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Temporal Pattern-Based Denoising and Calibration
for Low-Cost Sensors in IoT Monitoring Platforms

Xhensilda Allka, Pau Ferrer-Cid, Jose M. Barcelo-Ordinas, and Jorge Garcia-Vidal

Abstract—The introduction of low-cost sensors (LCSs) in air
quality Internet of Things (IoT) monitoring platforms presents
the challenge of improving the quality of the data that these
sensors provide. In this paper, we propose two algorithms
to perform denoising and calibration for LCSs used in IoT
monitoring platforms. Sensors are first calibrated in-situ using
linear or nonlinear machine learning models that only take
into account instantaneous measurements. The best calibration
model is used to estimate the values measured by the sensor
during the sensor deployment. To improve the values of the
estimates produced by the in-situ calibration model, we propose
to take into account the temporal patterns present in signals
such as temperature or tropospheric ozone that have regular
patterns, e.g. daily. The first method, which we call temporal
pattern-based denoising (TPB-D), performs signal denoising by
projecting the daily signals of the in-situ calibrated LCS onto
a subspace generated by the daily signals stored in a database
taken by reference instruments. The second method, which we
call temporal pattern-based calibration (TPB-C), considers that
if we also have a reference instrument co-located to the LCSs
over a period of time, we can correct with a linear mapping with
regularization the daily LCS signals projected in the subspace
produced by the reference database to be as similar as possible
to the projected signals of the co-located reference instrument.
The results show that TPB-D improves the estimates made by
in-situ calibration by up to 10-20% while the TPB-C improves
the estimates made by in-situ calibration by up to 20-40%.

Index Terms—Low-cost sensors, air quality, monitoring net-
works, sensor calibration, machine learning.

I. INTRODUCTION

Lately, there has been a growing interest in the development
of air quality IoT monitoring platforms using LCSs. These
networks are composed of nodes that include inexpensive
sensors that measure pollutants such as NO2, NO, O3, PMx,
and environmental variables, such as temperature and relative
humidity [1]–[3]. There is some consensus that the calibration
of LCSs in controlled laboratory chambers performs better
than when the sensors are tested against a naturally varying
atmospheric composition in the field [4]. A common practice
to solve this problem is to carry out a calibration in uncon-
trolled environments [2], [3], [5], also called in-situ calibration,
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which consists of placing the node with the sensors near the
area where the node will be deployed, and measuring over
a period of time, contrasting the measurements taken with
those made by a reference instrument such as a reference
station managed by government agencies. In-situ calibration is
carried out using supervised machine learning methods, either
linear or nonlinear, which are trained to map the measurements
obtained by the sensor to air quality concentrations, obtaining
the optimal coefficients or hyperparameters of the calibration
model. Using these hyperparameters obtained in the calibration
phase, the node is deployed and the estimation of the pollutant
concentrations measured from the measurements taken by
the sensor is made. Examples of machine learning models
used lately in the calibration of low-cost air quality sensors
in uncontrolled environments are multiple linear regression
(MLR), support vector regression (SVR), random forest (RF),
Gaussian processes (GP), K-nearest neighbor (KNN), or neural
networks (NN), [6]–[13].

In-situ calibration models take as input the raw sensor
measurement value obtained over a period of time to produce
the estimates. These models do not take into account patterns,
neither spatial nor temporal, in the signal to be calibrated.
In this paper, we propose to use techniques based on the
extraction of regular temporal patterns in the signal to enhance
the estimation of the in-situ calibration. This technique has
been used in other fields such as face image reconstruction,
where relevant information is extracted from a face, encoded,
and then compared to a database of similarly encoded models
(faces) [14]. Similarly, we will extract the relevant features
from daily signals, encode them, and then compare them to
a set of daily signals from reference instrumentation data
stored in a database in what we call a temporal pattern-based
denoising mechanism (TPB-D). In addition, to improve the
denoised signal, we will recalibrate the signal using a linear
mapping of the projected daily calibrated LCS signals to the
projected daily reference signals in what we call a temporal
pattern-based calibration (TPB-C) mechanism. Specifically, in
this article we:

1) propose the TPB-D mechanism that takes daily signals
from in-situ calibrated LCSs and projects them into a
subspace created with a database of daily signals from
reference instrumentation. The database is built with
signals from reference instruments deployed near or in
the same location as the LCSs deployment,

2) propose the TPB-C mechanism which, in the presence
of a reference instrument co-located to the LCSs over a
period of time, adds to the denoising stage a recalibration
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process using a linear mapping with regularization that
maps the projected daily data from the in-situ calibrated
LCSs onto the projected daily data from the co-located
reference instrumentation,

3) analyze the parameters influencing the performance of the
TPB-D and TPB-C mechanisms on four data sets taken
from real IoT deployments in Spain and Italy with LCSs
measuring tropospheric ozone (O3) and temperature.

The outline of this paper is as follows: section II shows
the related work. Section III describes the proposed temporal
pattern-based denoising and calibration methods. Next, section
IV presents the data sets used in this work, and section V
evaluates the performance of the mechanisms applied to four
data sets in real IoT deployments. Finally, section VI provides
the conclusions of the paper.

II. RELATED WORK

Air quality monitoring networks are composed of reference
nodes with very accurate sensors that are continuously recal-
ibrated. Recently, it has been proposed to join LCS nodes to
the reference station network [15] forming an heterogeneous
air quality monitoring network. Such LCS nodes incorporate
sensors that are more inaccurate and whose calibration is per-
formed at the time of deployment. The way to calibrate such
LCSs in an uncontrolled environment (i.e., without specific
calibration chambers) is to first place the sensors near accurate
instruments such as reference stations in the deployment area
and use supervised machine learning algorithms [2], [3], [5].
The data from the reference stations act as reference values
of the supervised regression model and allow to obtain the
hyperparameters of these models. This way of calibrating
sensors with a machine learning algorithm with reference
values taken with instruments that take accurate values is
called in-situ calibration. The choice of calibration mechanism
depends on the response of the sensor and in general can be
linear or nonlinear. Most commonly, the calibration of an air
quality sensor requires an array of sensors since the target
pollutant to be estimated may have dependencies on several
gases and environmental variables [1], [16], [17].

There is a large literature on how to calibrate LCSs with ma-
chine learning algorithms, both linear and nonlinear. Among
the algorithms used to calibrate sensors for NO2, NO, O3,
PMx, CO, SH2, CO2, etc., we find the use of multiple linear
regression (MLR) [6]–[8], [13], support vector regression
(SVR) [6], [8], [11], random forest (RF) [6], [8], [11]–[13],
Gaussian processes (GP) [11], K-nearest neighbor (KNN) [6],
or neural networks (NN), [9], [10], [13]. More recently, the use
of neural networks that take into account the temporal trend
of the data has been proposed for air quality LCSs calibration
[18], [19]. Nevertheless, the data quantity requirements of
these models can be limiting in LCS environments and their
applicability is in itself a field of research that needs its own
in-depth study.

There are several techniques to recalibrate the sensors
without removing and relocating them to a reference station.
Saukh et al. [17] recalibrate LCSs located on top of buses
when they encounter fixedly located reference stations. Cui et

al. [20] propose that, after in-situ calibration, sensors should
be recalibrated using mobile instruments that are brought close
to the sensor location for a period of time. Tancev et al.
[21] install reference instruments in arbitrary vehicles and
recalibrate the LCSs when the vehicles are in proximity to
the sensors.

Denoising signals by truncating the singular value decom-
position (SVD) matrices up to a few largest singular value
components, and then reconstructing a denoised data matrix
by using these singular vectors is a well-known technique in
signal processing with examples in electronics [22], computer
vision [14], and other multimedia application areas [23].
Moreover, the SVD has been used in singular spectral analysis
for forecast prediction in air quality monitoring networks [24].
In addition, the SVD has been used as a method of empirical
orthogonal function (EOF) to identify spatial air quality index
(API) patterns in China [25]. Ding et al. [26] made use of
the SVD to identify the spatial correlation between aerosol
concentrations and meteorology and urbanization indicators.
Overall, the SVD has proven the be useful in the identification
of spatio-temporal patterns as well as for signal and trend
denoising.

The references presented in this related work show that the
current state-of-the-art techniques for in-situ calibration pro-
vide point-to-point estimates using machine learning methods
such as MLR, RF, SVR or ANN. To go beyond the limits
of these methods and improve the estimates, we propose to
combine these methods with other information obtained from
the LCS and reference instrumentation data, such as temporal
patterns. Summarizing, in this paper we propose the TPB-D
and the TPB-C mechanisms for LCSs, which make use of the
temporal patterns learned by means of the SVD of reference
instrumentation data stored in a database. More precisely,
these mechanisms pose three advances with respect the in-situ
calibration state-of-the-art methods:

1) are models that provide an improvement of the estimate
obtained by the already calibrated sensors,

2) the real air quality patterns are learned and trained using
the singular value decomposition of reference instrumen-
tation data, which is commonly available, instead of
learning the patterns directly from the LCS measures,

3) the convexity of the models makes them easy to train,
being of particular importance in IoT environments with
possible calibration data constraints.

III. TEMPORAL PATTERN-BASED DENOISING (TPB-D)
AND CALIBRATION (TPB-C) MECHANISMS

In this section, we present two temporal pattern-based
mechanisms for LCS calibration based on two stages. In the
first stage, the sensor is placed next to a reference instru-
mentation, e.g., a governmental reference station, for a period
of time, and an in-situ sensor calibration is performed with
a linear or nonlinear supervised machine learning algorithm.
The temporal correlations present in data are not taken into
account at this stage. For this purpose, the N samples taken are
considered to be chosen with equal probability in the training
data set or in the test data set.
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TABLE I
LIST OF SYMBOLS.

Symbol Meaning

xs | xR Sensor signal | Reference instrument signal
xc Estimated signal calibrated in-situ
N # of samples for in-situ calibration
D # of samples taken in a day
P # of features for sensor calibration
M # of days taken for denoising in TPB-D
L # of days taken for training the linear

mapping in TPB-C
f(·) Machine learning-based sensor calibration

model
sO3

| sNO2
O3 | NO2 sensors

sT| sRH Temperature | Relative humidity sensors
U|V Left | Right singular vector matrix
Σ | ∥·∥F Singular value matrix | Frobenius norm of

a matrix
κ | λ SVD subspace range | Regularization hy-

perparameter

In the second stage, an improvement of the in-situ calibra-
tion is performed by taking into account the daily temporal
correlations of the data. A first enhancement mechanism is to
use data obtained from a reference instrumentation, or a set of
reference instruments, stored in a database and grouped into
daily blocks, and where the temporal patterns present in the
reference data are learned by singular value decomposition.
Then, the daily calibrated LCS data are projected onto the
left singular vectors obtained by SVD in a denoising step,
TPB-D mechanism. A second mechanism consists of placing a
reference instrument near the LCSs, so that, after the denoising
step, the projected daily in situ calibrated LCS data are linearly
mapped to the projected daily instrumentation reference data to
recalibrate the sensor, TPB-C mechanism. This linear mapping
uses regularization to avoid over-fitting the data. In this way,
the denoising and linear mapping steps are decoupled from
the in-situ calibration and a sensor already calibrated in-situ
can be corrected. Table I summarizes the different symbols
used throughout the paper. Bold lowercase/uppercase symbols
denote vectors/matrices and lowercase symbols denote scalars.

A. In-situ calibration

In this first stage, the sensor is co-located in-situ at a
reference station/instrumentation close to the deployment site,
where the sensor is calibrated. This technique is commonly
known as in-situ calibration in uncontrolled environments
[2], [3], and consists of estimating air quality concentra-
tions through supervised machine learning models (linear or
nonlinear) using arrays of sensors [6], [8], [9], [12]. These
models compare the raw sensor data with the data from the
reference instrumentation and measure the error using metrics
such as root mean square error (RMSE). Hence, during the
calibration period, a set of tuples {(yi,xi)}Ni=1 are obtained,
where xi∈RP are the array of sensor measurements, where P
is the size of the sensor array to be introduced as covariates
in the calibration model, and yi∈R are the reference values.
Then, a machine learning model is assumed to learn the

function f :RP→R, mapping the low-cost sensors’ values to
calibrated sensor values, yi∼f(xi), Figure 1.

We use the root mean square error (RMSE) and the coef-
ficient of determination (R2) to evaluate the goodness-of-fit
of the calibration models. In general, the difference in the
choice of model lies in how linear the sensor behavior is.
If the linearity is high, nonlinear methods do not improve a
multiple linear regression. In case the sensors have nonlinear
behavior, nonlinear models such as random forest, support
vector regression, or k-nearest neighbor have shown similar
performances in terms of RMSE and R2 for the same data set
if enough data is available [6]. In this paper, we use three of
the most commonly used machine learning models for in-situ
calibration in the literature; multiple linear regression (MLR),
random forest (RF), and support vector regression (SVR).
Thus, we explore the performance of one linear model and
two nonlinear models. Further information about the in-situ
calibration using supervised machine learning model can be
found in the literature [6], [9], [12], [27].

Fig. 1. In-situ calibration: raw data from an array of sensors is calibrated
in-situ using supervised machine learning algorithms to produce the target
sensor estimations.

B. Temporal pattern-based mechanisms
To improve the estimation, i.e., to decrease the RMSE

value, we propose in this second stage to use the temporal
daily correlations of reference instrumentation. To do this,
calibrated sensor data are taken at a temporal granularity, in
this case daily, to take advantage of the temporal relationships
of the data. The temporal pattern-based (TPB) approach,
Figure 2, consists of a denoising step based on a singular
value decomposition generated subspace, in which the in-
situ calibrated LCS data are projected onto the left-singular
vector space obtained from a database of data collected by
reference instruments on a daily basis. Then, the projected
sensor signal can be recalibrated by a linear mapping onto
the left singular vector space of the reference data projection.
Finally, regularization is necessary to avoid over-fitting.

We observe three main factors for the TPB mechanisms to
work. First, the signal to be calibrated with these methods
present regular daily patterns, such as O3 or temperature
phenomena. Signals that have a lot of variability, such as
PM2.5 or NO, and that are very irregular, are more difficult to
calibrate with this method, since the signal measured in one
day may not be well represented in the database. The second
factor is the quality of the estimation made by the in-situ
calibration. Sensors whose calibration performance is already
good in in-situ calibration have little room for improvement,
while sensors with a not so good in-situ calibration perfor-
mance can potentially be improved. The third factor is that
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depending on the reference data availability it is possible to
perform only a denoising step (TPB-D) or a denoising step in
conjunction with a linear mapping that recalibrates the LCSs
(TPB-C). The denoising step requires a set of daily patterns
in the database of one or more reference instruments at the
LCSs location area with which to construct the subspace using
the SVD. If in addition, we want to recalibrate the LCSs,
we need to train the linear mapping with the projected in-
situ calibrated signals taken at the same instants from the
LCSs and from a co-located reference instrument. This linear
mapping is similar to that followed in in-situ calibration, but
on daily signals instead of individual measurements. If such
co-located reference instrumentation is not available, only the
TPB-D mechanism can be performed. In the following, we first
describe the TPB-D, and then describe the TPB-C method that
includes denoising and linear mapping of the projected signals.

Fig. 2. Temporal pattern-based denoising (TPB-D) and calibration (TPB-C)
mechanisms.

1) Temporal pattern-based denoising (TPB-D): consider, as
an example of regular pattern signal, an air quality signal that
follows daily patterns, such as tropospheric ozone (O3). Let us
now consider that we have a database or set of daily ozone sig-
nals, taken every interval T, produced by reference instruments
such as reference governmental stations. Each signal is then
represented as a vector xRm

of dimension D, and we consider
a set of M signals in the database1. The database signals
are arranged in matrix form XR=[xR1

, . . . ,xRM
]∈RD×M.

The objective is to compare a set of daily measurements
taken by a LCS, and calibrated by an in-situ calibration
model, with the set of daily measurements encoded in the
database formed by the reference stations. Recall that this
database of reference instrumentation may consist of a co-
located reference instrument or a set of reference instruments
deployed in the sensor area. Thus, it is not necessary to
have an instrument in the same place as the sensor but the
temporal trends can be approximated from measurements of
instruments around the sensor. For this purpose, we compute
the singular value decomposition of the centered data matrix,

1For simplicity, in this paper, we assume that T=1 hour, and then D=24.

thus obtaining the eigenvectors [14] of the covariance matrix
of the set of daily values of the reference station.

Let x̄R=
1
M

∑M
m=1 xRm

be the average daily reference
instrument measurements, and x̂Rm=xRm−x̄R the centered
version of each daily element of the database signals. Denot-
ing by X̂R=[x̂R1

, . . . , x̂RM
]∈RD×M the centered matrix, we

obtain the SVD of X̂R as:

X̂R = UΣVT (1)

Where U∈RD×D and V∈RM×M are the left and right sin-
gular vector matrices, and Σ∈RD×M is the diagonal singular
value matrix, with singular values σ1≥σ2≥ . . .≥σD≥0. Then,
applying the Eckart–Young theorem, the best κ-rank approxi-
mation of matrix X̂R can be obtained taking the singular vec-
tors related to the κ-largest singular values, X̂Rκ

=UκΣκV
T
κ ,

with Uκ∈RD×κ, Vκ∈RM×κ and Σκ∈Rκ×κ expressed in
their truncated form. Afterwards, the LCS samples can be
projected onto the subspace generated by the left-singular
vectors Uκ. The idea behind this operation lies in projecting
the in-situ calibrated data into a subspace generated by the
most important latent patterns of the reference instruments
encoded in the database.

Suppose now that we have a new day of LCS data es-
timated with an in-situ calibration scheme as explained in
section III-A. The aim is to improve the accuracy of the in-
situ calibrated LCS data, encoded in the vector xc∈RD, by
projecting it onto the subspace generated by Uκ, and then
perform a signal reconstruction. First, we find x̂c=xc−x̄R,
the difference between the daily in-situ calibrated LCS data
with the daily average measurements of the reference stations
in the database. The new estimated vector will be given by:

x̃c = x̄R +UκU
T
κ x̂c. (2)

Note that in the first stage, in-situ calibration, we estimate the
hourly data taking into account the interactions of other input
variables such as temperature, relative humidity, or other gases,
while in the second stage, we perform an adjustment of the
in-situ calibrated data by projecting the in-situ calibrated LCS
daily data in the subspace created by daily signals provided
by the reference stations database. The algorithm 1 shows the
in-situ calibration process and the denoising step; lines 1-2
perform the in-situ calibration using any supervised regression
model. Lines 3-5 obtain a low-rank subspace from the daily
reference instrumentation records in the database and lines 6-9
denoise the newly collected daily data.

Algorithm 1 Temporal pattern-based denoising (TPB-D).
Input: {X,y, f(·),XRM , κ}

1: f ← Train Model(f,X,y) ◁ In-situ calibration
2: Xc ← f(X)
3: x̄R=1/M

∑M
m=1 xRm ◁ Denoising stage

4: x̂Rm ← xRm−x̄R; X̂RM = [x̂R1 , . . . , x̂RM ]
5: U,Σ,VT ← SVD(X̂R)
6: while xnew do ◁ New daily data
7: xc ← f(xnew)
8: x̃c ← x̄R +UκU

T
κ (xc − x̄R)

9: end while
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2) Temporal pattern-based calibration (TPB-C): in addi-
tion to the denoising step, to improve the sensor in-situ
calibration, we need reference instrumentation co-located next
to the LCSs during a time interval. In this case, we can
perform a denoising operation together with a linear mapping
of the daily in-situ calibrated LCSs projected onto the subspace
generated by the left-singular vectors of the signals obtained
in the database with the projection of signals produced by
the reference instrument that is co-located next to the LCSs.
Thus, once we have the sensor data on a daily basis xc and the
subspace generated by the left-singular vectors Uκ obtained
by SVD on a set of daily signals taken from the database,
we proceed to recalibrate the daily low-cost calibrated vectors
using the daily data from a co-located reference instrument
xRl

∈RD, taking l=1, . . . ,L days. It is worth noting that the
linear mapping requires L signals obtained by a reference
instrument co-located at the LCS site during the same time
period as the LCS signals. On the contrary, the denoising step
requires M signals to learn the temporal patterns by means
of SVD, which can come from one or several instruments
in the LCS deployment area, and can be obtained during
different time periods. Then, we project both the vector of
daily in-situ calibrated sensor measurements and the vector
of daily reference instrumentation measurements onto the
subspace generated with the set of signals from the reference
instrumentation database:

αcl =UT
κ (xcl − x̄R) = UT

κ x̂cl (3)

αRl
=UT

κ (xRl
− x̄R) = UT

κ x̂Rl
(4)

Now that both vectors of measurements {αcl ,αRl
}, with

αcl ,αRl
∈Rκ, lie in the same subspace, a correction of the

LCS vector can be performed to approximate the low-cost
in-situ calibrated sensor projected data to the reference instru-
mentation projected data. The estimation of the projections is
a linear regression problem with coefficient matrix Φ∈Rκ×κ:

UT
κ x̂Rl

≈ ΦUT
κ x̂cl (5)

Matrix Φ is obtained by putting the problem in a regularized
least squares form, where it is intended to obtain the matrix Φ̃
that minimizes the errors in the multivariate linear regression:

min
Φ

∥ARL
−ΦAcL∥

2
F + λ ∥Φ∥2F (6)

Where AcL = [αc1, . . . ,αcL] = UT
κ X̂cL and ARL

=
[αR1

, . . . ,αRL
] = UT

κ X̂RL
are the matrices formed ap-

pending the projected vectors measured during L days, and
λ∈R is the hyperparameter that controls the regularization
term penalizing the Frobenius norm of Φ. The regularization
parameter λ controls the magnitude of the Φ matrix, since due
to the size of the matrix, there may be over-fitting. A closed-
form expression for the recalibration matrix Φ̃ is obtained by
solving the unconstrained optimization problem (6), where we
have made the gradient of the objective function with respect
to matrix Φ equal to zero:

Φ̃ = ARL
AT

cL(AcLA
T
cL + λIκ)

−1 (7)

With Iκ∈Rκ×κ the identity matrix. The recalibration esti-
mate of a new daily vector of LCS in-situ calibrated measure-
ment xc can be obtained as:

x̃c = x̄R +UκΦ̃UT
κ (xc − x̄R) (8)

The algorithm 2 shows the whole calibration process: lines
1-2 perform the in-situ calibration using any supervised re-
gression model. Lines 3-5 obtain a low-rank subspace from
the daily reference instrumentation records in the database
and lines 6-9 project the daily LCS measurements and daily
reference instrumentation data into the subspace. Line 10 trains
the linear mapping model to find the optimal correction matrix
Φ̃. Finally, lines 11-14 correct the newly collected daily data.

In terms of the computational complexity of the proposed
models, the most expensive operations are SVD (2) and matrix
multiplication and inversion (7). Since the matrices involved
in this application are not large, there are no limitations, and
no need to use advanced algorithms for matrix decomposition
and multiplication, current linear algebra software can easily
handle these operations. The computational cost of TPB-D is
O(M3) and that of TPB-C is O(M3+κ3).

Algorithm 2 Temporal pattern-based calibration (TPB-C).
Input: {X,y, f(·),XRM ,XRL , κ, λ}

1: f ← Train Model(f,X,y) ◁ In-situ calibration
2: Xc ← f(X)
3: x̄R=1/M

∑M
m=1 xRm ◁ Denoising stage

4: x̂Rm ← xRm−x̄R; X̂RM = [x̂R1 , . . . , x̂RM ]
5: U,Σ,VT ← SVD(X̂R)
6: x̂cl ← xcl−x̄R; X̂cL = [x̂c1 , . . . , x̂cL ] ◁ Data projection
7: x̂Rl ← xRl−x̄R; X̂RL = [x̂R1 , . . . , x̂RL ]
8: AcL ← UT

κ X̂cL

9: ARL ← UT
κ X̂RL

10: Φ̃← Train Φ(AcL ,ARL , λ) ◁ Linear mapping stage
11: while xnew do ◁ New daily data
12: xc ← f(xnew)
13: x̃c ← x̄R +UκΦ̃UT

κ (xc − x̄R)
14: end while

IV. DATA SETS

To demonstrate the performance of the TPB methods, we
will use four data sets taken with LCSs in real IoT platforms.
The first two data sets, D.1 and D.2, are O3 data taken
with metal-oxide (MOX) and electro-chemical (EQ) low-cost
sensors during 2017 and 2018 in the H2020 CAPTOR project,
where three testbeds were deployed in Austria, Italy and Spain
[28]. For this study, we will use four nodes called Captor
nodes deployed in the Spanish testbed, data set D.1, and two
nodes called Raptor nodes, data set D.2, in the Italian testbed.
The nodes were placed next to reference stations managed by
governmental agencies that report data using high-precision
instrumentation [29].

Each Captor node was developed by the Universitat Politec-
nica de Catalunya (UPC, Spain) and consists of a box with four
SGX Sensortech MICS 2614 metal-oxide ozone (O3) sensors,
one air temperature (T), and one air relative humidity (RH)
sensor (DHT1 Grove). For this paper, we have selected four
nodes with sixteen O3 sensors as target sensors, Table II, data
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TABLE II
DATA SET 1 PRESENTS NODES WITH FOUR METAL-OXIDE (MOX) O3 SENSORS AND A TEMPERATURE/RELATIVE HUMIDITY SENSOR PER NODE. DATA SET
2 PRESENTS NODES WITH ONE ELECTROCHEMICAL (EQ) O3 SENSOR PER NODE. DATA SETS 3 AND 4 PRESENT ONE TEMPERATURE SENSOR PER NODE.

Data Node Sensor Sensor array Sensor Calibration Period # of
set name target labels type place (dd/mm/yyyy) days

D.1 C-17009 O3 s1,s2,s3,s4/sT /sRH MICS 2614/DHT1-Grove Palau Reial (Spain) 19/06/2017-05/10/2017 80
D.1 C-17013 O3 s1,s2,s3,s4/sT /sRH MICS 2614/DHT1-Grove Manlleu (Spain) 10/05/2017-4/10/2017 126
D.1 C-17016 O3 s1,s2,s3,s4/sT /sRH MICS 2614/DHT1-Grove Vic (Spain) 27/05/2017-04/10/2017 114
D.1 C-17017 O3 s1,s2,s3,s4/sT /sRH MICS 2614/DHT1-Grove Tona (Spain) 10/05/2017-29/09/2017 121

D.2 R-N69 O3 s1/sNO2
/sT /sRH OX-B431/NO2-B43F/DHT1-Grove Monte Cucco (Italy) 21/06/2018-25/09/2018 84

D.2 R-N212 O3 s1/sNO2 /sT /sRH OX-B431/NO2-B43F/DHT1-Grove Osio Sotto (Italy) 27/06/2018-24/09/2018 87

D.3 T-17009 T sT DHT1-Grove Palau Reial (Spain) 07/04/2017-04/10/2017 102
D.3 T-17016 T sT DHT1-Grove Vic (Spain) 26/05/2017-05/10/2017 116

D.4 T-17027 T sT DHT1-Grove Palau Reial (Spain) 05/02/2019-12/07/2019 125
D.4 T-17032 T sT DHT1-Grove Palau Reial (Spain) 06/02/2019-11/05/2019 93

set D.1: the node labeled C-17009 located in an urban area
of the city of Barcelona called Palau Reial (Spain), the nodes
labeled C-17013, C-17016, and C-17017 located in the cities
of Manlleu, Vic and Tona (Spain), which are about 80 km
away from Barcelona, in semi-urban areas.

The Raptor node was built by Universite Clermont Au-
vergne (UCA) in France. Each Raptor node includes one
Alphasense OX-B431 electro-chemical O3 sensor, one Al-
phasense NO2-B43F electro-chemical NO2 sensor, a temper-
ature sensor and a relative humidity sensor (DHT1 Grove).
The Raptor platform is composed by two boxes: an outdoor
box is powered by a 9V 4000mAh battery for a lifetime of
three months, and connected using a IEEE802.15.4 (ZigBee)
wireless access medium to an indoor box that acts as local
server, powered by an external power supply and connected to
Internet using Wifi or 3G. For this paper, we have selected two
nodes with two electrochemical O3 sensors as target sensors,
Table II, data set D.2: node R-N69 located in Monte Cucco
which is an urban area in the province of Piacenza (Italy) and
node R-N212 located in Osio Sotto in Bergamo (Italy).

Finally, we define two other data sets called D.3 and D.4
with temperature as target sensors. The data set D.3 consists
of two nodes in the cities of Barcelona (Palau Reial area,
Spain) and Vic (Spain) during the year 2017. Dataset D.4
consists of two nodes in the city of Barcelona (Palau Reial
area, Spain) during 2019. All these nodes included DHT1
Grove temperature sensors.

In all data sets, the samples are hourly (T=1 h) and are
taken with the same aggregation strategy as the reference
stations; minute samples are taken and aggregated into hourly
samples [30]. In order to have daily 24-hour samples, in case
of data loss, e.g. due to communication subsystem failures or
node maintenance, any imputation method can be applied [31].
In our case, we perform an interpolation (average between
previous and next value) if only one sample is missing and
discard the whole day if there is more than one loss in one
day.

V. RESULTS

In this section, we present different experiments we have
tested using the proposed algorithms and their results.

First, we perform the in-situ calibration using linear and
nonlinear machine learning models, while subsequently, by

introducing the daily patterns, we show how TPB-D and TPB-
C improve the accuracy of the in-situ calibration. The method-
ology explained in section III is implemented as follows:

1) to train the in-situ calibration model, 21 days are ran-
domly selected and a data set of size 21 days times 24
hours (504 hourly samples) is generated. This data set
is then divided into a training data set (80%) and a test
data set (20%). Linear (multiple linear regression) and
nonlinear (support vector regression and random forest)
machine learning models are applied to in-situ calibrate
the target sensors,

2) by selecting the best performing in-situ calibration model,
the remaining days are estimated, and these calibrated
data will be used in the TPB-D and TPB-C models.
For the same time interval, a daily reference database is
constructed for each of the data sets. These days are used
to build the denoising step. Finally, 80% of the days are
taken for training the linear mapping and 20% of the days
for testing. The hyperparameters for the denoising and for
the linear mapping method are chosen by performing a
10-fold cross-validation (CV) procedure on the training
data.

The algorithms are implemented in Python 3.9.9, while
the libraries that are used to obtain the results are pandas,
NumPy, and sklearn. The computer used for the experiments
has an Intel(R) Core(TM) i5-10600 CPU @ 3.30GHz 3.31
GHz processor with 16GB RAM2.

A. In-situ calibration

For the in-situ calibration, linear and nonlinear models are
used to calibrate the low-cost sensors. As low-cost gas sensors
have cross-sensitivities with other gases and their performance
also depends on temperature and relative humidity, in the
calibration process for O3 those will be taken into account
[6], [7], [9], [11], [12]. For each metal-oxide O3 low-cost
sensor in data set D.1, a data matrix X=[si, sT , sRH ]∈RN×3,
is generated with three feature columns, corresponding to a
O3 sensor, and the corresponding temperature and relative
humidity sensors. In data set D.2, we are using electrochemical

2The code and the data sets used in this paper are available at authors web
page http://sans.ac.upc.edu/?q=node/256

http://sans.ac.upc.edu/?q=node/256
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O3 sensors and for this kind of technology the calibration
performance also depends on the measurements of NO2. Thus,
for data set D.2 the model will be trained using the data matrix
X=[si, sNo2 , sT , sRH ]∈RN×4, while for data set D.3 and D.4,
as the sensors are measuring temperature, and it doesn’t have
any cross sensitivity with any pollutant or phenomena, the data
matrix for these data sets is X=[sT ]∈RN. Once the data matrix
for each one of the LCSs is generated, the calibration model
will be trained using linear and nonlinear models. Multiple
linear regression (MLR), support vector regression (SVR) and
random forest (RF) are compared to calibrate the sensors.

Table III presents the results in terms of testing RMSE and
R2 for each of the sensors in each of the data sets considered.
The results indicate that the nonlinear methods outperform
the linear methods. In the case of temperature sensors, SVR
gives the best results, while in the case of O3 (metal-oxide
and electrochemical) there is not a big difference between RF
and SVR, but since SVR performs better than RF for most
sensors, we select this method as the calibration method, and
we will estimate all sensors using this method. We also observe
a large variability in the results, even with sensors from the
same manufacturer. For instance, among the MOX sensors
placed in Vic, node C-17016, sensor s1 has an RMSE of 17.29
µg/m3 and R2 of 0.83, and sensor s4 has an RMSE of 11.49
µg/m3 and R2 of 0.93 with the same SVR method. The two
electrochemical sensors also present variable results, one with
RMSE of 13.65 µg/m3 and R2 of 0.88, and the other with
RMSE of 11.60 µg/m3 and R2 of 0.94 with SVR. Finally,
the temperature sensors present RMSE between 0.92◦C and
1.5◦C with R2 of 0.85 and 0.75 respectively. In conclusion,
this variability present in the in-situ calibration results shows
room for improvement for the worst performing sensors.

TABLE III
IN-SITU CALIBRATION USING MULTIPLE LINEAR REGRESSION (MLR),

SUPPORT VECTOR REGRESSION (SVR) AND RANDOM FOREST (RF).
RESULTS SHOW TESTING RMSE AND R2 . THE BEST ESTIMATION

METHOD FOR EACH SENSOR IS SHOWN IN BOLD.

Node Name
MLR SVR RF

RMSE R2 RMSE R2 RMSE R2

(µg/m3) (µg/m3) (µg/m3)

C-17009 s1 14.64 0.7 10.8 0.83 11.7 0.8
C-17009 s2 13.51 0.74 10.75 0.83 11.4 0.82
C-17009 s3 10.47 0.81 9.1 0.86 9.05 0.86
C-17009 s4 14.08 0.72 10.1 0.85 10.8 0.84
C-17013 s1 11.41 0.93 9.67 0.95 10.32 0.94
C-17013 s2 12.85 0.91 9.72 0.95 10.37 0.94
C-17013 s3 17.12 0.85 12.54 0.92 12.62 0.92
C-17013 s4 12.26 0.92 10.32 0.94 10.38 0.94
C-17016 s1 19.34 0.79 17.29 0.83 15.08 0.87
C-17016 s2 16.3 0.85 13.8 0.89 13.4 0.9
C-17016 s3 15.2 0.87 12.78 0.9 11.88 0.92
C-17016 s4 13.7 0.89 11.49 0.93 10.39 0.94
C-17017 s1 12.45 0.89 9.6 0.93 10.2 0.92
C-17017 s2 13.49 0.87 10.51 0.92 10.96 0.91
C-17017 s3 14.89 0.84 13.15 0.87 12.6 0.88
C-17017 s4 12.02 0.89 9.37 0.94 9.7 0.93

R-N212 s1 13.72 0.87 13.65 0.88 13.18 0.89
R-N69 s1 11.78 0.94 11.6 0.94 12.8 0.93

RMSE R2 RMSE R2 RMSE R2

(ºC) (ºC) (ºC)

T-17009 sT 1.96 0.81 1.5 0.75 1.5 0.72
T-17016 sT 1.02 0.97 0.95 0.94 1.01 0.93

T-17027 sT 1.18 0.93 1.1 0.95 1.18 0.94
T-17032 sT 1.27 0.82 0.92 0.85 0.93 0.83

B. Temporal pattern-based methods

We choose SVR as the calibration method, and with the
hyperparameters obtained in section V-A, we estimate O3

concentration values or temperature values for subsets of D.1-
D.4 with 60-105 days depending on the data set. The new
RMSE and R2 values of this data set are shown in the first
column of table IV. For clarity, we have chosen a single
sensor from each node. Now, in order to improve the in-
situ calibration of this new data by taking into account the
daily pattern data, we will first learn the daily pattern data
from the reference stations where the sensors were located
and which are stored in the database to study the performance
obtained with the TPB-D model. Next, we will investigate the
performance of the TPB-C model, selecting both the daily
patterns involved in the denoising step and those involved
in the linear mapping training data set. In both cases, the
validation of the TPB-D and TPB-C mechanisms is performed
on a test data set. The results of this section consider that to
construct the subspace in both TPB-D and TPB-C, we take
those days from the database containing data from a reference
station co-located with the LCSs.

1) TPB-D performance: Given the formerly in-situ cali-
brated data, we propose to improve the estimation by project-
ing into a low-rank subspace spanned by the κ most important
left singular vectors. The only hyperparameter we need to
estimate for this method is the range of the subspace over
which we are projecting and then reconstructing the signal.
In (2), when κ=24, the denoising step is exactly the in-situ
calibration value since UUT=I, so there is no improvement
for this value of the hyperparameter. On the other hand, when
κ<24, UκU

T
κ ̸=I, and the signal is denoised. Figure 3 shows

the average CV RMSE with respect to κ, the rank of the
subspace. The value of κ changes for each data set and for each
sensor in the same data set, but there is not high variability
between them. Thus, for O3 (metal-oxide and electrochemical)
and for temperature sensors, the value of κ ranges between
3 and 9. In short, the cross-validation results show that in
all cases denoising with low-rank subspaces improves the
estimation since in none of the cases the minimum RMSE
is reached for κ=24.

Table IV shows the testing RMSE and the coefficient of
determination R2 for the in-situ calibration and TPB-D method
for one sensor from each node of each data set described in
table II. For data set D.1, as each captor node has four O3

sensors at each node, we have selected sensor s1, while for
other data sets the only sensor present at each node is selected.
Comparing the results of the in-situ calibration on the test
set before and after denoising, it is observed that for MOX
sensors, the error in estimating O3 concentrations decreases
between 9.77% for sensor C-17016 s1 and 17.58% for sensor
C-17009 s1. We note that good sensors with R2 greater than
0.80 improve less, for example, the C-17016 s1 increases R2

from 0.83 to 0.86, while the C-17009 s1 sensor has a larger
margin of improvement with R2=0.57 increasing to R2=0.71.
Electrochemical O3 sensors and temperature sensors have a
similar behavior. The worse the R2 of the in-situ estimation,
the better the percentage improvement provided by the TPB-
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Fig. 3. Impact of the range of the κ subspace on the TPB-D model where lines
represent the average CV RMSE. The upper left subplot represents the result
for 4 MOX sensors in data set D.1; upper right: 2 EQ sensors in data set D.2;
lower left: 2 temperature sensors in data set D.3; lower right: 2 temperature
sensors in data set D.4.

D mechanism. However, we can observe that in all cases the
percentage of improvement does not exceed 20%.

2) TPB-C performance: By introducing the correction ma-
trix Φ, it is expected to have a better estimation of the sensor
calibration with respect to only performing the denoising step.
As mentioned in section III-B2, in contrast to the TPB-D
model, where we only need a subspace created by the daily
signals taken from the reference instrumentation, and where
the signal obtained by the sensors is projected, now to train
the model it is necessary to project both the daily signal
captured by the reference instrumentation co-located to the
LCS, and the daily signal captured by the LCS, calibrated in-
situ, onto the subspace created by reference instrumentation
signals stored in the database. Then, we perform a linear
regression of the daily projected LCS signal on the daily
projected signal of the reference co-located instrumentation.
The coefficients to be estimated are the coefficients of the Φ
matrix, whose dimension is Rκ×κ.

Fig. 4. Impact of subspace range κ in the TPB-C model: lines represent the
average RMSE value in the CV data set. The upper left subplot represents
the result for 4 MOX sensors in data set D.1; upper right: 2 EQ sensors in
data set D.2; lower left: 2 temperature sensors in data set D.3; lower right: 2
temperature sensors in data set D.4.

In order to prevent over-fitting, besides estimating the sub-
space range κ, it is necessary to estimate the regularization
parameter λ. Both hyperparameters, κ and λ, are estimated
by performing a 10-fold CV procedure. Figure 4 plots the
average CV RMSE curves when the best κ is set. The value
of the subspace range varies from 9 to 24. Comparing with
the denoising step, it is observed that here the value of
the hyperparameter κ is higher. However, the regularization
parameter λ in (6) overcomes the over-fitting problem when
κ is large.

The TPB-C accuracy in terms of RMSE and R2 are pre-
sented in table IV. The same sensors as in the denoising
step are selected to show the improvement. For nodes with
MOX O3 technology sensors, the improvement ranges from
12.1% to 27.8%, while for nodes with EQ O3 technology
sensors, the improvement ranges from 9.36% to 26.71%. For
the temperature sensors, the one with the least improvement
is the T-17016 sensor that started with an in-situ calibration
with an R2 of 0.96, and improves by 15.65% (R2=0.99), while
the one with the most improvement is the T-17009 sensor that
started with an in-situ calibration with an R2 of 0.85, and
improves by 38.8% (R2=0.94). In conclusion, it is observed
that TPB-C improves up to 20% with respect to TPB-D.

C. Impact of training data set size
In this section, the impact of the size of days taken to

obtain the subspace where the data are projected in the TPB-D
method is analyzed, and also the impact of the size of days
taken to obtain the subspace where the data are projected and
the linear mapping is trained in TPB-C is analyzed. To perform
this analysis, the sensors C-17017s1 as representative of O3

and T-17016 as representative of temperature are selected. To
proceed with the experiment, 20 days are randomly selected as
the test data set. The performance of each method is analyzed
if it is trained with a data set containing randomly selected
blocks of 10, 11, 12, · · ·, 79 and 80 days for the O3 and
up to blocks of 75 days for temperature. For each block, 20
repetitions are performed by changing the seed in order to
have a confidence interval calculated with a t-student with
95% confidence level. We observe, Figure 5, that the number
of days required to train the model depends on the method and
the sensor target. For sensors with very regular daily patterns
such as temperature, the TPB-D denoising mechanism needs
few data taken from the database, e.g., between 15 to 20 days,
to converge. On the other hand, for sensors with significantly
less regular daily patterns such as O3, a larger data set, e.g., 30
to 40 days, is needed. In contrast, for the TPB-C method, more
days are needed to train the model due to the linear mapping
introduced since the optimal values of the coefficients of the
Φ matrix have to be estimated. This implies that the higher the
number of training data, the less over-fitting. It can be observed
that for the O3 sensor large training sets are needed, while for
the temperature sensor, with more regular daily patterns, fewer
days are needed.

D. TPB-D performance using nearby reference stations
In the TPB-D method, it is not necessary to obtain the

subspace in which the daily in-situ calibrated LCS data are
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TABLE IV
PERFORMANCE OF THE IN-SITU CALIBRATION, TPB-D AND TPB-C ON TEST DATA SETS ALONG WITH THE BEST HYPERPARAMETERS FOUND BY CV.

Node Name In-situ (SVR) TPB-D TPB-C
RMSE (µg/m3) R2 RMSE (µg/m3) R2 κ RMSE (µg/m3) R2 κ λ

C-17009 s1 15.24 0.57 12.56 0.71 4 11.38 0.76 21 3934
C-17013 s1 11.66 0.92 10.01 0.94 6 9.34 0.95 16 3045
C-17016 s1 15.55 0.83 14.03 0.86 6 13.67 0.89 24 4322
C-17017 s1 12.88 0.87 11.17 0.90 5 9.30 0.93 24 4662
R-N69 14.07 0.92 12.61 0.93 7 13.12 0.93 10 4061
R-N212 20.51 0.76 18.34 0.81 5 15.03 0.87 23 4662

RMSE (ºC) R2 RMSE (ºC) R2 κ RMSE (ºC) R2 κ λ

T-17009 1.8 0.85 1.56 0.89 3 1.10 0.94 9 17
T-17016 1.15 0.96 0.96 0.97 6 0.56 0.99 23 17
T-17027 1.5 0.89 1.3 0.91 3 1.22 0.93 20 58
T-17032 1.05 0.92 0.96 0.92 9 0.68 0.96 23 18

projected with a reference instrument co-located with the
LCSs. The subspace can be created using reference stations
that are in the vicinity of the LCSs and have a high cor-
relation in their data with the calibrated LCSs. Although
there are several techniques for discovering the relationships
between network sensors, graph signal processing tools have
been successfully applied in learning the graph that encodes
the implicit relationships between sensors measuring natural
phenomena. Thus, we have applied a smoothness-based graph
learning technique [31], [32] in order to find the reference
instruments most related to the node of interest and include
these instruments in the reference station database. The results
indicate that two nearby reference instruments can be included
in the database for the TPB-D mechanism.

(a) C-17017 s1 O3 sensor, dataset D.1.

(b) T-17016 temperature sensor, dataset D.3.

Fig. 5. Impact of training data set size: lines depict the average RMSE of
the TPB-D and TPB-C models.

In this case, in the absence of a reference instrument
in place, the CV procedure to estimate the value of the
hyperparameter κ cannot be performed. Gavish et al. [33]
propose the recovery of low-rank matrices by introducing
singular value thresholds, so to estimate the value of κ we
will use the method proposed in [33]. Assuming that we want
to recover the centered matrix X̂R=[x̂R1

, . . . , x̂RM
]∈RD×M ,

the threshold singular value is given as:

σ̃=w(β) ∗ σmed (9)

where σmed is the median of the singular values, while w(β)
is obtained as:

w(β)≈0.56β3 − 0.95β2 + 1.82β + 1.43 (10)

where β=D/M, with D the dimension of daily data and M the
number of days used by nearby reference stations. Finally, κ
corresponds to the number of singular values that are greater
than the threshold σ̃.

To show the impact of using nearby reference stations we
have selected the C-17009 s1 O3 MOX sensor. The estimated
κ value resulting from these methods is 5, which is close
to the optimal values (κ=4) using the CV when using co-
located reference instrumentation. The RMSE and R2 values
by applying the TPB-D are respectively 13.1 µgr/m3 and 0.68.
Comparing with the accuracy of the in-situ calibration, table
IV, in which the values of RMSE and R2 were 15.24 µgr/m3

and 0.57, we observe that the use of the information from
the neighboring reference station improves the quality of the
calibrated data, although the efficiency gain is not as good
as if the LCS is co-located next to the reference instrument
were the RMSE and R2 values were 12.56 µgr/m3 and 0.71.
The experiment shows how the TPB-D mechanism can be used
when the LCS does not have a co-located reference instrument
to project the daily values.

E. Noise sensitivity of the TPB methods

Generally, LCSs are prone to errors due to their data quality
limitations. In this section, the sensitivity of the proposed
method is studied, so our goal is to study how stable is the
method’s output x̃c against different amounts of perturbations
introduced into the sensor data. To simulate perturbations, we
use a sampling procedure to introduce additive Gaussian noise
ϵ into the input data (sensor raw data) with mean zero and
variance σ2, i.e., ϵ∼N(0, σ2). The sensors are calibrated in-
situ with support vector regression. Increasing values of σ2

emulate a worse sensor. In short, we evaluate how the in-situ
calibration, the TPB-D model, and the TPB-C model behave
with sensors perturbed with incremental values of error.

To show the sensitivity of the method, the sensor that
performs best on each of the data sets is selected, respectively
the C-17013 s1, R-N69, T-17016, and T-17032 are selected.
Figure 6 shows the testing set results when different amounts
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of noise are introduced, in terms of average RMSE and their
confidence interval over 20 repetitions. Besides, the level
of noise introduced is represented as the ratio between the
standard deviation of the noise introduced σ and the sensor
raw data standard deviation σr. The results show that the
TPB-C method shows very good results in noise filtering
and correction. Regarding the RMSE obtained by the in-situ
calibration scheme, for O3, it is observed that it is reduced
between 9%-19% with TPB-D and 15%-22% with TPB-C,
while for temperature it is reduced up to 40% with TPB-
D and up to 50% with TPB-C. As a summary, in general,
with moderate noise, the TPB-D reduces about 15% of the
RMSE and TPB-C another 10% of the RMSE with respect
to the in-situ calibration scheme. As for the value of the
hyperparameters, in general for both TPB-D and TPB-C, we
have observed that as the noise increases, the value of κ
decreases, being between 3-4 for TPB-D and 7-8 for TPB-C.
For higher values of noise, a higher value of the regularization
hyperparameter λ is also required. Thus, the more perturbed
the data are, the smaller the number of left singular vectors
(i.e., patterns) we need to project and reconstruct the daily
measurements and the higher the value of λ.

(a) C-17013 s1 in data set D.1. (b) R-N69 sensor in data set D.2.

(c) T-17016 sensor in data set D.3. (d) T-17032 sensor in data set D.4.

Fig. 6. Noise sensitivity: lines represent the average RMSE in testing data set
for SVR, TPB-D, and TPB-C models. The x-axis represents the ratio between
the standard deviation of the perturbed data and the standard deviation of the
raw data (σ/σr); confidence intervals (shaded area) are calculated as a t-
student with 95% confidence level.

To sum up, the analysis for both methods has shown their
capability to filter out and mitigate the effects of noisy data.
For larger perturbations, the TPB-C model is less affected by
noise than the TPB-D model, being able to filter out more
noise. The value of the hyperparameters is also related to the
value of the variance of the noise. Finally, the hyperparameter
selection process shows how for large data perturbations the
optimal number of left-singular vectors decreases.

VI. CONCLUSIONS

In this paper, we have proposed the temporal pattern-
based denoising (TPB-D) and calibration (TPB-C) methods
for the low-cost sensors. The proposed models are based on

improving the performance of in-situ calibrated sensors by
means of a machine learning model using temporal patterns
extracted from a reference instrumentation database. In the
first mechanism, TPB-D, the signal is denoised by a singular
value decomposition using signals from reference stations in
the vicinity of the sensor stored in a database. For the second
mechanism, TPB-C, a reference instrument has to be placed
for a period of time next to the LCSs, in the same way
as the in-situ calibration, to perform a linear mapping with
regularisation in addition to the denoising step.

The proposed algorithms have been tested using four data
sets that comprise two data sets for tropospheric ozone LCSs
(O3 metal-oxide and O3 electrochemical sensors) and two data
sets for temperature LCSs. We have shown how these sensors
can be calibrated in-situ with well-known machine learning
mechanisms, such as multiple linear regression (MLR), ran-
dom forest (RF) and support vector regression (SVR). Among
these, SVR performs the best, and has been selected as the in-
situ calibration method for the remainder of the paper. We have
seen how the two mechanisms, TPB-D or TPB-C, improve
the in-situ calibration results by 10-20% (TPB-D) and 20-40%
(TPB-C) for the different sensors. In general, the improvement
is greater when in-situ calibration performs worse, as both
mechanisms have a greater margin of improvement than when
in-situ calibration performs very well. Furthermore, we show
that if there are nearby stations the TPB-D mechanism can use
the data from these stations to improve the in-situ calibration,
but for the second improvement, the TPB-C mechanism needs
to be trained with a reference instrument co-located near the
LCSs, in the same way as the in-situ calibration is performed.
The behavior of the two mechanisms in the presence of data
perturbations has also been analyzed, showing the ability of
both methods to filter noise and improve accuracy with respect
to in-situ calibration. As future work it would be interesting to
study the use and adaptation of these techniques in the sensor
relocation problem showing the possibility to create general
or invariant temporal patterns and the possibility to use non-
linear mappings for correcting the projected signals.

TPB-D and TPB-C algorithms work well when two cir-
cumstances are present. First, the estimates produced by the
in-situ calibration method do not perform very well in terms of
RMSE or R2, and second, when the signal measured by the
sensors has temporal patterns. On the other hand, when the
in-situ calibration of the sensor performs very well or when
the phenomenon has no temporal patterns, the method will
only have the ability to denoise the signal. Moreover, temporal
pattern-based (TPB) methods have two good qualities: first,
in the presence of reference instrumentation, we can apply
TPB-C that denoises and helps to recalibrate the sensor, and
second, the method is robust in presence of noise, and in the
worst case where we do not have reference instrumentation
available to co-locate with the sensor, but there is reference
instrumentation nearby, we can apply the TPB-D method and
denoise the signal improving the quality of the estimates.
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