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A B S T R A C T

The theories for thick plates and beams, namely Reissner–Mindlin’s and Timoshenko’s theories, are well known
to suffer numerical locking when approximated using the standard Galerkin finite element method for small
thicknesses. This occurs when the same interpolations are used for displacement and rotations, reason for which
stabilization becomes necessary. To overcome this problem, a Variational Multiscale stabilization method is
analyzed in this paper. In this framework, two different approaches are presented: the Algebraic Sub-Grid
Scale formulation and the Orthogonal Sub-Grid Scale formulation. Stability and convergence is proved for
both approaches, explaining why the latter performs much better. Although the numerical examples show that
the Algebraic Sub-Grid Scale approach is in some cases able to overcome the numerical locking, it is highly
sensitive to stabilization parameters and presents difficulties to converge optimally with respect to the element
size in the 𝐿2 norm. In this regard, the Orthogonal Sub-Grid Scale approach, which considers the space of the
sub-grid scales to be orthogonal to the finite element space, is shown to be stable and optimally convergent
independently of the thickness of the solid. The final formulation is similar to approaches developed previously,
thus justifying them in the frame of the Variational Multiscale concept.
1. Introduction

In the context of computational mechanics, plates and beams are
structural elements that are able to represent three dimensional objects
in which the length of one or two of its dimensions is significantly
smaller than the others. This dimensional reduction allows engineers
to model complex structures at the cost of introducing rotations as
independent variables. The Reissner–Mindlin equations are commonly
used to describe the behavior of thin and moderately thick plates
under transverse loads. This model differs from the Poisson–Kirchhoff
equations for thin plates by considering the shear deformations due to
distortion. In a physical sense, it is assumed that a straight line normal
to the undeformed middle plane will remain straight but not necessarily
perpendicular to the middle plane after deformation. The same analogy
applies to the Timoshenko equations for thin–thick beams, with respect
to the Euler–Bernoulli equations for thin beams. This leads to two
groups of equations: the thin–thick theories, referred to as Reissner–
Mindlin plates and Timoshenko beams, and the thin theories, referred
to as Poisson–Kirchhoff plates and Euler–Bernoulli beams.

This paper is focused on the Finite Element (FE) stabilization of
thin–thick theories of plates and beams, founded on the fact that
applications in engineering usually fall into this category, and in the
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interest of using 𝐶0 interpolations for displacement and rotations that
are not possible using thin theories. In this context, both in Reissner–
Mindlin plate and Timoshenko beam theories, the thickness of the
structure appears explicitly in the partial differential equations, which
results in a dominance of the shear term as it tends to the slender
limit case. This fact together with the zero shear strain constraint leads
to numerical locking when the equations are solved using the same
interpolation for deflection and rotations, and it is the reason it needs
to be stabilized. In the case of beams, the way locking occurs can be
explicitly analyzed from the stiffness matrix of the elements [1].

A considerable amount of work has been put into the design of
locking-free elements, namely that the order of convergence does not de-
pend on the thickness of the structure. The existing approaches can be
classified depending on whether or not the problem is dealt with in the
irreducible form or if the shear strain is interpolated as an additional
variable of the problem, which alleviates the zero shear constraint.
In the irreducible approach, the equations are presented in terms of
deflections and rotations only, and if these equations are discretized
using standard polynomial spaces, the numerically simulated structure
behaves with a stiffness larger than it should for small thicknesses [2].
This pure numerical response is known as numerical locking, and for
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this particular case, it is often called shear-locking because it occurs
due to the inability to reproduce a zero shear strain field. In that
regard, the numerical locking will occur for any loading that results
in a pure bending state of the structure. On the other hand, the
mixed formulation approach consists in interpolating the shear strain
from the constitutive equations as an additional unknown. This can be
extended, although not necessarily, to the dual-mixed formulation by
also interpolating the bending strain. This type of implementations is
used to avoid restrictive constraints; however, they are inf-sup deficient
and also require stabilization. For a better understanding of the FE
approach to plates the reader can refer to [3,4].

The most common approach used to solve the problem, indepen-
dently of which variables are interpolated, is to use MITC (Mixed
Interpolation of Tensorial Components) elements, that allows one to
use different interpolations for each unknown. These approaches have
been, and are still being developed for different types of problems [5,6].
The reader can refer to [7] for a general overview, and also to [8] for
a general analysis of the design procedure of MITC elements based on
the velocity–pressure pair of the Stokes problem. The main challenge
of this approach is to develop a stabilized formulation that converges
optimally for every unknown using the lowest possible order of inter-
polation. A good insight of this in relation to the plate problem can
be followed from [9], where it was established that shear stress is
convergent if the bending moment converges at a high enough rate.
This led to further developments using a variational approach [10]
that was valid for any element of high enough order of interpolation
for MITC elements, limited to using at least quadratic interpolations
for the displacements. This limitation was improved in [11] by adding
some consistent terms to the formulation. This type of elements has also
been extended to shells [12], although some sort of stabilization is also
required in this framework [13].

A search of the literature shows that another common methodology
to treat shear-locking is by using different types of selective integra-
tion [14,15]. This, however, is limited to particular element shapes and
element orders (for example for bilinear quads), but it is not a gen-
eral approach. Stabilization of shear locking can be achieved through
many different approaches such as using Lagrange multipliers [16,17],
non-conforming method approaches [18,19] which have also been a
common topic of discussion, or discontinuous Petrov–Galerkin meth-
ods [20,21], to name a few. Another approach was taken in [22], where
the dual mixed formulation was stabilized using inter-elemental jumps
of the unknowns. This approach provides optimal convergence of all
the unknowns using linear interpolations only. A completely different
approach was followed in [23], where a locking-free formulation is
obtained from general polygonal space discretization rather than from
standard finite elements.

Another methodology consists in formulating the stabilization from
the multiscale perspective. It started from the introduction of the
Galerkin-Least Squares method [10] and was further developed in [24].
Another least-squares type formulation was developed in [25] by in-
troducing stabilization terms using the shear stress computed from the
equilibrium equations. A rather different approach was used in [26],
where a preconditioner was obtained using a multigrid method that
was initially proposed in [27], where a conjugate gradient iterative
algorithm was used to solve the linear system. The mixed formulation
was also solved in [28] by introducing different interpolations for
bending and shear effects. Also, in [29] a method was developed using
a modified version of the formulation presented in [30], where an
additional term was added to the mixed form. A similar approach to
one of the stabilization methods to be described in the following was
adopted in [31], in particular applied to the Discrete Shear Gap (DSG)
formulation, which was already designed to avoid shear locking.

In this paper, the Reissner–Mindlin plate and the Timoshenko beam
problems are addressed using the Variational Multiscale (VMS) method,
a framework to develop stabilized formulations originally introduced
2

in [32,33]. In these formulations, the original Galerkin formulation 𝐺
is modified as little as possible using residual-based terms, making it
consistent. The stabilized formulations presented in this paper share
some characteristics with other formulations presented in the literature,
such as [4,7,11]; however, the final outcome is not exactly the same
and the motivation to derive the methods we propose is completely
different [34].

The paper is organized as follows: A brief overview of the physical
problem is presented in Section 2 and the variational form is given
in Section 3. The general form of the stabilized FE formulation is
explained in Section 4 and its implementation for the plate and beam
problems is presented in Section 5. The numerical analysis in which the
method is proven to be stable and convergent is presented in Section 6
and lastly, numerical results are shown in Section 7.

2. Continuous boundary value problem

Consider a general definition of the transverse deflection 𝑤 and the
otation 𝜽 of a structure. In the case of plates, the rotation is a vector
hat contains the rotations that make it bend in the 𝑥 and 𝑦 directions as
=
[

𝜃𝑥, 𝜃𝑦
]

. Since the beam problem is a dimensional reduction of the
plate problem, a single rotation in the 𝑧 direction is considered in this
case, as 𝜽 = 𝜃 = 𝜃𝑧. In the problems presented below, the geometries
and coordinate systems are defined under the convention presented in
Fig. 1. Only beams in the plane will be considered, the extension to 3D
beams being straightforward.

Let us define a domain in a general manner as 𝛺 and its boundary
𝛤 = 𝜕𝛺. Then 𝛺 can be particularized for plates as 𝛺 = 𝛺𝑃 and for
beams as 𝛺 = 𝛺𝐵 , with their corresponding boundaries 𝛤𝑃 and 𝛤𝐵 .

he irreducible form of the Reissner–Mindlin plate problem consists in
inding 𝐮 = [𝜽, 𝑤] in the domain 𝛺𝑃 of R2 with boundary 𝛤𝑃 as the
olution to

𝑘1𝛥𝜽 − 𝑘2∇(∇ ⋅ 𝜽) − 1
𝜀
(∇𝑤 − 𝜽) = 𝐦 in 𝛺𝑃 , (2.1)

−1
𝜀
∇ ⋅ (∇𝑤 − 𝜽) = 𝑞 in 𝛺𝑃 , (2.2)

𝑤 = 0 in 𝛤𝑃 , (2.3)

𝜽 = 𝟎 in 𝛤𝑃 , (2.4)

for properly defined external loading moments 𝐦 = [𝑚𝑥, 𝑚𝑦], transverse
loads 𝑞 and

𝑘1 =
𝐸𝑡3

24(1 + 𝜈)
, 𝑘2 =

𝐸𝑡3

24(1 − 𝜈)
, 𝜀 =

2(1 + 𝜈)
𝐸𝜅𝑡

, (2.5)

where 𝐸 is the Young modulus, 𝜈 the Poisson ratio, 𝑡 the thickness and
𝜅 the shear correction factor. In the development presented below, only
homogeneous Dirichlet conditions are considered in (2.3) and (2.4), for
simplicity. Note that 𝜀 → ∞ as 𝑡 → 0. However, 𝑘1 and 𝑘2 are (𝑡3),
whereas 𝜀−1 is (𝑡). We have used the symbol 𝜀−1 for the shear stiffness
to emphasize that it dominates the bending stiffnesses as 𝑡→ 0.

Similarly, the Timoshenko beam problem consists in finding 𝐮 =
[𝜃,𝑤] defined in the domain 𝛺𝐵 of R with boundary 𝛤𝐵 such that

− 𝑑
𝑑𝑥

(

𝐸𝐼 𝑑𝜃
𝑑𝑥

)

− 𝐺𝐴∗
(𝑑𝑤
𝑑𝑥

− 𝜃
)

= 𝑚 in 𝛺𝐵 , (2.6)

− 𝑑
𝑑𝑥

[

𝐺𝐴∗
(𝑑𝑤
𝑑𝑥

− 𝜃
)]

= 𝑞 in 𝛺𝐵 , (2.7)

𝑤 = 0 in 𝛤𝐵 , (2.8)

𝜃 = 0 in 𝛤𝐵 , (2.9)

where 𝐺 is the shear modulus, 𝐼 is the inertia in the bending axis, and
𝐴∗ is the traverse reduced section area of the beam. The equilibrium
equations are completed by the external moment, in this case 𝒎 = 𝑚 =
𝑧, and external loads 𝑞. Comparing the beam and the plate equations,

t is observed that 𝐸𝐼 plays the role of 𝑘1 and 𝑘2, whereas 𝐺𝐴∗ plays
he role of 𝜀−1. Note that indeed both 𝐸𝐼 and 𝑘1, 𝑘2 are (𝑡3), whereas
𝐴∗ and 𝜀−1 are (𝑡), and the later become dominant when 𝑡 → 0.
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Fig. 1. Coordinate system and definition of variables in plates and beams.
It is important to mention that thick theories account for the shear
strains 𝜸 ∶= ∇𝑤 − 𝜽, contrary to the 𝜸 = 𝟎 assumption of thin theories.
Nevertheless, thick theories should converge to the corresponding thin
theory solution when approaching the thin limit 𝑡→ 0.

Additional notation is necessary to build the formulations to be
described below. Let us define, in a general manner, a linear differential
operator , the trace operator  that makes the problem well defined,
and a external force vector f. Either the plate or beam problems can
now be written as: find 𝐮 ∶ 𝛺 ←←→ R𝑛 such that

𝐮 = 𝐟 in 𝛺, (2.10)

𝐮 = �̄� on 𝛤 . (2.11)

For the problems we consider, 𝐮 is just the trace of 𝐮 on 𝛤 . As it has
been mentioned, we will take �̄� = 𝟎 for simplicity.

We can refer to the Reissner–Mindlin plate problem when 𝑛 = 3,
 = RM and 𝐟 = 𝐟RM, given by

RM𝐮 =

[

−𝑘1𝛥𝜽 − 𝑘2∇(∇ ⋅ 𝜽) − 1
𝜀 (∇𝑤 − 𝜽)

1

]

, 𝐟RM =
[

𝐦
𝑞

]

, (2.12)
3

− 𝜀∇ ⋅ (∇𝑤 − 𝜽)
and to the Timoshenko beam problem when 𝑛 = 2,  = T and 𝐟 = 𝐟T,
given by

T𝐮 =
⎡

⎢

⎢

⎣

− 𝑑
𝑑𝑥

(

𝐸𝐼 𝑑𝜃𝑑𝑥
)

− 𝐺𝐴∗
(

𝑑𝑤
𝑑𝑥 − 𝜃

)

− 𝑑
𝑑𝑥

(

𝐺𝐴∗
(

𝑑𝑤
𝑑𝑥 − 𝜃

))

⎤

⎥

⎥

⎦

, 𝐟T =
[

𝑚
𝑞

]

. (2.13)

To build the variational method below, it also is necessary to define
the flux operator  . Following the same notation as before, the flux
operator corresponds to the Reissner–Mindlin problem when  = RM,
defined as

RM(𝐮) =
[

𝑘1𝐧 ⋅ ∇𝜽 + 𝑘2𝐧∇ ⋅ 𝜽

𝐧 ⋅ 1
𝜀 (∇𝑤 − 𝜽)

]

, (2.14)

and to the Timoshenko beam problem when  = T, given by

T(𝐮) =
[

𝐸𝐼 𝑑𝜃𝑑𝑥
𝐺𝐴∗

(

𝑑𝑤
𝑑𝑥 − 𝜃

)

]

. (2.15)

3. Variational form

Consider 𝐻1(𝛺) as the space of functions in 𝐿2(𝛺) whose deriva-
tives belong to 𝐿2(𝛺) and 𝐻1(𝛺) the subspace of 𝐻1(𝛺) of functions
0
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vanishing on 𝛤 . In both specific problems, we denote the space of the
deflection as  = 𝐻1

0 (𝛺); the space of the rotations  will correspond to
 = 𝐻1

0 (𝛺)2 when referring to plates and to  = 𝐻1
0 (𝛺) when referring

to beams.
Let us denote by (⋅, ⋅)𝛺 the 𝐿2-inner product and define ⟨⋅, ⋅⟩𝛺 as

he integral of the product of two functions in 𝛺. We also denote as
=  ×  the spaces where the weak problem is defined, whose test

unctions are 𝐯 = [𝝓, 𝑣] ∈  . Let us introduce the bilinear form of the
roblem 𝐵 and the linear form 𝐿 as

(𝐮, 𝐯) = ⟨𝐮, 𝐯⟩𝛺 + ⟨𝐮,𝐯⟩𝜕𝛺 , (3.1)

𝐿(𝐯) = ⟨𝐟 , 𝐯⟩𝛺 . (3.2)

With all the above, the general problem in (2.10) and (2.11) is equiva-
lent to the weak form of the problem, which consists in finding 𝐮 ∈ 
such that

𝐵(𝐮, 𝐯) = 𝐿(𝐯), (3.3)

for all 𝐯 ∈  .

4. Stabilized finite element formulation

The standard FE discretization consists in taking a finite partition
{𝐾} of the domain 𝛺. Let the functional space where the continuous
problem is posed be denoted by  from which the constructed con-
forming FE space ℎ is a subset. Then the Galerkin FE approximation
consists in finding 𝐮ℎ ∈  such that

𝐵
(

𝐮ℎ, 𝐯ℎ
)

= 𝐿
(

𝐯ℎ
)

∀ 𝐯ℎ ∈ ℎ. (4.1)

The stabilized formulation analyzed in this paper is constructed in the
VMS framework. The idea is to add additional terms to the Galerkin
formulation of the problem that enhance stability without upsetting
accuracy. This is achieved by splitting the space of unknowns as  =
ℎ⊕ ′, where ℎ is the part that can be solved in the FE space and  ′

is the remainder, or sub-grid scale, part. This leads to the splitting of
the unknowns 𝐮 = 𝐮ℎ + 𝐮′ and test functions 𝐯 = 𝐯ℎ + 𝐯′. This splitting
modifies the original formulation shown in (4.1) and turns the problem
into: find 𝐮ℎ ∈ ℎ and 𝐮′ ∈  ′ such that

𝐵
(

𝐮ℎ, 𝐯ℎ
)

+ 𝐵
(

𝐮′, 𝐯ℎ
)

= 𝐿
(

𝐯ℎ
)

∀ 𝐯ℎ ∈ ℎ, (4.2)

𝐵
(

𝐮ℎ, 𝐯′
)

+ 𝐵
(

𝐮′, 𝐯′
)

= 𝐿
(

𝐯′
)

∀ 𝐯′ ∈  ′. (4.3)

The way this formulation is constructed requires an approximation
of the sub-grid scales to be complete, which will be computed as a
function of the FE part, as shown below. Note that choosing  ′ =
{0} yields the Galerkin method, making this method consistent by
construction.

4.1. Sub-grid scales in the element interiors

At this point, the approximation requires to solve more variables
than the initial problem. This is dealt with by modifying (4.2) by using
the additivity of the integral and the identity of the bilinear operator:

𝐵 (𝐮, 𝐯) =
∑

𝐾
⟨𝐮, 𝐯⟩𝐾 +

∑

𝐾
⟨𝐮,𝐯⟩𝜕𝐾 =

∑

𝐾
⟨𝐮,∗𝐯⟩𝐾

+
∑

𝐾
⟨𝐮,∗𝐯⟩𝜕𝐾 , (4.4)

where the superscript ∗ denotes the adjoint of an operator. In the
current problems, the operators involved are self-adjoint, which means
that ∗ =  and ∗ =  ; nevertheless, the superscript is left as a
reference. In this manner, Eq. (4.2) can be written as

𝐵
(

𝐮ℎ, 𝐯ℎ
)

+
∑

[⟨

𝐮′,∗𝐯ℎ
⟩

𝐾 +
⟨

𝐮′,∗𝐯ℎ
⟩

𝜕𝐾
]

= 𝐿(𝐯ℎ). (4.5)
4

𝐾

Then the problem reduces to find a proper approximation for 𝐮′. This
can be achieved in (4.3) by approximating 𝐮′ in terms of 𝐮ℎ. We have
that

𝐵
(

𝐮′, 𝐯′
)

= 𝐿
(

𝐯′
)

− 𝐵
(

𝐮ℎ, 𝐯′
)

,

= 𝐿
(

𝐯′
)

−
∑

𝐾

[⟨

𝐮ℎ, 𝐯′
⟩

𝐾 +
⟨

𝐮ℎ,𝐯′
⟩

𝜕𝐾
]

,

=
∑

𝐾

[⟨

𝐮ℎ, 𝐯′
⟩

𝐾 +
⟨

𝐮ℎ,𝐯′
⟩

𝜕𝐾
]

, (4.6)

where 𝐮ℎ = 𝐟 − 𝐮ℎ is the FE residual. For now let us impose that
𝐮′ = 𝟎 on 𝜕𝐾 in an essential way, making the sub-grid scale test
function satisfy 𝐯′ = 𝟎 on 𝜕𝐾. This yields the following approximation

𝐮′ = −1 (𝐮ℎ + 𝐯′⊥
)

, (4.7)

where 𝐯′⊥ guarantees that 𝐮′ ∈  ′. In this expression, −1 cannot be
computed directly, so it is approximated element by element as

𝐮′ ∣𝐾≈ 𝝉𝐾
(

𝐮ℎ + 𝐯′⊥
)

∣𝐾 , (4.8)

where 𝝉𝐾 is a matrix that approximates −1 on each element 𝐾. The
function 𝐯′⊥ depends on the space of the sub-grid scales, so it can be
written in a general form as

𝐮′ ∣𝐾≈ 𝝉𝐾𝑃 ′ (𝐮ℎ
)

∣𝐾 , (4.9)

where 𝑃 ′ is the 𝐿2 projection onto the sub-grid scale space  ′ and
𝑃 ′ = 𝐼 −𝑃 ′⟂, with 𝐼 being the identity in  . This approximation allows
us to rewrite the modified version of the problem in (4.5) as a function
of the FE variables, making the number of unknowns to be the same as
the original problem, as follows

𝐵
(

𝐮ℎ, 𝐯ℎ
)

+
∑

𝐾

⟨

𝝉𝐾𝑃 ′ (𝐮ℎ
)

,∗𝐯ℎ
⟩

𝐾 = 𝐿
(

𝐯ℎ
)

. (4.10)

From this point onwards, it only remains to choose a proper pro-
jection of the residual. A typical choice of the sub-grid scale space is
the identity 𝑃 ′ = 𝐼 , leading to the Algebraic Sub-Grid Scale (ASGS)
formulation, which means 𝐯′⟂ = 𝟎. Choosing 𝑃 ′ = 𝐼 − 𝑃ℎ ∶= 𝑃⟂

ℎ ,
where 𝑃ℎ is the 𝐿2 projection onto the FE space (including boundary
conditions) yields the Orthogonal Sub-Grid Scale (OSGS) formulation,
because it corresponds to taking  ′ as the orthogonal complement of
ℎ.

4.2. Sub-grid scales in the element edges

The common procedure for the VMS formulation is to neglect the
contribution of the sub-grid scales to the inter-element boundaries;
however, enhanced stability properties can be achieved by considering
them [35]. With the approach we follow, it is important to note that the
sub-grid scales in the element interiors do not account for the boundary
values, and the sub-grid scales in the inter-element boundaries have to
be computed afterwards.

Let ℎ = {𝐸} the collection of interior edges of the FE partition, and
𝐮′𝐸 the sub-grid scale on edge 𝐸, assumed to be uniquely valued. The
sub-grid scales on the edges of the boundary of 𝛺 are taken as zero.
Then, we may write Eq. (4.5) as:

𝐵
(

𝐮ℎ, 𝐯ℎ
)

+
∑

𝐾

⟨

𝐮′,∗𝐯ℎ
⟩

𝐾 +
∑

𝐸

⟨

𝐮′𝐸 ,
[[

∗𝐯ℎ
]]⟩

𝐸 = 𝐿(𝐯ℎ). (4.11)

here
[[

∗𝐯ℎ
]]

denotes the jump of ∗𝐯ℎ across 𝐸, i.e., the sum of the
alues of ∗𝐯ℎ computed with the normals exterior to the elements that
hare edge 𝐸.

Imposing that the total fluxes are continuous across inter-element
oundaries, it is argued in [36] that the sub-grid scales on the edges of
he FE partition can be approximated by

′ ≈ − 𝛿
[[

𝐮
]]

, (4.12)
𝐸 2 ℎ
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where 𝛿 = 𝛿0ℎ and 𝛿0 is a dimensionless algorithmic parameter.
Combining this with (4.9) we obtain the stabilized FE formulation:

𝐵
(

𝐮ℎ, 𝐯ℎ
)

+
∑

𝐾

⟨

𝝉𝐾𝑃 ′ (𝐮ℎ
)

,∗𝐯ℎ
⟩

𝐾 −
∑

𝐸

𝛿
2
⟨[[

𝐮ℎ
]]

,
[[

∗𝐯ℎ
]]⟩

𝐸

= 𝐿
(

𝐯ℎ
)

.

(4.13)

5. Implementation

In this subsection, the stabilized formulation of the Reissner–
Mindlin plate and the Timoshenko beam theories are presented. To
simplify the exposition, in this section we consider only linear elements,
and thus higher order derivatives in the element interiors are not
considered. Nevertheless, the case of arbitrary order of interpolation
will be analyzed in the following section.

Let us first write the Galerkin FE form of each problem:

• Reissner–Mindlin plate

𝑘1
(

∇𝜽ℎ,∇𝝓ℎ
)

+ 𝑘2
(

∇ ⋅ 𝜽ℎ,∇ ⋅ 𝝓ℎ
)

+ 1
𝜀
(

∇𝑤ℎ − 𝜽ℎ,∇𝑣ℎ − 𝝓ℎ
)

= ⟨𝐦,𝝓ℎ⟩ + ⟨𝑞, 𝑣ℎ⟩ .

(5.1)

• Timoshenko beam

𝐸𝐼
(

𝑑𝜃ℎ
𝑑𝑥

,
𝑑𝜙ℎ
𝑑𝑥

)

+𝐺𝐴∗
(

𝑑𝑤ℎ
𝑑𝑥

− 𝜃ℎ,
𝑑𝑣ℎ
𝑑𝑥

− 𝜙ℎ

)

=
⟨

𝑚, 𝜙ℎ
⟩

+
⟨

𝑞, 𝑣ℎ
⟩

.

(5.2)

Consider 𝛼 and 𝛽 as the constants that multiply the shear and
ending terms, respectively, namely 𝛼 = 𝐺𝐴∗ and 𝛽 = 𝐸𝐼 for beams and
= 𝜀−1, 𝛽 = 𝐸𝑡3∕24 for plates. In a general manner, the formulation

ields a system of equations of the form

𝛼𝑆1 𝛼𝑆2
𝛼𝑆3 𝛼𝑆4 + 𝛽𝐵

] [

𝑊
𝛩

]

=
[

𝐹
𝑀

]

, (5.3)

where 𝑊 and 𝛩 are the displacements and rotations arrays, respec-
tively, 𝐹 is the array coming from the transverse loads, 𝑀 from the
bending moments, 𝐵 and 𝑆𝑖 (𝑖 = 1, 2, 3, 4) are the components arising
from the bending and shear terms, respectively (with 𝑆3 = 𝑆𝑇2 ). These
notations can refer to matrix arrays depending on the problem. The
standard formulations gives a symmetric system that locks when 𝑡 ←←→ 0
and 𝑆𝑖 ≫ 𝐵 (the inequality being understood component-wise), while
in the stabilized formulations presented below, the stabilization terms
allow the system to avoid the dominance of one term over the other.

In the following, the stabilization matrices are taken to be diagonal,
of the form 𝝉𝐾 = diag(𝜏𝜃 , 𝜏𝜃 , 𝜏𝑤) for plates and 𝝉𝐾 = diag(𝜏𝜃 , 𝜏𝑤) for
beams, where 𝜏𝜃 and 𝜏𝑤 are still to be defined. It is understood that
these parameters are evaluated element by element.

We will start writing the stabilized formulations without sub-grid
scales on the inter-element boundaries. These will be introduced later,
as they are the same for both the ASGS and the OSGS formulations.

5.1. Algebraic sub-grid scales

We first consider the ASGS formulation, which corresponds to 𝐯′⟂ =
𝟎. Then 𝑃 ′ is the identity on the element residuals, and thus 𝐮′ =
𝝉𝐾 [𝐟 − 𝐮ℎ] in each element 𝐾. The formulation for linear elements
and assuming constant stabilization parameters (i.e., constant element
sizes) reads:

• Reissner–Mindlin plates:

𝑘1
(

∇𝜽ℎ,∇𝝓ℎ
)

+ 𝑘2
(

∇ ⋅ 𝜽ℎ,∇ ⋅ 𝝓ℎ
)

+ 1
𝜀
(

∇𝑤ℎ − 𝜽ℎ,∇𝑣ℎ − 𝝓ℎ
)

−
𝜏𝑤
2

∑

⟨∇ ⋅ 𝜽ℎ,∇ ⋅ 𝝓ℎ⟩𝐾 −
𝜏𝜃
2

∑

⟨∇𝑤ℎ − 𝜽ℎ,∇𝑣ℎ − 𝝓ℎ⟩𝐾
5

𝜀 𝐾 𝜀 𝐾
= ⟨𝐦,𝝓ℎ⟩ + ⟨𝑞, 𝑣ℎ⟩ .
(5.4)

• Timoshenko beams:

𝐸𝐼
(

𝑑𝜃ℎ
𝑑𝑥

,
𝑑𝜙ℎ
𝑑𝑥

)

+ 𝐺𝐴∗
(

𝑑𝑤ℎ
𝑑𝑥

− 𝜃ℎ,
𝑑𝑣ℎ
𝑑𝑥

− 𝜙ℎ

)

− 𝜏𝑤
(

𝐺𝐴∗)2
∑

𝐾

⟨

𝑑𝜃ℎ
𝑑𝑥

,
𝑑𝜙ℎ
𝑑𝑥

⟩

𝐾

− 𝜏𝜃
(

𝐺𝐴∗)2
∑

𝐾

⟨

𝑑𝑤ℎ
𝑑𝑥

− 𝜃ℎ ,
𝑑𝑣ℎ
𝑑𝑥

− 𝜙ℎ

⟩

𝐾
=
⟨

𝑚, 𝜙ℎ
⟩

+
⟨

𝑞, 𝑣ℎ
⟩

.

(5.5)

In a general manner, the matrix version of these equations is

(𝛼 − 𝜏𝜃𝛼2)𝑆1 (𝛼 − 𝜏𝜃𝛼2)𝑆2

(𝛼 − 𝜏𝜃𝛼2)𝑆3 (𝛼 − 𝜏𝜃𝛼2)𝑆4 + (𝛽 − 𝜏𝑤𝛼2)𝐵

]

[

𝑊
𝛩

]

=
[

𝐹
𝑀

]

. (5.6)

his allows the system not to fall into shear dominance when 𝝉𝐾 is
roperly designed. This part is crucial to obtain a locking-free formu-
ation, and it will be explained below in more detail.

.2. Orthogonal sub-grid scales

For this approach, the sub-grid scales are computed considering the
rthogonal component of the residual as 𝐮′ = 𝝉𝐾𝑃⟂[𝐟 − 𝐮ℎ] in each
lement 𝐾, i.e., 𝑃 ′ = 𝑃⟂ = 𝐼 − 𝑃ℎ. If we denote, in a general manner,
ℎ = [𝝃𝜃 , 𝜉𝑤] to be the FE projections of the residual onto ℎ, and
ℎ = [𝜼𝜃 , 𝜂𝑤] to be the respective test functions in ℎ, the formulations
or plates and beams can be written as:

• Reissner–Mindlin plates:

𝑘1
(

∇𝜽ℎ,∇𝝓ℎ
)

+ 𝑘2
(

∇ ⋅ 𝜽ℎ,∇ ⋅ 𝝓ℎ
)

+1
𝜀
(

∇𝑤ℎ − 𝜽ℎ,∇𝑣ℎ − 𝝓ℎ
)

−
𝜏𝑤
𝜀2

∑

𝐾
⟨∇ ⋅ 𝜽ℎ,∇ ⋅ 𝝓ℎ⟩𝐾

−
𝜏𝜃
𝜀2

∑

𝐾
⟨∇𝑤ℎ − 𝜽ℎ,∇𝑣ℎ − 𝝓ℎ⟩𝐾

+
𝜏𝑤
𝜀

∑

𝐾
⟨𝜉𝑤,∇ ⋅ 𝝓ℎ⟩𝐾 +

𝜏𝜃
𝜀

∑

𝐾
⟨𝝃𝜃 ,∇𝑣ℎ − 𝝓ℎ⟩𝐾 = ⟨𝐦,𝝓ℎ⟩ + ⟨𝑞, 𝑣ℎ⟩ ,

(5.7)
1
𝜀
(

∇ ⋅ 𝜽, 𝜂𝑤
)

−
(

𝜉𝑤, 𝜂𝑤
)

= 0, (5.8)

1
𝜀
(

∇𝑤ℎ − 𝜽ℎ, 𝜼𝜃
)

−
(

𝝃𝜃 , 𝜼𝜃
)

= 0, (5.9)

for all [𝝓ℎ, 𝑣ℎ] ∈ ℎ and [𝜼𝜃 , 𝜂𝑤] ∈ ℎ.
• Timoshenko beams:

𝐸𝐼
(

𝑑𝜃ℎ
𝑑𝑥

,
𝑑𝜙ℎ
𝑑𝑥

)

+𝐺𝐴∗
(

𝑑𝑤ℎ
𝑑𝑥

− 𝜃ℎ,
𝑑𝑣ℎ
𝑑𝑥

− 𝜙ℎ

)

−𝜏𝑤(𝐺𝐴∗)2
∑

𝐾

⟨

𝑑𝜃ℎ
𝑑𝑥

,
𝑑𝜙ℎ
𝑑𝑥

⟩

𝐾

−𝜏𝜃(𝐺𝐴∗)2
∑

𝐾

⟨

𝑑𝑤ℎ
𝑑𝑥

− 𝜃ℎ ,
𝑑𝑣ℎ
𝑑𝑥

− 𝜙ℎ

⟩

𝐾

+𝜏𝑤𝐺𝐴∗
∑

𝐾

⟨

𝜉𝑤 ,
𝑑𝜙ℎ
𝑑𝑥

⟩

𝐾

+𝜏𝜃𝐺𝐴∗
∑

𝐾

⟨

𝜉𝜃 ,
𝑑𝑣ℎ
𝑑𝑥

− 𝜙ℎ

⟩

𝐾
=
⟨

𝑚, 𝜙ℎ
⟩

+
⟨

𝑞, 𝑣ℎ
⟩

,

(5.10)

𝐺𝐴∗
(

𝑑𝑤ℎ − 𝜃ℎ , 𝜂𝜃

)

−
(

𝜉𝜃 , 𝜂𝜃
)

= 0, (5.11)

𝑑𝑥
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⎢

⎢

⎢

⎢
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𝐺𝐴∗
(

𝑑𝜃ℎ
𝑑𝑥

, 𝜂𝑤

)

−
(

𝜉𝑤 , 𝜂𝑤
)

= 0, (5.12)

for all [𝜙ℎ, 𝑣ℎ] ∈ ℎ and [𝜂𝜃 , 𝜂𝑤] ∈ ℎ.

For this formulation, the matrix version of the equations is:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(𝛼 − 𝜏𝜃𝛼2)𝑆1 (𝛼 − 𝜏𝜃𝛼2)𝑆2 𝜏𝜃𝛼𝑃 𝜃1 0

(𝛼 − 𝜏𝜃𝛼2)𝑆3
(𝛼 − 𝜏𝜃𝛼2)𝑆4

+(𝛽 − 𝜏𝑤𝛼2)𝐵
𝜏𝜃𝛼𝑃 𝜃2 𝜏𝑤𝛼𝑃𝑤

𝛼𝑄𝜃1 𝛼𝑄𝜃2 𝑁 0

0 𝛼𝑄𝑤 0 𝑁

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑊

𝛩

𝛯𝜃

𝛯𝑤

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐹

𝑀

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(5.13)

where 𝑁 is the Gram matrix, 𝑃𝑤 and 𝑃 𝜃𝑖 (𝑖 = 1, 2) are the matrices
containing 𝜉𝑤 and 𝜉𝜃 , respectively, with the corresponding test function
associated to the index. In the same manner, 𝑄𝑤 and 𝑄𝜃𝑖 (𝑖 = 1, 2) are
the matrices containing deflection and rotations terms, depending on
the index, with the test functions of the projection equations. Note that
the system can be symmetrized by multiplying the last two rows by 𝜏𝜃
and 𝜏𝑤, respectively, since (𝑄𝜃𝑖 )

𝑇 = 𝑃 𝜃𝑖 , 𝑖 = 1, 2.
The OSGS implementation yields a system that shares some similari-

ties with the mixed form of the problem. The difference is that the later
yields a saddle point problem that is usually addressed using a mixed
interpolation of the unknowns [10]. Note that similar formulations
have been obtained in [4,7,11], where the shear force is computed
using the 𝐿2 projection of the rotation onto the FE space in order to
soothe the zero shear strain constraint of the problem, which differs
from the sub-grid scale approach of the present work.

The implementation given by Eq. (5.13) is useful for the presen-
tation of the formulation, but in practice two other alternatives are
possible eliminating the degrees of freedom of the projections. One is
an iterative defect-correction approach, evaluating these projections at
the previous iteration when computing displacements and rotations and
then updating them. The other is a condensation of the projections,
which implies an increase of the stencil of the stiffness matrix. Both
approaches are feasible because the matrix that multiplies the degrees
of freedom of the rotations is a mass matrix, easily invertible (in a direct
or in an iterative way). In this case, the formulation presented should
be compared to those that do not introduce new variables, but solve
only for displacements and rotations.

5.3. Inter-element edge stabilization

The stabilization using the sub-grid scales in the element edges can
be implemented independently of the sub-grid scales in the element
interiors, as stated in Section 4. For the implementation, consider the
terms from the sub-grid scale in the inter-element edges added to the
Galerkin form of the problem. The resulting discrete problem is:

• Reissner–Mindlin plate

𝑘1
(

∇𝜽ℎ,∇𝝓ℎ
)

+ 𝑘2
(

∇ ⋅ 𝜽ℎ,∇ ⋅ 𝝓ℎ
)

+1
𝜀
(

∇𝑤ℎ − 𝜽ℎ,∇𝑣ℎ − 𝝓ℎ
)

−
𝛿𝑘1
2

∑

𝐸
⟨

[[

𝐧 ⋅ ∇𝜽ℎ
]]

,
[[

𝐧 ⋅ ∇𝝓ℎ
]]

⟩𝐸

−
𝛿𝑘2
2

∑

𝐸
⟨

[[

𝐧∇ ⋅ 𝜽ℎ
]]

,
[[

𝐧∇ ⋅ 𝝓ℎ
]]

⟩𝐸

− 𝛿
2𝜀

∑

𝐸
⟨

[[

𝐧 ⋅ ∇𝑤ℎ
]]

,
[[

𝐧 ⋅ ∇𝑣ℎ
]]

⟩𝐸 = ⟨𝐦,𝝓ℎ⟩ + ⟨𝑞, 𝑣ℎ⟩ . (5.14)

• Timoshenko beam

𝐸𝐼
(

𝑑𝜃ℎ ,
𝑑𝜙ℎ

)

6

𝑑𝑥 𝑑𝑥
+𝐺𝐴∗
(

𝑑𝑤ℎ
𝑑𝑥

− 𝜃ℎ,
𝑑𝑣ℎ
𝑑𝑥

− 𝜙ℎ

)

− 𝛿𝐸𝐼
2

∑

𝐸

⟨[[

𝑑𝜃ℎ
𝑑𝑥

]]

,
[[

𝑑𝜙ℎ
𝑑𝑥

]]⟩

𝐸

− 𝛿𝐺𝐴
∗

2
∑

𝐸

⟨[[

𝑑𝑤ℎ
𝑑𝑥

]]

,
[[

𝑑𝑣ℎ
𝑑𝑥

]]⟩

𝐸
=
⟨

𝑚, 𝜙ℎ
⟩

+
⟨

𝑞, 𝑣ℎ
⟩

. (5.15)

Recall that, in both problems, 𝛿 is a parameter of the order of the
element size.

5.4. Stabilization parameters

The design of 𝝉𝐾 is based on the definition proposed in [37] for
the Reissner–Mindlin case, with some modifications. According to that
work, shear dominance can be dealt with by just introducing the shear
stabilization parameter 𝜏𝜃 , and it was successful in that regard. How-
ever, convergence ratios were not tested. Taking this into consideration,
the stabilization parameters are defined as

• Reissner–Mindlin plate:

𝝉𝐾 = diag
(

𝜏𝜃 , 𝜏𝜃 , 𝜏𝑤
)

, 𝜏𝜃 =
(

𝑐1
𝑘
ℎ2

+ 𝑐2𝜀−1
)−1

,

𝜏𝑤 =
(

𝑐3
𝜀−1

ℎ2
+ 𝑐4

𝜀−2

𝑘

)−1
,

(5.16)

• Timoshenko beam:

𝝉𝐾 = diag
(

𝜏𝜃 , 𝜏𝑤
)

, 𝜏𝜃 =
(

𝑐1
𝐸𝐼
ℎ2

+ 𝑐2𝐺𝐴∗
)−1

,

𝜏𝑤 =
(

𝑐3
𝐺𝐴∗

ℎ2
+ 𝑐4

(𝐺𝐴∗)2

𝐸𝐼

)−1

,

(5.17)

here ℎ is the element size, 𝑘 = 𝑘1 +𝑘2, and 𝑐𝑖, 𝑖 = 1, 2 are constants to
be defined. Note that in [37] the constant 𝑐2 must be taken as 𝑐2 = 1 to
eliminate shear dominance; this is confirmed in the stability analysis
in Section 6. In [31] the ASGS formulation is used together with the
DSG approach taking 𝜏𝑤 = 0 and a similar expression of 𝜏𝜃 to the one
we propose, but taking also into account the possible anisotropy of the
elements.

To find which values of the stabilization constants can be used in
the stabilization parameters, the matrix form of the equations using the
ASGS formulation of (5.6) is compared to the exact solution of the elas-
tic equations for the bending of an unloaded beam using Timoshenko’s
theory. Consider a two noded beam of length 𝐿, with nodal deflections
𝑤𝑖 and rotations 𝜃𝑖, for nodes 𝑖 = 1, 2, and the corresponding nodal
loads 𝑃𝑖 and 𝑀𝑖. For 𝜇 = 12𝐸𝐼

𝐺𝐴∗𝐿2 , the following system of equations is
btained:

12𝐸𝐼
(1+𝜇)𝐿3

6𝐸𝐼
(1+𝜇)𝐿2 − 12𝐸𝐼

(1+𝜇)𝐿3
6𝐸𝐼

(1+𝜇)𝐿2

6𝐸𝐼
(1+𝜇)𝐿2

(4+𝜇)𝐸𝐼
(1+𝜇)𝐿 − 12𝐸𝐼

(1+𝜇)𝐿2
(2−𝜇)𝐸𝐼
(1+𝜇)𝐿

− 12𝐸𝐼
(1+𝜇)𝐿2 − 6𝐸𝐼

(1+𝜇)𝐿2
12𝐸𝐼

(1+𝜇)𝐿2 − 6𝐸𝐼
(1+𝜇)𝐿2

6𝐸𝐼
(1+𝜇)𝐿2

(2−𝜇)𝐸𝐼
(1+𝜇)𝐿 − 12𝐸𝐼

(1+𝜇)𝐿2
(4+𝜇)𝐸𝐼
(1+𝜇)𝐿

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝑤1
𝜃1
𝑤2
𝜃2

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑃1
𝑀1
𝑃2
𝑀2

⎤

⎥

⎥

⎥

⎥

⎦

. (5.18)

omparing this system to the one obtained using the stabilized FE
pproximation we propose, we obtain that, in the ASGS formulation
f beams, the stabilization constants can be taken as 𝑐1 = 𝑐3 = 12 and
𝑐2 = 𝑐4 = 1. In this case, the stiffness matrix of an element of length
𝐿 is exactly the same as that of the elastic equations of a Timoshenko
beam. The behavior of the FE formulation in response to this selection
of constants as well as the constants used in the OSGS formulation will
be discussed in Section 7.

6. Numerical analysis

In this section, the numerical analysis of the stabilized formulation
for plates is analyzed. The results are inherited by the beam problem
since it is equivalent to the dimensional reduction of the plate problem.



Finite Elements in Analysis & Design 217 (2023) 103908A. Aguirre et al.

d
h

n

d

𝐵

a

𝐿

m

6

p
t
n
n
n
p
i
c

𝐵

U

𝐵

w

𝛽

𝛽

𝛽

p
i
p
1
e
p
o
𝑐

𝛽

w
ℎ
t
l
𝛽
n
t
O

6
f

p
(

|

T
A
c
a
o

Consider ‖ ⋅ ‖ to be the 𝐿2(𝛺) norm. Let us define some inequalities
that will allow us to obtain a stability estimate. For simplicity, we will
assume the FE partition to be quasi-uniform, of size ℎ. We may thus
assume that there is a constant 𝐶inv, independent of the mesh size ℎ,
such that the following inverse estimate holds:

‖∇𝑣ℎ‖𝐾 ⩽
𝐶inv
ℎ

‖𝑣ℎ‖𝐾 , (6.1)

for all FE functions 𝑣ℎ defined on the partition {𝐾}. Similarly, the fol-
lowing trace inequality holds: there exists a constant 𝐶trace independent
of ℎ such that

‖𝑣‖2𝜕𝐾 ⩽ 𝐶trace

( 1
ℎ
‖𝑣‖2𝐾 + ℎ‖∇𝑣‖2𝐾

)

, (6.2)

for functions 𝑣 ∈ 𝐻1(𝐾). In this expression, the last term is dropped if
𝑣 is a polynomial on the element domain 𝐾.

Let now ℎ = {𝐸} be the edges of the FE partition. For piecewise
iscontinuous polynomials 𝜑ℎ and continuous polynomials 𝜓ℎ there
olds:
∑

𝐸
‖

[[

𝒏𝜑ℎ
]]

‖

2
𝐸 ⩽ 2

𝐶trace
ℎ

∑

𝐾
‖𝜑ℎ‖

2
𝐾 ,

∑

𝐸
‖𝜓ℎ‖

2
𝐸 ⩽

𝐶trace
2ℎ

∑

𝐾
‖𝜓ℎ‖

2
𝐾 .

(6.3)

In the following, 𝐶 will denote a generic positive constant, not
ecessarily the same at different occurrences.

The stabilized FE formulation for elements of arbitrary polynomial
egree can be written as:

stab(𝐮ℎ, 𝐯ℎ) = 𝐿stab(𝐯ℎ), (6.4)

where

𝐵stab(𝐮ℎ, 𝐯ℎ) = 𝑘1
(

∇𝜽ℎ,∇𝝓ℎ
)

+ 𝑘2
(

∇ ⋅ 𝜽ℎ,∇ ⋅ 𝝓ℎ
)

+ 1
𝜀
(

∇𝑤ℎ − 𝜽ℎ,∇𝑣ℎ − 𝝓ℎ
)

+ 𝜏𝜃
∑

𝐾

⟨

𝑃 ′
[

𝑘1𝛥𝜽ℎ + 𝑘2∇(∇ ⋅ 𝜽ℎ) +
1
𝜀
(

∇𝑤ℎ − 𝜽ℎ
)

]

,

−𝑘1𝛥𝝓ℎ − 𝑘2∇(∇ ⋅ 𝝓ℎ) −
1
𝜀
(

∇𝑣ℎ − 𝝓ℎ
)

⟩

𝐾

+ 𝜏𝑤
∑

𝐾

⟨

𝑃 ′
[ 1
𝜀
∇ ⋅

(

∇𝑤ℎ − 𝜽ℎ
)

]

,−1
𝜀
∇ ⋅

(

∇𝑣ℎ − 𝝓ℎ
)

⟩

𝐾
, (6.5)

nd

stab(𝐯ℎ) = ⟨𝐦,𝝓ℎ⟩ + ⟨𝑞, 𝑣ℎ⟩

− 𝜏𝜃
∑

𝐾

⟨

𝑃 ′ [𝐦] ,−𝑘1𝛥𝝓ℎ − 𝑘2∇(∇ ⋅ 𝝓ℎ) −
1
𝜀
(

∇𝑣ℎ − 𝝓ℎ
)

⟩

𝐾

− 𝜏𝑤
∑

𝐾

⟨

𝑃 ′ [𝑞] ,−1
𝜀
∇ ⋅

(

∇𝑣ℎ − 𝝓ℎ
)

⟩

𝐾
, (6.6)

where 𝑃 ′ = 𝐼 for the ASGS formulation and 𝑃 ′ = 𝑃⊥ for the OSGS
ethod.

.1. Stability analysis of the algebraic sub-grid scale formulation

Let us first recall the stability estimate presented in [37] for the
late problem, where the ASGS approach was considered. In that work
he terms multiplied by 𝜏𝑤 were neglected because they were not
eeded to get rid of the numerical locking. This fact however, does
ot account for the convergence rate of the solution, and 𝜏𝑤 is indeed
ecessary for it to be optimal, as will be explained and numerically
roven below. The formulation analyzed in [37] will now be extended
n the same manner: for the stability estimate, take 𝐯ℎ = 𝐮ℎ and
onsider 𝜸ℎ = ∇𝑤ℎ − 𝜽ℎ. Using Schwarz’s inequality leads to:

stab(𝐮ℎ,𝐮ℎ) ⩾
∑

𝐾

[

𝑘1‖∇𝜽ℎ‖2𝐾 + 𝑘2‖∇ ⋅ 𝜽ℎ‖2𝐾 + 1
𝜀
‖𝜸ℎ‖2𝐾

− 𝜏𝜃𝑘21‖𝛥𝜽ℎ‖
2
𝐾 − 𝜏𝜃𝑘22‖∇

(

∇ ⋅ 𝜽ℎ
)

‖

2
𝐾 − 𝜏𝜃

1
𝜀2

‖𝜸ℎ‖2𝐾

− 2𝜏
𝑘1

‖𝛥𝜽 ‖ ‖𝜸 ‖ − 2𝜏
𝑘2

‖∇
(

∇ ⋅ 𝜽
)

‖ ‖𝜸 ‖
7

𝜃 𝜀 ℎ 𝐾 ℎ 𝐾 𝜃 𝜀 ℎ 𝐾 ℎ 𝐾 𝛼
− 2𝜏𝜃𝑘1𝑘2‖𝛥𝜽ℎ‖𝐾‖∇
(

∇ ⋅ 𝜽ℎ
)

‖𝐾 − 𝜏𝑤
1
𝜀2

‖∇ ⋅ 𝜸ℎ‖2𝐾
]

. (6.7)

sing the inverse estimate (6.1) and Young’s inequality, we obtain:

stab(𝐮ℎ,𝐮ℎ) ⩾
∑

𝐾

[

𝑘1‖∇𝜽ℎ‖2𝐾 + 𝑘2‖∇ ⋅ 𝜽ℎ‖2𝐾 + 1
𝜀
‖𝜸ℎ‖2𝐾

− 𝜏𝜃𝑘21
𝐶2
inv

ℎ2
‖∇𝜽ℎ‖2𝐾 − 𝜏𝜃𝑘22

𝐶2
inv

ℎ2
‖∇ ⋅ 𝜽ℎ‖2𝐾 − 𝜏𝜃

1
𝜀2

‖𝜸ℎ‖2𝐾

− 𝜏𝜃
𝑘1
𝜀

(

‖∇𝜽ℎ‖2𝐾 +
𝐶2
inv

ℎ2
‖𝜸ℎ‖2𝐾

)

− 𝜏𝜃
𝑘2
𝜀

(

‖∇ ⋅ 𝜽ℎ‖2𝐾 +
𝐶2
inv

ℎ2
‖𝜸ℎ‖2𝐾

)

− 𝜏𝜃

(

𝑘21
𝐶2
inv

ℎ2
‖∇𝜽ℎ‖2𝐾 + 𝑘22

𝐶2
inv

ℎ2
‖∇ ⋅ 𝜽ℎ‖2𝐾

)

− 𝜏𝑤
1
𝜀2
𝐶2
inv

ℎ2
‖𝜸ℎ‖2𝐾

]

=
∑

𝐾

[

𝛽1‖∇𝜽ℎ‖2𝐾 + 𝛽2‖∇ ⋅ 𝜽ℎ‖2𝐾 + 𝛽3‖𝜸ℎ‖2𝐾
]

, (6.8)

here

1 =𝜏𝜃

[

𝑐1
𝑘21
ℎ2

+ 𝑐1
𝑘1𝑘2
ℎ2

+ 𝑐2
𝑘1
𝜀

− 2
𝐶2
inv

ℎ2
𝑘21 −

𝑘1
𝜀

]

, (6.9)

2 =𝜏𝜃

[

𝑐1
𝑘1𝑘2
ℎ2

+ 𝑐1
𝑘22
ℎ2

+ 𝑐2
𝑘2
𝜀

− 2
𝐶2
inv

ℎ2
𝑘22 −

𝑘2
𝜀

]

, (6.10)

3 =𝜏𝜃

[

𝑐1
𝑘
ℎ2𝜀

+ 𝑐2
1
𝜀2

− 1
𝜀2

− 𝑘
𝜀
𝐶2
inv

ℎ2
− 𝑘
𝜀
𝐶2
inv

ℎ2

(

𝑐1𝑘𝜀 + 𝑐2ℎ2

𝑐3𝑘𝜀 + 𝑐4ℎ2

)

]

. (6.11)

Estimate (6.8) is not satisfactory because it does not provide a
roper balance of the powers of the thickness in the different terms
t involves. This occurs regardless of the selection of stabilization
arameters, with the only exception of 𝑐1 = 𝑐3 = 12, and 𝑐2 = 𝑐4 =
, which allow one to recover the stiffness matrix coming from the
lastic Eqs. (5.18). To understand the reason, suppose that the physical
roperties and the mesh size ℎ are fixed and let us analyze the scaling
f the parameters 𝛽𝑖, 𝑖 = 1, 2, 3, with respect to the thickness 𝑡. Assuming
3 ⩾ 𝑐1, 𝑐4 ⩾ 𝑐2 and 𝑐1 > 2𝐶2

inv and noting that 𝑘1, 𝑘2 scale as 𝑡3 and 𝜀
scales as 𝑡−1, we have that

1, 𝛽2 ∼ 𝜏𝜃𝑡
4
[

𝐴1
𝑡2

ℎ2
+ 𝐴2(𝑐2 − 1)

]

, 𝛽3 ∼ 𝜏𝜃𝑡
4
[

𝐵1
1
ℎ2

+
𝐵2

𝑡2
(𝑐2 − 1)

]

,

(6.12)

here ∼ stands for scaling and 𝐴1, 𝐴2, 𝐵1, 𝐵2 are independent of 𝑡 and
. From this we observe that in order to avoid shear locking we need
o take 𝑐2 = 1, as it was observed in [37], but in this case also the
ast term in 𝛽1, 𝛽2 vanishes, and we have that 𝛽1, 𝛽2 = (𝜏𝜃𝑡6) while
3 = (𝜏𝜃𝑡4) (for ℎ fixed). Therefore, the stability estimate (6.8) does
ot provide a balanced control of the shear term and the derivatives of
he rotation when 𝑡 → 0. We will see in the next subsection that the
SGS formulation does not suffer from this misbehavior.

.2. Stability and convergence analysis of the orthogonal sub-grid scale
ormulation

The numerical analysis of the method considering the OSGS ap-
roach is presented next. For positive and dimensionally correct 𝛼𝑖
𝑖 = 1, 2, 3), the norm in which the results are presented is:

||𝐯ℎ|||2 ∶=𝛼1 ‖‖∇𝝓ℎ‖‖
2 + 𝛼2 ‖‖∇ ⋅ 𝝓ℎ‖‖

2 + 𝛼3 ‖‖𝜸ℎ‖‖
2 . (6.13)

his norm has the same form as for the Galerkin method and the
SGS formulation (see estimate (6.8)), but with the advantage that the
onstants 𝛼𝑖 are such that locking is no longer possible, because they
re designed in a manner that none of them can become dominant
ver the others. In particular, it will be shown that they behave as
, 𝛼 = (𝜏 𝑡4) and 𝛼 = (𝜏 𝑡4ℎ−2).
1 2 𝜃 3 𝜃
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In the following, it will be proved that the formulation is stable
under the norm (6.13), in the form of the inf-sup condition.

Theorem 6.1 (Stability). There is a constant C > 0 such that

inf
𝐮ℎ∈ℎ

sup
𝐯ℎ∈ℎ

𝐵stab
(

𝐮ℎ, 𝐯ℎ
)

|||𝐮ℎ||||||𝐯ℎ|||
⩾ 𝐶. (6.14)

Proof. Let us start noting that for any function 𝐮ℎ ∈ ℎ we have

𝐵stab(𝐮ℎ,𝐮ℎ) =𝑘1‖∇𝜽ℎ‖2 + 𝑘2‖∇ ⋅ 𝜽ℎ‖2 + 𝜀−1‖𝜸ℎ‖2

− 𝜏𝜃
∑

𝐾

‖

‖

‖

𝑃⟂ (

𝑘1𝛥𝜽ℎ + 𝑘2∇(∇ ⋅ 𝜽ℎ) + 𝜀−1𝜸ℎ
)

‖

‖

‖

2

𝐾

− 𝜏𝑤
∑

𝐾

‖

‖

‖

𝑃⟂ (

𝜀−1∇ ⋅ 𝜸ℎ
)

‖

‖

‖

2

𝐾
. (6.15)

It is important to note that the Galerkin terms of the bilinear form 𝐵
have already the necessary terms to have control over the ∇𝜽ℎ and 𝜸ℎ.
However, the problem arises when 𝑡 ←←→ 0 and becomes shear dominant.
Because of this, the main idea is to obtain a stability estimate in which
the shear dominance can be prevented. This estimate comes from the
terms whose orthogonal projections appear in 𝐵stab, which is obtained
by bounding the bilinear form term by term as follows.

Let us consider 𝐯ℎ1 ∶=
(

𝜏𝜃𝝓1, 0
)

, where 𝝓1 = 𝑃ℎ
(

𝑘1𝛥𝜽ℎ + 𝑘2∇(∇ ⋅ 𝜽ℎ)
+𝜀−1𝜸ℎ

)

and 𝑃ℎ is the 𝐿2 projection onto the FE space. It is understood
that the term inside the projection is evaluated element-wise. Taking
𝐯ℎ1 as test function in the bilinear form, and integrating by parts the
Galerkin terms, yields

𝐵stab(𝐮ℎ, 𝐯ℎ1) = −
∑

𝐾
𝜏𝜃

⟨

𝑘1𝛥𝜽ℎ + 𝑘2∇(∇ ⋅ 𝜽ℎ) + 𝜀−1𝜸ℎ,𝝓1
⟩

𝐾

+ 𝜏𝜃
∑

𝐸

⟨[[

𝑘1𝐧 ⋅ ∇𝜽ℎ
]]

+
[[

𝑘2𝐧∇ ⋅ 𝜽ℎ
]]

,𝝓1
⟩

𝐸

− 𝜏2𝜃
∑

𝐾

⟨

𝑃⟂ (

𝑘1𝛥𝜽ℎ + 𝑘2∇(∇ ⋅ 𝜽ℎ) + 𝜀−1𝜸ℎ
)

, 𝑘1𝛥𝝓1

+𝑘2∇(∇ ⋅ 𝝓1) − 𝜀−1𝝓1
⟩

𝐾

− 𝜏𝜃𝜏𝑤
∑

𝐾

⟨

𝑃⟂ (

𝜀−1∇ ⋅ 𝜸ℎ
)

,−𝜀−1∇ ⋅ 𝝓1
⟩

𝐾 . (6.16)

Note that the equation contains terms projected in the space that is
orthogonal to the FE space, which disappear when tested with 𝝓1
because it belongs to the FE space itself. Then, by using Schwarz’s
inequality and the inverse estimate (6.1), we obtain:

𝐵stab(𝐮ℎ, 𝐯ℎ1) ⩾ − 𝜏𝜃
∑

𝐾

‖

‖

𝝓1
‖

‖

2
𝐾 − 𝜏𝜃

∑

𝐸

‖

‖

‖

[[

𝑘1𝐧 ⋅ ∇𝜽ℎ
]]

‖

‖

‖𝐸
‖

‖

𝝓1
‖

‖𝐸

− 𝜏𝜃
∑

𝐸

‖

‖

‖

[[

𝑘2𝐧∇ ⋅ 𝜽ℎ
]]

‖

‖

‖𝐸
‖

‖

𝝓1
‖

‖𝐸

− 𝜏2𝜃𝑘
𝐶2
inv

ℎ2
∑

𝐾

‖

‖

‖

𝑃⟂ (

𝑘1𝛥𝜽ℎ + 𝑘2∇(∇ ⋅ 𝜽ℎ) + 𝜀−1𝜸ℎ
)

‖

‖

‖𝐾

× ‖

‖

𝝓1
‖

‖𝐾

− 𝜏𝜃𝜏𝑤𝜀−1
𝐶inv
ℎ

∑

𝐾

‖

‖

‖

𝑃⟂ (

𝜀−1∇ ⋅ 𝜸ℎ
)

‖

‖

‖𝐾
‖

‖

𝝓1
‖

‖𝐾 . (6.17)

Then, using Young’s inequality and the trace inequalities (6.3) it follows
that:

𝐵stab(𝐮ℎ, 𝐯ℎ1) ⩾ − 𝜏𝜃
∑

𝐾

‖

‖

𝝓1
‖

‖

2
𝐾 − 𝜏𝜃

∑

𝐾

‖

‖

𝝓1
‖

‖

2
𝐾 − 𝜏𝜃

𝐶2
trace

2ℎ2
∑

𝐾
‖𝑘1∇𝜽ℎ‖2𝐾

− 𝜏𝜃
𝐶2
trace

2ℎ2
∑

𝐾
‖𝑘2∇ ⋅ 𝜽ℎ‖2𝐾

−
𝜏2𝜃𝑘
2
𝐶2
inv

ℎ2
∑

𝐾

(

‖

‖

𝝓1
‖

‖

2
𝐾

+ ‖

‖

‖

𝑃⟂ (

𝑘1𝛥𝜽ℎ + 𝑘2∇(∇ ⋅ 𝜽ℎ) + 𝜀−1𝜸ℎ
)

‖

‖

‖

2

𝐾

)

− 𝜏𝜃𝜏𝑤
𝜀−1 𝐶

2
inv
2

∑

‖

‖

𝝓1
‖

‖

2
𝐾

8

2 ℎ 𝐾
− 𝜏𝜃𝜏𝑤
𝜀−1

2
∑

𝐾

‖

‖

‖

𝑃⟂ (

𝜀−1∇ ⋅ 𝜸ℎ
)

‖

‖

‖

2

𝐾
. (6.18)

imilarly, consider 𝐯ℎ2 =
(

𝟎, 𝜏𝑤𝑣2
)

, where 𝑣2 = 𝑃ℎ
(

𝜀−1∇ ⋅ 𝜸ℎ
)

, as test
function in the bilinear form. We have that

𝐵stab(𝐮ℎ, 𝐯ℎ2) = − 𝜏𝑤
(

𝜀−1∇ ⋅ 𝜸ℎ, 𝑣2
)

+ 𝜏𝑤
∑

𝐸

⟨

𝜀−1
[[

𝐧 ⋅ 𝜸ℎ
]]

, 𝑣2
⟩

𝐸

− 𝜏2𝑤𝜀
−1

∑

𝐾

⟨

𝑃 ⟂ (

𝜀−1∇ ⋅ 𝜸ℎ
)

,∇ ⋅ ∇𝑣2
⟩

𝐾

− 𝜏𝜃𝜏𝑤𝜀−1
∑

𝐾

⟨

𝑃 ⟂ (

𝑘1𝛥𝜽ℎ + 𝑘2∇(∇ ⋅ 𝜽ℎ) + 𝜀−1𝜸ℎ
)

,∇𝑣2
⟩

𝐾 .

(6.19)

Then following the same procedure as before, it follows that

𝐵stab(𝐮ℎ, 𝐯ℎ2) ⩾ − 𝜏𝑤
∑

𝐾

‖

‖

𝑣2‖‖
2
𝐾 − 𝜏𝑤

∑

𝐾

‖

‖

𝑣2‖‖
2
𝐾 − 𝜏𝑤

𝐶2
trace

4ℎ2
∑

𝐾

‖

‖

‖

𝜀−1𝜸ℎ
‖

‖

‖

2

𝐾

− 𝜏2𝑤
𝜀−1

2
𝐶2
inv

ℎ2
∑

𝐾

(

‖

‖

𝑣2‖‖
2
𝐾 + ‖

‖

‖

𝑃⟂ (

𝜀−1∇ ⋅ 𝜸ℎ
)

‖

‖

‖

2

𝐾

)

− 𝜏𝜃𝜏𝑤
𝜀−1

2
∑

𝐾

‖

‖

𝑣2‖‖
2
𝐾 − 𝜏𝜃𝜏𝑤

𝜀−1

2
𝐶2
inv

ℎ2

×
∑

𝐾

‖

‖

‖

𝑃⟂ (

𝑘1𝛥𝜽ℎ + 𝑘2∇(∇ ⋅ 𝜽ℎ) + 𝜀−1𝜸ℎ
)

‖

‖

‖

2

𝐾
. (6.20)

astly, consider 𝐯ℎ = 𝐮ℎ + 1
2 𝐯ℎ1 +

1
2𝐯ℎ2, which is equivalent to adding

up (6.15), 1
2 (6.18), and 1

2 (6.20). This yields

stab(𝐮ℎ, 𝐯ℎ) ⩾
(

𝑘1 − 𝜏𝜃𝑘21
𝐶2
trace

4ℎ2

)

‖∇𝜽ℎ‖2 +

(

𝑘2 − 𝜏𝜃𝑘22
𝐶2
trace

4ℎ2

)

‖∇ ⋅ 𝜽ℎ‖2

+

(

𝜀−1 − 𝜏𝑤𝜀−2
𝐶2
trace

8ℎ2

)

‖𝜸ℎ‖2

−

(

𝜏𝜃 +
𝜏2𝜃𝑘
2
𝐶2
inv

ℎ2
+ 𝜏𝜃𝜏𝑤

𝜀−1

2
𝐶2
inv

ℎ2

)

×
∑

𝐾

‖

‖

‖

𝑘1𝛥𝜽ℎ + 𝑘2∇(∇ ⋅ 𝜽ℎ) + 𝜀−1𝜸ℎ
‖

‖

‖

2

𝐾

−

(

𝜏𝑤 + 𝜏𝜃𝜏𝑤
𝜀−1

2
+ 𝜏2𝑤

𝜀−1

2
𝐶2
inv

ℎ2

)

∑

𝐾

‖

‖

‖

𝜀−1∇ ⋅ 𝜸ℎ
‖

‖

‖

2

𝐾
.

(6.21)

The last two terms can be separated using the triangular inequality,
enabling us to write the expression in terms of the original variables
only:

𝐵stab(𝐮ℎ, 𝐯ℎ) ⩾ 𝛼1‖∇𝜽ℎ‖2 + 𝛼2‖∇ ⋅ 𝜽ℎ‖2 + 𝛼3‖𝜸ℎ‖2 ≡ |||𝐮ℎ|||2, (6.22)

here

1 =𝜏𝜃

[

𝑐1
𝑘𝑘1
ℎ2

+ 𝑐2
𝑘1
𝜀

− 𝑘21
𝐶2
inv

4ℎ2

(

𝐶inv𝑘𝜀
𝑐1𝑘𝜀 + 𝑐2ℎ2

)

−𝑘21
𝐶2
inv

4ℎ2

(

𝐶2
inv𝑘𝜀

𝑐3𝑘𝜀 + 𝑐4ℎ2

)

− 𝑘21
𝐶2
trace

4ℎ2

]

, (6.23)

2 =𝜏𝜃

[

𝑐1
𝑘𝑘2
ℎ2

+ 𝑐2
𝑘2
𝜀

− 𝑘22
𝐶2
inv

4ℎ2

(

𝐶inv𝑘𝜀
𝑐1𝑘𝜀 + 𝑐2ℎ2

)

−𝑘22
𝐶2
inv

4ℎ2

(

𝐶2
inv𝑘𝜀

𝑐3𝑘𝜀 + 𝑐4ℎ2

)

− 𝑘22
𝐶2
trace

4ℎ2

]

, (6.24)

3 =𝜏𝜃

[

𝑐1
𝑘𝜀−1

ℎ2
+
𝑐2
𝜀2

− 1
𝜀2

− 𝑘
𝜀
𝐶2
inv

4ℎ2

(

ℎ2

𝑐1𝑘𝜀 + 𝑐2ℎ2

)

− 𝑘
𝜀
𝐶2
inv

4ℎ2

(

ℎ2

𝑐3𝑘𝜀 + 𝑐4ℎ2

)

− 𝑘
𝜀
𝐶2
trace

8ℎ2

(

𝑐1𝑘𝜀 + 𝑐2ℎ2

𝑐3𝑘𝜀 + 𝑐4ℎ2

)

− 𝑘 𝐶
2
inv

(

𝑐1𝑘𝜀 + 𝑐2ℎ2
)

𝜀 ℎ2 𝑐3𝑘𝜀 + 𝑐4ℎ2
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I
p
u
s
c

𝛼

w
w
h

w

𝐵

𝐵

F
𝑣

𝑣

o

𝐸

f
b

𝑒

𝐵

A
a

a

T

−𝑘
𝜀
𝐶2
inv

2ℎ2

(

𝑐1𝑘𝜀 + 𝑐2ℎ2

𝑐3𝑘𝜀 + 𝑐4ℎ2

)

(

𝐶2
inv𝑘𝜀

−1

𝑐3𝑘𝜀−1 + 𝑐4𝜀−2ℎ2

)]

. (6.25)

From the expression in (6.25) it can be verified again that the value
𝑐2 = 1 is necessary to eliminate shear dominance and that the constants
must satisfy 𝑐3 ⩾ 𝑐1 and 𝑐4 ⩾ 𝑐2. It is also needed that 𝑐1 > 2𝐶2

inv+
1
4𝐶

2
trace.

n fact, for linear elements it suffices to take 𝑐1 > 0, as the integration by
arts in (6.16) is not needed (the terms multiplied by 𝐶trace do not show
p) and one may take the constant associated to the inverse estimate for
econd derivatives as 𝐶inv = 0. Under all these conditions, it is readily
hecked that

1, 𝛼2 ∼ 𝜏𝜃𝑡
4
[

𝐴′
1
𝑡2

ℎ2
+ 𝐴′

2𝑐2

]

, 𝛼3 ∼ 𝜏𝜃𝑡
4

[

𝐵′
1
1
ℎ2

+
𝐵′
2

𝑡2
(𝑐2 − 1)

]

,

(6.26)

where 𝐴′
1, 𝐴

′
2, 𝐵

′
1, 𝐵

′
2 are independent of 𝑡 and ℎ. Comparing (6.26)

ith (6.12) it is observed that the last term in 𝛼1, 𝛼2 does not vanish
hen 𝑐2 = 1, contrary to what happens for 𝛽1, 𝛽2. Thus, when 𝑡 → 0 we
ave that 𝛼1, 𝛼2 = (𝜏𝜃𝑡4) and 𝛼3 = (𝜏𝜃𝑡4ℎ−2), as claimed earlier.

Therefore, we have proved that there is a positive constant 𝐶 for
hich the following inequality holds:

stab(𝐮ℎ, 𝐯ℎ) ⩾ 𝐶|||𝐮ℎ|||2. (6.27)

It is also easy to check that

|||𝐯ℎ1|||2 ⩽ 𝜏2𝜃
𝐶4
inv

ℎ4
(𝛼1 + 𝛼2)

(

𝑘21‖∇𝜽ℎ‖
2
𝐾 + 𝑘22‖∇ ⋅ 𝜽ℎ‖2𝐾

)

+ 𝜏2𝜃𝜀
−2
𝐶2
inv

ℎ2
(𝛼1 + 𝛼2)‖𝜸ℎ‖2𝐾 ⩽ 𝐶|||𝐮ℎ|||2, (6.28)

|||𝐯ℎ2|||2 ⩽ 𝜏2𝑤𝜀
−2𝛼3

𝐶4
inv

ℎ4
‖𝜸ℎ‖2𝐾 ⩽ 𝐶|||𝐮ℎ|||2, (6.29)

and therefore |||𝐯ℎ|||2 ⩽ 𝐶|||𝐮ℎ|||2. From this result and (6.27) it follows
that for each 𝐮ℎ ∈ ℎ there exists 𝐯ℎ ∈ ℎ such that 𝐵stab(𝐮ℎ, 𝐯ℎ) ⩾
𝐶|||𝐮ℎ||||||𝐯ℎ|||, from where the theorem follows. □

Once the stability is established, a standard procedure follows to
prove convergence. There are two preliminary lemmas that are needed
to achieve it, concerning the consistency and the interpolation error.

Lemma 6.2 (Consistency). Let 𝒖 ∈  be the solution of the continuous
problem and 𝒖ℎ ∈ ℎ the FE solution of (6.5). If 𝒖 is regular enough so that
𝐵stab(𝒖, 𝒗ℎ) is well defined, then

stab(𝒖 − 𝒖ℎ, 𝒗ℎ) = 0, ∀𝒗ℎ ∈ ℎ. (6.30)

Proof. Since the stabilization terms are residual based and the Galerkin
method does not contribute to the consistency error, the lemma is
satisfied by construction. □

The following lemma concerns an interpolation error in terms of
the working norm ||| ⋅ ||| and the bilinear form 𝐵stab. Let ℎ be a generic
E space of degree 𝑘𝑣. The interpolation error 𝜖𝑖(𝑣) for any function
∈ 𝐻𝑘′𝑣+1(𝛺) for 𝑖 = 0, 1 is defined as follows

inf
ℎ∈ℎ

∑

𝐾
‖𝑣 − 𝑣ℎ‖𝐻 𝑖(𝐾) ⩽ 𝐶ℎ𝑘

′′
𝑣 +1−𝑖

∑

𝐾
‖𝑣‖

𝐻𝑘′′𝑣 +1(𝐾)
=∶ 𝜖𝑖(𝑣), (6.31)

where 𝑘′′𝑣 = min(𝑘𝑣, 𝑘′𝑣). Also consider �̃�ℎ to be the best approximation
f 𝑣 in ℎ. Note that 𝜖0(𝑣) = ℎ𝜖1(𝑣). In particular, the notation will be
𝑣 = 𝜽 for the rotations and 𝑣 = 𝑤 for the deflection, with orders of
interpolation 𝑘𝜃 and 𝑘𝑤, respectively.

The error function of the method will be proven to be:

(ℎ) ∶=
(

√

𝑘1 +
√

𝑘2
)

𝜖1(𝜽) +
1
√

𝜀
𝜖0(𝜽) +

1
√

𝜀
𝜖1(𝑤). (6.32)

Lemma 6.3 (Interpolation Error). Let 𝒖 ∈  be the continuous solution,
̃

9

assumed to be regular enough, and 𝒖ℎ ∈ ℎ its best FE approximation. p
Then the following inequalities hold:

𝐵stab(𝒖 − �̃�ℎ, 𝒗ℎ) ⩽ 𝐶𝐸(ℎ)|||𝒗ℎ|||, (6.33)

|||𝒖 − �̃�ℎ||| ⩽ 𝐶𝐸(ℎ). (6.34)

Proof. Let us prove (6.34). Consider the definition of the working norm
(6.13); it can be easily checked that

|||𝐮 − �̃�ℎ|||2 ⩽𝐶
[

𝛼1𝜖
2
1 (𝜽) + 𝛼2𝜖

2
1 (𝜽) + 𝛼3𝜖

2
1 (𝑤) + 𝛼3𝜖

2
0 (𝜽)

]

, (6.35)

rom where (6.34) follows using (5.16) for the expression of the sta-
ilization parameters and (6.23)–(6.25) for the expression of 𝛼𝑖, 𝑖 =

1, 2, 3.
Then consider 𝒆𝑢 = 𝐮 − �̃�ℎ = [𝒆𝜃 , 𝑒𝑤], where 𝒆𝜃 = 𝜽 − �̃�ℎ and

𝑤 = 𝑤 − �̃�ℎ; the proof of (6.33) is as follows:

stab(𝒆𝑢, 𝐯ℎ) =𝑘1
(

∇𝒆𝜃 ,∇𝝓ℎ
)

+ 𝑘2
(

∇ ⋅ 𝒆𝜃 ,∇ ⋅ 𝝓ℎ
)

+ 1
𝜀
(

∇𝑒𝑤 − 𝒆𝜃 ,∇𝑣ℎ − 𝝓ℎ
)

+ 𝜏𝜃
∑

𝐾

⟨

𝑃⟂
𝜃

[

𝑘1𝛥𝒆𝜃 + 𝑘2∇(∇ ⋅ 𝒆𝜃) +
1
𝜀
(

∇𝑒𝑤 − 𝒆𝜃
)

]

,

𝑃⟂
𝜃

[

−𝑘1𝛥𝝓ℎ − 𝑘2∇(∇ ⋅ 𝝓ℎ) −
1
𝜀
𝜸ℎ

]⟩

𝐾

+ 𝜏𝑤
∑

𝐾

⟨

𝑃⟂
𝑤

[ 1
𝜀
∇ ⋅

(

∇𝑒𝑤 − 𝒆𝜃
)

]

, 𝑃⟂
𝑤

[

−1
𝜀
∇ ⋅ 𝜸ℎ

]⟩

𝐾

⩽
√

𝑘1‖∇𝒆𝜃‖
√

𝑘1‖∇𝝓ℎ‖ +
√

𝑘2‖∇ ⋅ 𝒆𝜃‖
√

𝑘2‖∇ ⋅ 𝝓ℎ‖

+ 1
√

𝜀
‖∇𝑒𝑤 − 𝒆𝜃‖

1
√

𝜀
‖𝜸ℎ‖

+
(

𝜏𝜃
𝑘1
ℎ
‖∇𝒆𝜃‖ + 𝜏𝜃

𝑘2
ℎ
‖∇ ⋅ 𝒆𝜃‖ +

𝜏𝜃
𝜀

(

‖∇𝑒𝑤‖ + ‖𝒆𝜃‖
)

)

×
(

𝑘1
𝐶inv
ℎ

‖∇𝝓ℎ‖

+𝑘2
𝐶inv
ℎ

‖∇ ⋅ 𝝓ℎ‖ +
1
𝜀
‖𝜸ℎ‖

)

+
(

𝜏𝑤
1
𝜀
1
ℎ
‖∇𝑒𝑤‖ + 𝜏𝑤

1
𝜀
‖∇ ⋅ 𝒆𝜃‖

) 𝐶inv
𝜀ℎ

‖𝜸ℎ‖

⩽
[(

𝑘1 + 𝜏𝜃𝑘21
𝐶inv

ℎ2

)

‖∇𝒆𝜃‖ + 𝜏𝜃𝑘1𝑘2
𝐶inv

ℎ2
‖∇ ⋅ 𝒆𝜃‖

+ 𝜏𝜃
𝑘1
𝜀
𝐶inv
ℎ

‖∇𝑒𝑤‖

+𝜏𝜃
𝑘1
𝜀
𝐶inv

ℎ2
‖𝒆𝜃‖

]

‖∇𝝓ℎ‖

+
[

𝜏𝜃𝑘1𝑘2
𝐶inv

ℎ2
‖∇𝒆𝜃‖ +

(

𝑘2 + 𝜏𝜃𝑘22
𝐶inv

ℎ2

)

‖∇ ⋅ 𝒆𝜃‖

+𝜏𝜃
𝑘2
𝜀
𝐶inv
ℎ

‖∇𝑒𝑤‖ + 𝜏𝜃
𝑘2
𝜀
𝐶inv

ℎ2
‖𝒆𝜃‖

]

‖∇ ⋅ 𝝓ℎ‖

+
[

𝜏𝜃
𝑘1
𝜀ℎ

‖∇𝒆𝜃‖ + 𝜏𝜃
𝑘2
𝜀ℎ

‖∇ ⋅ 𝒆𝜃‖

+
(

1
𝜀
+
𝜏𝜃
𝜀2

+ 𝜏𝑤
𝐶inv

𝜀2ℎ2

)

(

‖∇𝑒𝑤‖ + ‖𝒆𝜃‖
)

]

‖𝜸ℎ‖

⩽𝐶
[

𝑘1‖∇𝒆𝜃‖ + 𝑘2‖∇ ⋅ 𝒆𝜃‖ +
ℎ
𝜀
‖∇𝑒𝑤‖ +

ℎ
𝜀
‖𝒆𝜃‖

]

×
(

‖∇𝝓ℎ‖𝐾 + ‖∇ ⋅ 𝝓ℎ‖ +
1
ℎ
‖𝜸ℎ‖

)

⩽𝐶

[

(

√

𝑘1 +
√

𝑘2
)

𝜖1(𝜽) +
1
√

𝜀
𝜖0(𝜽) +

1
√

𝜀
𝜖1(𝑤)

]

×
(√

𝛼1 ‖‖∇𝝓ℎ‖‖ +
√

𝛼2 ‖‖∇ ⋅ 𝝓ℎ‖‖ +
√

𝛼3 ‖‖𝜸ℎ‖‖
)

. (6.36)

ll the terms have been organized to see that it is clear that they are
ll bounded by 𝐶𝐸(ℎ)|||𝐯ℎ|||, from where (6.33) follows. □

With this, it only remains to prove convergence, which proceeds in
standard manner.

heorem 6.4 (Convergence). Let 𝒖 ∈  be the solution of the continuous
roblem, assumed to be regular enough. There is a positive constant 𝐶 such
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Fig. 2. Comparison of deflection 𝑤 from numerical results vs analytical solutions for different thicknesses of plates (left) and beams (right).
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Fig. 3. Comparison of relative deflection 𝑤 from numerical results vs analytical
solutions for different element sizes.

that

|||𝒖 − 𝒖ℎ||| ⩽ 𝐶𝐸(ℎ). (6.37)

Proof. Consider �̃�ℎ−𝐮ℎ ∈ ℎ, where �̃�ℎ is the best FE approximation to
𝐮. From the inf-sup condition (6.14) it follows that there exists 𝐯ℎ ∈ ℎ
such that

𝐶|||�̃�ℎ − 𝐮ℎ||||||𝐯ℎ||| ⩽𝐵stab(�̃�ℎ − 𝐮ℎ, 𝐯ℎ)

=𝐵stab(�̃�ℎ − 𝐮, 𝐯ℎ) (from the consistency (6.30))
⩽𝐶𝐸(ℎ)|||𝐯ℎ||| (from (6.33) ),

from where |||�̃�ℎ − 𝐮ℎ||| ⩽ 𝐶𝐸(ℎ). Subsequently, the theorem follows
from the triangle inequality |||𝐮 − 𝐮ℎ||| ⩽ |||𝐮 − �̃�ℎ||| + |||�̃�ℎ − 𝐮ℎ||| and the
interpolation error estimate (6.34). □

From this result and the expression of the error function in (6.32) it
follows that when 𝑡 is ‘large’ the optimal combination of interpolation
orders for rotations and displacements is 𝑘𝜃 = 𝑘𝑤. However, when 𝑡
is small, say 𝑡 < ℎ, the best is to take 𝑘𝜃 = 𝑘𝑤 − 1, since in this case
rotations and deflection contribute with the same order of ℎ to the error
of the formulation.
10

w

7. Numerical results

All the examples of this section have been run considering linear
continuous interpolation for both rotations and displacements, i.e., 𝑘𝜃 =
𝑘𝑤 = 1.

7.1. Shear-locking

In this section, the behavior of the ASGS and OSGS formulations is
evaluated for the plate and beam problems. From the physical point of
view, the formulations must be able to represent thin behavior, or in
other words, the effects of shear deformations must become negligible
for decreasing thickness. From the numerical point of view, this can
be verified if the numerical results are free from shear-locking. This
implies that the solution obtained using the Reissner–Mindlin and Tim-
oshenko theories should coincide with the solution of the Kirchhoff and
the Euler–Bernoulli beam theory, respectively, for small thicknesses.

To assess this behavior, let us consider a square plate of domain
𝛺 = (0, 𝐿)2 clamped on all its sides and subject to a uniform load 𝑞 = 1
and a cantilever beam of domain 𝛺 = (0, 𝐿) with a point load 𝑃 = −1
at the right end and clamped at the left one. For the beam geometry
we define a rectangular cross section of side 𝑏 = 1 and thickness 𝑡,
thus the inertia is 𝐼 = 𝑏𝑡3∕12. For the material properties we consider
𝐸 = 106 and 𝜈 = 0.2 in all cases (SI units can be assumed to fix ideas).
The analytical deflection at the center of the plate and at the end of
the beam according to the Kirchhoff and Euler–Bernoulli theories are,
respectively:

𝑤K = 0.01524
𝑞𝐿4(1 − 𝜈2)

𝐸𝑡3
, 𝑤E = 𝑃𝐿3

3𝐸𝐼
. (7.1)

For the numerical computations, we consider a mesh of 20 × 20
quare elements for the plate and 50 linear elements for the beam. The
atio between the deflection obtained numerically from the stabilized
ormulations and the analytical solutions respect to the thickness is
lotted in Fig. 2. Results show that both formulations are able to
epresent the thin limit behavior.

In order to have a reference of the performance of the methods
roposed, the behavior of ASGS and OSGS formulations is compared to
hat obtained by the reduced integration of the shear terms, i.e., those
hat involve rotations. In the case of beams, Fig. 3 shows that both ASGS
nd OSGS converge slightly faster to the analytical solution compared
o reduced integration; however, the convergence test presented below
hall depict the true nature of the formulations discussed in the present
ork.
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Fig. 4. Beam 𝐿2-error norm for Galerkin, ASGS and OSGS formulations for 𝐿∕𝑡 = 104 (left) and 𝐿∕𝑡 = 105 (right).
Fig. 5. Beam displacement 𝐿2-error norm for different thicknesses, ASGS (left) and OSGS (right).
Fig. 6. Applied Load (left) and numerical solutions of displacement (center) and norm of the rotation vector (right).
7.2. Convergence tests

7.2.1. Convergence for beams
To assess the convergence of the stabilized Timoshenko beam for-

mulation, consider a beam oriented in the 𝑥 direction clamped at both
sides, a homogeneous load 𝑞 = 1 on its entire length 𝐿 = 1, and
the same material and geometrical properties as in the previous beam
example. Since the formulation has to be able to represent the thin
behavior, the solutions of the numerical method is compared to the
11
analytical solution of the Euler–Bernoulli beam theory:

𝜃𝑧(𝑥) =
𝑞𝑥

12𝐸𝐼
(𝐿 − 𝑥)(1 − 2𝑥), 𝑤(𝑥) =

𝑞𝑥2

24𝐸𝐼
(𝐿 − 𝑥)2.

The problem then is numerically solved for decreasing element sizes
ℎ, thicknesses of 𝑡 = 10−4, 10−5 which correspond to slenderness ratios
of 𝐿∕𝑡 = 104, 105, respectively, and the error is evaluated in the 𝐿2

norm. For comparison purposes, results are shown for the standard
Galerkin, ASGS and OSGS formulations, as presented in Fig. 4. Results
show that deflections and rotations are optimally convergent respect to
the element size using any of the two stabilized formulations.
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Fig. 7. Plates 𝐿2-error norm for OSGS formulation, for 𝐿∕𝑡 = 104 (left) and 𝐿∕𝑡 = 105 (right).
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Fig. 8. Plate displacement 𝐿2-error norm for different thicknesses using OSGS
stabilization.

For the numerical tests, the stabilization constants chosen for the
ASGS formulation are 𝑐1 = 𝑐3 = 12, as found in Section 5. In the case of
the OSGS formulation, the values of the constants have no justification
from the exact solution, and were chosen by testing different values.
Nevertheless, this selection is not arbitrary; it is known that the zero
shear constraint is difficult to handle, and selecting small values of
𝑐1 can alleviate it. Under this assumption, it was found that values of
𝑐1 ⩽ 10−3 have to be used to obtain optimally convergent results. Recall
that for linear elements the only condition needed for stability is that
𝑐1 > 0, as discussed in Section 6.

One important aspect of a locking-free formulation is that its conver-
gence should be independent of the thickness, at least to some degree.
To assess this dependence, the convergence curves of the displacements
are plotted for different thicknesses. As presented in Fig. 5, the ASGS
formulation becomes noticeable dependent on the thickness for low
enough values, while the OSGS formulation shows a robust behavior
since it is almost independent of it.

7.2.2. Convergence for plates
To assess the convergence of the stabilized Reissner–Mindlin plate

formulation, consider a square plate of domain 𝛺 = (0, 𝐿)2 clamped on
12

all sides. The test is computed applying a load that follows the function
proposed in [19]:

𝑞(𝑥, 𝑦) = 𝐸
12(1 − 𝜈2)

[12𝑦(𝑦 − 1)(5𝑥2 − 5𝑥 + 1)(2𝑦2(𝑦 − 1)2

+ 𝑥(𝑥 − 1)(5𝑦2 − 5𝑦 + 1))

+ 12𝑥(𝑥 − 1)(5𝑦2 − 5𝑦 + 1)(2𝑥2(𝑥 − 1)2 + 𝑦(𝑦 − 1)(5𝑥2 − 5𝑥 + 1))],

or which the exact solutions of displacements and rotations are given
y

𝑤(𝑥, 𝑦) =
𝑥3𝑦3

3𝑡3
(𝑥 − 1)3(𝑦 − 1)3

− 2
5𝑡(1 − 𝜈)

[𝑦3(𝑦 − 1)3𝑥(𝑥 − 1)(5𝑥2 − 5𝑥 + 1)

+ 𝑥3(𝑥 − 1)3𝑦(𝑦 − 1)(5𝑦2 − 5𝑦 + 1)],

𝑥(𝑥, 𝑦) =
𝑦3𝑥2

𝑡3
(𝑦 − 1)3(𝑥 − 1)2(2𝑥 − 1),

𝜃𝑦(𝑥, 𝑦) =
𝑥3𝑦2

𝑡3
(𝑥 − 1)3(𝑦 − 1)2(2𝑦 − 1).

he load, displacement and rotation fields are showed graphically in
ig. 6.

The problem then is solved for decreasing element sizes ℎ, consid-
ring a constant thicknesses of 𝑡 = 10−4, and 10−5 which correspond
o slenderness ratios of 𝐿∕𝑡 = 104 and 105, respectively, and the error

is evaluated in the 𝐿2 norm. Numerical tests have been computed
to evaluate which stabilization parameters are best suited to obtain
optimal convergence. In regard of this, the only constant that must
remain fixed is 𝑐2 = 1, as proven in the convergence analysis. As for
the other constants, optimal values have not been found for the ASGS
formulation, while in the OSGS formulation 𝑐1 ⩽ 10−3 has proven to
give good results. As presented in Fig. 7 for the OSGS formulation,
results prove to converge optimally respect to the element size.

It is important to note that the constants 𝑐3 and 𝑐4, which are
associated to 𝜏𝑤, have little impact on the solution. This is explained in
detail in Section 7.3. Recall that the theory does not predict locking-free
convergence for the ASGS formulation. Lastly, the dependency of the
thickness is evaluated by comparing the 𝐿2 error norm for the different
thicknesses. As presented in Fig. 8, the accuracy of the solution does not
depend on the thickness of the plate.

7.3. Sensitivity to stabilization constants

In this subsection, the sensitivity of the numerical solution to the
stabilization constants is checked using numerical examples. When
evaluating the convergence of the ASGS formulation for beams, the
stabilization parameters were set using the constants 𝑐 = 𝑐 = 12
1 3
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Fig. 9. Sensitivity to 𝑐1 (left) and 𝑐3 (right) in 𝐿2-error norm, for 𝐿∕𝑡 = 105.
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obtained from the elastic equations, which is not possible in plates.
Even though in the beam case the constants are well defined for the
ASGS formulation, it is important to check the performance of both
ASGS and OSGS formulations for any set of constants. To address
this, consider the same clamped beam with uniform load discussed
previously in this section, the problem is solved repeatedly for different
values of 𝑐1 and 𝑐3, which are modified independently.

In the ASGS case, for the slenderness ratio of 𝐿∕𝑡 = 105 several
values of the stabilization constants are tested. The constant 𝑐1 is tested
for slightly perturbed values, namely 12 ± 0.1 and 𝑐3 is tested for a
set of values ranged in [2, 20], as shown in Fig. 9. Results show that
the best convergence ratio is obtained for 𝑐1 = 𝑐3 = 12, however,
a slight variation of 𝑐1 is enough to lock the problem in a constant
error independently of the element size, while 𝑐3 allows a more flexible
range of working values. The numerical tests confirm that the values
obtained from the elastic equations provide the best behavior of the
solution, which cannot be found in the case of plates. Regarding this,
the convergence ratio curves of the ASGS formulation for plates has
the same behavior as the first image in Fig. 9. Since the values of
𝑐1 = 𝑐3 = 12 are not valid for plates and the constants that provide
optimal convergence were not found, results as the second image of
Fig. 9 cannot be replicated.

In the case of the OSGS formulation, the stabilization constants do
not have a significant impact on the final solution when 𝑐1 ⩽ 10−3. In
this regard, the flexibility to choose any value for 𝑐3 has to be assessed
properly. Let us compute the convergence curves for the same beam
case presented above, but this time to compare the results of extreme
values of 𝑐3, as presented in Fig. 10.

Results show that the curves are almost identical independently of
the value of 𝑐3. This is, however, an important feature of the formu-
lation: for high values of 𝑐3, the influence of the terms that contain
𝜏𝑤 is reduced, and in fact, it would be more useful not to consider
them at all. From the practical point of view, this is equivalent to
remove the projection of the force equilibrium equation, or 𝜉𝑤, from
the formulation, lowering the total number of degrees of freedom. This
response to stabilization constants behaves exactly the same for plates
as well, and the fact that the number of degrees of freedom of the
formulation can be reduced is specially useful for lowering the cost of
computations.

7.4. Applied examples

Three numerical examples are solved to illustrate the performance
of the OSGS formulation with respect to the Galerkin formulation. The
cases presented below are just a few of the many examples found in
13

the literature. Results presented show that the OSGS formulation is free a
Fig. 10. 𝐿2-error norm for different values of 𝑐3, for 𝐿∕𝑡 = 105.

f locking and converges to the exact solution much faster than the
ocked solution obtained using the Galerkin approach. This behavior is
ndependent of the thickness of the plate, which is consistent with the
onvergence tests presented in 7.2.2.

.4.1. Clamped circular plate with uniform load
Consider a clamped circular plate of radius 𝑅 = 5 loaded with an

niform load of 𝑞 = 1. The geometry, mesh, and boundary conditions
re set up as in standard manner described in the literature [38–41], the
olution of circular loaded plates set with different boundary conditions
re described in [42]. Due to the symmetry of the case, only a quarter of
he geometry is modeled and symmetry boundary conditions are set in
oth straight sides. The mesh structure, which is built in three patches
f square elements, and the deformed configuration are illustrated in
ig. 11.

Cases are computed for two different thicknesses: 𝑡 = 0.1 and 𝑡 =
.01 which correspond to slenderness ratios of 𝑅∕𝑡 = 50 and 𝑅∕𝑡 = 500,
espectively. These values are chosen to test cases with high shear-
ocking effects. For the assessment, the displacements are tracked at the
enter of the plate (𝑅 = 0), where they reach their maximum values.
esults are shown in Fig. 12.

.4.2. Simply supported annular plate with uniform load
Consider a simply supported annular plate of inner radius of 𝑅𝑖 = 1.5

nd outer radius 𝑅 = 5, which again correspond to slenderness ratios
𝑜
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Fig. 11. Clamped circular plate with uniform load: Mesh (left) and deformed configuration (right).
Fig. 12. Clamped circular plate with uniform load: relative maximum displacements for cases 𝑡 = 0.1 (left) and 𝑡 = 0.01 (right).
of 𝑅𝑜∕𝑡 = 50 and 𝑅𝑜∕𝑡 = 500, respectively, and loaded with an uniform
load of 𝑞 = 1. The solution of loaded annular plate problems are
also described in [42]. As in the previous case, only a quarter of the
geometry is needed and symmetry boundary conditions are set in the
straight sides. The mesh, which consists square elements aligned in
the radial direction, and the deformed configurations are illustrated in
Fig. 13.

The cases are computed using thicknesses of 𝑡 = 0.1 and 𝑡 = 0.01 for
the same reason as the previous case. In this example the displacements
are tracked at the inner radius of the plate, where they reach their
maximum values. Results are shown in Fig. 14.

7.4.3. Cantilever plate with hole
The last case consists in a cantilever plate loaded with an uniform

load of 𝑞 = 1, clamped in the wider straight side. The geometry and
mesh are illustrated in Fig. 15. The mesh is divided in four patches
of four sides each, so that the mesh refinements depend only on the
number of elements set in each side.

The cases are computed using thicknesses of 𝑡 = 20 and 𝑡 = 5,
which correspond to slenderness ratios of 𝐿∕𝑡 = 15 and 𝐿∕𝑡 = 60,
respectively, and displacements are tracked at the opposite end to the
14
clamped side, where the displacement reach their maximum value, the
deformed geometry is illustrated in Fig. 16. In the case of 𝑡 = 20,
results converge to 7.4341 ⋅ 10−4 similar to those presented in [43]. In
the more slender case of 𝑡 = 5 the result converges to 0.046546 with
mesh refinement. Note that since it is a linear elastic problem, result
are proportional to the cube of the thickness, which is (20∕5)3 = 64,
with respect to the known solution.

Results obtained for both thicknesses, including the comparison of
the OSGS and the Galerkin formulations are shown in Fig. 17. Note that
the converged results are used to compute the relative displacements.

8. Conclusions

The numerical locking present in standard Galerkin formulations
of Reissner–Mindlin plates and Timoshenko beams has been addressed
using the Variational Multiscale Method. This, by itself, has the theo-
retical interest of developing a stable formulation for beams and plates
using the same principles that have led to stable and accurate numer-
ical formulations in many other areas of computational engineering.
Two particular VMS formulations have been developed, namely, the
ASGS and the OSGS methods. It has been shown that the norm in
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Fig. 13. Simply supported annular plate with uniform load: Mesh (left) and deformed configuration (right).
Fig. 14. Simply supported annular plate with uniform load: relative maximum displacements for cases 𝑡 = 0.1 (left) and 𝑡 = 0.01 (right).
Fig. 15. Cantilever plate with hole: geometry and mesh.
15
which stability can be proved for the ASGS formulation is not free
of locking when 𝑡 → 0, whereas optimal stability and convergence
has been proven for the OSGS approach for arbitrary interpolation
of the variables. Nevertheless, for Timoshenko beams there exists a
set of algorithmic constants for which the element stiffness matrix
of the ASGS formulation coincides with that of the elastic equations,
and in this case the method does converge. This, however, has to be
considered a singularity rather than a general possibility.

The practical interest of the formulation developed is twofold. First,
it has less degrees of freedom than other formulations that interpolate
shear and, furthermore, it can be implemented iteratively so as to use
only displacements and rotations as unknowns. And, second, contrary
to most locking-free methods, it is applicable to any type of elements,
triangles or quads of any order and with arbitrary interpolations for
displacements and rotations.

Numerical tests confirm that the theoretical predictions. In partic-
ular, the OSGS formulation provides optimally convergent rates, for
both displacement and rotations. Moreover, this method is shown to
be mildly sensitive to the algorithmic constants. In particular, in the
numerical experiments presented it has been unnecessary to activate
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Fig. 16. Cantilever plate with hole: deformed geometry.
Fig. 17. Cantilever plate with hole: relative maximum displacements for cases 𝑡 = 20 (left) and 𝑡 = 5 (right).
the stabilization terms corresponding to deflections to obtain optimally
convergent results.
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