreover, because Gurobi solver also has an integer
priority (default value is 0), that optimizes for the objectives
in decreasing priority order, we can set the priority parameter
for 𝑓1 and 𝑓2 at either 0 or 1. Three cases for the priority
should be considered: (0, 0), (1, 0), (0, 1) for (𝑓1, 𝑓2), since
(1, 1) is the same as (0, 0). Consequently, there are 9 cases for
the trade-off evaluation in terms of the weights and priorities.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3184989

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

11

0 1000 2000 3000 4000 5000 6000
Time (s)

15

20

25

30

35

40

45

50

55
S

w
itc

h-
co

nt
ro

lle
r

la
te

nc
y

(m
s)

Optimization results of our SCP model

Mean
Max

(a) Iridium

0 1000 2000 3000 4000 5000 6000
Time (s)

30

35

40

45

50

55

60

65

70

75

S
w

itc
h-

co
nt

ro
lle

r
la

te
nc

y
(m

s)

Optimization results of our SCP model

Mean
Max

(b) Celestri

Fig. 9. Static placement results for Iridium and Celestri.

Accordingly, the MIP optimizer in Gurobi is run indepen-
dently 9 times, and we record the 10 best solutions for each
trial, resulting in a total of 90 solutions, which are shown in
Fig. 10. Each red point represents a solution, and the results
are approximately distributed across several lines quantized
by values on the y-axis. This is because the maximum latency
reflects the number of hops between controllers and switches.
Moreover, the Iridium case generally shows lower latency over
the Celestri case in both maximum and average values. It is
reasonable that the maximum latency remains stable while
the average latency varies significantly for different controller
placement schemes. Therefore, our goal is to reduce the
average latency while maintaining a relatively low maximum
latency.

Based on the static placement solutions, we now adopt
the SDA algorithm to improve our results by considering the
dynamic network topology. We calculate the best controller
placement schemes for different 𝐾 (the number of controllers)
and then compare our results with those of the SCP and DCP
methods reported in [7], [20]. The relationships between the

15 20 25 30
Average latency (ms)

40

50

60

70

80

M
ax

im
um

 la
te

nc
y

(m
s)

(a) Iridium

25 30 35
Average latency (ms)

60

80

100

120

M
ax

im
um

 la
te

nc
y

(m
s)

(b) Celestri

Fig. 10. Trade-off between the worst and average latencies.

5 10 15
Number of controllers

40

50

60

M
ax

im
um

 la
te

nc
y

(m
s)

SPDA
SCP
DCP

(a) Maximum for Iridium

5 10 15
Number of controllers

40

50

60

70

80

M
ax

im
um

 la
te

nc
y

(m
s)

SPDA
SCP
DCP

(b) Maximum for Celestri

5 10 15
Number of controllers

10

15

20

25

A
ve

ra
ge

 la
te

nc
y

(m
s)

SPDA
SCP
DCP

(c) Average for Iridium

5 10 15
Number of controllers

15

20

25

30

35

40

A
ve

ra
ge

 la
te

nc
y

(m
s) SPDA

SCP
DCP

(d) Average for Celestri

Fig. 11. Relationships between switch-controller latency and
the number of controllers.

maximum/average switch-controller latencies and numbers of
controllers are shown in Fig. 11.

When 𝐾 increases, the maximum latency of all three meth-
ods tends to decrease but also remains stable at some value of
𝐾 for both the Iridium and Celestri cases in Fig. 11 (a) and
(b); and the average latency has a monotonously decreasing
trend as shown in Fig. 11 (c) and (d). On the whole, it can be
seen that the SPDA method evidently reduces the maximum
latency in contrast to SCP and DCP while it slightly increases
the average latency for both Iridium and Celestri. The reason
for this is that addressing the longer latency caused by the
dynamic topology may result in the SDA algorithm increasing
the latency of some nodes, which thereby increases the average
latency. At the cost of a small increment in the average latency,
our SPDA method produces a marked effect in terms of the
switch-controller latency. Moreover, with the same number of
controllers, both the average and maximum cases of Iridium
always have lower latencies than those of Celestri, because
the ISL length, determined by each constellation, is generally

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3184989

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

12

5 10 15
Number of controllers

0

0.5

1

1.5

2

T
im

e
co

ns
um

pt
io

n
(s

)

104

(a) Iridium

5 10 15
Number of controllers

0

0.5

1

1.5

2

T
im

e
co

ns
um

pt
io

n
(s

)

104

(b) Celestri

Fig. 12. Relationships between time consumption and number
of controllers (on a computer with Intel Core i7-6500U CPU
@2.2 GHz and 8 GB RAM).

0 20 40
Switch-controller latency (ms)

0

0.5

1

C
D

F

Average for each node

SPDA
SCP
DCP

(a)

0 20 40 60
Switch-controller latency (ms)

0

0.5

1

C
D

F

Maximum for each node

SPDA
SCP
DCP

(b)

18 20 22
Switch-controller latency (ms)

0

0.5

1

C
D

F

Average for each time slot

SPDA
SCP
DCP

(c)

35 40 45 50
Switch-controller latency (ms)

0

0.5

1

C
D

F

Maximum for each time slot

SPDA
SCP
DCP

(d)

Fig. 13. CDF of switch-controller latency in Iridium.

shorter for Iridium than for Celestri.
We also present the dependence between the computa-

tional time consumption of SPDA method and the number
of controllers, which is shown in Fig. 12. As the number
of controllers increases, the time consumption remains at a
relatively low level (below 300 s) when 𝐾 is relatively small.
Because more controllers bring about much more feasible
solutions, the time consumption leaps up to more than 1×104 s
when 𝐾 ≥ 10 or 𝐾 ≥ 12 for Iridium and Celestri, respectively.

More specifically, we explore the results of 𝐾 = 6 and
compare SPDA with existing SCP and DCP methods re-
garding the cumulative density function (CDF) of both the
average and maximum switch-controller latencies. The results
are presented in Figs. 13 and 14 for Iridium and Celestri,
respectively. Sub-figures (a) and (b) show the average and
maximum latencies of each node for all time instances, while
sub-figures (c) and (d) show those of each time instance for
all nodes.

0 20 40 60
Switch-controller latency (ms)

0

0.5

1

C
D

F

Average for each node

SPDA
SCP
DCP

(a)

0 20 40 60 80
Switch-controller latency (ms)

0

0.5

1

C
D

F

Maximum for each node

SPDA
SCP
DCP

(b)

28 30 32 34 36
Switch-controller latency (ms)

0

0.5

1

C
D

F

Average for each time slot

SPDA
SCP
DCP

(c)

50 60 70 80
Switch-controller latency (ms)

0

0.5

1

C
D

F

Maximum for each time slot

SPDA
SCP
DCP

(d)

Fig. 14. CDF of switch-controller latency in Celestri.

For the average case of Iridium shown in Fig. 13 (a) and
(c), the three methods generate almost the same results, which
means that SPDA can achieve similar performance to SCP
and DCP in terms of the average switch-controller latency.
However, for the maximum case, both SCP and DCP are
bounded by SPDA as shown in Fig. 13 (b). About 80% nodes
have a switch-controller latency lower than 40 ms for SPDA,
while this is the case for only, at most, 55% and 40% nodes,
respectively, with SCP and DCP. According to Fig. 13 (d),
although no time instance has a latency lower than 37 ms for
SPDA, 80% of them are between 37 and 39 ms. By contrast,
only 40% of time instances are lower than 39 ms for SCP and
DCP. The ratio of the maximum to average latency is on the
order of about 1.25 to 2 for not only each node but also for
each time instance. Therefore, we can conclude that the SPDA
performs better than both SCP and DCP.

In Fig. 14 (a) and (c), the largest average latency for each
node in SPDA is smaller than that of SCP and DCP; and SPDA
generates about 90% of time instances with a much smaller
average latency, i.e., 30 ms. In Fig. 14 (b) and (d), SPDA also
incurs lower maximum latency for not only each node but also
each time instance. When comparing Figs. 13 and 14, we can
see that the maximum switch-controller latency for Iridium is
smaller than that for Celestri, which possibly results from the
topology difference between them. Moreover, SPDA has better
performance in the maximum case for Iridium while this is
true only for the average case with Celestri, which could be an
interesting question for future investigations. Overall, SPDA
has the best performance in terms of the dynamic network
topology because of the improved time division method, and
it also has a relatively low bandwidth utilization rate as well
as low computational costs. In a word, SPDA is applicable to
both Walker-𝛿 and Walker-Polar constellations.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3184989

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

13

The load balancing results are shown in Fig. 15, which
depicts the example of a period of time during which the
switch migration occurs. The latency increment due to load-
balancing is verified to be only at most 2% for all time
instances during the switch migration process, which can still
satisfy the threshold constraint. This small latency increment is
because the proposed load-balancing reassignment algorithms
keep the original assignment and choose the best and nearest
alternative controller for migrating switches. Moreover, the
load-latency product function defined in Eqn. (16) tends to
choose a switch with longer latency as well as heavier traffic
load, of which the latency will not change too much after
migrations, because it is often far from both the original
and the new controller; by contrast, a switch with shorter
latency is always near the original controller but far from other
controllers, and if the switch is chosen for reassignment the
latency will change significantly after migrations.

In Fig. 15 (a), when the traffic of controller No. 12 reaches
the maximum limitation Γ𝑚𝑎𝑥 at about 5800 s (the start of
time period [𝑡𝑎, 𝑡𝑏]), our SPDA method executes the LPOR
algorithm to decrease the traffic load deviation of controllers.
The traffic load deviation is reduced to at most 20% at about
6100 s, and it always remains lower than the case of no
SPDA until the period [𝑡𝑎, 𝑡𝑏] ends. In Fig. 15 (b), the switch
migration process starts at about 9800 s and ends at 12400
s with a traffic load deviation reduction of at most 35% at
11200 s. It can be concluded that our proposed algorithm has
a significant effect on traffic load balancing.

VI. CONCLUSION

Considering the limited bandwidth and dynamic topology in
LEO satellite networks, we propose using the SPDA method to
statically place controllers and dynamically adjust the switch-
controller assignments. To the best of our knowledge, this is
the first method that combines static placement and dynamic
assignment for SDN controllers. To test the method, we have
formulated the static placement problem into a MIP model and
developed heuristic algorithms to assign switches effectively in
terms of dynamic topology and load balancing. The simulation
results show that SPDA outperforms both SCP and DCP,
and our method also has good performance in terms of load
balancing. The trade-off between the average and worst cases
of latency has also been evaluated, and the maximum latency
remains stable while the average latency changes greatly
with different controller placement schemes. Furthermore, the
average latency decreases while it is difficult to reduce the
maximum latency with more controllers. Future works on the
CPP in LEO satellite networks could involve the evaluation of
node reliability and other controller placement metrics. Mega-
constellations and multi-layer complex constellations are also
worth investigating in future works.

REFERENCES

[1] Y. G. Bi, G. J. Han, S. Xu, X. W. Wang, C. Lin, Z. B. Yu, and P. Y. Sun,
“Software defined space-terrestrial integrated networks: Architecture,
challenges, and solutions,” IEEE Network, vol. 33, no. 1, pp. 22–28,
2019.

5000 5500 6000 6500 7000
Time (s)

1600

1800

2000

2200

2400

2600

2800

3000

T
ra

ffi
c

lo
ad

 d
ev

ia
tio

n
(M

b/
s)

Switch reassignment for traffic balancing

SPDA
None

Switch migration process

(a) Iridium

0.95 1 1.05 1.1 1.15 1.2 1.25
Time (s) 104

1000

1500

2000

2500

3000

3500

4000

4500

5000

T
ra

ffi
c

lo
ad

 d
ev

ia
tio

n
(M

b/
s)

Switch reassignment for traffic balancing

SPDA
None

Switch migration process

(b) Celestri

Fig. 15. Switch reassignment for traffic load balancing.

[2] L. Bertaux, S. Medjiah, P. Berthou, S. Abdellatif, A. Hakiri, P. Gelard,
F. Planchou, and M. Bruyere, “Software defined networking and vir-
tualization for broadband satellite networks,” IEEE Communications
Magazine, vol. 53, no. 3, pp. 54–60, 2015.

[3] R. Ferrus, H. Koumaras, O. Sallent, G. Agapiou, T. Rasheed, M. A.
Kourtis, C. Boustie, P. Gelard, and T. Ahmed, “SDN/NFV-enabled satel-
lite communications networks: Opportunities, scenarios and challenges,”
Physical Communication, vol. 18, pp. 95–112, 2016.

[4] T. Das, V. Sridharan, and M. Gurusamy, “A survey on controller
placement in SDN,” IEEE Communications Surveys & Tutorials, vol. 22,
no. 1, pp. 472–503, 2020.

[5] B. Heller, R. Sherwood, and N. McKeown, “The controller placement
problem,” in Proceedings of the First Workshop on Hot Topics in
Software Defined Networks, ser. HotSDN ’12. ACM, 2012, Conference
Proceedings, pp. 7–12.

[6] Y. N. Hu, W. D. Wang, X. Y. Gong, X. R. Que, and S. D. Cheng,
“On reliability-optimized controller placement for software-defined net-
works,” China Communications, vol. 11, no. 2, pp. 38–54, 2014.

[7] A. Papa, T. D. Cola, P. Vizarreta, M. He, C. M. Machuca, and
W. Kellerer, “Dynamic SDN controller placement in a LEO constel-
lation satellite network,” in IEEE Global Communications Conference
(GLOBECOM), 2018, Conference Proceedings, pp. 206–212.

[8] Y. Zhang, N. Beheshti, and M. Tatipamula, “On resilience of split-
architecture networks,” in IEEE Global Telecommunications Conference
(GLOBECOM), 2011, Conference Proceedings, pp. 1–6.

[9] J. Liu, Y. Shi, L. Zhao, Y. Cao, W. Sun, and N. Kato, “Joint placement
of controllers and gateways in SDN-enabled 5G-satellite integrated

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3184989

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

14

network,” IEEE Journal on Selected Areas in Communications, vol. 36,
no. 2, pp. 221–232, 2018.

[10] M. F. Bari, A. R. Roy, S. R. Chowdhury, Q. Zhang, M. F. Zhani,
R. Ahmed, and R. Boutaba, “Dynamic controller provisioning in soft-
ware defined networks,” in 9th International Conference on Network
and Service Management, 2013, Conference Proceedings, pp. 18–25.

[11] G. Yao, J. Bi, Y. Li, and L. Guo, “On the capacitated controller place-
ment problem in software defined networks,” IEEE Communications
Letters, vol. 18, no. 8, pp. 1339–1342, 2014.

[12] Y. Jiménez, C. Cervelló-Pastor, and A. J. García, “On the controller
placement for designing a distributed sdn control layer,” in 2014 IFIP
Networking Conference, 2014, Conference Proceedings, pp. 1–9.

[13] S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, D. Hock, M. Jarschel,
and M. Hoffmann, “Heuristic approaches to the controller placement
problem in large scale sdn networks,” IEEE Transactions on Network
and Service Management, vol. 12, no. 1, pp. 4–17, 2015.

[14] T. Y. Cheng, M. Wang, and X. Jia, “Qos-guaranteed controller placement
in sdn,” in 2015 IEEE Global Communications Conference (GLOBE-
COM), 2015, Conference Proceedings, pp. 1–6.

[15] N. Perrot and T. Reynaud, “Optimal placement of controllers in a
resilient sdn architecture,” in 2016 12th International Conference on the
Design of Reliable Communication Networks (DRCN), 2016, Conference
Proceedings, pp. 145–151.

[16] Y. Hu, T. Luo, N. C. Beaulieu, and C. X. Deng, “The energy-aware
controller placement problem in software defined networks,” IEEE
Communications Letters, vol. 21, no. 4, pp. 741–744, 2017.

[17] G. D. Wang, Y. X. Zhao, J. Huang, and W. Wang, “The controller
placement problem in software defined networking: A survey,” IEEE
Network, vol. 31, no. 5, pp. 21–27, 2017.

[18] M. He, A. Basta, A. Blenk, and W. Kellerer, “Modeling flow setup
time for controller placement in SDN: Evaluation for dynamic flows,” in
2017 IEEE International Conference on Communications (ICC), 2017,
Conference Proceedings, pp. 1–7.

[19] N. Torkzaban and J. S. Baras, “Controller placement in SDN-
enabled 5G satellite-terrestrial networks,” 2021. [Online]. Available:
https://arxiv.org/abs/2108.09176

[20] S. Wu, X. Chen, L. Yang, C. Fan, and Y. Zhao, “Dynamic and static
controller placement in software-defined satellite networking,” Acta
Astronautica, vol. 152, pp. 49–58, 2018.

[21] A. Papa, T. d. Cola, P. Vizarreta, M. He, C. Mas-Machuca, and
W. Kellerer, “Design and evaluation of reconfigurable SDN LEO con-
stellations,” IEEE Transactions on Network and Service Management,
vol. 17, no. 3, pp. 1432–1445, 2020.

[22] S. Xu, X. Wang, B. Gao, M. Zhang, and M. Huang, “Controller place-
ment in software-defined satellite networks,” in 2018 14th International
Conference on Mobile Ad-Hoc and Sensor Networks (MSN), 2018,
Conference Proceedings, pp. 146–151.

[23] A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman, and R. R. Kompella,
“Elasticon: An elastic distributed sdn controller,” in 10th ACM/IEEE
Symposium on Architectures for Networking and Communications Sys-
tems, 2014, Conference Proceedings, pp. 17–27.

[24] T. Wang, F. M. Liu, and H. Xu, “An efficient online algorithm for
dynamic SDN controller assignment in data center networks,” IEEE-
ACM Transactions on Networking, vol. 25, no. 5, pp. 2788–2801, 2017.

[25] Y. Hu, T. Luo, W. Wang, and C. Deng, “On the load balanced controller
placement problem in software defined networks,” in 2nd IEEE Inter-
national Conference on Computer and Communications (ICCC), 2016,
Conference Proceedings, pp. 2430–2434.

[26] Y. W. Ma, J. L. Chen, Y. H. Tsai, K. H. Cheng, and W. C. Hung,
“Load-balancing multiple controllers mechanism for software-defined
networking,” Wireless Personal Communications, vol. 94, no. 4, pp.
3549–3574, 2017.

[27] T. Hu, P. Yi, J. H. Zhang, and J. L. Lan, “Reliable and load balance-
aware multi-controller deployment in SDN,” China Communications,
vol. 15, no. 11, pp. 184–198, 2018.

[28] W. Lan, F. Li, X. Liu, and Y. Qiu, “A dynamic load balancing mechanism
for distributed controllers in software-defined networking,” in 2018 10th
International Conference on Measuring Technology and Mechatronics
Automation (ICMTMA), 2018, Conference Proceedings, pp. 259–262.

[29] Y. Xu, M. Cello, I. C. Wang, A. Walid, G. Wilfong, C. H. P. Wen,
M. Marchese, and H. J. Chao, “Dynamic switch migration in distributed
software-defined networks to achieve controller load balance,” IEEE
Journal on Selected Areas in Communications, vol. 37, no. 3, pp. 515–
529, 2019.

[30] N. Cai, Y. Han, Y. Ben, W. An, and Z. Xu, “An effective load balanced
controller placement approach in software-defined WANs,” in IEEE

Military Communications Conference (MILCOM), 2019, Conference
Proceedings, pp. 361–366.

[31] K. Yang, D. Guo, B. Zhang, and B. Zhao, “Multi-controller placement
for load balancing in SDWAN,” IEEE Access, vol. 7, pp. 167 278–
167 289, 2019.

[32] J. F. Wang, L. Li, and M. T. Zhou, “Topological dynamics characteri-
zation for LEO satellite networks,” Computer Networks, vol. 51, no. 1,
pp. 43–53, 2007.

[33] M. He, A. Basta, A. Blenk, and W. Kellerer, “How flexible is dynamic
SDN control plane?” in 2017 IEEE Conference on Computer Commu-
nications Workshops, 2017, Conference Proceedings, pp. 689–694.

[34] Q. Chen, J. Guo, L. Yang, X. Liu, and X. Chen, “Topology virtualization
and dynamics shielding method for LEO satellite networks,” IEEE
Communications Letters, vol. 24, no. 2, pp. 433–437, Feb 2020.

[35] B. Xiong, K. Yang, J. Y. Zhao, W. Li, and K. Q. Li, “Performance eval-
uation of openflow-based software-defined networks based on queueing
model,” Computer Networks, vol. 102, pp. 172–185, 2016.

[36] J. Guo, D. Rincón, S. Sallent, L. Yang, X. Chen, and X. Chen,
“Gateway placement optimization in leo satellite networks based on
traffic estimation,” IEEE Transactions on Vehicular Technology, vol. 70,
no. 4, pp. 3860–3876, 2021.

[37] “Gridded population of the world, version 4 (gpwv4):
Population count, revision 11,” Feb 2020. [Online]. Available:
https://doi.org/10.7927/H4JW8BX5

Jianming Guo received the B.S. degree in Astron-
omy in 2015 from the University of Science and
Technology of China (USTC), Hefei, China, and the
Ph.D. in Aeronautical and Astronautical Science and
Technology in 2021 from the National University of
Defense Technology (NUDT), Changsha, China. He
is currently an assistant research fellow with the Sci-
ence and Technology on Complex Aircraft System
Simulation Laboratory, Beijing, China. His current
research interests include satellite communication
networks, SDN, and spacecraft system simulation.

Lei Yang received the Ph.D. from the College of
Aerospace Science and Engineering, National Uni-
versity of Defense Technology, Changsha, China in
2008. He is currently a professor with the College
of Aerospace Science and Engineering, National
University of Defense Technology. He is also a
member of the Chinese Society of Astronautics and
the China Instrument and Control Society. His cur-
rent research interests include satellite communica-
tion networks, measurement and control technology
for micro satellites, on-board computers, spacecraft

system modeling and simulation.

David Rincón received the M.Sc. in telecommu-
nication engineering and the Ph.D. in Computer
Networks from Universitat Politècnica de Catalunya
Barcelona Tech. (UPC), Barcelona, Spain. In 1998,
he joined the Department of Telematics Engineer-
ing at UPC, where he is currently an Associate
Professor. He was a visiting researcher with the
Teletraffic Research Centre, University of Adelaide,
Australia in 2007 and with the Institute of Pure and
Applied Mathematics (IPAM), UCLA, Los Angeles,
CA, USA in 2008. His research interests include

traffic modeling, network softwarization, optical access networks, and energy
consumption in computer networks.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3184989

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

15

Sebastià Sallent received the M.Sc and Ph.D. in
Telecommunication Engineering from the Univer-
sitat Politècnica de Catalunya (UPC), Barcelona,
Spain. He was the Director of the i2CAT Internet
Research Center and the President of the Spanish
Telematic Association. He is currently a Full Pro-
fessor with the Department of Network Engineering,
UPC, where he leads the Broadband Networks re-
search group. His current research interests include
access networks, network and service virtualization
(SDN/NFV), 5G, and new Internet architectures.

Quan Chen received the B.E. and Ph.D. degrees in
2015 and 2021, respectively, from the National Uni-
versity of Defense Technology (NUDT), Changsha,
China. He is currently a lecturer with the College
of Aerospace Science and Engineering, NUDT. His
research interests include mega-constellation satel-
lite networks, UAV networks, and integrated space-
terrestrial networks. He has served as a reviewer
for several journals including IEEE TWC, TMC,
TVT, TAES, COMML, etc. He has served as a
TPC member of IEEE ICC workshop on mega-

constellation in 2021 and 2022.

Xianfeng Liu received the B.E. degree in Electrical
and Information Engineering in 2014 from the Col-
lege of electrical Engineering, University of Elec-
tronic Science and Technology of China, Chengdu,
China, and the Ph.D. in Aeronautical and Astro-
nautical Science and Technology in 2021 from the
College of Aerospace Science and Engineering, Na-
tional University of Defense Technology, Changsha,
China. He is currently an assistant research fellow
with the Beijing Institute of Tracking and Telecom-
munications Technology, Beijing, China. His current

research interests include tracking and data relay technology, TT&C schedul-
ing, and satellite network management.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3184989

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

