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Abstract
Hierarchical clustering is one of the most suitable tools to discover the underlying true structure of a dataset in the case of

unsupervised learning where the ground truth is unknown and classical machine learning classifiers are not suitable. In

many real applications, it provides a perspective on inner data structure and is preferred to partitional methods. However,

determining the resulting number of clusters in hierarchical clustering requires human expertise to deduce this from the

dendrogram and this represents a major challenge in making a fully automatic system such as the ones required for decision

support in Industry 4.0. This research proposes a general criterion to perform the cut of a dendrogram automatically, by

comparing six original criteria based on the Calinski-Harabasz index. The performance of each criterion on 95 real-life

dendrograms of different topologies is evaluated against the number of classes proposed by the experts and a winner

criterion is determined. This research is framed in a bigger project to build an Intelligent Decision Support system to assess

the performance of 3D printers based on sensor data in real-time, although the proposed criteria can be used in other real

applications of hierarchical clustering.The methodology is applied to a real-life dataset from the 3D printers and the huge

reduction in CPU time is also shown by comparing the CPU time before and after this modification of the entire clustering

method. It also reduces the dependability on human-expert to provide the number of clusters by inspecting the dendrogram.

Further, such a process allows applying hierarchical clustering in an automatic mode in real-life industrial applications and

allows the continuous monitoring of real 3D printers in production, and helps in building an Intelligent Decision Support

System to detect operational modes, anomalies, and other behavioral patterns.
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1 Introduction

Cluster Analysis is perhaps one of the most researched

topics in data mining and unsupervised machine learning.

From domains ranging from text, multimedia applications,

natural language processing, computer vision, protein-and-

genomics data, biological data, social media analytics, and

more, clustering is used everywhere in different forms and

contexts for it is one of the best techniques to learn

typologies in a domain which is crucial in decision support.

The core idea of clustering lies in summarizing or seg-

menting a domain, based on distances between objects or

points (and from a wider perspective using dissimilarities).

In unsupervised learning scenarios (where no ground truth

is available and the main goal is to understand the under-

lying structure of a domain), clustering is often used as a

first step to discover this structure. Hierarchical clustering

[18] is a classical scheme where underlying relationship

among objects is represented hierarchically through a

dendrogram. The dendrogram shows the inner structure of

inertias through clusters at different levels of heterogeneity

and provides perspective to understand how many classes
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the domain contain, at different levels of granularity.

Unlike other clustering methods like k-means [17], hier-

archical clustering does not need the user to define the

expected number of clusters apriori. On the contrary, the

number of clusters emerges as a consequence of the clus-

tering process itself and often is determined by visual

inspection of the resulting dendrogram (a common praxis

among specialists which is in fact related with the opti-

mization of some goodness of cluster indicator, like

Calinski-Harabasz index).

The hierarchical clustering provides rich information

about the structure of the domain and is also robust against

outliers and thus comes out to be a preferred choice in

understanding the underlying structure of a real domain.

One of the direct application of such an approach could

be found in Industry 4.0 [29] applications that revolve

around modern data-intensive technologies such as Indus-

trial Internet of Things, Digital-Twins, Virtual-Reality,

Additive Manufacturing or 3D Printing, etc, and in par-

ticular in contexts where sensor data can be used to identify

operational modes, as is the case of 3D printing manu-

facturing. Indeed, Industry 4.0 proposes complete

automation of traditional manufacturing practices largely

driven by data and modern technologies. The design

principles of Industry 4.0 are discussed in [15]:

• Interconnection: The ability of machines, devices,

sensors, and people to connect and communicate with

each other via the Internet of things.

• Information transparency: Access to comprehensive

information to inform decisions.

• Inter-connectivity: Collect immense amounts of data

and information from all points in the manufacturing

process, identify key areas that can benefit from the

improvement to increase functionality.

• Technical assistance: Modern technology to assist

humans in decision-making and problem-solving, and

the ability to help humans with difficult or unsafe tasks.

• Decentralized decisions: The ability of cyber-physical

systems to make decisions on their own and to perform

their tasks as autonomously as possible. Only in the

case of exceptions, interference, or conflicting goals,

are tasks delegated to a higher level

in real production helps in triggering actions automatically.

For the reasons mentioned earlier, hierarchical clustering is

the most appropriate method to characterize various sce-

narios in an Industry 4.0 dataset. However, as said before,

using hierarchical clustering opens the door to discover any

number of existing clusters, provided that an interaction

with the specialist to evaluate the resulting dendrogram and

determine the number of clusters occurs. Finding the best

place to cut the dendrogram and determining the number of

clusters, therefore, restricts end-to-end automation, which

is fundamental in Industry 4.0. When Industry 4.0 advo-

cates a completely automatic production line, this inher-

ently also envisions an automatic collection and processing

(clustering)of data with no human supervision, and there-

fore developing a criterion to automatically find this

number of classes is of the main benefits in this context.

On the other hand, it is well known that hierarchical

clustering does not scale to large datasets. The authors are

investigating a novel approach where the hierarchical

clustering can be scaled up to large datasets, based on

resampling techniques. Details on this research are out of

the scope of this paper, but it is relevant to say that the

proposed methodology includes steps where automatic

identification of the right number of clusters in many

dendrograms is more than convenient. The first contribu-

tion in this line is [20] wherein the authors proposed a

CURE (Clustering Using Representation) based [14]

strategy with resampling to scale hierarchical clustering for

aiding in the identification of the behavioral modes of 3D

printers in real production by using sensor data.

Accordingly, this paper presents two novel

contributions.

On the one hand, the paper proposes a methodology to

automatically evaluate a dendrogram, produced by a hier-

archical clustering process, and automatically determine

the suitable number of clusters by approaching the way a

human expert would have provided. The paper tests several

criteria to determine the number of clusters automatically,

based on different functions of Calinski-Harabasz index

[3] to meet human wisdom as much as possible. A com-

parison with the expert results provides indicators to

identify which of the proposed CVI (Cluster Validity

Indices) performs more closely to the expert.

As a second contribution, the authors propose the inte-

gration of this criterion in a fully automatic methodology

based on a modified CURE strategy that considers resam-

pling and is scaling hierarchical clustering for a big data

framework that eventually helps in decision making in

large datasets. The proposed method and its impact on the

time required to process sensor data are illustrated through

a real application in the context of 3D printers and pro-

cessing time is compared with the automatic dendrogram

Thus, collecting a huge amount of data continuously 
throughout the smart factory setting and aiding in an 
autonomous decision are key design principles in Industry 
4.0 and require unsupervised learning models to make 
inferences about the underlying manufacturing processes 
(like operational modes of any kind of machine such as gas 
turbines or a 3D printer in digital manufacturing). Using a 
clustering algorithm for a deep data-driven understanding 
of the operational modes of a certain machine and later 
developing a process to recognize the discovered patterns



cut and without with very significant reduction of pro-

cessing time, as it will be seen.

This study is part of wider research to establish real-time

data science methodologies to extract conceptual infor-

mation from the printing sensors and to connect with an

entire IDSS (Intelligent Decision Support Systems) to

support the technical management of customer’s 3D

printers fleet from the manufacturer’s side. The presented

methodology is general and it is tested with a wide sample

from the case study which provides dendrograms of a

sufficient variety of topologies to evaluate the validity of

the proposal. The methodology proposed in this paper is

also potentially applicable to any hierarchical application

in general, and especially to other industry 4.0 contexts like

gas turbine’s monitoring, or aerogenerators monitoring,

among others.

The rest of the paper is structured as follows. A brief

introduction to the multi-jet fusion 3D printing process is

provided in Sect. 2, followed by the survey of available

literature in this field in Sect. 3. A detailed methodology of

this research is presented in Sect. 4 including a short recap

of the previous work in Sect. 4.1. The results on the real

dataset are then described in Sect. 5. The strategy to

determine the number of clusters automatically is

explained in Sect. 6. In Sect. 7, the authors discuss the

research contributions and limitations of the proposed

methodology and indicate the future scope of the research.

Finally, the authors conclude the paper with the results and

future scope of the experiments in Sect. 8.

2 Brief introduction to 3D printing process

Additive manufacturing, also known as, 3D (3-Dimen-

sional) printing [26, 36] reinvent the manufacturing prin-

ciples by allowing highly customized parts with

substantially less wastage, time, and effort. All of this is

achieved by due diligence of the machine with the help of

several sensors controlling the operation. This research

work has been carried out on Multijet Fusion 3D Printer

developed by HP Inc. [16].

This particular type of 3D printing starts with a digital

3D-CAD (Computer-Aided Design) file that contains print

information that is parsed into the machine with the help of

special software. The printing solution consists of three

devices, namely the printer where the actual printing takes

place, the processing-station which helps in print-material

management, and the build-unit that helps to move the

print-material (also called powder) between the other two

devices. A schematic picture is shown in Fig. 1.

The printer initiates a build process that lays down a

layer of powder on the print platform which is fused into

working parts by the movement of two specific subsystems

- carriage and recoater, while detailing and fusing agents

fired onto the powder, define how a part is to be formed.

The process is described graphically in Fig. 2. Throughout

the process, the machine is connected online and is

equipped with several sensors that control various activities

of different subsystems. These sensors produce machine

logs in real-time to provide real-time functioning of its

parts. These logs are further processed into structured

tables and eventually used in suitable data mining appli-

cations [11].

3 Literature review

Determining the optimal number of clusters (denoted by K)

in a dataset is one of the major challenges in any clustering

exercise. However, the choice of K is quite subjective to

the problem at hand, the similarity metric, and the clus-

tering evaluation criteria. Techniques such as k-means

demand this value of K to be fed into the algorithm before

the clustering starts. On the other hand, Hierarchical

Clustering [18, 35] provides a flexible approach to decide

the best grouping among the objects without needing to

specify the parameter K as the number of possible clusters.

Broadly, these methods can be categorized as agglomera-

tive and divisive depending on whether the data objects are

grouped hierarchically in bottom-up or top-down approach

respectively. The advantage of constructing a dendrogram

or cluster-hierarchy is to be able to cut the hierarchy at any

given level and obtain the number of clusters accordingly.

The choice of where to cut the dendrogram is what results

in the overall quality of clusters, and hence this highly

relies on human expertise.

In the absence of any ground truth in unsupervised

learning, outcomes of a clustering solution are tricky to

evaluate.

In [24, 25], Milligan et al. experimented with 30 dif-

ferent criteria to determine the number of clusters in an

artificially generated dataset. The experiment found

Calinski-Harabasz index to be the most consistent among

all the criteria considered in the study.

In [34], Tibshirani et al. introduces Gap-statistic as a

general method to estimate the number of clusters in any

clustering algorithm.

The method tests the hypothesis that the null model has

a single cluster (K=1) and tries to reject it with an alter-

native one with (K[1). However, the rejection of the null

hypothesis only indicates insufficient evidence in support

of the null hypothesis and does not really make it true.

Another common method to search for the best number

of clusters is to use knee or elbow method where an eval-

uation metric on the Y-axis is assessed against a range of a

potential number of clusters on the X-axis and a sharp jump



suitable number of clusters. It is an alternative to the CH

index which also works with the relationship between the

homogeneity-intraclusters and the separability-interclus-

ters, as CH does. However, part of the index is based on the

construction of a minimum spanning tree and the proposal

is Oðn3Þ which is prohibitive in large dataset contexts, as

our case is.

In [1] and [2], Bruzzese et al. discusses using permu-

tation test to determine the optimal number of clusters in a

hierarchical clustering setting, however, this cannot be

considered in our large data in quasi-real-time settings.

An automatic cluster selection technique has been dis-

cussed in [8] where Ferraretti et al. defines a global value

on top of the CVI like Dunn’s index [6, 7] Davies-Bouldin,

Silhouette, etc. for a non-horizontal cut of the dendrogram.

The authors are restricted to horizontal cuts of the den-

drograms since the ultra-metric properties of the index

level (the vertical coordinates of the dendrogram nodes) are

broken when the tree is cut in polygonal forms and this is

directly impacting into the heterogeneity of the quantity of

information provided by the clusters, and in consequence,

on the homogeneous granularity of the knowledge com-

ponents of the further IDSS based on the discovered

clusters.

Yang et al. [37, 38] also proposed a Hidden Markov

Model based meta clustering approach for temporal data-

sets and introduced a concept of dendrogram-based simi-

larity partitioning. This paper uses hidden Markov models

based hybrid meta-clustering scheme wherein each cluster

partition is initially assumed to follow a mixture model

whose parameters need to be estimated by minimizing the

Fig. 2 Multi-Jet Fusion Printing

Process (�Ashutosh Karna)

Fig. 1 HP 3D Printing Solution

is observed as the best clustering solution. The value cor-
responding to this sharp jump or knee is considered as the 
most suitable value for the number of clusters (K). Sugar 
et al. in [33] proposed a non-parametric method using 
distortion that computes Mahalanobis distance between 
each multivariate point and the closest cluster center and 
computes the minimum achievable distortion by fitting 
different number of clusters. The method visualizes the 
jumps or elbow or knee in the distortion curve. Salvador 
et al. in [31] present an L-algorithm that automatically 
determines the knee in the clustering evaluation curve by 
finding the boundary between the pair of straight lines that 
most closely fit the curve, where the evaluation criteria can 
be chosen as any distance, similarity, or cluster error 
metric. The methodology, however, needs iterative refine-
ment for a better clustering solution and requires the knee 
of the curve to be prominently visible to take a judgment. 
These methods, however, are more suitable to the k-means 
clustering algorithm where the value of K is often selected 
by such approaches. The elbow-based methods, however, 
are not suitable in this case since the authors are dealing 
with Industry 4.0 sensor data and attempt to discover pat-
terns using unsupervised learning, specifically hierarchical 
clustering.

In [19], Jung et al. propose clustering-gain as a measure 
for the best number of clusters in hierarchical clustering, 
where the term gain is defined as the difference between 
the decreased inter-cluster error compared to the initial 
stage.

In [39] Zhou et al. proposes a new cluster validity index, 
called CSP (compact-separation-proportion) to obtain a



loss based on KL-divergence. The max number of clusters

are then obtained, which are further finetuned using Hid-

den-Markov-Model based agglomerative clustering. How-

ever, this approach is quite time-expensive in the

underlying research context considering the scale of data at

hand and the authors are not interested in making any

apriori distributional assumptions.

In [4], Cowgill et al. presented a genetic algorithm based

approach — COWCLUS to optimize the Calinski-Harabasz

index to determine the right number of clusters. However,

the datasets used for the evaluation in the paper, are quite

small in size (up to 500 objects) and the time-complexity

on larger datasets has not been tested. Another application

on meta-heuristics is found in [22] where Liu et al. propose

a genetic algorithm based clustering algorithm. This work

[22] too has been evaluated only on small datasets (400

objects) and the performance on large scale data is missing,

and thereby does not apply to the case study of 3D printers’

data.

In [32] several CVI are evaluated on a benchmark of 17

datasets in regards to hierarchical clustering and it is pro-

ven that the different CVI assess different topological

characteristics of the clusters like the compactness or the

diameter, or the quantity of information contained and that

the best performances are provided by those indices that

evaluate the relationship between the homogeneity-intra-

clusters and the distinguishability-interclusters. Among this

family, the Calinski-Harabasz (CH) index or the Dunn or

Dunn-like indices are found. And the CH is the one that is

emulated in the visual inspection performed by experts

cutting the dendrograms visually.

Provided that the authors intend to insert this automatic

cut of the dendrogram in a bigger procedure where pro-

cessing time is critical, complex modeling like the one

proposed in [38] or computational expensive proposals like

those from [1] and [2] is not suitable for us.

In [10], Gibert et al. compare the behavior of different

clustering metrics on a real heterogeneous data in order to

analyze the differences among the cluster results and

introduce the software, namely KLASS, to assist users in

the interpretation of resulting classes to help with knowl-

edge discovery.

The use of post-processing tools and using human wis-

dom to conceptualize the structure of the cluster that

eventually helps in interpreting the scenario better is

described in [9]. Related work is also found in [27], which

shows a hierarchical clustering based strategy to charac-

terize patients conditions in an Electro-Convolusive-

Therapy.

In [13], Gibert et al. analyze the nested partitions and

their relationships using special significance tests and

hence are related to the research where the authors are

dealing with clustering based on partitions. Most of the

literature found related to this work is mainly focused on

optimizing the number of clusters by some validation cri-

teria; however, the authors are interested in optimizing the

number of clusters relative to how human experts visualize

and decide to cut the tree.

4 Methodology

The application of this research directly impacts the way

data from 3D printers is analyzed and interpreted in the

Industry 4.0 context. The authors approach the problem of

characterizing different 3D printing scenarios based on the

sensor data, in an unsupervised manner. One of the most

appropriate data science techniques to get a better under-

standing of the data is hierarchical clustering, however, it

poses a few limitations that must be addressed. Apart from

finding the right number of clusters, the other main limi-

tation lies in the sheer size of the data in the case of

Industry 4.0 or 3D printers where data is collected almost

in real-time on a large scale.

The standard algorithm for hierarchical clustering has a

time complexity of Oðn2Þ and requires Xðn2Þ memory,

which makes it too slow for large data sets.

The classical hierarchical method is thus not quite

suitable for sensor data in Industry 4.0 due to the Oðn2Þ
time complexity of the algorithm which makes it almost

infeasible for large datasets.

The proposed methodology is generic and provides a

reduction in the computational cost of the algorithm.

Although worse case complexity remains the same, the real

TCPU time is sensibly reduced, as the quadratic parts of

the process are limited to very small subsets of original

data and other parts of the algorithm reduce complexity

class. The proposal 5 is applied to a real case of 3D

printing, although it is suitable for any context with large

sensor data. Next, the basics concepts, and the antecedents,

together with several aspects of the proposed methodology

are presented.

4.1 Previous work

In the previous work [20], the authors proposed a CURE

[14] based strategy to scale up the computational time of

hierarchical-based clustering. The dataset in this study

consists of 562,000 records for 41 sensors, collected from

eight anonymous HP printers over 300 printing sessions.

To deal with the size of the data, a CURE [14] based

strategy is used that takes several samples from the large

dataset and subject them to local hierarchical clustering.

Consequently, a large number of small hierarchical clus-

tering processes are relatively cheaper from the



The authors in this research work attempt to mimic the

process followed by an expert cutting the dendrogram, by

using the Calinski-Harabasz index, as traditionally this is

the cluster validity index that is more related with the

decomposition of the inertia in the clusters and presumably,

the one measuring most similar to what experts use in their

intellectual process.

4.3 Problem formalization

As the research work focuses on sensor data from 3D

printers, all the attributes are numerical in nature, and

hence Euclidean distance is appropriate as a distance

measure and used further in the clustering exercise. Con-

sidering that the multivariate data is represented as I,

comprising of N multivariate items - i1; i2; :::iN , the primary

goal in hierarchical clustering is to achieve a sequence of

nested partitions PK ;K ¼ 2; 3; :::N � 1

PK ¼ fC1;C2; :::CKg; k ¼ 1; 2; :::K ð1Þ

where Ck represents the kth cluster of the PK partition of I.

The successive PK are composed of disjoint clusters cov-

ering I. Thus, the dendrogram maps into the sequence

P2;P2; :::;PN�1 and 8K 2 ð2; 3; :::N � 1Þ;PK is nested in

PK�1 so that one of the clusters of the PK�1 subdivides in

two in the PK .

The objective is to develop an automatic criterion to

identify which of the PK partitions is more appropriate and

matches the most with the expert solution.

4.4 Cluster validity indices

Determining the quality of a given PK is difficult in real

applications as clustering is inherently a non-supervised

method, and thus there are no actual labels of items in I

to be used as ground truth to compare with. Hence, the

authors rather measure the quality of the clusters with

some metrics that evaluate the structural properties of

PK . Gibert et al. [10] provides a comparison among

several clustering validity indices. Some of the popular

cluster validation indices in common practices are as

follows.

• Davies-Bouldin index [5]: Computes the maximum

interclass to cross-interclass distance ratio

• Dunn’s index [7]: Computes the ratio between the

smallest cluster distance and the largest intra-cluster in

a partitioning.

• Silhouette index [28]: Computes ratio of maximum

class spread to variance to determine how similar an

object is to its own cluster (cohesion) compared to other

clusters (separation).

computational point of view, and thus CURE provides a 
final step where the clusters are grown with all the 
remaining objects not included in the samples initially. The 
proposal provided a quick tool to show the dendrograms to 
the human-experts to analyze and determine the number of 
clusters. This was an intermediate step of the proposal that 
uses human timings. The modified CURE scheme can 
further be scaled up when the bootstrapping is introduced 
[21]. The current research work goes a step further and tries 
to propose a way to determine the cut of the dendrogram 
automa-tically, by emulating closest to the way how 
experts do.

4.2 Dendrogram

The dendrogram provides a graphical representation of the 
hierarchical clustering process. The horizontal axis repre-
sents the objects that have been part of the clustering 
process. The internal nodes of the tree represent interme-

diate clusters built along the clustering process and the 
vertical axis (the height of each node of the dendrogram) 
represents the level-index of the clusters which is a measure 
of the heterogeneity of the cluster itself. Often this vertical 
axis is related to the inertia of the cluster and when the 
distance used for the clustering (Euclidean distance in our 
case, as all variables are numerical) is a metric, the den-
drogram itself has an ultra-metric structure, and this 
guarantees that the subsequent aggregations increase the 
level index monotonically. Thus, the dendrogram is a 
representation of the inner structure of the dataset in terms 
of the inertia of subgroups of objects.

Any horizontal cut of the dendrogram produces a 
partition of the original dataset in a group of clusters. The 
horizontal cuts in the higher levels of the tree provide a 
set of highly heterogeneous classes that correspond to 
generic classes. While near the bottom of the tree, the 
horizontal cuts provide a large set of classes that have 
fewer objects and are more homogeneous (corresponding 
to highly specific classes). Experts have to find a trade-off 
between a sufficient number of clusters that result in 
informative classes and are small enough that they can 
differentiate among them, while the level of generality 
must correspond well to the goals of the analysis. In any 
case, the good place to cut a dendrogram is where a 
disruption on the heterogeneity of the classes is evident 
and this corresponds to the place in the tree with gaps in 
two successive aggregations and with long branches. 
While inspecting the dendrogram, the human experts 
carefully examine the relationships among the height of 
the nodes and identify the biggest gaps as the level below 
which the heterogeneity of clusters is significantly dif-
ferent than that at the level above this.



• Calinski-Harabasz index [3]: Computes ratio of be-

tween-cluster to within-cluster inertia adjusted by the

number of clusters in the partition.

Amongst several of the cluster validity indices, the

Calinski-Harabasz index is the one using the decomposi-

tion of inertias and which better imitates the process that

human experts’ follow visually to decide where to cut the

dendrogram. Also, there is a correspondence between the

maximization of the Calinski-Harabasz index and the

visual inspection rule used by experts to cut the tree.

Therefore, it is decided to use the Calinski-Harabasz index

[3] in this proposal.

4.5 Calinski-Harabasz Index

The Calinski-Harabasz index provides a ratio of Between-

clusters to Within-clusters inertia of the dataset. Mathe-

matically the index is defined as the following:

CHðKÞ ¼ BðKÞ=ðK � 1Þ
WðKÞ=ðN � 1Þ ð2Þ

where B(K) is between-cluster sum of squares, W(K) is

within-cluster sum of squares, K is the number of clusters

and N is the total size of the data.

Also, the terms, B(K) and W(K) are obtained by

decomposing the total inertia (or variance) of the data set

(T(I)) such that:

TðIÞ ¼ BðKÞ þ WðKÞ ð3Þ

Per Huygens theorem, minimizing the within-cluster inertia

of a partition (homogeneity within the cluster) is equivalent

to maximizing the between-cluster inertia (separation

between clusters). In the original work, Calinski and Har-

abasz [3] suggested choosing a value of K for which the

variance-ratio is maximized.

4.6 Proposal of an automatic method to cut
a hierarchical tree into a set of clusters

Preliminary experiments conducted by the authors revealed

that the original Calinski-Harabasz index does not perform

well on real data as expected. In fact, in the original paper,

the authors discuss about the local maxima that can make a

difference. Since the computation of local maxima in dis-

crete spaces is not that easy and the authors are looking for

a quicker method to compute these indices, five additional

functions are introduced on the Calinski-Harabasz index to

be optimized over a dendrogram for finding the recom-

mended value of K by global maximization.

As local maxima are associated with null derivative

which in turn, is related with differences in discrete sce-

narios, the authors considering some criteria based on the

differences of the Calinski-Harabasz index for two con-

secutive partitions PK and PK�1 and other comparative

functions that might find the places where the Calinski-

Harabasz experiments bring bigger changes along the

dendrogram. The 6 criteria are thus described in detail

below.

– M Criterion The M criterion is the original maximiza-

tion of Calinski-Harabasz index [3].

MK ¼ CHðKÞ ð4Þ

– D method It computes the direct difference between

successive pairs of the Calinski-Harabasz index

DK ¼ CHK � CHKþ1 ð5Þ

– jDj method As the Calinski-Harabasz indices may not

be increasing monotonically and can result in negative

differences in the previous method, the jDj consider the
absolute differences giving importance to the magni-

tude of the gap.

jDK j ¼ jCHK � CHKþ1j ð6Þ

– q method It computes the relative change in the

Calinski-Harabasz index by consecutive clusters.

qK ¼ CHK

CHKþ1
ð7Þ

– o method This method computes the rate of change

when the number of partitions is increased by 1 with

respect to the Calinski-Harabasz index. Mathemati-

cally, this can be defined as the ratio of the differential

between the Calinski-Harabasz indices.

oK ¼ CHK � CHKþ1

CHK
ð8Þ

– joj method Similar to the concept of considering

maxima of absolute values of differences as defined in

jDj method, the joj method considers the absolute

values of rate of change in the Calinski-Harabasz

indices.

joK j ¼
jCHK � CHKþ1j

CHK

ð9Þ

4.7 Determining the recommended number
of clusters

For any of the 6 criteria defined before f 2
fM;D; jDj; q; o; jojg the best value of K is given by :

K� ¼ argmax
2� k�N�1

fk ð10Þ



Along the experimentation described in Sect. 5, several

things were identified about how experts really behave. In

fact, there is a rule of thumb by which most of the time,

experts ignore the best cut in 2 clusters as the solution

appears to be less informative. From the algorithmic point

of view, this differs from the expression defined in equation

(10).

To better mimic what experts really do, the criteria has

been modified as follows:

K�
2 ¼ argmax

2� k�N�1

ð2Þfk ð11Þ

where argmaxð2Þ denotes the second highest maxima.

However, after a few real experiments, is is realized that

the second-best cut is only considered by experts when the

best cut is in 2 classes and is not always the case. This

corresponds to a new formal criterion as defined below:

K�
cond ¼

K�
2 if K� ¼ 2

K� Otherwise

�
ð12Þ

The results of these methods along with the winning cri-

teria are described in Sect. 5.

4.8 Experimental methodology

Once the different methods to obtain the maxima in the

Calinski-Harabasz indices are defined, their performance

would be assessed on a real dataset. The strategy to identify

the most appropriate criterion in the current context is as

follows:

I Take S samples of data and get the number of

clusters determined by human experts from the

dendrogram.

II for each sample, apply a hierarchical clustering

method and obtain the corresponding dendrograms

sS

III For each dendrogram obtain the horizontal cut in K

clusters (K 2 2; 3; ::;Kmax � 1) and compute the 5

criteria on each one of those partitions.

Let K�
s be the number of clusters determined by a

human expert for sample s.

IV Apply the automatic criterion to determine the K*

for each of the samples, according to each of the

proposed criteria f, f 2 fM;D; jDj; q; o; jojg Let K�
f ;s

be the best number of clusters for sth sample obtained

by applying criterion f.

V Compare the proposed result with the one given by

experts. Here two different metrics are used:

(a) Mean square error between the number of

clusters proposed by each criteria along the S

samples and the number of clusters proposed

by the expert

MSE ¼ 1

S

XS

s¼1

ðK�
f ;s � K�

s Þ
2 ð13Þ

(b) Tax of correct number of clusters given a

tolerance e

Tf ;e ¼cardfjK�
f ;s � K�

s j ¼ eg;
s 2 1; 2; ::S; e 2 0; 1; ::;Kmax � 1

ð14Þ

we will be interested in analyzing these taxes

for small values of e and the best situation is

when the samples concentrate in small values

of T for small e and have low presence for T

with high e
(c) Relative tax of correct number of clusters. It is

defined as the following:

pf ;e ¼
Tf ;e

S
ð15Þ

4.9 Impact of automatic cut of the trees in real
applications

A key advantage of adopting an automatic cut of the

dendrogram using the methods described above lies in

deploying a solution end to end without any delay. The

authors also determined the criteria that better imitates

what experts do when proposing the number of clusters of

the dendrogram. The winner has been introduced in the

former CURE-based strategy presented in Sect. 5 and

implemented in the dataset from the previous work [20].

This criterion helps save time in the process of clus-

tering sensor data coming from 3D printers (or sensor data

in IoT in general) as it computes quite rapidly than how an

expert does. The overall time required to cluster the data is

significantly reduced. In Sect. 5, the impact on the total

time required to cluster a large dataset is shown by dis-

playing a graph (Fig. 4) with the time comparison before

and after introducing the automatic criterion into the loop.

The modified CURE strategy, as presented in [20] can

be decomposed into main three phases, from the compu-

tational point of view:

I Initialization of the algorithm and drawing of S

samples

II for each sample

(a) Perform hierarchical clustering

(b) Determine the number of clusters

(c) Cut the dendrogram

III Super-classification of the centroids of all samples



IV Determine the global clustering

V Expand discovered classes to the remaining objects

in the dataset

Steps III and IV of the process were originally performed

in the following way.

Expert-based identification of number of clusters:

1. Plot the dendrogram.

2. Visual Inspection of the dendrogram by experts and

determining the number of clusters.

In this paper the authors propose to substitute this step by

an automatic identification of number of clusters:

1. Automatic computation of P1:PK

2. Compute KD�
cond

The authors conducted an experiment to compare the CPU

time required under both scenarios. Time for phase 3 is not

considered as it is the same in both cases.

5 Experimental analysis and results

In the current research work, the authors are attempting to

develop a methodology to determine the number of clusters

quickly and as close as possible as humans do, so that they

can be introduced in automatic processing for a large

dataset, especially in the context of Industry 4.0

applications.

In order to evaluate the criteria described in Sect. 4,

authors have considered the original real-world sensor

dataset from 3D printers used in [20], composed of 562,000

observations of 41 sensors each. A total of 95 random

samples, containing 10 variables and 500 records, have

been drawn from the original dataset without replacement.

For each sample, hierarchical clustering using Ward’s

method and normalized Euclidean distance is performed

and corresponding dendrograms are drawn.

The Calinski-Harabasz index or horizontal cuts of the

dendrograms between 2 and 8 clusters are computed. Cuts

of the dendrograms over 8 clusters are not considered due

to the well-known cognitive limitation of the human brain

[23, 30] in efficiently processing categories over 7. Further

to this, the clustering is desired to aid in decision support

and thus it is needed to stay near to the conceptualizations

of the reality that an expert can properly integrate from the

cognitive point of view.

The Table 1 summarizes the behaviour of Tf ;e for all 95

samples, as defined in Eq. (14). The value in the first col-

umn (Correct Classification) of the Table 1 provides the

number of samples where the automated method matches

the number of clusters provided by the expert for all the

basic criteria we defined when the decision rule is K�. The
rest of the columns provide the number of samples with

increasing e between 1:7).

The mean square error against each of the methods is

shown in Table 2.

Authors have observed significant disagreement

between the number of clusters provided by the experts and

the ones obtained automatically with the proposed criteria.

Fig. 4 Comparison between Human-expert and Dcond

Fig. 3 Mean square error

comparison among all criteria



Going in-depth with the analysis of wrong results,

authors realized that experts implicitly ignored 2-class cuts

in most of the cases, taking the second-best cut, following a

de-facto standard associated with the idea that 2-classes are

not informative enough in most of the cases. Thus in order

to approach the expert’s criteria better, the authors intro-

duce a new decision rule K�
2 as defined in Eq. 11 which

corresponds to the second-highest maxima of each crite-

rion. Table 3 summarizes the results obtained with this

modified decision rule.

In this case, the mean square error is shown in Table 4 of

these variants improve when compared with human values.

However, there are still large proportions of samples

yielding high e’s in Table 3.

Going further to understand the differences between

expert values and those obtained automatically, the authors

realize that the experts ignore the best cut of the tree only

when it is in 2 classes, thus using an implicit conditional

decision rule. Thus the differences between human-expert

and computer-assisted number of clusters can be reduced

significantly by combining the previous two decision rules.

Therefore, the authors introduce a third decision rule based

on this condition, named as K�
cond (Eq. 12).

The performance of all the criteria under this new

decision rule is provided in Table 5.

Introducing the conditional maxima to determine the

value of K, reduced the mismatches between human-expert

and automated criteria. The reduction in mean square error

is also seen in Table 7. In fact, this criteria is increasing the

Table 1 Summary of Tf ;e for the

first decision rule ðK�Þ f Tf ;e

e ¼ 0 e ¼ 1 e ¼ 2 e ¼ 3 e ¼ 4 e ¼ 5 e ¼ 6 e ¼ 7 e ¼ 8

Baseline 11 14 8 10 24 15 13 0 0

DK 16 21 15 20 17 3 3 0 0

jDK j 12 26 18 16 16 4 3 0 0

qK 18 19 15 20 17 3 3 0 0

oK 18 19 15 20 17 3 3 0 0

joK j 14 26 19 14 15 4 3 0 0

Table 2 Mean square error comparison for first decision rule ðK�Þ

Criteria Mean Square Error

Baseline(M) 29.96

DM 9.96

jDM j 10.33

qM 9.94

oM 9.94

joM j 9.53

Table 3 Summary of Tf ;e for

second decision rule ðK�
2 Þ

f Tf ;e

e ¼ 0 e ¼ 1 e ¼ 2 e ¼ 3 e ¼ 4 e ¼ 5 e ¼ 6 e ¼ 7

Baseline(M2) 8 13 5 24 18 9 11 7

DM2
33 24 17 14 3 4 0 0

jDM2
j 12 30 21 18 8 5 1 0

qM2
30 27 17 14 3 4 0 0

oM2
30 27 17 14 3 4 0 0

joM2
j 12 31 16 19 9 4 0 0

Table 4 Mean square error comparison for second decision rule ðK�
2 Þ

Criteria Mean Square Error

Baseline(M2) 29.55

DM2
5.60

jDM2
j 10.25

qM2
6.01

oM2
6.01

joM2
j 8.84



number of samples in column Tf ;e¼0 of Table 5 while Tf ;e¼1

and Tf ;e¼2 decreased. For some criteria these three columns

cover about 70% of the samples. The distribution of pf ;e

(proportion of classification with respect to 95 samples) is

summarized in Table 6.

The experimental results show that the criterion denoted

by DKcond
performs the best as per the criteria defined in

Table 12, maximizing
P

0� e� 2 pf ;e.

Figure 3 shows the mean square error of all the criteria

under the three decision rules proposed in the paper. It is

seen that DKcond
returns the smallest mean square error as

compared to others.

In Table 8, the overall comparison among the three

decision rules for the correct classification ( pf ;e¼0) as well

as the differences upto 2 classes ( pf ;e20;1;2 is presented.

Thus, for further research Dcond is the criteria that will be

considered.

In fact, the Spearman’s correlation between Dcond and

the human criterion is 0.6356 and the corresponding cor-

relation test indicates significant correlation (p-val= 1E-

11). Also, the two-sample t-test is assessed to compare the

two criteria and in this case, a two-sided p-value=0.5785,

indicates no significant difference between the number of

clusters provided by the experts and the same provided by

our proposed Dcond criterion.

Table 7 Mean square error comparison for conditional maxima rule

ðK�
condÞ

Criteria Mean Square Error

Baselinecond 36.04

DKcond
5.41

jDKcond
j 9.77

qKcond
5.80

oKcond
5.80

joKcond
j 7.59

Table 5 Summary of Tf ;e for

conditional maxima rule ðK�
condÞ

f Tf ;e

e ¼ 0 e ¼ 1 e ¼ 2 e ¼ 3 e ¼ 4 e ¼ 5 e ¼ 6 e ¼ 7

Baselinecond 12 5 5 14 21 17 20 1

DKcond
43 11 16 16 3 4 2 0

jDKcond
j 15 30 21 14 8 5 2 0

qKcond
42 12 16 16 3 4 2 0

oKcond
33 17 18 17 3 5 2 0

joKcond
j 17 29 23 11 8 5 2 0

Table 6 Distribution of pf ;e for

conditional maxima rule ðK�
condÞ

f pf ;e

e ¼ 0 e ¼ 1 e ¼ 2 e ¼ 3 e ¼ 4 e ¼ 5 e ¼ 6 e ¼ 7

Baselinecond 0.13 0.18 0.23 0.38 0.60 0.78 0.99 1.00

DKcond
0.45 0.57 0.74 0.91 0.94 0.98 1.00 1.00

jDKcond
j 0.16 0.47 0.69 0.84 0.93 0.98 1.00 1.00

qKcond
0.44 0.57 0.74 0.91 0.94 0.98 1.00 1.00

oKcond
0.35 0.53 0.72 0.89 0.93 0.98 1.00 1.00

joKcond
j 0.18 0.48 0.73 0.84 0.93 0.98 1.00 1.00

Table 8 Comparison among different decision rules for pf ;e20;1;2

Criteria pf ;e¼0 pf ;e20;1;2

K� K�
2 K�

cond K� K�
2 K�

cond

Baseline 0.12 0.08 0.13 0.35 0.27 0.23

D 0.17 0.35 0.45 0.55 0.78 0.74

jDj 0.13 0.13 0.16 0.59 0.66 0.69

q 0.19 0.32 0.44 0.55 0.78 0.74

o 0.19 0.32 0.35 0.55 0.78 0.72

joj 0.15 0.13 0.18 0.62 0.62 0.73



on 95 dendrograms obtained from real settings and repre-

senting a wide variety of dendrograms topologies.

As the proposal of this research is to find an automatic

criterion that imitates the way experts obtain the number of

clusters of a dendrogram, only Calinski-Harabasz based

methods, which are linked with the visual procedures to cut

the dendrograms, are considered. In the paper 6 criteria

using different optimizations based on the Calinski-Har-

abasz index are proposed, from the more simple one of

direct maximization to more sophisticated ones where first

derivative and absolute values are proposed. Human

experts cut the dendrogram by finding the biggest hori-

zontal gap on (larger branches). The experiments provided

evidence that the real criterion used by experts is not

exactly corresponding by direct maximization of the

Calinski-Harabasz index, but with a maximization of the

first difference of the series (with the exception of the cut in

2 clusters, most of the times avoided by the experts by

experience, and out of topological considerations). Dcond in

fact, is including this exceptional treatment of the 2-classes

cut. Some discrepancies between expert criteria and Dcond

results appear when the differences are negative, but not

always, and authors presume that even better results can be

obtained by analyzing more carefully which topological

characteristics of the dendrograms are associated with the

sign of these differences and finding a further refinement of

the Dcond criterion. But for the purpose of current research,

the approach of human-experts results provided by Dcond is

enough and these improvements will be addressed in future

research.

Additionally, the list of criteria can further be enriched

by adding more complex indices to optimize the Calinski-

Harabasz index, such as the method of the second-

derivative which has been not included in this research or,

even other cluster validity indices such as Silhouette-co-

efficient, Dunn’s index, Davies-Bouldin index, etc. How-

ever, these indices are out of the scope of this paper, as the

authors are mainly focused on finding the function of the

Calinski-Harabasz index among the 6 proposed that better

emulates what an expert does in real cases. The authors

plan to provide a complete assessment of the proposed

index against the commonly used CVI’s as the future work

of this research.

On the other hand, this new criterion has been imple-

mented in a wider procedure (published as a previous

work) that scales hierarchical clustering to large datasets by

introducing resampling techniques that require an auto-

matic cut of the dendrograms. The performance of the

proposed methodology in a large data framework has

shown a drastic reduction in CPU time (Fig. 4) as the data

size increases, as compared to the standard method. Using

the proposed method, the overall run-time to process the

data with clustering reduces to almost 1/60th of the

6 Introducing the automatic identification 
of number of clusters in global strategy

In this section, the impact on the running time of the entire 
CURE-based process is compared under the human assis-
tance with the one using the proposed automatic Dcond 
criterion.

The experiment assumes that a human expert should not 
take more than 3 seconds per sample to visually inspect the 
dendrogram and decide the number of clusters.

To maintain uniformity throughout the work, all 
experiments were conducted using Python 3.6 on an Intel 
Core i7 processor running at 2.6 GHz using 32 GB of 
RAM, running Windows 10 operating system.

Figure 4 shows graphically the running time of the entire 
CURE-based process both before and after introducing the 
automated cut of the dendrograms, with regards to the 
number of samples used in phase 2 of the CURE-based 
strategy.

Of course, the running time is linear with regards to S 
(number of samples) and the more samples are considered 
in phase 2 of the CURE-based strategy, the higher is the 
running time. This holds in both scenarios, although the 
different scale of both curves makes the automated process 
apparently constant.

Using the automated method, one can reduce the CPU 
time drastically by running the steps sequentially without 
any delay. In this experiment, the complete automated 
clustering solution consisting of 562,000 original obser-
vations with 41 sensors, and S= 95 with N=500 takes only 
27 seconds on average, while the expert-based scenario 
raises to 30 minutes, considering a really efficient expert 
that can process up to 95 dendrograms in 3 seconds each 
without getting tired and thereby introducing delays along 
the process.

Thus, by switching the cluster-determination method 
from manual to automated Dcond, one can gain an increase 
of roughly 60x in the running time. Additionally, with 
automated algorithms, one can also achieve an end to end 
method that can be implemented in Industry 4.0 scenarios.

7 Discussion

This research proposes the introduction of an automatic 
step to cut a dendrogram after hierarchical clustering to 
scale up to the big data scenarios. The main contributions 
presented in this paper are as follows. Firstly, the proposed 
Dcond index is found to be the one performing closely to 
how a human expert determines the number of clusters by 
visual inspection of a dendrogram. This has been backed 
with the experimental results, shown in Table 8 and based



standard run-time on average and this makes the proposal

quite appropriate to be inserted in the real-time production

systems such as the 3D printers case study. This reduction

in run-time is made possible by splitting the original

dataset into several bootstrap samples of a much smaller

size, each of which is targeted by hierarchical clustering

individually and in parallel. The proposal, therefore,

attempts to reduce both space and time complexity of the

standard hierarchical clustering based processes. The

choice of the number and size of bootstrap samples is still a

hyper-parameter that might be further explored along with

its impact on the overall clustering process. In fact, while

developing the proposed Bootstrap-CURE with Dcond

index, the choice of two key hyper-parameters is very

important. These are, first, the range of partitions to be

explored by the Dcond, and second, the number of bootstrap

samples in the CURE approach. Considering the cognitive

ability of the human brain (literature in [23, 30] defend that

the human brain can integrate up to 7 distinct levels), the

scope of the current research is limited to maximum 8

classes. Besides, regarding the range of partitions explored

in this study (between 2 to 8 clusters), the authors’ expe-

rience suggests that usually, the two or three best cuts of

the dendrogram reside within this range, and rarely the

experts would require a higher number of clusters, linked to

a set of too specific patterns in most of the real applica-

tions. Authors are aware that this particular range may not

be sufficient to cover all types of datasets universally,

however, in any case, the range of partitions to be explored

by the algorithm is parameterized and can be extended just

by modifying the corresponding hyper-parameter in

runtime.

Furthermore, the current study is focused on the specific

use-case of 3D printers where the data did not suffer from

any missing values. The performance of the proposed Dcond

index in the datasets containing a significant amount of

missing terms is yet to be studied in detail in the future

steps of the research. Regarding the outliers, one of the

main advantages of working with hierarchical clustering

algorithms is that they are robust to the presence of mul-

tivariate outliers and can identify them ordinarily by cre-

ating small clusters. This, in fact, is one of the purposes of

the analysis and further automatic interpretation of clusters

will elucidate when the small cluster collects wrong mea-

surements of the sensor or it is identifying anomalies in the

machine performance. In this sense, guidelines provided in

[12] will be taken into account.

As said before, the current research fits suitably well

into a much bigger research goal of building an intelligent

decision support system to manage the customer’s fleet of

machines by data-driven approaches and in real-time. The

proposal strengthens this goal in the case of 3D printers by

quickly recognizing the operational patterns of the machine

in an unsupervised manner and eventually acts as a

building block of future IDSS. Knowing the correct num-

ber of clusters in a dataset quickly, especially when one

deals with large scale systems (such as the one producing

data in real-time), is a major initial step to allow a fully

automated intelligent decision-making process. Once, the

number of clusters is determined, the subsequent steps

would involve strategically identification of suitable ma-

chine learning algorithms (both supervised and unsuper-

vised) to understand more about the underlying data

patterns through automatic interpretation tools, to detect

anomalous behavior, predict failure events in advance, and

finally communicate with the customer to make recom-

mendations for a better operation of the machines or for

solving punctual problems. It is important to remark that

clustering represents an initial non-supervised step to dis-

cover behavioral patterns on machine performance, extre-

mely useful at the manufacturer’s side, as first of all, no

additional information from what customer is doing is

available in real additive manufacturing fleet, and specific

experimental tagging is not suitable in real settings. But

also, cause 3D printers are emerging technologies from

which no complete knowledge is available, and the casu-

istic of real performance scenarios in digital manufacturing

is still unknown, so, knowledge-based approaches cannot

cover yet the entire casuistic required for Intelligent

Decision Support Systems construction.

Although the experiment was conducted on data coming

from a 3D printer, the proposed approach can easily be

extended to use cases outside 3D printing, such as indus-

trial applications where data is collected at a large scale

and is also devoid of labels to protect customer confiden-

tiality. In all such cases, clustering is a preferred method to

aid in pattern-recognition and hierarchical clustering, in

particular, is very helpful to reveal the inner structure of the

dataset as an outcome as well as suggest the possible

number of clusters. This is crucial as there is no apriori

hypothesis about the number of patterns intrinsically

existing in each machine.

Consequently, the direct application of this approach

allows managing data coming from the customer’s

machines without explicitly asking to label the records

manually. This is especially useful when the customer data

is confidential and the actual information about the job or

machine-health is confidential to share, or even when the

customer’s operation cannot be interrupted and insights are

to be built rather quickly. Thus, the applications of such an

approach are not merely limited to 3D printers only but a

range of industrial use cases such as the ones in the cyber-

physical system, digital manufacturing, Gas-turbines, aro-

generators performance, air-traffic-control or health moni-

toring system, etc. that follow the similar real-time sensor

data-collection process and data itself is of similar



complexity. With the help of the proposed approach,

standard hierarchical clustering can be scaled up to help in

pattern-finding. For example, in an IoT-driven health-

monitoring system, the proposed approach could help to

quickly identify the abnormal health parameters of the

person in an unsupervised manner and inform the con-

cerned staff immediately, or decipher a pattern leading to

failure or death events. Similarly, in the case of a gas-

turbine, such a technique would be able to identify dif-

ferent patterns of sensor data and analyze the operational

modes of the machine, the performance of the health status

of the machine. In general, the proposed technique when

introduced in its full form (using Bootstrap-CURE strat-

egy) effectively reduces the complexity of the computa-

tional process to automatically interpret data and allows the

customers (or machine operators) to make a decision

without disrupting the production cycle.

8 Conclusions and future work

The current research work studies the effect of several

criteria based on theCalinski-Harabasz index in determin-

ing the best number of clusters from a dendrogram. Six

different functions of the Calinski-Harabasz index have

been proposed as quality criteria of the partitions induced

from a dendrogram, and three different decision rules have

been proposed to combine those criteria for identifying the

final number of clusters.

The experiments conducted in the research elicited

implicit practices that clustering experts apply when visu-

ally inspecting a dendrogram to determine the number of

clusters. This is successfully formalized in the K�
cond deci-

index as described before invalidate the inferential part of

the proposal made by Calinski-Harabasz. Hence, there is a

need to develop a modification of the test in a non-para-

metric version and the state-of-the-art in this particular case

is to transform the test based on Fishers’ Permutation tests.

Again, this is computationally too expensive to introduce in

the real-time IDSS that is being built in our context. The

authors are currently working on finding ways to reduce the

computational time of a non-parametric version of the

inferential process proposed in [3] and its adaptation to the

proposed Dcond index. Besides, there is a possibility to use

significance tests introduced by Lebart to check which

sensor is significant and in which particular cluster. This, in

fact, is used for the automatic interpretation of the patterns

as per the proposal in [32] and, in our experimental setting,

this would involve 46,740 distinct tests, one per each class

(12) and variable (41) for each dendrogram (95) with

considerable time demand and the need of multiple com-

parison corrections, like the Bonferroni method. Although,

the authors are working towards developing a criterion to

reduce the number of tests and thereby the computation

time. This particular work is considered to be out of the

scope of this paper and is part of future research.

Finally, the criterion with the best behavior has been

introduced in the CURE-based strategy proposed in [20] to

scale up a hierarchical clustering process to large datasets.

Thus, a resampling step involving part of the dataset is

introduced and many small hierarchical-clustering pro-

cesses are performed and combined in a super-clustering

process. Later, further expansion of discovered clusters is

done for remaining objects that were not involved in the

resampling process. The impact of computing the number

of clusters in all samples with automatic criteria on the

reduction of the total running time is huge.

This work, hence, proves that it is possible to extend

hierarchical clustering to large data by using a combination

of CURE strategy with resampling techniques and an

automatic criterion to determine the number of clusters of

each subsample.

Developing such a technique to apply in the 3D printer

context is very important as it opens the door to charac-

terize the behavior of the 3D printers automatically, in

order to identify operational modes, among others, and

makes it feasible to do this process in real-time. Indeed, the

proposed methodology contributes to disclose the complex

nature of the 3D printing process, which still has lots of

open questions and can benefit significantly from further

conceptualization. Furthermore, automatic interpretation of

sensor data that identifies operation scenarios can support

automatic control actions, machine maintenance opera-

tions, etc, all important issues in the emergent context of

Industry 4.0.

sion rule, leading to an acceptable criterion (Dcond) that 
mimics, reasonably well, the work done by the expert when 
analyses a dendrogram and proposes a number of clusters. 
Although there is a scope of improvement, and further 
research is conducted to analyze morphological charac-
teristics of those dendrograms where e is bigger, the current 
performance can be accepted, provided that the entire 
process is introduced as part of a more complex strategy 
that recombines the clusters in a further super-classification 
approach that reduces the impact of the errors.

It is to be noted that [3] proposes an inferential proce-
dure to determine the number of clusters of a dendrogram. 
However, the proposal assumes statistical distributions for 
the Calinski-Harabasz index which are really difficult to be 
satisfied by real-life sensor data. In the given research, the 
authors find this index to measure quite well the partition of 
the data that shows a bigger relative distance between the 
distinguishability-between clusters and the homogeneity-

intraclusters. However, the distributional limitations of the



Further research on refining the Dcond criterion is

ongoing, to improve the performance of the entire method.

The research to analyze the relationship between bigger e
and the morphological properties of the dendrogram to

identify further improvements on the decision rule is in

progress. Also, comparison of the proposed Dcond index

against other cluster validity indices from the literature is

ongoing, like Silhouette index, Dunn’s index, or CSP and

their impact on clustering performance as well as on the

total CPU time consumption.

In the future work of this research, the authors also

intend to apply the proposed methodology to other use-

cases involving sensor data coming from different domains

(other than 3D printers) to evaluate the generalizability of

the proposal as, gas turbines performance, aerogenerators

performance, among others.

The proposed methodology is planned to be integrated

into an Intelligent Decision Support System to allow the

manufacturer to help manage the customer fleet of the 3D

printers. Automatic interpretation of the clusters discovered

would be the next phase of the research. It would further be

connected with supervised and unsupervised learning

models to be able to detect anomalous behavior of the

machines to catch any system error or part quality

concerns.
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