
            

PAPER • OPEN ACCESS

Optomechanical strong coupling between a single
photon and a single atom
To cite this article: Javier Argüello-Luengo and Darrick E Chang 2022 New J. Phys. 24 023006

 

View the article online for updates and enhancements.

You may also like
Cavity optomechanics: Manipulating
photons and phonons towards the single-
photon strong coupling
Yu-long Liu,  , Chong Wang et al.

-

Optomechanical crystal nanobeam cavity
with high optomechanical coupling rate
Yongzhuo Li, Kaiyu Cui, Xue Feng et al.

-

Comparing nonlinear optomechanical
coupling in membrane-in-the-middle and
single-cavity systems
Roel Burgwal, Javier del Pino and Ewold
Verhagen

-

This content was downloaded from IP address 79.157.202.244 on 22/03/2023 at 10:50

https://doi.org/10.1088/1367-2630/ac4c69
https://iopscience.iop.org/article/10.1088/1674-1056/27/2/024204
https://iopscience.iop.org/article/10.1088/1674-1056/27/2/024204
https://iopscience.iop.org/article/10.1088/1674-1056/27/2/024204
https://iopscience.iop.org/article/10.1088/2040-8978/17/4/045001
https://iopscience.iop.org/article/10.1088/2040-8978/17/4/045001
https://iopscience.iop.org/article/10.1088/1367-2630/abc1c8
https://iopscience.iop.org/article/10.1088/1367-2630/abc1c8
https://iopscience.iop.org/article/10.1088/1367-2630/abc1c8


New J. Phys. 24 (2022) 023006 https://doi.org/10.1088/1367-2630/ac4c69

OPEN ACCESS

RECEIVED

13 August 2021

REVISED

13 December 2021

ACCEPTED FOR PUBLICATION

18 January 2022

PUBLISHED

8 February 2022

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

PAPER

Optomechanical strong coupling between a single photon
and a single atom

Javier Argüello-Luengo1 ,∗ and Darrick E Chang1,2

1 ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
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Abstract
Single atoms coupled to a cavity offer unique opportunities as quantum optomechanical devices
because of their small mass and strong interaction with light. A particular regime of interest in
optomechanics is that of ‘single-photon strong coupling’, where motional displacements on the
order of the zero-point uncertainty are sufficient to shift the cavity resonance frequency by more
than its linewidth. In many cavity QED platforms, however, this is unfeasible due to the large
cavity linewidth. Here, we propose an alternative route in such systems, which instead relies on the
coupling of atomic motion to the much narrower cavity-dressed atomic resonance frequency. We
discuss and optimize the conditions in which the scattering properties of single photons from the
atom-cavity system become highly entangled with the atomic motional wave function. We also
analyze the prominent observable features of this optomechanical strong coupling, which include a
per-photon motional heating that is significantly larger than the single-photon recoil energy, as
well as mechanically-induced oscillations in time of the second-order correlation function of the
emitted light. This physics should be realizable in current experimental setups, such as trapped
atoms coupled to photonic crystal cavities, and more broadly opens the door to realizing
qualitatively different phenomena beyond what has been observed in optomechanical systems
thus far.

Quantum optomechanics has emerged as a field with numerous exciting prospects for fundamental
science and applications [1, 2]. Generically, such systems are characterized by some mechanical degree of
freedom, whose small displacements alter the resonance frequency of a cavity. This results in rich
backaction effects once the cavity is driven, which allows for applications that include sensing [3–6],
cooling of the mechanical mode [7, 8], generation of squeezed light [9–11] or the creation of nonreciprocal
devices [12]. A key figure of merit is the vacuum optomechanical coupling strength, g0 = (∂ωc/∂x)xzp,
given by the product of the sensitivity of the cavity frequency to position displacements, and the zero-point
motion of the resonator. In particular, the single-photon, single-phonon, strong coupling regime ensues
when g0 exceeds the linewidth of the cavity, such that the optical response and dynamics change drastically
at the level of individual quanta. For example, it has been proposed that this can give rise to quantum
optical nonlinearities [13, 14]. While a number of schemes have been proposed to reach this strong
coupling regime [15–19], state-of-the-art optomechanical cavities remain at least two orders of magnitude
away from reaching this regime [20, 21]. To pursue this goal, atoms constitute an interesting candidate for
an optomechanical element, due to their low mass and anomalously large optical response (i.e. a scattering
cross section much larger than its physical size). In an atomic ensemble, the single-photon coupling
strength gets enhanced by the number of atoms in the detuned regime, entering the strong coupling regime
for sufficiently large ensembles [22–24]. Here we show that the single-photon strong coupling regime can
be realistically achieved using just a single atom coupled to a high-finesse cavity [25–29]. While
macroscopic cavity architectures allow for sufficiently small linewidths to reach the strong coupling regime
[30–32], a number of emerging platforms [33–38] focus on achieving small mode volumes with a
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prohibitively large linewidth. Here, we show that optomechanical strong coupling effects can nonetheless
emerge in these devices by working in a detuned atom-cavity regime and probing motional interactions on
the narrower dressed atomic resonance of a single atom.

The enabling mechanism is based on the scattering properties of an incoming photon, which highly
depend on its detuning to the dressed resonance frequency that in turn is sensitive to the atomic position
within the cavity field. As a consequence, we show that a scattered photon highly entangles with the
resulting atomic motional state, carrying information about its position. This leads to a per-photon atomic
heating larger than expected from single-photon recoil events and, as a more direct signature, we observe
that detection of a reflected photon triggers motion-induced oscillations in time of the second-order
correlation function of reflected light. We show that these effects are observable in realistic systems, even for
a non-zero initial motional temperature.

1. The system

Here we focus on the interaction of a single two-level atom with an optical transition between ground and
excited states |↓〉, |↑〉, and a given mode of the electromagnetic field inside the cavity. The coherent
interactions are described by the Jaynes–Cummings (J–C) Hamiltonian [39] for a single atom,

ĤJC =− (Δ+Δ0)â†â −Δ0σ̂
†σ̂ + g(x̂)

(
σ̂â† + h.c.

)
− iε

(
â† − â

)
, (1)

where σ̂ ≡ |↓〉 〈↑| is the atomic lowering operator, and Δ = ω0 − ωc the energy difference between the bare
atomic and cavity resonance frequencies. Here, we also allow for an external laser drive of the cavity with
Δ0 = ωl − ω0 representing the laser-atom detuning, and ε the driving amplitude, which we will generally
consider weak enough to only produce a few excitations. g(x̂) = g0 sin(kcx̂) denotes the position-dependent
vacuum Rabi coupling strength, with kc being the cavity mode wavevector. Importantly, we will treat the
atomic position x̂ as a quantum dynamical degree of freedom, and assume that the atom is harmonically
trapped with frequency ωm and equilibrium position x0, as schematically illustrated in figure 1(a). One can
quantize the atomic motion around this point as δx̂ = x̂ − x0 = xzp(b̂ + b̂†), where xzp denotes zero-point

motion fluctuations, and b̂(†) is the annihilation (creation) operator of phonons in the trap, Ĥtrap = ωmb̂†b̂.
Here and in what follows we use the convention that � ≡ 1.

Further including photonic losses from the cavity with decay rate κ, and atomic excited state
spontaneous emission at a rate γ, one can describe the total evolution of the density matrix as,

dρ̂

dt
= −i

[
ĤJC + Ĥtrap, ρ̂

]
+ κL [â] (ρ̂) + γ L

[
e−ikc x̂σ̂

]
(ρ̂) , (2)

where we define the Lindbladian L [â] (ρ̂) = 1
2

(
2âρ̂â† − â†âρ̂− ρ̂â†â

)
. The e−ikc x̂ term represents the recoil

momentum that is imparted onto the atom upon spontaneous emission of a photon. Strictly speaking, the
recoil along the x direction is a (non-uniform) random variable between (−kc, kc), accounting for the
possibility of a photon to be emitted in any direction [40]. As only one atom is present, the free-space
direction of the emitted photon does not influence further interactions in the system and disregarding its
angular component is sufficient to capture the salient physics and heating caused by atomic recoil [41, 42].

Here, we will consider the regime relevant to a number of cavity QED systems, where κ � γ [35–37]. In
order to access a strong optomechanical coupling, this motivates working in a detuned atom-cavity regime
|Δ| � κ, g0 and focusing on the dressed atom-like excitation branch with narrower linewidth ∼ γ. We will
start by presenting some heuristic arguments to estimate the optimal conditions to reach this single-photon
optomechanical strong coupling, which we will later show are rigorously correct. To simplify the discussion,
we will also start by considering the case where the atom is initialized in the motional ground state, treating
thermal states in section 7.

2. Heuristic derivation of strong coupling condition in the regime, |Δ| � g0, κ

One can start by considering a static atom with fixed position x. In the absence of a drive (ε = 0), one can
block diagonalize the J–C Hamiltonian (1) in the total number of excitations, nexc ≡ σ̂†σ̂ + â†â, as
illustrated in figure 1(b) for up to nexc = 2. In the limit of large atom-cavity detuning Δ, one of the
single-excitation eigenstates |0↑〉′ is mostly an atomic excitation |0↑〉, but with a shifted resonance

frequency, ω̃0(x) ≈ ω0 +
g2(x)
Δ , and broadened linewidth, γ̃(x) ≈ γ + κ g2(x)

Δ2 , due to the interaction with the
cavity [43]. We can consider the sensitivity of this resonance frequency to small (static) displacements
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Figure 1. (a) A single atom is trapped in a harmonic oscillator potential of frequency ωm centered at position x0, and coupled to
a cavity mode. The cavity mode is externally driven with input field âin and can decay through this driving channel (κ1), or other
undetected routes (κ2). In addition, the excited atom can spontaneously emit into free space at a rate γ. (b) Schematic
representations of the lowest energy levels of the J–C Hamiltonian in the absence of a drive (analogous to considering ε = 0 and
ωl = 0 in (1)), showing up to 2 total excitations. For atomic positions away from the cavity nodes (kcx = 0,π), the frequencies of
the dressed eigenstates

∣
∣nph, ↑/↓

〉′
experience a shift from the uncoupled levels

∣
∣nph, ↑/↓

〉
that depends on atomic position,

Δ̃0 ≈ g2(x)/Δ. The linewidth of these dressed levels is represented by shaded regions in the situation γ � κ explored in this
work. (c) In the studied configuration, reflectance is tuned to be null when the atom is placed at the center of the trap x0, with the
spatial width of this reflection minimum given by �. (d) After an incoming photon is scattered, the initial motional wave function
|ψ0〉 is strongly modified over the length �, to the state |ψr〉 conditioned on the reflection of a photon, or the state |ψother〉
conditioned on scattering into other channels.

x = x0 + δx, which to lowest order yields a new resonance frequency ω̃0(x0 + δx) ≈ ω0 +
g2

0
Δ

[
sin2(kcx0) + sin(2kcx0)kcδx

]
. The maximum sensitivity to a displacement δx then occurs halfway

between a cavity node and anti-node, when kcx0 = π/4 (see figure 1(b)).
Although we take x to be static, one can nonetheless intuitively deduce a single-photon optomechanical

strong coupling parameter, β ≡ g2
0η

Δγ̃(x0) , which characterizes how much the dressed resonance frequency
shifts if the atom is displaced by the zero-point motion, in units of the dressed linewidth. Optimizing over
Δ, one observes that the maximum strong coupling parameter is dictated by the cooperativity,
C ≡ g2

0/(κγ), as βmax = η
√

C/
√

2, where η ≡ kcxzp is the Lamb–Dicke parameter.
We now derive the reflection coefficient of a weak monochromatic, coherent input field, as a function of

atomic position. For this, we distinguish the decay rate of the cavity into the port used to drive the system
(κ1), from the decay into transmission or absorption channels (κ2), so that the total cavity decay rate reads
as κ = κ1 + κ2 (see figure 1(a)). In particular, the input-output formalism [44, 45] allows us to express the
field âout leaving the cavity through the channel associated to κ1 in terms of the input field, âin, as

âout(t) = âin(t) +
√
κ1â(t), (3)

which satisfies,
[

âin(t), â†in(t′)
]
= δ(t − t′), and â†in(out)âin(out) has units of photon number per unit time.

For an atom statically located in position x, one can define Sr(x) as the steady-state reflection coefficient
defined by the ratio between output and input fields [46, 47],

Sr(x) =
〈âout〉
〈âin〉

≈ 1 − iκ1

Δ+Δ0 + iκ/2 − g(x)2

Δ0+iγ/2

, (4)

3
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and a corresponding reflectance, R(x) = |Sr(x)|2, as a function of the atomic position. Intuitively, efficient
optomechanical coupling requires a large contrast in R(x) when the atom is displaced from position x0 by a
small amount, so that the event of detecting a reflected photon reveals significant information about the
atomic position. Experimentally, one can optimize this by adjusting the driving frequency, the atom-cavity
detuning, and the coupling to the detection channel, κ1. First, we choose to drive the atom-like resonance,

Δ∗
0 =

g2(x0)

Δ∗ . (5)

Expanding now the reflectance of the cavity around x0, R(x) = R0 + [(x − x0)/�]2, one can enforce that
the reflectance at position x0 is exactly zero, R0 = 0, so that detection of a reflected photon ensures that the
atom is not placed at that point. Imposing this, one obtains the optimal detuning,

Δ∗ = g(x0)

√
κ1 − κ2

γ
, (6)

which corresponds to critical coupling, where the (dressed) atomic excited state decays equally into the

cavity output,
(
κ1

g2(x0)
Δ2

)
, and other channels,

(
γ + κ2

g2(x0)
Δ2

)
. Maximizing the effective single-photon

coupling parameter β as a function of κ1 for the previous choice of parameters, one obtains κ∗
1 = 2κ2. This

in turn yields the minimum displacement,

�∗/xzp ≡
√

2/
(
η
√

Cin

)
, (7)

over which the dressed atomic frequency shifts by γ̃, thus bringing the system off resonance with respect to
the fixed external laser frequency (see figure 1(c)). The fact that �, representing the length scale over which a
single photon can discriminate the atomic position, depends inversely with the square root of the intrinsic
cooperativity Cin ≡ g2

0/
√
κ2γ will play a prominent role in our following discussion. In particular, we

observe that the maximum strong coupling parameter previously defined scales as β∗ ∼ xzp/�
∗.

3. Role of the atomic motional wave function

Previously, we have established that if the atom was a perfectly localized point particle, a photon would be
reflected with an amplitude and phase given by Sr(x). Intuitively, once the atomic motional state is given by
a wave function |ψ0〉 =

∫
dx ψ0(x) |x〉, one might expect that the state upon scattering a single photon is

given by Sr |1r〉 |ψ0〉+ Sother |1other〉 |ψ0〉, where |1r〉 denotes a reflected photon, and |1other〉 denotes the
scattering into some orthogonal channel (transmission or cavity absorption, see appendix A). While
Sr |1r〉 |ψ0〉 = |1r〉

∫
dx Sr(x)ψ0(x) |x〉 has the natural meaning that the amplitude and phase of the reflected

photon depends on the atomic position, one can also observe that the atomic wave function conditioned on
the detection of the reflected photon becomes,

|ψr〉 =
Sr |ψ0〉
|Sr |ψ0〉|

, (8)

where Sr |ψ0〉 =
∫

dx Sr(x)ψ0(x) |x〉 and the denominator relates to the average reflectance of the cavity,
R ≡ |Sr |ψ0〉|2 =

∫
dxR(x)|ψ0(x)|2. These results, which were up to now argued intuitively, can in fact be

derived rigorously through an adiabatic elimination of the cavity degrees of freedom in the unresolved
sideband regime, ωm � γ,κ [32], where the dynamics of the atom-cavity interface is much faster than the
mechanical evolution of the atom inside the trap and Sr defines a scattering matrix [46, 47] that is diagonal
in the position basis (appendix A).

Intuitively, if the reflectance of the cavity was similar for different atomic positions, R(x) ≈ R,
reflection would reveal no information and the wave function would remain unaffected by detection,
|ψr〉 ≈ |ψ0〉. In contrast, if Sr(x) contains any narrow spatial features, those features are now imprinted onto
the atomic wave function itself. To quantify this, we observe that � sets the characteristic width for the
spatial features imprinted in the wave function (see figure 1(d)). For an atom initially in the ground state of
the trap, the effect of detection will then be large when this critical displacement is smaller than the
zero-point motion of the atom, � � xzp, which corresponds to the strong coupling regime, η

√
Cin � 1.
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Figure 2. (a) Ratio of the per-photon increase in phonons (J ) of an atom in the cavity compared to the free-space result η2, for
different choices of Δ and Δ0. Here κ1 = 2κ2 and kcx0 = π/4 (see main text). When not indicated otherwise, parameters
compatible with reference [35] are used in the figures: g0 = 2π × 0.73 GHz,ωm = 2π × 160 kHz, γ = 2π × 6 MHz,
κ2 = 2π × 3.9 GHz, η = 0.24. The red dotted line follows a resonant driving with the dressed atomic frequency (5), and the
crossed marker indicates the optimal atom-cavity detuning (6). (b) Value of J /η2, maximized over free values of Δ and Δ0

(orange dashed line), as compared to the result associated to Δ∗,Δ∗
0 within our effective model (blue line), for increasing

intrinsic cooperativity tuned by varying g0. The red dotted line corresponds to a master equation simulation of the open system
(see main text). Dashed and dotted black lines follow the scalings J ∼ η2Cin and J ∼ η

√
Cin expected in the regimes η2Cin � 1

(coloured in green), and η2Cin � 1 (coloured in blue), respectively.

4. Unconventional heating

As the initial atomic state |ψ0〉 is modified by events associated to reflection or emission in other channels,
its mechanical energy departs from the trap ground state energy. Following the example of equation (8),
one can calculate the average number of phonons induced by a single incident photon, J = Jr + Jt + Ja,
associated to scattering in the detection channel, cavity transmission/absorption, or atomic spontaneous
emission, respectively, where

Jα = 〈Sαψ0| b̂†b̂ |Sαψ0〉 (9)

for α ∈ {r, t, a}. Note that for each of these emission mechanisms, Jα then represents the number of
phonons in the resulting atomic state 〈Sαψ0| b̂†b̂ |Sαψ0〉 /〈Sαψ0|Sαψ0〉, weighted by the probability that this
event occurs, 〈Sαψ0|Sαψ0〉 (see appendix A).

For conventional scattering from a tightly trapped atom in free space, the characteristic number of
phonons that an incoming photon can excite is characterized by the ratio between the single-photon recoil
energy, ωr, and the mechanical frequency of the oscillator. When expressed in terms of the Lamb–Dicke
parameter, this translates to a per-photon increase in phonons of η2 = ωr/ωm [45].

In our coupled atom-cavity system, this heating effect can now be enhanced. Based on our previous
analysis, we expect that the largest values of J will appear for the choices of cavity-laser and atom-cavity
detunings derived in equations (5) and (6). To validate this, in figure 2(a) we numerically calculate J /η2

for different detunings Δ0 and Δ in a cavity satisfying κ1 = 2κ2. The rest of the parameters are compatible
with current experimental platforms [35] where one can reach large intrinsic cooperativities in the order of
Cin ∼ 23, and a Lamb–Dicke parameter η ∼ 0.24. In agreement with our derivation, we observe that a
driving frequency in resonance with the dressed atomic frequency (red dotted line, equation (5))
corresponds to the region of larger heating (J ∼ 10η2, associated to lighter colors), and that the
atom-cavity detuning that produces maximal heating is compatible with the prediction of equation (6)
(crossed marker).

In figure 2(b) we calculate J /η2 for the choices of Δ0 and Δ predicted to maximize optomechanical
coupling (equations (5) and (6)), but now as a function of the intrinsic cooperativity Cin by allowing the
vacuum Rabi coupling g0 to vary, while maintaining the rest of the experimental parameters (ωm, γ, κ2, η)
as before. We observe that, for each value of intrinsic cooperativity, the heating that arises at the optimal
parameters Δ∗

0 and Δ∗ (blue line) does match a fully numerical maximization of the average number of
induced phonons over free values of Δ0,Δ (orange dashed line), quantitatively confirming our analysis.

While these calculations were based on the scattering matrix given in equation (4) and appendix A, we
additionally validate these results by performing a master equation simulation of the open system (red
dotted line) in a truncated space of up to 2 photons and 50 phonons, where convergence is observed. For
this, we evolve under equation (2) a density matrix with initially no excitations in the system (cavity
photons, atomic excitations or phonons) until the population of the cavity stabilizes (variations smaller
than 1%). Using input-output relations analogous to equation (3) and normalizing by the number of

5
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incoming photons, the three heating contributions can be calculated as Jr/t = κ1/2 Tr
(

b̂†b̂ âρ̂ssâ†
)
/(

ε2/κ1

)
, and Ja = γ Tr

(
b̂†b̂σ̂e−ikc x̂ρ̂sseikc x̂σ̂†

)
/
(
ε2/κ1

)
. Adding them up (red dotted line), we observe in

figure 2(b) good agreement with the scattering matrix calculation for the considered weak driving
amplitude ε2/κ1 = 0.01 MHz.

Interestingly, we observe that the average number of induced phonons J scales differently with the
intrinsic cooperativity in the weak (η2Cin � 1) and strong coupling regimes (η2Cin � 1), which can be
understood from the phase ϕα(x) of the scattering matrices Sα ∼ eiϕα(x) that gets imprinted onto the atomic
wave function. For the optimal parameters (5) and (6), we note that up to linear order in δx/xzp the
imprinted phase associated to emission in undriven channels scales linearly as ϕt/a(x) ∼ η

√
Cinδx/xzp (see

equation (A4)), which corresponds to an added momentum of η
√

Cin/xzp =
√

2/�. Although Sr(x) cannot
be expressed as a phase term, atomic heating can only depend on the total cavity decay rate κ, and not on
the specific channel contributing to this rate. Thus, as κ1 = 2κ2, it follows that the heating rate due to
reflection is twice that of transmission/absorption, Jr ≈ 2Jt .

Adding these three contributions in the weak-coupling limit, (xzp � �, green shaded region of
figure 2(b)), the imprinted momentum affects the entire wave function and the corresponding kinetic
energy increase leads to a heating rate of J� ∼ (xzp/�)2 ∼ η2Cin. In contrast, in the strong optomechanical
coupling limit (xzp � �, blue shaded region), the phase imprinting only applies to a small region � of the
entire wave function, where the cavity is actually sensitive to the atomic position. This leads to a heating
rate of J� ∼ (xzp/�)2 · (�/xzp) ∼ η

√
Cin, matching the scalings observed in figure 2(b) (black dashed and

dotted lines, respectively). The fact that the per-photon heating rate could be one or two orders of
magnitude larger than the expected free space result could be relevant to experiments that probe around the
dressed atomic resonance frequency. Separately, we note that the enhanced heating of an atomic ensemble
has been experimentally observed in a complementary regime, driving around the dressed cavity resonance
of a detuned atom-cavity system [48].

5. Second-order time correlations

We now consider how the strong optomechanical coupling can manifest itself in the second-order time
correlations of the reflected field,

g(2)
rr (t) ≡

〈
â†out(0)â†out(t)âout(t)âout(0)

〉
〈

â†out(t)âout(t)
〉〈

â†out(0)âout(0)
〉 , (10)

which quantifies the relative likelihood of detecting a reflected photon at time t, given the previous
detection of a reflected photon at time t = 0.

We first present an approximate theory, based on the scattering matrix and the dynamics of the
motional wave function following detection of a first reflected photon (|ψr〉, equation (8)). This approach
neglects contributions to g(2)

rr that arise from the anharmonicity ∼Δ of the J–C ladder between 0 → 1 and
1 → 2 excitations (represented by the red arrows in figure 1(b)). We will later show, by comparing with full
master equation simulations, that the scattering matrix captures well important features of g(2)

rr (t) and, in
particular, oscillations due to strong optomechanical coupling. For our previous choice of detunings ((5)
and (6), ensuring R(x0) = 0), a central hole is imprinted in the conditional atomic motional state |ψr〉
(blue wave function in figure 3(a)), reducing atomic population at positions where reflection is more
unlikely. Note that some of the other experimental parameters (κ1/κ2 and η) have been changed relative to
previous figures to make the relevant effects more visible.

To approximate g(2)
rr (t), we consider the limit of a weakly driven cavity, such that the forces associated

with the cavity field are negligible compared to the external trap. The subsequent dynamics of the atomic
state are then dominated by the evolution purely in the trapping potential, |ψr(t)〉 = e−iĤtrapt |ψr〉 before
further scattering events occur, as the atomic motion is highly isolated from its environment. Because of the
overall mirror symmetry in |ψr〉 found for the discussed configuration, a revival of the wave function
appears with periodicity in time π/ωm as the atomic state evolves (red and green wave functions in
figure 3(a), see also the illustration in figure 3(b)).

This time-evolving spatial distribution, combined with the sensitivity of the cavity response to the
position of the atom, should result in a conditional time-dependent reflectance that manifests in g(2)

rr (t) as,

g(2)
rr (t) ≈ |Sr |ψr(t)〉|2

R , (11)

6
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Figure 3. (a) Spatial probability distribution |ψr(t)|2 following the detection of a reflected photon at t = 0, and under the
assumption that the subsequent motional wave function only evolves under the external trapping potential for the configuration
η = 0.05, κ1/κ2 = 1.6, marked with a red cross in figure 4(a). Later times are indicated by vertical shifts of the atomic density,
and the wave function at times π/ωm and 2π/ωm are coloured in red and green, respectively. Following equations (5) and (6), Δ0

and Δ are chosen to satisfy R(x0) = 0. Rest of parameters as in figure 2. (b) Schematic representation of |ψr|2 at time t = 0
(blue) and t = π/ωm (dotted red). (c) Calculation of g(2)

rr (t) along this evolution, using the scattering matrix approach (blue line)
and a master equation simulation of the cavity system (orange dashed line). The inset highlights the fast decay of g(2)

rr (t) at initial
times revealed by the master equation (dashed line), compatible with a decay rate 〈γ̃(x)〉 (continuous line). (d)–(f) Analogous
plots to (a)–(c), now for the case R(x0 + xzp) = 0 (see text).

which compares the reflectance of the cavity at time t after detection of a reflected photon to the initial
reflectance R of the cavity, considering that intermediate scattering events are unlikely over the observation
time.

In figure 3(c) (blue curve), we plot the predicted g(2)
rr (t) from equation (11), for the spatial dynamics

illustrated in figure 3(a). We observe a bunching effect immediately after detection of the first reflected
photon, as detection projects the atomic state into a configuration compatible with that event. The same
cavity response is expected whenever the state revives, which for the symmetric configuration presented
above, occurs with periodicity π/ωm.

To validate these results in the weakly driven regime, we have also performed a full master equation
simulation of the driven system (2) for a weak field input as described in section 3 (orange dashed line in
figure 3(c)). We observe good agreement with the results provided by equation (11) at times t > 1/γ̃. At
shorter times, we note an additional contribution to g(2)

rr (t) that can be understood from the anharmonicity
Δ in the J–C ladder of a motionless atom (see red arrows in figure 1(b)). For large cooperativity, this
detuning exceeds the linewidth of the cavity, Δ∗/κ ∼

√
Cin (see equation (6)), and favours the reflection of

two-photon components. In order to separate nonlinearities arising from motion versus the two-level
structure itself, it is important to note that any transient feature arising in g(2)

rr (0) due to the (dressed)
atomic state will decay at the cavity-enhanced atomic emission rate γ̃, as we further illustrate in the inset,
which is much larger than typical atomic trap frequencies. Previous work on ‘single polariton
optomechanics’ involves adding a two-level atom as a third degree of freedom to an optomechanical system
which explicitly allows for non-Gaussian states to be generated [49, 50]. Here, although we also use an
atom, the non-trivial time-dependent features in g(2)

rr (t) we observe beyond t � 1/γ̃ can then be attributable
to the single-photon strong coupling originating from atomic motion, rather than the two-level nature of
the atom.

Regarding the significance of these time-dependent oscillations in g(2)
rr (t), we point out that they differ

from oscillations in reflection that could be observed, for example, by applying a classical momentum kick
on the atom. In particular, in the latter case, given an atom originally in a stationary state (such as the
motional ground state or a thermal state), an additional optical pulse (or a sudden variation in the trapping
field) could induce motional oscillations in the atom. These would be already visible as temporal

oscillations in the cavity output field
〈

â†out(t)âout(t)
〉

, given a weak probe input. Note that these oscillations

7



New J. Phys. 24 (2022) 023006 J Argüello-Luengo and D E Chang

Figure 4. (a) Scattering matrix calculation of g(2)
rr (0) when driving in resonance the dressed atomic frequency for the

configuration R0 = 0 as defined in equations (5) and (6), as one varies the Lamb–Dicke parameter η and the ratio κ1/κ2. For
κ1 < κ2, where it is not possible to obtain R0 = 0, we numerically maximize g(2)

rr (0) as a function of Δ. Rest of experimental
parameters as in figure 2. Red line follows the relation �(1 +R0) = 6xzp, and red marker indicates the configuration
κ1/κ2 = 1.6, η = 0.05 explored in figure 3. The inset zooms into the region of ratios κ1/κ2 ≈ 1. (b) For the same parameter
choices as (a), we illustrate the overall variation along a full mechanical oscillation, Δg(2)

rr ≡ maxt g(2)
rr (t) − mint g(2)

rr (t).
(c) Reflectance of this atom-cavity system as a function of the position of a motionless atom trapped in an harmonic potential
centered at x0 with Lamb–Dicke parameter η = 0.07 and different values of κ1/κ2 (see legend). Coloured area indicates the
region |x − x0| < �.

would only be significant if the kicking pulse contained many photons, given the small recoil energy of a
single photon compared to the trapping frequency. In the presented scheme, the ‘kick’ comes from the
detection of just a single photon and the large conditional change that it imparts on the motional wave
function, which is the essence of strong single-photon optomechanical coupling. Furthermore, the
conditional nature of this effect causes these oscillations to appear in the higher-order correlation of g(2)

rr (t),
rather than the unconditional reflectance itself.

Furthermore, the period of oscillations can be modified by tuning the driving frequency such that
R(x0 + xzp) = 0 (e.g. replacing x0 → x0 + xzp in equations (5) and (6)). The detection of a reflected photon
results in a conditional wave function whose probability amplitude is increased on one side of the trap, as
illustrated in figure 3(d). After half a period, this state now oscillates to the opposite side of the trap (see
figure 3(e)) which, in this configuration, manifests as antibunching (g(2)

rr (π/ωm) < 1), restoring the natural
periodicity 2π/ωm of the correlator g(2)

rr (t), as we show in figure 3(f).
We now discuss the approximate conditions desired to observe large contrast in the time-dependent

oscillations in g(2)
rr (t). We begin by noting that our previous strong coupling conditions, based on achieving

an effective length �/xzp as small as possible (see equation (7)), do not directly translate into large
oscillations in g(2)

rr (t). In particular, large oscillations require a large difference between the unconditional
and conditional reflectances. Note that in the best case scenario, the detection of a reflected photon
completely conditions the atomic wave function to reflect a second photon, resulting in a conditional
reflectance of unity. Thus, one wants to avoid that the unconditional reflectance is already too close to unity,
R→ 1. This large unconditional reflectance would occur, for example, if �/xzp → 0, such that the atom is
effectively never in the narrow spatial width ∼� where the reflection would differ from unity, resulting in
g(2)

rr (0) → 1.
To better interpret how intermediate situations may be optimal, one can explore a simplified uniform

response in reflectance R(x) = 1 − (1 −R0)Θ
[
�− |x|

]
for a homogeneous mechanical state

|ψ(x)|2 = (2xzp)−1Θ
[
xzp − |x|

]
; where Θ[x] denotes the step function that is 1 for x > 0 and 0 otherwise.

In this toy model, one obtains that the maximum value of g(2)
rr (0) occurs when �(1 +R0) ∼ xzp, which

defines an optimal (non-zero) length for each choice of R0. The optimal configuration is a balanced cavity
(R0 = 0), where one would desire � ∼ xzp.

To further illustrate this, in figure 4(a) we calculate the scattering matrix approximation to g(2)
rr (0) (11),

using the same parameters for g0, γ, and κ2 as in the experiment of reference [35] and figure 2(a). However,
we now allow the Lamb–Dicke parameter (experimentally tunable through the intensity of the trapping
potential) and the output port decay rate κ1 to vary. Choosing for each set of η and κ1 the atom-cavity
detuning that minimizes R(x0), and driving in resonance with the dressed atomic frequency for an atom
positioned at x0, we heuristically observe that the largest values of g(2)

rr (0) ∼ 3 appear in a region compatible
with �(1 +R0) = 6xzp (red continuous line), which aligns with the intuition built from our toy model. In
figure 4(b) we further show the overall variation of g(2)

rr (t) along a full mechanical oscillation,
Δg(2)

rr ≡ maxt g(2)
rr (t) − mint g(2)

rr (t), observing that the largest values Δg(2)
rr ∼ 2 appear in a region

compatible to those with larger g(2)
rr (0).

Here, one can also see a sharp change in g(2)
rr (0) around κ1 = κ2, which is more evident as η < 0.1 (see

inset in figure 4(a)). In this latter regime, the effective atomic displacement over which the reflectance of the
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Figure 5. Average number of induced phonons per photon, normalized by the free-space expectation, J /η2, for an atom in a
thermal state ρT associated to temperatures kBT/ωm = 0.01, 1, 3 (see legend), and increasing values of atom-cavity coupling. The
rest of the parameters are chosen as in figure 3(a). We observe that the transition between the weak (J ∝ η2Cin, black dashed
line) and strong coupling limits (J ∝ η

√
Cin, black dotted line) appears at the critical effective length [� = xT] marked with

coloured arrows.

cavity varies �/xzp ∼ (η
√

Cin)−1 becomes much larger than the characteristic spread of the atomic state and,
therefore, the response of the cavity becomes less sensitive to the position of the atom, as illustrated in
figure 4(c). For κ1/κ2 � 1, the fact that no reflection occurs for an atom at the center of the trap (R0 = 0)
defines a high relative difference in the response of R(x) that highly discriminates this central position
when a reflected photon is detected (see blue and purple lines). This translates into a large response
g(2)

rr (0) ∼ 2 even if the absolute variation of R(x) along the zero-point motion of the atom is very reduced
as κ1 approaches κ2 (purple line). However, when the cavity leakage through the undetected channel
exceeds the emission in the driven port (κ1 � κ2) there is no possible choice of atom-cavity detuning that
allows for R0 to vanish (green line, see equation (6)). As a consequence, the relative difference in reflectance
gets suppressed in this regime, ΔR/R0 � 1, and detection of a reflected photon barely provides any
information about the atomic position, which leads to the observed values g(2)

rr (0) ∼ 1 when η � 1.

6. Finite temperature

In a real experimental situation, limitations in cooling or atom transport can prevent the atom from being
prepared in its motional ground state, and instead the motional state might be given by a thermal density
matrix at temperature T,

ρ̂T =
e−Ĥtrap/(kBT)

Z
, (12)

where kB is the Boltzmann constant and Z = Tr
(

e−Ĥtrap/(kBT)
)

the partition function. An important

consequence is that its steady-state position uncertainty xT ≡
√

Tr (x̂2ρ̂T ) becomes temperature broadened

as xT/xzp ≈
√

2nph + 1, where nph ≡ Tr
(

b̂†b̂ρ̂T

)
is the thermal phonon number that approximates

nph ≈ kBT/ωm in the limit nph � 1.
In analogy to the role played by xzp in the zero-temperature limit, xT represents the characteristic

temperature-dependent length of the system, and strong optomechanical coupling is expected to occur
when xT ∼ �. To illustrate this, in figure 5 we calculate the average number of additionally induced phonons
caused by a single photon as the intrinsic cooperativity increases, where each contribution can be obtained

from the scattering matrix description as Jα = Tr
(

b̂†b̂ Sαρ̂TS†α

)
. Note that phonons already present in the

thermal state now need to be subtracted from the number of phonons in the final conditional state, so that

the net number of phonons added is J = Jr + Jt + Ja − Tr
(

b̂†b̂ ρ̂T

)
. Presenting the calculation for three

different temperatures, we observe for each of them that xT = � (marked with arrows) defines the crossover,
where J changes in scaling from η2Cin to η

√
Cin. While this transition point occurs at smaller values of

η2Cin as temperature is increased, the magnitude of the strong coupling effect also decreases, as evidenced
by the decreased heating J /η2.

One can also analyze the effect that temperature has on the second-order correlations previously
discussed. In figure 6 we use the scattering matrix formalism to calculate g(2)

rr (t) for different initial thermal

9
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Figure 6. Value of the second-order time correlation function at times g(2)
rr (0) (a) and g(2)

rr [π/(2ωm)] (b), as a function of the
temperature T of the initial thermal state and the effective Lamb–Dicke parameter, η̃ = ηxT/xzp , for fixed coupling ratio
κ1/κ2 = 1.6 and the rest of parameters chosen as in figure 4. (c) Evolution of g(2)

rr (t) associated to five different values of
temperature for the choice of effective Lamb–Dicke parameter η̃ = 0.05. (d) Second-order time correlations half a mechanical
oscillation away from initial detection, g(2)

rr (π/ωm), for different driving frequencies and temperatures of the initial atomic
thermal state, and fixed η = 0.05. Bunching (light yellow) prevails for driving resonant with the atom-like frequency,
[R(x0) = 0] (green-dashed line, equation (5)), while antibunching (dark blue) appears for a detuning compatible with
[R(x0 ± xT ) = 0] (red dotted lines, see text). Calculations are performed within the scattering matrix model (see main text),
observing convergence when allowing for up to 150 phonons in the explored range of temperatures. The rest of parameters are
chosen as in figure 2.

states. For this, we assume that the dynamics of the thermal state conditioned to reflection of an initial
photon, ρ̂T,r = Srρ̂TS†r/Tr

(
Srρ̂TS†r

)
, is dominated by the evolution purely in the trapping potential,

ρ̂(t) = e−iĤtrapt ρ̂ eiĤtrapt , so that one can approximate the second-order correlator as
g(2)

rr (t) ≈ Tr
(
Srρ̂T,r(t)S†r

)
/Tr

(
Srρ̂TS†r

)
.

The fact that the characteristic width of the state, xT, now depends on temperature yields some
interesting phenomena. First, although equation (11) was formally derived assuming a pure initial state, one
can see that g(2)

rr (0) only in fact depends on the position probability distribution, suggesting that the purity
of the state is irrelevant. Thus, one might expect g(2)

rr (0) to be independent of temperature, as long as the
trapping frequency is adjusted so that the effective Lamb–Dicke parameter η̃ = ηxT/xzp remains constant.
This independence is illustrated in figure 6(a), where we plot g(2)

rr (0) as a function of temperature and η̃.
However, the thermal nature of the state is expected to play a role in the subsequent dynamics of g(2)

rr (t).
To investigate this, in figure 6(b) we show the second-order correlation function associated to time
t
′
= π/(2ωm) (the two reflected photons are separated by a quarter of the mechanical oscillation period). At

this time delay, we see that g(2)
rr (t′) does retain a temperature dependence for fixed η̃, and tends toward 1 at

larger temperatures.
To understand this, note that following the detection of the first reflected photon, evolution under Ĥtrap

during a time t′ = π/(2ωm) causes the position quadrature to fully transform to momentum, and vice
versa. In particular, the spatial width of this conditioned state at time t′, Tr

(
x̂2ρ̂T,r(t′)

)
/x2

zp, equals the

width in momenta at initial time, Tr
(
p̂2ρ̂T,r(0)

)
/p2

zp, where pzp ≡ 1/(2xzp). On the other hand, the
resulting increase in kinetic energy due to the momentum imparted by detection for fixed η̃ is given by
∼�−2 ∼ n−1

ph . This becomes negligible compared to the kinetic energy of the thermal state ∼nph. It then

follows that Tr
(
p̂2ρ̂T,r(0)

)
≈ Tr

(
p̂2ρ̂T

)
in the regime nph � 1, which leads to the observed limit

g(2)
rr (t′) → 1. Thus, by fixing η̃, the overall variation of g(2)

rr (t) in the limit nph � 1 then oscillates between
the result g(2)

rr (0) also expected at zero temperature, to the value g(2)
rr (t′) ∼ 1 appearing for nph � 1 after one

quarter of the mechanical period, as we plot in figure 6(c). As a consequence, higher temperature can in fact
lead to greater contrast in the temporal oscillations of the second-order correlation function.

Finally, in figure 6(d), we plot g(2)
rr (π/ωm) as a function of atom-laser detuning and temperature. Here,

we fix the trapping frequency ωm to yield a (zero-temperature) Lamb–Dicke parameter of η = 0.05. We
observe that after half a mechanical oscillation, bunching and antibunching occur for driving frequencies
that satisfy the conditions R(x0) = 0 (green dashed line) and R(x0 ± xT) = 0 (red dotted line), respectively.
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The latter condition now depends on the temperature of the state through the temperature-broadened xT,
so that driving frequencies associated to bunching and antibunching separate as the temperature increases.
Taking now the limit of large temperature, we observe that second-order correlations tend to the Poissonian
result g(2)

rr = 1 as the change in the wave function, restricted to a region �, is less significant when the
temperature increases and the atom is more spread. Still, we note that deviations from the Poissonian result
g(2)

rr = 1 of order 40% can be readily observable for phononic occupations on the order of nph ≈ 7,
compatible with reference [35].

7. Conclusions and outlook

Taking advantage of the narrow linewidth of a single atom, we have shown that it is possible to reach the
single-photon strong coupling regime of optomechanics, even when the cavity linewidth is prohibitively
large. We have shown that this optomechanical strong coupling can give rise to anomalously large motional
heating, and to motionally-induced oscillations in the second-order correlation function of the light
reflected from the cavity.

From the perspective of utilizing atom-cavity systems to realize coherent spin-photon interfaces, such as
for quantum information processing, our work shows that there is the possibility to get strongly entangled
with other undesired degrees of freedom, in the form of phonons. It is therefore important to specifically
account for this effect when analyzing and optimizing protocols, especially in systems with high
cooperativity and large spatial variations of the vacuum Rabi splitting g(x). On the other hand, such a
platform would be unique in enabling the study of quantum optomechanics in the strong coupling regime.
For example, it would be interesting to investigate how to exploit such systems to realize strongly
non-Gaussian dynamics. Separately, with the possibility to scale atom-cavity interfaces to multiple atoms
and/or cavities [35], it might be possible to observe interesting strongly correlated optomechanical states at
the many-body level [51].
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Appendix A. Scattering approach for a single atom

In equation (4), we have provided the relation between the reflected and input fields for a coherently,
weakly driven cavity and when the atom is placed in a fixed position [44]. Here, we will show that
equation (4) relates to the scattering matrix for an atom whose motion constitutes a dynamical degree of
freedom [46, 47]. In particular, we consider a situation where the joint cavity-atom-motional system is in its
ground state |0c↓〉 |ψ0〉, and a single monochromatic photon of frequency ωl (or corresponding detuning
Δ0) is sent in. The S-matrix formally provides the transformation from the total input state
|Ψin〉 = |0c↓〉 |ψ0〉 |1in〉, to the output state at infinite time, |Ψout〉 = S |Ψin〉. For the output, we take into
account that the input photon could have been emitted through a detectable reflection channel with rate κ1

(|1r〉), undetectable cavity channels (transmission or loss) with rate κ2 (|1t〉), or spontaneously decayed
with rate γ after exciting the atom (|1a〉). As the total energy of the system is conserved, the frequency of the
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output photon carries information about any possible change in the phononic state of the atom. To
suppress any effect arising from this additional entanglement, we consider that the implemented detection
scheme is not frequency-resolving. We also focus on the unresolved sideband regime, ωm � γ,κ, where the
characteristic time-scale of the optomechanical interaction between the cavity and the internal state of the
atom is much faster than the atomic dynamics inside the mechanical trap, which allows to describe the
response of the cavity as effectively diagonal in the atomic position basis.

For an atom fixed in position x, the input photon then scatters as,

S(x) |1in〉 = Sr(x) |1r〉+ St(x) |1t〉+ Sa(x) |1a〉 , (A1)

which obey the relation |Sr(x)|2 + |St(x)|2 + |Sa(x)|2 = 1 to conserve the norm of the scattered state. To
calculate these components, each of the matrix elements can be expressed in terms of the eigenvectors,
|β(x)〉, and eigenvalues, λβ(x), of the effective (non-Hermitian) atom-cavity Hamiltonian
Ĥeff(x) = −(Δ+Δ0 + iκ/2)â†â − (Δ0 + iγ/2)σ̂†σ̂ + g(x)

(
σ̂â† + σ̂†â

)
as,

Sr(x) = 1 + iκ1

∑
β

〈1c↓|β(x)〉 1

λβ(x)
〈β∗(x)|1c↓〉,

St(x) = i
√
κ1κ2

∑
β

〈1c↓|β(x)〉 1

λβ(x)
〈β∗(x)|1c↓〉,

Sa(x) = i
√
κ1γ eikcx

∑
β

〈0c↑|β(x)〉 1

λβ(x)
〈β∗(x)|1c↓〉,

(A2)

which requires the orthogonality relation 〈β∗(x)|β(x)〉 = 1 due to the non-Hermitian nature of the
Hamiltonian. To calculate these scattering elements, one can note that this Hamiltonian is block-diagonal
and, given the single-photon input, one can restrict to the relevant subspace spanned by states
|0c, ↑〉 |1c, ↓〉. Projecting there, one gets,

Sr(x) = 1 − iκ1

Δ0 +Δ+ iκ/2 − g(x)2

Δ0+iγ/2

,

St(x) =
−i

√
κ1κ2

Δ0 +Δ+ iκ/2 − g(x)2

Δ0+iγ/2

,

Sa(x) =
−i

√
κ1γ

Δ0 +Δ+ iκ/2 − g(x)2

Δ0+iγ/2

g(x)eikcx

Δ0 + iγ/2
.

(A3)

This leads to the scattering elements Sα(x) associated to the different possible routes the input photon could
eventually decay through, α ∈ {r, t, a}. A more rigorous derivation based on Nakajima–Zwanzig leading to
an analogous result can be found in [32].

If one now considers the atom to be initially in a superposition of different locations inside the cavity,
|ψ0〉 =

∫
dxψ0(x) |x〉, the probability of decaying in either of the emission channels is given by,

|Sα |ψ0〉|2 =
∫

dx|Sα(x)|2|ψ0(x)|2 and, if a photon |1α〉 was detected in either of these channels, the
measurement then projects the atomic wave function into the conditional state, |ψα〉 = Sα |ψ0〉 / |Sα |ψ0〉|.

To get a better intuition on how the scattering matrices depend on atomic position, one can investigate
these equations in the limit Cin � 1 for the optimal choice of parameters motivated in the main text (5)
and (6), and κ1 = 2κ2. Then, expanding Sα to linear order in δx = x − x0, one finds,

Sr(x) ≈ −i
η
√

Cin√
2

δx

xzp
,

St(x) ≈ − 1√
2

(
1 + i

η
√

Cin√
2

δx

xzp

)
,

Sa(x) ≈ 1√
2

[
1 + i

(
η
√

Cin√
2

+ η

)
δx

xzp

]
,

(A4)

which are valid for |δx| � �. In the opposite limit, |δx| � �, the cavity becomes out of resonance and one
recovers perfect reflectance: |Sr(x)| → 1 and |St(x)| , |Sa(x)| → 0.
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