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Abstract—This paper deals with scenario-aware, uncoordi-
nated, and distributed signaling techniques in the context of
feedforward opportunistic communications, that is, when the
opportunistic transmitting node does not cooperate with any
other node in a heterogeneous communication context. In this
signaling technique, each network node individually follows a
transmission strategy based on the locally sensed occupied and
unused physical-layer network resources to minimize the induced
interference onto other coexisting networks, taking into account
the impact of the sensing errors and the locality of the sensing
information. The paper identifies and characterizes critical in-
variance properties of the transmitted pulse shaping waveforms
that guarantee the detectability of the feedforward transmitted
signal by the uncoordinated receiving nodes, irrespective of the
sensing signal space basis. The paper also shows that, under mild
operating conditions, the proposed transmission scheme asymp-
totically defines efficient alternatives in the frequency domain,
such as the circulant-shaping TDMA (CS-TDMA) modulation,
and all of them admit a direct adaptation to frequency-selective
channels. Numerical evaluation of the proposed schemes validates
the provided theoretical models.

Index Terms—Feedforward opportunistic communications, un-
coordinated distributed communications, noncooperative com-
munications, context-aware waveform design, interference mit-
igation.

I. INTRODUCTION

INTERFERENCE management plays a fundamental role in
multi-user networks to permit the coexistence of several

transmitter-receiver pairs sharing the same network resources.
While the problem of interference management has been
widely studied in coordinated or cooperative networks, the
most challenging uncoordinated or non-cooperative case is still
an open field [3].

Regarding the cooperative case, the transmitting/receiving
nodes can cooperate with each other to equivalently form net-
work multiple-input multiple-output (MIMO) systems, where
coordinated multi-point [4] or MIMO broadcast [5] schemes
can be implemented. Another interesting strategy is interfer-
ence alignment (IA) [6], [7], which can be optimal at high
signal-to-noise ratio (SNR) regimes. Nevertheless, IA-based
schemes have three main limitations [8]: (i) all coexisting
terminals have to be involved in the alignment, (ii) the
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provided gains at low-to-moderate SNR regimes are limited,
and (iii) the need for full channel state information (CSI) at
all transmitters. In fact, the necessity of CSI at transmitters is
a common factor in most interference management strategies.
Several works, e.g. [9], study the impact of not exploiting CSI
at transmitters but still require user cooperation. Cooperation
between coexisting transmitter-receiver pairs to jointly design
transmitting-receiving strategies can significantly improve the
system performance up to known limits. Notably, [10] reveals
that an interference-limited network cannot turn into a noise-
limited one. Besides, in heterogeneous networks, where dif-
ferent communication technologies coexist, achieving full user
cooperation can be either prohibitive or unrealistic.

In this sense, opportunistic communication [11]–[14] refers
to adaptively using the sensed available network resources
trying to avoid inducing inter-system interference on the other
network nodes. A classical strategy to avoid interferences
in opportunistic communications involves steering the oppor-
tunistic transmissions to the so-called network null space.
Although a rigorous mathematical definition is further given
in the paper, at this point, in a broad sense, null space stands
for the set of unused physical-layer network resources. Despite
null-space communication strategies have been widely used in
interweave systems [15], they have also been recently used
to improve the interference cancelation performance in the
context of rate-splitting multiple-access [16], and to avoid
interference between coexisting technologies in ultra-reliable
low-latency communications [17] and integrated sensing and
communications methods [18].

Opportunistic multi-antenna nodes can exploit the null space
of cross-interference channels through beamforming or linear
precoding as in [19], or through opportunistic IA [20]–[22]
that permits exploiting additional dimensions left over due to
the power allocation policy employed by active transmitters.
Due to their reduced spatial DoF, single-antenna opportunistic
nodes have a smaller null space, thus reducing their trans-
mission opportunities and interference mitigation capabilities.
In this case, Vandermonde-subspace frequency-division multi-
plexing (VFDM) [23]–[25] allows single-antenna opportunis-
tic nodes to exploit the null space induced by the frequency-
selective nature of the channel and the guard interval, as
the cyclic prefix in OFDM systems, employed by the active
transmitter-receiver pairs. VFDM has been also extended to
multi-user [26] and multi-antenna [27], [28] scenarios.

The major limitations of the reviewed null-space schemes
are their lack of robustness to null-space inference errors and
the necessity of coordination between opportunistic transmitter
and receiver. Regarding the former, the determination of the
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null space has been the focus of a vast amount of literature
[29]–[33] (and references therein). It is shown that all these
schemes suffer from false-alarm and miss-detection errors, and
generally, they are highly conditioned to the local wireless
environment. The characterization of these sensing errors is
challenging, highly dependent on the adopted method, and not
traditionally considered in the reviewed schemes. In this sense,
the reviewed schemes assume a perfect knowledge of the
null space. Regarding the necessity of coordination, feedback-
based network consensus is typically used to avoid any inter-
node null-space mismatch and agree on a reference system
(i.e., basis) for the null space.

The aforementioned limitations motivate the study of ro-
bust and non-cooperative interference management strategies.
In this sense, the paper studies the distributed design of
transmission-reception waveforms robust to the partial or
imperfect knowledge of the null space. The paper focuses on
opportunistic transmission strategies such that the opportunis-
tic transmitting node does not cooperate with any other node
in a heterogeneous communication context, further on referred
to as feedforward opportunistic communication problem. In
this respect, the major contributions of this paper are: (i)
investigating the impact and consequences of removing the co-
operative feedback between opportunistic nodes in the single-
antenna opportunistic communication case, and (ii) including
a generalized sensing error model, based on the subspace
leakage idea [34], suitable to be adopted in robust null-space
communication systems.

In particular, we propose to design opportunistic transmis-
sion pulse-shaping waveforms in single-antenna feedforward
opportunistic communications under null-space sensing er-
rors, aiming to maximize the worst-case signal-to-interference
ratio (SIR) at the opportunistic transmitting node, that is,
minimizing the worst-case induced interference by the op-
portunistic transmitter. This solution generalizes the classic
null-space approaches [19]–[28] and is optimal in the inter-
system interference sense. In contrast to classic null-space
approaches, the proposed solution is invariant, i.e. unique,
within the given null space, revealing that coherent waveform
detection is feasible under ideal operating conditions despite
the lack of end-to-end cooperation. Anyhow, the solution
is robust to performance losses induced by the inter-node
null-space mismatch. Asymptotically, under mild operating
conditions, the solution defines a time-multiplexing strategy,
named circulant-shaping TDMA (CS-TDMA), which admits
an efficient online implementation.

The remainder of this work is organized as follows. Section
II describes the signal model and the addressed problem.
The general solution and its main properties are analyzed in
Section III. Section IV provides the asymptotic behavior and
studies the efficient CS-TDMA modulation and the adaptation
to frequency-selective channels. The conclusions are drawn in
Section V.

Notation: Boldface lowercase (respectively, uppercase) de-
notes vectors (respectively, matrices). Uppercase calligraphic
letters denote a subspace or a set. (·)T , (·)∗ and (·)H denote
the transpose, conjugate, and transpose conjugate (Hermitian).
0m×n and 1m×n are the m × n all-zeroes and all-ones
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Fig. 1: Inter-system interference problem considered in this work. (TX/RX)O,q
represents the q-th outer transmitter-receiver pair, whereas TXI and RXI
represent the inner transmitter and receiver, respectively. HII is the inner
channel. H(q)

OI (r) is the interference channel between the q-th outer-network
pair and the inner node located at position r, where r = rT and r = rR are
the position of inner transmitter and receiver, respectively. All the involved
channels are unknown by the inner transmitter TXI. All channels are denoted
in matrix form for generality, whose size depends on the fading conditions
and will be given as needed.

matrices. IK is the K × K identity matrix. 〈X〉 refers to
the column-space of X . ‖ · ‖F denotes the Frobenius norm.
� is the Schur-Hadamard product. mod K is the modulo-K
operator. NC(µ, Σ) denotes a complex Gaussian distribution
with mean µ and covariance Σ.

II. SIGNAL MODEL AND PROBLEM FORMULATION

A. Signal Model

Consider a heterogeneous wireless network1 composed of
an arbitrary number Q of transmitter-receiver pairs that we will
refer to as outer terminals operating at different rates and with
different coded-modulation formats, as depicted in Figure 1. A
new asynchronous transmitter-receiver pair, denoted as inner
terminals, seeks opportunistically accessing the locally sensed
available resources while minimizing the caused interference
on the outer terminals.

The system coexistence occurs within the bandwidth
[−W/2,W/2] and with time-limited signals of duration T . As
for in [35], [36, Chapters 2 and 6], the asymptotic total number
of complex degrees of freedom (DoF) is N ≈ TW . Note that
N is the size of the set of complex numbers required to specify
any particular class of signals in an orthogonal expansion, that
is, N is the maximum number of memoryless channel uses
under these conditions.

For the sake of generality, we consider that P information
blocks have to be transmitted. Each block is composed of
K symbols, which are transmitted in parallel through K
orthogonal waveforms. The number of orthogonal waveforms
K has to be set to satisfy the rate requirements of the inner-
network nodes. Accordingly, a total of KP zero-mean and
unit-variance independent symbols ak,l, for k = 0, . . . ,K − 1
and l = 0, . . . ,P−1, from a given constellation C are
transmitted. At this point of the work, we assume that the
channel between the inner nodes is memoryless, that is, the
duration N of each block is larger than the channel delay
spread. Under a block frequency-flat fading model such that

1This paper does not make any assumption about the adopted division
duplex scheme, despite time division duplex (TDD) can be a more informative
alternative since channel reciprocity holds.
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the channel remains constant for N samples, the discrete-time
signal model at the inner receiver for the l-th block reads as

yl[n] =

√
SR,l

K

K−1∑
k=0

ak,lφk[n− lN ] + il[n] + w[n], (1)

for n = 0, . . . ,N − 1, where φk[n] are the sampled versions
of the transmitted orthonormal pulses φk (t); SR,l = |hII,l|2ST
stands for the average received power, being ST the average
total transmitted power and hII,l the inner channel coeffi-
cient; il[n] is an unstructured interference term; and w[n] ∼
NC(0,σ2

w) is the receiver complex, one-sided, circularly-
symmetric Gaussian thermal noise.

Regarding Figure 1, under the block frequency-flat fading
assumption, the inner channel matrix HII is a diagonal matrix
given by HII,l = hII,lIN∈CN×N . Note that subscript l
denotes the assumed block-fading nature of the channel. More-
over, the cross-interference channel matrices H(q)

OI,l(rR) are
given by H(q)

OI,l(rR) = h
(q)
OI,l(rR)IN ′∈CN

′×N ′ , being h(q)OI,l(rR)
the interference channel coefficients and N ′ an unknown
integer magnitude. The interference term is thus given by
il[n] =

∑Q
q=1 h

(q)
OI,l(rR)sq[n], which depends on the unknown

h
(q)
OI,l(rR) and the unknown incoming signals from the outer-

network terminals sq[n]. Thus, the structure of the interference
cannot be exploited by the inner receiver. The frequency-
selective channel case is discussed in Section IV.

Focusing on an arbitrary received block l and dropping the
index l for notational simplicity, (1) can be vectorized as

y =

√
SR

K

K−1∑
k=0

akφk + i+w ∈ CN , (2)

with φk = [φk[0], . . . ,φk[N−1]]T ∈ CN , i = [i[0], . . . , i[N−
1]]T ∈ CN , and w = [w[0], . . . ,w[N − 1]]T ∈ CN .
Accordingly, the associated statistic for decoding the k-th
received symbol is given by

zk = ψHk y, for k = 0, . . . ,K − 1, (3)

where ψk = [ψk[0], . . . ,ψk[N − 1]]T ∈ CN is the k-th
receiving filter to be designed.

B. Design Objective

The main objective of this work is twofold. The inner
transmitter has to design the transmitting orthonormal pulses
{φk}0≤k≤K−1 that cause minimum inter-system interference
to the outer-network nodes, whereas the inner receiver has to
design the receiving orthonormal pulses {ψk}0≤k≤K−1 such
that ψk is the matched filter for φk and, in turn, mitigate the
inter-system interference from the outer-network nodes. The
challenge is that the inner nodes do not cooperate between
them or with the outer-network nodes.

To mitigate inter-system interferences, the orthonormal
pulses φk and ψk have to lie in the outer-node null space,
which has to be learned from the interference channels. In this
sense, the interference signal observed by the inner terminal
located at positioning coordinates r = [rx, ry, rz]

T , that is,
either the inner transmitter or receiver, x(r) ∈ CN is given

by

x(r) =

Q∑
q=1

H
(q)
OI (r)sq + υ, (4)

where H(q)
OI (r) ∈ CN×N ′ is the interference channel matrix2

between the q-th outer transmitter-receiver pair and the inner
node located at r; sq ∈ CN ′ , with N ′ ≤ N , are the
outer-network transmitted signals; and υ ∼ NC(0N ,σ2

υIN )
is the additive noise. In the sequel, we assume that all
information about outer nodes is completely unknown to the
inner terminals. Under these conditions, the knowledge about
the outer networks is purely statistical, and the null-space
information comes from the so-called model order selection
[32] based on the eigendecomposition of the autocorrelation
matrix Rxx(r) = E

[
x(r)xH(r)

]
∈ CN×N sample estimate.

This paper adopts the common model used by all the
classic methods on null-space precoding in (5)–(6). Using the
available statistical information, the inner node at position r
infers a null-space basis ÛN (r) ∈ CN×M(r), being M(r)
the number of DoF sensed as available at the inner node
located at position r, such that the orthonormal waveforms
{φk}0≤k≤K−1 and {ψk}0≤k≤K−1 satisfy

φk = ÛN (rT)λk(rT), (5)

ψk = ÛN (rR)λk(rR), (6)

where λk(r) ∈ CM(r) are the linear combination coefficients
defining φk or ψk. All the classic null-space solutions (cf.
[7], [19], [20], [23]–[25]) consider the selection of specific
columns of matrix ÛN (r) by adopting coefficient vectors of
the form

λk(r) = [0Tm(k)−1 1 0TM(r)−m(k)]
T , (7)

for k = 0, . . . ,K − 1, where m(k) ∈ {1, . . . ,M(r)} refers
to the index of the column vector used in the opportunistic
transmission. Since the null-space basis is not unique and the
column selection, i.e., the choice of m(k), does not respond
to any specific criterion, the solutions to the classic null-space
approaches are arbitrary3, that is, not unique.

In this work, this classical constraint is relaxed, and the
coefficient vectors λk(r) are allowed to be generic full vectors
to be designed. Even though the latter generalizes the classic
null-space solution, a recursive design is required to find
the orthonormal waveforms {φk}0≤k≤K−1 or {ψk}0≤k≤K−1.
Among others, a possible approach consists in adopting vec-
tors λk(r) that recursively rotate the null-space basis such
that the orthonormal waveforms are independent of the local
null-space basis, hence unique within the null space.

Notice that any waveform generated from (5) or (6) is rank-
one spanning one DoF on a proper basis, regardless of the
coefficient vector λk(r) considered. This idea is a cornerstone
of the work as it provides maximum flexibility in the waveform

2Under the block frequency-flat fading assumption, note that H(q)
OI (r) =

h
(q)
OI,l(r)IN ∈ CN×N .

3The multiplicity of the null-space eigenvalues is larger than one with
high probability, and thus the null space bases provided by the associated
eigenvectors are not unique implying that the designed waveforms are not
unique either.
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Table I: Particular notation used throughout this paper.

rT, rR Positioning coordinates of the inner transmitter (T) and the inner receiver (R)

hII,l Inner channel coefficient for the block frequency-flat fading model

h
(q)
OI,l(r) Interference-channel coefficient at position r for the block frequency-flat fading model

ÛN (r) ∈ CN×M(r) Null-space basis sensed at the inner node located at position r

ŨN (r) ∈ CN×(M(r)−NE(r)) Basis of the correctly sensed available DoF at the inner node located at position r

EN (r) ∈ CN×NE(r) Null-space sensing error matrix at the inner node located at position r

M(r) Number of DoF sensed as available at the inner node located at position r

NE(r) No. of occupied DoF wrongly sensed as available at the inner node located at position r

λk(r) ∈ CM(r) k-th coefficient vector at the inner node located at position r

φk = ÛN (rT)λk(rT) ∈ CN k-th shaping transmission waveform

ψk = ÛN (rR)λk(rR) ∈ CN k-th matched-filter receiving waveform

shaping design.
Regarding (5)–(6), identifying the null-space basis ÛN (r)

is a critical aspect. A regular criterion without a priori in-
formation on the outer networks consists of a model order
selection on the eigenvectors’ matrix of the observations’
autocorrelation matrix Rxx(r) = U(r)Λ(r)UH(r), where
U(r) ∈ CN×N is the autocorrelation’s eigenmatrix4 and
Λ(r) ∈ CN×N is a diagonal matrix containing the autocorre-
lation’s eigenvalues sorted in non-increasing order.

From the autocorrelation decomposition, a critical parti-
tioning of the eigenmatrix is U(r) =

[
ÛS(r) ÛN (r)

]
,

where ÛS(r) ∈ CN×(N−M(r)) spans the sensed occupied
dimensions or DoF, and ÛN (r) spans the considered available
DoF and from now on formally known as null space.

C. Mathematical Problem Formulation
In practice, the partition of U(r) suffers from several

uncertainties: false-alarm and miss-detection errors, which
depend on the estimation of Rxx(r) and the subspace thresh-
olding, that is, the criterion that determines which network
resources are available or occupied, the time-varying nature
of the wireless environment, and the sensing conditions at
each location r, among others. The combination of these
uncertainties yields the subspace leakage problem [34], that
is, the occupied network resources wrongly included in the
opportunistic-operating null space; thus a more realistic model
for the null-space basis ÛN (r) is given by

ÛN (r) =
[
ŨN (r) EN (r)

]
, (8)

where ŨN (r) ∈ CN×(M(r)−NE(r)) encompasses the correctly
sensed available DoF, whereas EN (r) ∈ CN×NE(r) models

4This is not the unique criterion. Instead of using the eigenmatrix, any
arbitrary orthonormal matrix U(r) ∈ CN×N obtained using any additional
information on the outer networks is a valid DoF basis. In some cases, a
pseudo-random basis could be interesting to break any systematic error and
further decrease the residual interferences. We show in Section III that the
designed waveforms is independent of the considered subspace basis, and
hence any related discussion is out of the scope of this work.

the sensing errors containing the critical NE(r) occupied
DoF wrongly sensed as available. Hence, the orthonormal
waveforms defined in (5)–(6) read as

φk=ÛN (rT)λk(rT) =
[
ŨN (rT) EN (rT)

]
λk(rT). (9)

ψk=ÛN (rR)λk(rR)=
[
ŨN (rR) EN (rR)

]
λk(rR). (10)

The conventional null-space solution (7) is not robust to the
subspace leakage errors encompassed in EN (r), which can
lead to severe inter-system interferences that corrupt the outer-
network communications. From (1) and (9)–(10), the impact
of the sensing errors EN (r) in terms of the average total
inter-system interference power is measured as

IT (EN (r);λk(r))=
1

N

K−1∑
k=0

∥∥∥EH
N (r)ÛN (r)λk(r)

∥∥∥2 . (11)

Note that (11) measures the interference level at the inner
transmitter output or at the inner receiver input, without
taking into account that the unknown path losses decrease
both the interference imposed on each outer-network receiver
by the inner transmitter and the interference leaked on the
inner receiver by each outer-network transmitter. Although
(11) seems a pessimistic metric, it is the best that can be
done when the inner nodes do not have any a priori infor-
mation about the outer networks, including their topology, the
number of involved transmitter-receiver pairs, or the coded-
modulation schemes, and the interference-channel coefficients
are unknown.

We can now state that the objective of this work consists
in designing {λk(r)}0≤k≤K−1 that minimizes the worst-case
inter-system interferences, that is

{λk(r)}0≤k≤K−1 =arg min
{λk(r)}

max
EN (r)

IT (EN (r);λk(r)) (12a)

subject to ‖EN (r)‖2F ≤ ξ
2 (12b)

λHk (r)λk′(r) = 0, k 6= k′ (12c)

λHk (r)ÛH
N (r)ek = αk (12d)
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Note that some constraints are required to avoid the min-max
design problem in (12a) to being ill-posed. In particular, (12b)
upper-bounds the degree of uncertainty assumed in the sensing
error model in (9)–(10), being ξ2 ∈ R+; (12c) guarantees the
orthogonality between the designed waveforms {φk}0≤k≤K−1
or {ψk}0≤k≤K−1; and (12d) is a non-trivial design constraint,
with

ek ,
[
0Tn(k)−1 1 0TN−n(k)

]T
, n(k) ∈ {1, . . . ,N}, (13)

an N -length selection vector and αk ∈ R+ such that ‖φk‖2 =
1. The constraint (12d) not only avoids a trivial all-zeros
solution but it also implies the introduction of a classical
linear prediction-based solution as shown in [37]. In many
problems, the selection of the subindex n(k) is arbitrary, but
for the problem at hand, the paper shows in Section III that
it can be optimized to provide minimum residual inter-system
interference (11).

Recalling the constraint (12b), it is interesting to
note that, as EN (r) is left-unitary, then ‖EN (r)‖2F =
tr[EH

N (r)EN (r)] = rank[EN (r)]≤ξ2. Thus, this constraint
only affects the maximum number of assumed erroneous
null-space dimensions or DoF, which is the most restrictive
constraint for the unstructured error model in (8) (cf. [38] and
references therein).

As a final comment, note that the problem formulated in
(12a)–(12d) is equivalent to a Minimum-Norm Total Least-
Squares (MNTLS) optimization problem [39]–[41], which is
of paramount interest in many engineering disciplines. It is
well-known that the solution to the MNTLS problem exhibits
robustness to data modeling errors and is unique within the
vector space it lies in. The former reveals the optimality of the
designed waveforms under worst-case interferences, whereas
the latter provides the waveforms with a self-calibration
property. As discussed in Section III-B, the self-calibration
property is fundamental to drastically reducing the feedback
overheads.

III. GENERAL SOLUTION

In this section, we describe the solution to the waveform
design problem in (12a), and we provide its main properties.
As the objective function is the same at both inner nodes,
we first focus on the inner transmitting node without loss
of generality. Accordingly, the positioning coordinates rT are
omitted when possible for notational simplicity. Then, the
interference mitigation capability of the proposed waveforms
is studied in Section III-A, whereas the properties of the
derived waveforms as receiving filters are studied in Section
III-B.

The design of the class of linear modulations {φk}0≤k≤K−1
defined in (9) and satisfying (12a)–(12d) is summarized in the
following proposition.

Proposition 1. The {φk}0≤k≤K−1 satisfying (12a)–(12d) is
based on the orthogonal projector onto the null space

〈
ÛN

〉
,

given by P̂0 = ÛN Û
H
N ∈ CN×N . So as to guarantee

the orthogonality between the K waveforms, a sequential
dimensionality reduction of the null space is required such that

Algorithm 1 Sequential Design of {φk}0≤k≤K−1

Input: K, ÛN
Output: {φk}0≤k≤K−1

1: P̂0 = ÛN Û
H
N

2: for k = 0 until K − 1 do
3: Find ek =

[
0Tn(k)−1 1 0TN−n(k)

]T
using (15)

4: φk = γkP̂kek with γk = (eTk P̂kek)−1/2

5: P̂k+1 = P̂k
(
IN − φkφHk

)
6: end for

P̂k+1 = P̂k
(
IN − φkφHk

)
. Therefore, each pulse-shaping

waveform φk is given by

φk = γkP̂kek, for k = 0. . . . ,K − 1, (14)

where γk = (eTk P̂kek)−1/2 is a scaling factor that guarantees
unit norm.

Proof: See Appendix A.
Recalling (13), it is worth noting that the k-th waveform φk

(14) is a certain scaled column of the corresponding projector
P̂k. Appendix A also unveils that finding the orthogonal
waveforms (14) inducing minimum worst-case inter-system in-
terference involves designing (13) so as to select the column of
P̂k containing the largest main diagonal element. Nevertheless,
in some situations, the main diagonal of P̂k can be constant. To
avoid coordination and design complexity, a sequential column
selection can be adopted. Thus, the selection vector ek can be
designed as

n(k) =


k + 1 if

[
P̂k

]
nn

= C, 1 ≤ n ≤ N

arg max
n∈{1,...,N}

[
P̂k

]
nn

otherwise
,

(15)
where k = 0 . . . ,K − 1,

[
P̂k

]
nn

is the n-th diagonal element

of P̂k, and C ∈ C is a constant. Taking into account the
abovementioned exposition, the whole set of K waveforms,
henceforth denoted as Minimum-Norm Waveforms (MNWs),
can be recursively found as in Algorithm 1.

At this point, we can compare the classic null-space ap-
proach in (7) with the solution in (14). As studied in detail
in Appendix A, the linear combination coefficients vectors
{λk}0≤k≤K−1 solving (12a)–(12d) can be written as

λk = γkÛ
H
N

[
IN −

k−1∑
k′=0

φk′φ
H
k′

]
ek = Mkek, (16)

for k = 0, . . . ,K − 1, where the selection vector ek is
given in (13) and Mk is a transformation matrix. In view
of (16), note that both approaches (7) and (16) are based
on a column selection on two different matrices. The classic
approach in (7) makes use of an arbitrary column selection
from the null-space ÛN matrix, without taking into account
any optimization criterion. Instead, the MNTLS approach in
(16) implies the use of a waveform obtained by selecting a
column from the projection matrix of the sensed null space.
The column selection is now performed in order to minimize
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the induced interference due to sensing errors, that is, to the
imperfect knowledge of the null space. Finally, it is also worth
mentioning that the waveforms obtained from the projection
matrix are all invariant to the originally adopted sensing
reference basis ÛN , which simplifies the coordination network
overhead, as it will be discussed in Section III-B.

A. Technical Discussion

The former waveform design problem (12a)–(12d) ad-
mits an interpretation in terms of maximizing the achieved
worst-case transmitted signal-to-interference ratio (SIRT). In
this sense, the total average transmitted power is given by
ST =

∑K−1
k=0 ‖φk‖

2
/N =

∑K−1
k=0 ‖λk‖

2
/N . This expression

includes the orthogonal signal power plus the residual interfer-
ence. The design criterion in (12a) becomes equivalent to the
max-min criterion on the quotient ST /IT = SIRT+1, where
the interference power IT is defined in (11), and thus, the
following proposition holds.

Proposition 2. The objective function in (12a) is equivalent
to

{λk}0≤k≤K−1 = arg max
{λk}

min
EN

SIRT (EN ;λk) , (17)

leading to an achievable SIRT given by

SIRT(EN ;λk) =
K∑K−1

k=0

(
fk

(
P̂E

)
/
[
P̂k

]
nn

) − 1, (18)

where fk(P̂E) is a positive function that depends on both the
waveform index k and the unknown projector P̂E onto 〈EN 〉.

Proof: See Appendix B.
Hence, the design approach in (12a)–(12d) provides the

waveform with the maximum worst-case SIRT, which is the
best that can be done under feedforward conditions. Note
that the optimum receiver approach maximizing the signal-to-
interference-plus-noise ratio (SINR) cannot be considered in
feedforward settings due to the lack of coordination between
the inner transmitter and receiver.

Regarding the achievable SIRT (18), it is not possible to
know the operating SIRT, as the denominator in (18) depends
on the unknown error matrix EN . However, (18) reveals that
achieving the maximum SIRT requires finding the largest
diagonal element of the matrix P̂k, pointing up the importance
of the minimum-norm design condition in (15).

Notice that (18) accounts for the aggregate interference
induced on all erroneous null-space dimensions, which is
very pessimistic in terms of measuring the impact on the
outer receivers. A more appropriate performance metric should
measure the ratio between the opportunistic orthogonal signal
power and the interference induced per erroneous dimension.
Consequently, we define the so-called Signal-to-Interference
Density Ratio (SIDRT) at the transmitter output as

SIDRT ,
ST − IT
IT /NE

(19)

where NE = rank[EN ] is the number of wrongly sensed
available DoF. Although SIDRT does not admit a closed-form

expression for finite N , a simple asymptotic characterization
is stated in the following proposition.

Proposition 3. For large enough N , SIDRT admits a simple
analytical expression given by

SIDRT(EN ;λk) ≈ N · M
N
·
(

1− NE
M

)
. (20)

Proof: See Appendix C.
Note that (20) is based on the number of total DoF

N ; the level of the sensed DoF availability M/N , with
M = rank[ÛN ]; and the inaccuracy of the null-space sensing
scheme NE/M , which accounts for the impact of sensing
uncertainties described in Section II-C.

The tightness of the approximation given in (20) is numeri-
cally validated in Figure 2, where the SIDRT is depicted as a
function of the sensed DoF availability M/N , for different N
and different relative sensing errors NE/M . We numerically
verified that SIDRT is independent of K, as reflected in (20),
being the conclusions valid for all K ≤ M . We observe
that the sensing errors are critical at low M/N . However,
when the system bandwidth is reasonably large (large N ), the
MNWs exhibit outstanding performance in terms of SIDRT.
The robustness of the proposed solution to undesired inter-
system interferences is illustrated in Figure 3, where we note
that an unrealistic NE/M is necessary to heavily decrease the
SIDRT performance.

The robustness to inter-system interferences exhibited by
the MNWs can also be understood from the DoF-based signal
spreading capability of (14) stated in the following proposition.

Proposition 4. Any solution φk from (14) spreads or dis-
tributes the transmitted power or energy along all the avail-
able sensed null-space dimensions, and it asymptotically per-
forms a uniform allocation when the number of total dimen-
sions N is arbitrarily large.

Proof: See Appendix D.
This property implies that the residual inter-system inter-

ference power is maximally spread over the whole available
sensed DoF, breaking the structure of residual interferences
and minimizing the interference density per DoF. Nonetheless,
this spreading does not imply that one single MNW saturates
the sensed null space. Recalling Algorithm 1, it is possible to
find orthogonal waveforms that span one DoF per waveform
on a self-calibrated null-space basis.

B. Invariance and Receiving Scheme

One of the main properties of the designed transmission
scheme is that the MNWs are obtained by selecting certain
columns of a projection matrix and, thus, being independent
of the null-space basis at each inner node. Therefore, if and
only if the null spaces sensed at each inner node are equal,
the following proposition holds.

Proposition 5. Let ÛN (rT) ∈ CN×M(rT) and ÛN (rR) ∈
CN×M(rR) be the sensed null-space bases at the inner trans-
mitter and receiver, respectively. If

〈
ÛN (rT)

〉
=
〈
ÛN (rR)

〉
,
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with NE/M = 0.01 (blue) and NE/M = 0.1 (red).
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Fig. 3: Theoretical model for the SIDRT (20) vs. the null-space sensing
inaccuracy NE/M , for different N and with M/N = 0.1 (dashed) and
M/N = 0.5 (solid).

and thus, M(rT) = M(rR) = M , the k-th transmitting
waveform φk and the k-th receiving waveform ψk are equal.

Proof: If
〈
ÛN (rT)

〉
=
〈
ÛN (rR)

〉
, that is, the inner

transmitting and receiving node sense the same null space,
there exist an M × M right-unitary matrix Q such that
ÛN (rT) = ÛN (rR)Q. Thus, P̂0,T = ÛN (rT)ÛH

N (rT) =

ÛN (rR)QQHÛH
N (rR) = P̂0,R, and, therefore, Algorithm 1

provides the same waveforms regardless of the input sensed
null-space basis.

In accordance with Proposition 5, the MNWs are inde-
pendent of the considered subspace basis and, thus, invariant
within the orthogonal subspace. The major consequence of
the invariance property is that the minimum worst-case inter-
ference design criterion described in Section II-C provides a
matched-filter receiver with interference cancellation capabili-
ties that is self-calibrated with the inner transmitter despite the
lack of interaction between inner nodes. In contrast to classic
null-space approaches (7), where Proposition 5 does not hold,
the feedback overheads required to calibrate the opportunistic
transmission and reception null spaces can be avoided.

Nevertheless, in practice, the null spaces at inner transmitter
and receiver nodes differ, that is

〈
ÛN (rT)

〉
6=
〈
ÛN (rR)

〉
.

This subspace mismatch is the consequence of basing the
distributed waveform design on local-only null-space sensing,
without cooperation between inner nodes.

At this point, we shall discuss the impact of this subspace
mismatch on opportunistic communication performance. The
subspace mismatch incurs two major performance losses on
the inner receiver. On the one hand, since the inner transmitter
may use some DoF that do not belong to the inner-receiver
null space, a fraction of the transmitted energy is lost. In this
sense, we study the detection relative energy loss ratio, i.e.,

ΓK ,

∑K−1
k=0 ‖φk‖2∑K−1

k=0 ‖ψHk φk‖2
. (21)

Note that the numerator is the transmitted energy and the
denominator measures the received energy after matched fil-
tering. On the other hand, since the orthogonal projectors are
slightly different under subspace mismatch, the opportunistic

communication also suffers from the loss of orthogonality
between transmitted waveforms after matching filtering, that
is, ψHk′φk 6= 0, for k 6= k′, incurring inter-symbol interference
(ISI). This aspect is analyzed through the ISI to signal energy
ratio given by

ISRsm[K] ,

∑K−1
k=0

∑K−1
k′=0,k′ 6=k ‖ψHk′φk‖2∑K−1
k=0 ‖ψHk φk‖2

, (22)

where the numerator measures the loss of orthogonality be-
tween transmitted waveforms and matched filters. Note that
the numerator is zero when

〈
ÛN (rT)

〉
=
〈
ÛN (rR)

〉
.

In general, the analysis of both (21) and (22) are highly
involved and numerical performance evaluation is required. If
we focus on (21), and in order to circumvent the recursive
nature of (14), we may notice that the design conditions do
not largely change at the different recursive stages. Thus,
the absolute total detected energy loss can be reasonably
approximated by K times the loss on a single waveform. This
is why K = 1 can be of major interest, as it can provide the
simple tight approximation to the addressed problem given in
the following proposition.

Proposition 6. For K = 1 and large enough N , (21) is given
by

Γ1 =
φH0 φ0

|ψH0 φ0|2
−−−−−→
N→+∞

1 + ρT + ρR + ρTρR, (23)

where ρT , κT/M0 and ρR , κR/M0 denote the normalized
uncertainties at inner transmitter and receiver, respectively;
being M0 the dimension of the active null space N0 =
〈ÛN (rT)〉 ∩ 〈ÛN (rR)〉, and κT and κR the DoF excess at
the inner transmitter and receiver.

Proof: See Appendix E.
The behavior predicted by (23) is compared with numerical

simulations in Figure 4. We see that (23) reliably approximates
the energy loss, especially for small K. We also observe that
ΓK is smaller than 0.5 dB for ρT ≤ 0.1, that is, the DoF excess
at the inner transmitter is the 10% of M0. This numerical
result validates the theoretical analysis in Appendix E and the
former assumption that the relative energy detection loss in
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Fig. 4: ΓK (21) in dB vs. ρT, with N = 1024, M0 = N/8 and
ρR = 0, for different K.
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Fig. 5: ISRsm[K] (22) in dB vs. ρT, with N = 1024, M0 = N/8, and
ρR = 0, for different K.

(21) is almost constant with K.
Regarding the loss of orthogonality of the transmitted

waveforms, the recursive nature of the algorithm cannot be
unfortunately circumvented. Thus, analytical characterization
of (22) has not been found. Figure 5 numerically evaluates the
degree of robustness of the proposed communication scheme
to subspace mismatch, and it shows that, under mild operating
conditions, it is not critical for practical values of K.

In both Figures 4 and 5, we consider the case ρR = 0.
Note that the inner receiver can locally improve its perfor-
mance using an active subspace detection scheme, as in [42].
Unlike classic null-space solutions (7), which need to agree
on a common null-space transmitting and receiving basis for
coherent opportunistic communication, the inner receiver only
needs to identify N0 regardless of the considered null-space
basis thanks to the discussed invariance property.

IV. ASYMPTOTIC BEHAVIOR AND EFFICIENT
IMPLEMENTATIONS

This section characterizes the behavior of the MNWs (14)
when the total number of DoF is arbitrarily large. We will
see that, under asymptotic conditions, the design complexity
will depend on the complexity of the scenario. In particular,
for the specific case discussed in Section IV-A, the MNWs
exhibit a circulant behavior defining a cyclic time-multiplexing
scheme. Finally, Section IV-B discusses the adaptation of the
communication scheme derived in this work to frequency-
selective channels.

A well-known general result [43] is that any N ×N auto-
correlation matrix admits an asymptotic spectral factorization
given by FHΛFF , where F ∈ CN×N is the unitary Fourier
matrix and ΛF ∈ CN×N is the diagonal matrix with elements
equal to the power spectral density distribution. Thus, the
null-space basis ÛN (r) will asymptotically be composed of a
subset of column vectors of FH . In this sense, we define the
set of indices of available DoF (asymptotically, frequency bins)
as IN (r) ,

{
m : fm ∈

〈
ÛN (r)

〉}
, where fm ∈ CN is

the m-th column of FH .
Under these conditions, the MNWs asymptotically behave

as in the following proposition.

Proposition 7. The MNWs satisfying (14) asymptotically
rely on the circulant orthogonal projector P̂0(r) =∑
m∈IN (r) fmf

H
m , whose diagonal elements are constant and

equal to M(r)/N , and thus are asymptotically based on linear
combinations of complex exponentials.

Proof: Based on (14)–(15), the first transmitting MNW
φ0 relies on the first column of P̂0(rT), and thus the n-th
element of φ0 is given by

φ0[n] =
1√

M(rT)N

∑
∀m∈IN (rT)

ej
2π
N nm, (24)

for n = 0, . . . ,N − 1, where M(rT) = rank
[
ÛN (rT)

]
. Note

that (24) can be vectorized and decomposed as

φ0 = γ0fmmin �
∑

∀m∈IN (rT)

fm−mmin , (25)

being γ0 a scaling factor that guarantees unit norm, the index
mmin is given by mmin = min{m : m ∈ IN (rT)} and
[fm−mmin ]n = N−1/2 exp(j2π(m − mmin)n/N) for n =
0, . . . ,N − 1. The remaining K − 1 MNWs are derived from
Algorithm 1 but cannot be expressed compactly as (25).

Although the proof of Proposition 7 is focused on the inner
transmitter, note that it also holds at the inner receiver since
the waveform design at both nodes is based on Algorithm 1.

In the sequel, we study the asymptotic behavior of the
MNWs when the available sensed frequency bins are consec-
utive and the adaptation of the MNWs in frequency-selective
channels.

A. Particular Case: Circulant-Shaping Time-Division Multiple
Access (CS-TDMA)

This subsection studies the behavior of the general asymp-
totic solution in (24) for the particular case of consecutive
available frequency bins, that is, IN (r) = {m0, . . . ,m0 +
M(r) − 1}, when the quotient N/M(r) is an integer and/or
asymptotically large.

Without loss of generality, the discussion will be focused
on the transmitting waveform, and thus the dependence on the
positioning vector rT will be omitted for simplicity. Under the
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conditions discussed above, (24) can be written as

φ0[n] =
1√
MN

ej
2π
N nm0

M−1∑
m=0

ej
2π
N nm

=
1√
MN

sin
(
M πn

N

)
sin
(
πn
N

) ej
π[(M−1)+2m0]n

N .

(26)

According to Algorithm 1, the second MNW φ1 is the
appropriately scaled column of P̂1 = P̂0 − φ0φ

H
0 containing

the maximum diagonal element. Since the diagonal of P̂0 is
constant in view of Proposition 7, φ1 is found at the column
n of P̂1 where

φ0[n]φ∗0[n] =
1

MN

(
sin
(
M πn

N

)
sin
(
πn
N

) )2

(27)

is minimum. If N/M is an integer, note that (27) is 0
at n = kN/M , with k an integer. Moreover, noting that
φ0[n]φ∗0[kN/M ] = 0, for all possible k, it is straight-
forward to check that φk is just the (kN/M)-th column
of P̂0, for k = 1, . . . ,K − 1. Taking into account the
periodicity of the trigonometric functions, we have that
φk [(n+ kN/M) mod N ] = φ0[n], for n = 0, . . . ,N − 1,
and therefore the remaining K − 1 MNWs can be found as a
permutation of φ0, i.e.

φk = Π kN
M
φ0, for k = 1, . . . ,K − 1, (28)

with Πq =
[

[IN ]q+1:N [IN ]1:q
]

an N × N permutation
matrix, being [IN ]q:r a subset of the identity matrix encom-
passing columns from q to r.

The particular interest in this solution is twofold. First, the
whole set of K MNWs can be efficiently found, with no need
of leveraging the sequential Algorithm 1. Note that the MNWs
design becomes relatively simple in structured scenarios while
requiring a sequential design as in Proposition 7 in more com-
plex environments. Second, since the permutation practices
a circular time-shift, (28) behaves similarly to time division
multiple access (TDMA), employing specific signals. We will
refer to this modulation as Circulant-Shaping TDMA (CS-
TDMA).

In general, when the quotient N/M is not an integer, the
remaining K − 1 waveforms can be designed as follows:
(i) design the first waveform φ0 according to the MNTLS
criterion, (ii) interpolate φ0 to get an N ′-length waveform φ̃0

such that N ′/M is an integer, (iii) find the K − 1 remaining
waveforms as in (28), and (iv) decimate the K waveforms to
get N -size sequences.

This methodology leads to an approximation, whose per-
formance is numerically evaluated in Figures 6 and 7. For
ease of discussion, let N/M = Z + δ, where Z is the
whole number part and δ is the fractional part. In Figure
6, we compare the proposed approximation to the corre-
sponding columns of P̂0 for the case N/M = (900 +
124)/45 = 20 + 2.7556, where Z � δ. Even though the
proposed efficient approximation reliably mimics the corre-
sponding columns of P̂0, note that the waveforms do not
have common zeros, leading to a self inter-symbol interfer-
ence. The impact of this interference is assessed in Figure
7, where we depict the Self ISI-to-Signal Ratio, defined as(∑K−1

k=0

∑K−1
k′=0,k′ 6=k ‖φHk′φk‖2

)
/
(∑K−1

k=0 ‖φHk φk‖2
)

, as a
function of the quotient δ/Z. The Self ISI becomes negligible
when N/M can be approximated by an integer, which occurs
when δ/Z → 0 and when δ/Z → 1. Note that these two
cases hold in general when M � N , which corresponds to a
congested network. The number of waveforms K plays the
role of an SNR gain, and thus the useful signal becomes
stronger than the interferences, which decreases the ratio
illustrated in Figure 7. As a final remark, small values of the
quotient N/M reveal that the network is not congested, and
hence the inner nodes may virtually decrease M to obtain an
integer quotient N/M . Nevertheless, this approach reduces the
dimension-spreading factor, and thus the maximum achievable
SIRT also decreases.

The short effective duration of the MNWs reveals the mul-
tiple access capability of this modulation format. In contrast
to conventional TDMA, this scheme is able to mitigate inter-
system interferences in non-cooperative scenarios due to the
context-aware nature of the MNWs. Under sensing errors,
the parameters m0 and M may not be equal at both inner
nodes, yielding frequency errors and loss of orthogonality,
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respectively, that can be reduced through synchronization
schemes and subspace-matching methods (see, e.g., [44]).

Finally, yet importantly, note that MNWs are time-domain
peaky signals. Even though their poor peak-to-average power
ratio (PAPR), peaky signals in the time domain and spread
over frequency can achieve the channel capacity in the limit
of infinite bandwidth in some multipath channels (cf. [45]
and references therein). Given the importance of PAPR for
practical implementation, we evaluate in Figure 8 its com-
plementary Cumulative Distribution Function (CDF), where
the performance of Orthogonal Frequency-Division Multiple-
Access (OFDMA) has been included as reference5. Despite
OFDMA requires end-to-end calibration, and thus it is not
appropriate in feedforward scenarios, we have considered
OFDMA as a reference since it is a potential alternative in co-
operative opportunistic communications. Figure 8 shows that,
in the general case (non-consecutive DoF), MNWs present
a slightly better PAPR than OFDMA. However, when the
available DoF are consecutive, the CS-TDMA scheme exhibits
a very competitive behavior in front of OFDMA, given the
particular structure of the multiplex.

B. Transmission in Frequency-Selective Channels

This subsection6 studies the feasibility of employing the
MNWs (14) in frequency-selective (FS) channels. Since, as
per Proposition 7, the MNWs-based transmission scheme
asymptotically relies on Fourier matrices, we resort to the
common multi-carrier strategy [46], that is, using a cyclic
prefix (CP) at the transmitter and a one-tap frequency-domain
equalizer at the receiver.

Accordingly, the transmitted signal is extended using a
classic CP, that is, x =

[
x̃TCP x̃T

]T
, such that x̃CP contains

the last NCP ≥ Lh−1 samples of the N -length signal x̃,

5In this numerical example, we have not used any PAPR reduction tech-
nique, and the simulation was run considering the native version of both
modulation schemes.

6For the sake of simplicity, we assume in this subsection the ideal case
where both inner nodes identify the same null space, thus omitting the
positioning vectors rT and rR. Therefore, Proposition 5 holds. The realistic
case accounting for inter-node subspace uncertainty is straightforward at
expense of notational complexity.

being Lh the length of the channel response. In order to take
into account the impact of the CP on the waveform design,
the asymptotically optimal sensing basis U = FH has to be
replaced7 by a structured (NCP +N)×N non-orthogonal basis
Ũ =

[
UT

CP UT
]T

, where UCP contains the last NCP rows
of U . Therefore, the transmission matrix Φ = [φ0, . . . ,φK−1]
is now given by

Φ =

[
Φ̃CP

Φ̃

]
= ŨNΛ =

[
UN ,CP

UN

]
Λ ∈ C(NCP+N)×K ,

(29)
where Φ̃CP contains the last NCP rows of Φ̃ = UNΛ ∈
CN×K , ŨN ∈ C(NCP+N)×M is the sensed null-space basis
from Ũ , Λ = [λ0, . . . ,λK−1] ∈ CM×K contains the linear
combination coefficients vectors that define Φ̃, and UN ,CP
contains the last NCP rows of UN . Under these considerations,
the extended transmitted signal is given by x = Φa, where a
contains the K transmitted symbols.

After removing the CP, the received signal is given by ỹ =
HIIx̃+w+ i = FHΣhF Φ̃a+w+ i, where w and i stand
for the noise and interferences, and HII = FHΣhF is the
N×N circulant inner channel matrix, with the diagonal matrix
Σh containing the channel frequency response. Defining Φ̃ =
UNΛ ∈ CN×K , the received signal reads as

ỹ = FH
[

ΣS,h 0
0 ΣN ,h

][ 0(N−M)×M

IM

]
Λa+w + i

= FH

[
0(N−M)×M

ΣN ,h

]
Λa+w + i.

(30)
Note that (29) is steering the opportunistic information through
the sensed null-space eigenchannels ΣN ,h, minimizing the
induced worst-case inter-system interference per DoF. In order
to counteract the impact of the null-space eigenchannels,
the inner receiver can implement a frequency-domain one-
tap equalizer. As it is very well-known, different equalization
criteria have been developed for this important problem (see,
e.g., [47]), being this classical discussion out of the scope of
this paper. In the sequel, in order to illustrate the feasibility of
using this modulation format in FS channels, the zero-forcing
equalizer depicted in Figure 9 is adopted, despite not being
statistically optimal. In this sense, let us consider the zero-
forcing matrix G = UNΣ−1N ,hU

H
N , such that ν̃ = Gỹ =

UNΛa + Gw = Ψa + ñ, being Ψ = UNΛ ∈ CN×K the
receiving opportunistic matrix. Since the transmission scheme
in (29) combines the M carriers in ŨN to design K wave-
forms that are orthogonal after removing the CP, the statistic
for symbol decoding is given by z = ΨH ν̃ = γa + Ψñ,
where γ < 1 is the energy loss factor due to the CP insertion.
In contrast to OFDMA, (29) performs time multiplexing, even
though frequency multiplexing is also possible by tuning the
basis ŨN at the expense of increasing the persistent low
interference density per DoF imposed on outer nodes.

7If the outer-network nodes employ a block transmission with NCP guard
symbols, as OFDMA, and the inner nodes are aware of this information,
this step is not necessary whenever the guard symbols are removed before
inferring the null space.
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V. CONCLUSIONS

This paper has studied a decentralized transmitting-
receiving scheme for feedforward opportunistic communica-
tions, focusing on the context of asynchronous non-cooperative
communications systems. A general study of the worst-case
SIR optimization problem has been addressed through the
MNTLS criterion. It has been shown that this criterion de-
signs waveforms enjoying minimum induced interference and
robust detection invariance properties, which are of paramount
importance to guarantee coherent waveform detection despite
the ambiguities of the asynchronous sensed available DoF. The
solutions provide a per-waveform asynchronous sensing-basis
DoF spreading. In other words, the structure of the residual
inter-system interference is spread out, decreasing the outage
induced on outer network nodes and maximizing the achiev-
able SIDR. Since each involved waveform spans only one
invariant DoF, the proposed solution becomes optimal in terms
of finally occupied DoF. When the number of available DoF
becomes asymptotically large, the studied scheme behaves
as an efficient time-multiplexing modulation, denoted as CS-
TDMA, which is optimal under mild operating conditions.
Theoretical approximated models have been provided and
numerically validated.

In this paper, the proposed waveform design scheme relies
on the locally sensed null space, that is, on strict local sensing
information. Interesting future extensions of this work may
include the use of the additional knowledge given by the
degree of confidence of the sensing information in order to
provide an enhanced interference mitigation performance and
cooperation between inner nodes.

APPENDIX A

Recalling (12a)–(12d), note that this proof is twofold. First,
we address the maximization step, i.e.

EN = arg max
EN

K−1∑
k=0

∥∥EH
Nφk

∥∥2 s.t. ‖EN ‖2F ≤ ξ
2. (31)

Following a Lagrange multiplier approach, the solution to
this quadratic problem leads to

∑K−1
k=0 φkφ

H
k EN = µEN ,

where µ is the Lagrange multiplier. Thus, the worst-case
error matrix EN must be a rank-K matrix belonging to the
subspace spanned by all orthonormal waveforms φk, that
is, EN ∈ 〈[φ0 φ1 ...φK−1]〉. Thus, even though ξ2 is an
unknown parameter, the solution to (31) discloses that in the
worst case ξ2 = K. This solution leads to the case where
each orthonormal waveform φk focuses all its energy on a
single erroneous DoF. Taking into account this case and letting

EN = [φ0, . . . ,φK−1], the minimization step in (12a) now
reads as

{λk}0≤k≤K−1 = arg min
{λk;ek}

K−1∑
k=0

∥∥∥ÛNλk∥∥∥2 (32a)

subject to λHk Û
H
N ek = αk (32b)

λHk λk′ = 0, k 6= k′ (32c)

which becomes a classic minimum-norm problem. Note that
ek is given in (13). For ease of notation, since αk can be any
positive real number, we consider an αk such that ‖φk‖2 =
‖λk‖2 = 1. The corresponding Lagrangian for this problem
is given by

L ({λk} , {γk} , {ηkk′}) =

K−1∑
k=0

λHk λk−

K−1∑
k=0

γk

[
λHk Û

H
N ek − αk

]
−
K−1∑
k′=0

K−1∑
k=k′+1

ηkk′λ
H
k λk′ ,

(33)

where {γk} and {ηkk′} are the Lagrange multipliers. Equating
the gradient of (33) with respect to λHk to zero, we get

λk = γkÛ
H
N ek +

k−1∑
k′=0

ηkk′λk′ . (34)

Plugging (34) into (32c), we obtain for k′ < k

λHk λi = γ∗ke
T
k ÛNλi +

k−1∑
k′=0

η∗ik′λ
H
k′λi =

γ∗ke
T
k ÛNλk′ + η∗kk′ = 0,

(35)

where the second equality follows from the orthogonality
of the new waveform designed with respect to the previous
ones. Solving for η∗kk′ , we get η∗kk′ = −γ∗keTk ÛNλk′ . Now,
substituting η∗kk′ into λk, we have that

λk = γk

[
ÛH
N ek −

k−1∑
k′=0

λk′
(
eTk ÛNλk′

)∗]
=

γk

[
ÛH
N ek −

k−1∑
k′=0

λk′λ
H
k′Û

H
N ek

]
,

(36)

and using (36) into (5), we obtain

φk = γkP̂0

[
IN −

k−1∑
k′=0

φk′φ
H
k′

]
ek = γkP̂kek, (37)

which follows noting that P̂0 = ÛN Û
H
N . Concerning γk, plug-

ging (37) into (32b), we get γk = αk

(
eTk P̂kek

)−1
, which
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(SIRT + 1)
−1

=
1

K

K−1∑
k=0

eTk P̂0

(
IN −

∑k−1
i=0 φiφ

H
i

)
P̂E P̂0

(
IN −

∑k−1
i=0 φiφ

H
i

)
ek

eTk P̂kek
(42)

eTk P̂0P̂E P̂0ek − 2eTk P̂0P̂E P̂0

k−1∑
i=0

φiφ
H
i ek + eTk P̂0

k−1∑
i=0

φiφ
H
i P̂E P̂0

k−1∑
i=0

φiφ
H
i ek (43)

[
P̂E

]
nn
− 2eTk P̂E

k−1∑
i=0

φiφ
H
i ek + eTk

k−1∑
i=0

φiφ
H
i P̂E

k−1∑
i=0

φiφ
H
i ek , fk

(
P̂E

)
(44)

means that ‖φk‖2 = 1 requires αk =
(
eTk P̂kek

)1/2
. Finally,

there is a last step to describe which is the selection of the op-

timum linear prediction vector ek =
[
0Tn(k)−1 1 0TN−n(k)

]T
.

Substituting γk into (37), we note that the column of P̂k
including the maximum value of its main diagonal must be
selected, i.e.,

n(k) = arg max
n∈{1,...,N}

eTk P̂kek = arg max
n∈{1,...,N}

[
P̂k

]
nn

, (38)

so that the designed waveform φk meets the minimum-norm
condition in (32a). In view of (37)–(38), the design of the K
waveforms {φk}k can be tackled as in Algorithm 1.

APPENDIX B
From the definition of (ST /IT ) = SIRT + 1 in (17), we

note that in the minimization step

EN = arg min
EN

∑K−1
k=0 ‖φk‖

2∑K−1
k=0

∥∥EH
Nφk

∥∥2
= arg min

EN

‖Φ‖2F∥∥EH
NΦ

∥∥2
F

≥ 1

‖EN ‖2F
≥ 1

ξ2
,

(39)

where we make use of the Cauchy-Schwarz inequality. Thus,
from (39), we see that EN must be a rank-K matrix belonging
to 〈[φ0 φ1 ...φK−1]〉 as discussed in Appendix A, and hence
the criterion in (17) becomes the same MNTLS criterion given
in (12a). Note that the lower-bound in (39) represents a lower-
bound on the ratio ST /IT . Nonetheless, a more accurate study
is required to prove (18). Recalling (11), we note that

SIRT + 1 =
ST
IT

=

∑K−1
k=0 ‖φk‖2∑K−1

k=0 ‖EH
Nφk‖2

=
K∑K−1

k=0 φ
H
k P̂Eφk

,

(40)
where P̂E = ENE

H
N is the unknown projector onto the sub-

space spanned by the unknown sensing error matrix ÊN . The
last equality in (40) follows from recalling that ‖φk‖2 = 1,
for k = 0, . . . ,K−1. Using the expression for φk given in
(14) and ek defined in (13), observe that

(SIRT + 1)
−1

=
1

K

K−1∑
k=0

eTk P̂kP̂E P̂kek

eTk P̂kek
=

1

K

K−1∑
k=0

(SIRk + 1)−1,

(41)

i.e. (40) is the harmonic mean of {(SIRk + 1)}0≤k≤K−1.
Plugging the definition of P̂k given in (37) into (41) leads
to (42) on the top of this page.

Note that the denominator in (42) is just the n-th diagonal
element of matrix P̂k, i.e.

[
P̂k

]
nn

. Regarding the numerator,
it can be expanded as in (43), where the second term follows
from the Hermitian property of orthogonal projectors. Recall-
ing that P̂0 = ÛN Û

H
N , and EN is a subset of columns of ÛN ,

note that P̂0P̂E = P̂E . Therefore, (43) can be simplified as
in (44), where

[
P̂E

]
nn

is the n-th diagonal element of matrix

P̂E . Since (44) does not depend on P̂k, it can be identified
as a function of the waveform index k and P̂E . Finally, (40)
leads to

SIRT(EN ;λk) + 1 =
K∑K−1

k=0

(
fk

(
P̂E

)
/
[
P̂k

]
nn

) . (44)

APPENDIX C

Recalling the definition of the SIDRT in (19), notice that
SIDRT = NE · SIRT and thus, it is proportional to (42).
Studying fk

(
P̂E

)
in (44) and

[
P̂k

]
nn

, they can be written
for k 6= k′ as

fk

(
P̂E

)
=
[
P̂E

]
nn

+ δ
(1)
k,k′ , (45a)[

P̂k

]
nn

=
[
P̂0

]
nn

+ δ
(2)
k,k′ , (45b)

where δ(1)k,k′ and δ
(2)
k,k′ are second-order terms that depend on

off-diagonal elements of the involved projectors. As for [48],
off-diagonal entries of spectral projectors become asymptoti-
cally irrelevant in comparison with the main diagonal entries.
Therefore, letting δ

(1)
k,k′ , δ

(2)
k,k′ → 0, note that fk

(
P̂E

)
≈

eTk P̂Eek and
[
P̂k

]
nn
≈ eTk P̂0ek. Thus, for N → ∞ and

M = rank
[
ÛN

]
� 1, the SIDRT can be well-approximated

as

SIDRT(EN ;λk) ≈
K −

∑K−1
k=0

[
P̂E

]
nn

[
P̂0

]−1
nn

1
NE

∑K−1
k=0

[
P̂E

]
nn

[
P̂0

]−1
nn

=

N · M
N
·
(

1− NE
M

)
,

(46)
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where the last equality can be shown from the asymptotic
eigendecomposition of an autocorrelation matrix [43]. In this
sense, all the diagonal elements of the two involved projection
matrices are constant and given by [P̂0]nn = M/N and
[P̂E ]nn = NE/N , leading to (46).

APPENDIX D

Recall that φk = ÛNλk, where λk is as in (36). The energy
allocated to each DoF sensed as available is given in the main
diagonal of the matrix ÛH

N φkφ
H
k ÛN = λkλ

H
k . For ease of

notation, (36) can be simplified, by inspection, as

λk = γk

[
ÛH
N ek −

k−1∑
k′=0

λk′λ
H
k′Û

H
N ek

]
=

γkÛ
H
N

[
ek −

k−1∑
k′=0

βk′ek′

]
,

(47)

where βk′ , f (γk′ , [P0]kk′ , [P0]ik′), for 0 ≤ i ≤ k′ − 1, and
ek is given in (13). Thus, for i = 1, . . . , rank

[
ÛN

]
, we have

that [
λkλ

H
k

]
ii

= |γk|2
[ [
ÛH
N eke

T
k ÛN

]
ii

+

k−1∑
k′=0

β2
k′

[
ÛH
N ek′e

T
k′ÛN

]
ii

]
,

(48)

which follows from noting that diag
[
eke

T
k′

]
= 0N×1 for k 6=

k′. Since ek is a sparse vector with a non-null entry (equal
to one) at position n(k), it is easy to check that ÛH

N ek is
the n(k)-th column of ÛH

N , which is denoted by un(k). As[
un(k)u

H
n(k)

]
ii

=
∣∣[un(k)]i∣∣2, (48) yields

[
λkλ

H
k

]
ii

= |γk|2
[∣∣[un(k)]i∣∣2 +

k−1∑
k′=0

β2
k′

∣∣[un(k′)]i∣∣2
]

.

(49)
Note that, in general,

∣∣[un(k)]i∣∣ 6= ∣∣∣[un(k)]j∣∣∣ for i 6= j,
and hence the energy is not uniformly distributed. However,
the asymptotic eigendecomposition of autocorrelation matrices
[43] reveals that

diag
[
λkλ

H
k

]
−−−−→
N→∞

|γk|2
[

1 +

k−1∑
k′=0

β2
k′

]
1N×1, (50)

and thus the MNTLS solution is asymptotically providing a
uniform per-DoF energy distribution.

APPENDIX E

The subspace-mismatch energy loss when K = 1 waveform
is transmitted is given by

Γ1 =
φH0 φ0

|ψH0 φ0|2
=
eT0 P̂0,Re0e

T
0 P̂0,Te0

(eT0 P̂0,RP̂0,Te0)2
, (51)

which follows from noting that ‖φ‖2 = 1, and re-
calling that φ0 = (eT0 P̂0,Te0)−1/2P̂0,Te0 and ψ0 =

(eT0 P̂0,Re0)−1/2P̂0,Re0, being P̂0,T and P̂0,R the orthogonal
projectors onto N̂T =

〈
ÛN (rT)

〉
and N̂R =

〈
ÛN (rR)

〉
,

respectively. Under subspace mismatch, that is N̂T 6= N̂R,
these subspaces can be decomposed as N̂T = N0 ⊕ ET and
N̂R = N0 ⊕ ER, where N0 = N̂T ∩ N̂R, and ET and ER
stand for the noise-subspace excess with respect to N0 at inner
transmitter and receiver, respectively. Since ET ∩ ER = ∅, the
orthogonal projectors are given by P̂0,T = PN0

+ PET and
P̂0,R = PN0

+ PER . Thus, (51) leads to

Γ1 =
eT0 (PN0

+ PER)e0e
T
0 (PN0

+ PET)e0
(eT0 PN0e0)2

. (52)

Taking into account the asymptotic eigendecomposition of any
autocorrelation matrix [43], the involved projectors in (52) will
asymptotically have a constant diagonal equal to [PN0

]nn =
M0/N , [PET ]nn = κT/N and [PER ]nn = κR/N , where M0,
κT and κR are the dimensions of N0, ET, and ER, respectively.
Therefore, defining ρT , κT/M0 and ρR , κR/M0, (52) yields

Γ1 −−−−→
N→∞

(M0 + κR)(M0 + κT)

M2
0

= 1+ρT+ρR+ρTρR. (53)
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