
Lightning Talks of EduHPC 2022
Apan Qasem1, Hartwig Anzt2,3, Eduard Ayguade4, Katharine Cahill5, Ramon Canal4, Jany Chan6,

Eric Fosler-Lussier6, Fritz Göbel2, Arpan Jain6, Marcel Koch2, Mateusz Kuzak7,
Josep Llosa4, Pratik Nayak2, Raghu Machiraju6, Xavier Martorell4, Shameema Oottikkal5,

Marcin Ostasz8, Dhabaleswar K. Panda6, Dirk Pleiter9, Rajiv Ramnath6 Maria-Ribera Sancho4,
Alessio Sclocco7, Aamir Shafi6, Hanno Spreeuw7, Hari Subramoni6, Karen Tomko7

1Department of Computer Science, Texas State University, USA
2Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

3University of Tennessee (UTK), Knoxville, USA
4Barcelona Supercomputing Center and Universitat Politècnica de Catalunya, Spain

5Ohio Supercomputer Center, USA
6College of Engineering, The Ohio State University, USA

7Netherlands eScience Center, The Netherlands
8ETP4HPC, The Netherlands

9PDC Center for High Performance Computing and KTH Royal Institute of Technology, Sweden

Abstract—The lightning talks at EduHPC provide an oppor-
tunity to share early results and insights on PDC education and
training efforts. The four lightning talks at EduHPC 2022 cover
a range of topics in broadening PDC education: (i) curriculum
development efforts for the European Masters in HPC program,
(ii) bootcamps for CI professionals who support the running of
AI workloads on HPC systems, (iii) a GPU programming course
following the Carpentries model and (iv) peer-review assignments
to help students write efficient parallel algorithms.

Index Terms—computer science education, high performance
computing education, Masters curriculum, CI professional train-
ing, distance learning, peer review assignments, GPU computing

I. INTRODUCTION

The breakdown of Dennard Scaling coupled with the need
for increased performance per watt have ushered in the
era of ubiquitous parallel computing. Integration of high-
performance CPUs with GPUs is now common in all classes
of HPC systems. Heterogeneous parallel systems have also
permeated other computing domains such as mobile process-
ing, cloud computing and the Internet of Things (IoTs). Con-
comitant to these architectural changes, the workloads for HPC
systems have become more diverse. ML practitioners routinely
use accelerated computing and a wide range applications are
being developed with Cloud-HPC in mind.

Given this state of pervasive parallelism, it is imperative
that computing students develop a broad understanding of
parallel, heterogeneous and distributed computing so that they
are equipped with the requisite skills to program these complex
systems. Furthermore, considering that educational context
and the needs of students can vary across institutions, it is
important to develop and explore a wide range of approaches
of teaching PDC. EduHPC, the Workshop on Education for
High-Performance Computing, provides a forum to share
such efforts on improving PDC education. The lightning
talks at EduHPC specifically focuses on new and innovative
approaches to teaching PDC that may not have been fully

tested in the field. This paper presents an overview of the four
lightning talks at EduHPC22 which cover a range of topics:

• European Masters in HPC: Recently, the EUMas-
ter4HPC project has been started with the ambition of
boosting the education of HPC experts at universities
throughout Europe. Within this project, a future European
curriculum for a Master in HPC is being developed. This
talk reports on initial efforts towards establishing a set of
necessary skills.

• AI Bootcamps: A team at the Ohio Supercomputer
Center and the Ohio State University is developing a
series of bootcamps for Cyberinfrastructure (CI) Profes-
sionals to increase support expertise for researchers with
Artificial Intelligence (AI) workloads running at research
computing facilities. The talk shares experiences from
completing the first six-week virtual program of core
foundations topics in AI.

• GPU Carpentry: GPUs are nowadays used to accel-
erate applications in multiple scientific domains, and
is therefore necessary even for researchers outside of
computer science to learn how to use them. However,
traditional GPU programming courses are often aimed at
people with a computer science or HPC background. This
talk presents an open-source GPU programming course,
following the Carpentries pedagogical style which makes
it accessible to non computer scientists.

• Peer-review Assignments This talks presents a peer
review based assignment approach that helps students
focus on writing efficient parallel algorithms for different
hardware by providing a build, test continuous integra-
tion framework. The initial implementation context is
research software engineering (RSE) with a goal to help
computational scientists and researchers produce scalable,
sustainable and reproducible software.

Section II describes the European Masters talk, Section

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or 
reuse of any copyrighted component of this work in other works. DOI 10.1109/EduHPC56719.2022.00011



III describes the AI bootcamp talk. Section IV describes the
GPU Carpentries talk and finally Section V describes the
peer-review assignments talk.

II. TOWARDS A EUROPEAN CURRICULUM
FOR A MASTER IN HPC

By: Dirk Pleiter, Maria-Ribera Sancho, Xavier Martorell,
Josep Llosa, Ramon Canal, Eduard Ayguade, Marcin Ostasz

In 2018, EuroHPC [1] was established as an organization
for leading the European supercomputing efforts. Through
this organization, the European Commission, as well as the
EuroHPC participating states, are massively investing in an
HPC-based infrastructure, as well as the development of
HPC-related technologies. A major challenge to this effort
being successful is the availability of well-trained experts in
the area of HPC. For this reason, EuroHPC is funding the
EUMaster4HPC project [2] that has, in particular, the goal of
developing a new and innovative European Master program
for HPC.

This program involves both, the education of two cohorts
of Master students involving 8 universities distributed all over
Europe as well as the development of a European curriculum.
The latter involves a large number of partners including
additional universities, supercomputing centers, and industrial
organizations.

In this context, the following strategy has been adopted:
Starting-point is the documentation and analysis of require-
ments of the future European labor market for HPC experts
through a list of skills. This list of skills can be used as a
checklist when creating the framework and structure of a Eu-
ropean Master program, defining its learning outcomes as well
as the academic content and modules for both, fundamentals
and specializations.

In this short paper, we report on the methods adopted for
assessing the requirements starting with the description of the
methodology in section II-A. Thereafter, initial results will be
presented in section II-B before providing an outlook on the
next steps in section II-C.

A. Methodology

In a first step towards the creation of a list of necessary
skills, job offers for positions in the academic and non-
academic sectors have been collected separately.

In a second step, the job advertisements were analyzed
to identify a set of job profiles and for each job profile
a set of skills. One challenge of this approach is that job
profiles are not standardized and different employers follow
different definitions and interpretations. Sufficient similarity of
different job profiles could be identified such that they can be
understood as classes of jobs with profiles that are sufficiently
distinguishable.

This information was the basis for the next steps. For the
non-academic sector consisted of collecting input from stake-
holders through online questionnaires as well as structured
interviews. The questionnaire and the input for the interviews
were based on the identified job profiles and associated set

of skills. The interview partners were encouraged to consider
the input as a starting point for dialogue and to express their
views on which job profiles and which skills they considered
to be important. The purpose was also to reduce a possible bias
introduced by the initially chosen set of job advertisements.

In the academic sector, the initial study was discussed in an
internal workshop. The partners provided their input on the
classification, areas, and skills found in the initial study. In
particular, the participants were asked to check that (1) there
were no missing profiles, (2) the profiles included all the hard
skills in their area of expertise, and (3) the list of soft skills
was complete.

Finally, the stakeholder feedback was used for compiling a
resulting list of skills.

B. Initial Results

For this initial study, 135 job offers from the academic
sector, as well as almost 450 job offers published by Barcelona
Supercomputing Center (one of the largest research centers
in HPC technologies in Europe) during the last 5 years have
been collected. For the non-academic sector, about 30 adver-
tisements have been gathered that mainly concerned positions
based in Europe. The main sources had been HPCWire1 and
HiPEACJobs2 in Spring 2022.

From the advertisements in the academic sector, the follow-
ing job profiles had been identified (in brackets the fraction
of advertisements is shown): Applications (30%), parallel
programming and tool support (18%), DevOps (31%), man-
ager/consultant (0.5%), and system architect (21%).

The evaluation of the job offers from the academic sector
performed in the internal workshop, resulted in the following
set of profiles: Application / Domain Expert, Parallel Program-
ming and Tools Support/Solution Designer, DevOps (System
Support and Development), and System Architect. Regarding
the Manager/Consultant profile, it was decided not to include
the profile in the Master curricula as those job offers ask for
senior-level experience and this is not the target group of this
Master. For all the proposed profiles, the needed hard skills
and the common soft skills were identified.

The evaluation of the job offers from the non-academic
sector resulted in a slightly different set of job profiles:
Computational scientist, hardware developer, system software
developer, HPC architect, system administrator, and applica-
tion software developer. In total 6 interviews with a duration
of 1-2 hours were conducted. Additionally, 12 replies to an
online questionnaire had been collected. For these interview
with non-academic stakeholders we aimed for high diversity.
We had interview partners targeting different market segments,
e.g. a semiconductor company, HPC technology solution and
platform providers, HPC integrators, and companies providing
products and services in the area of aircraft and oil&gas mar-
ket. Furthermore, both large-scale European and international
companies as well as SMEs have been interviewed.

1https://jobs.hpcwire.com
2https://www.hipeac.net/jobs



The interview partners from the non-academic sector con-
firmed the identified list of job profile classes as being the most
relevant. It was, however, also noted that new job profiles may
become relevant. One example is the possible job profile of
a data architecture specialist, who is expected to come with
knowledge and experience in data-centric architectures that
may be optimized for high-throughput computing applications.
Also in the context of industrial research and development
efforts related to the design of digital twins will require
additional skills like the ability to use AI models or expertise
in data extraction and visualization.

Several interview partners stressed the importance of a
broad skill set, which suggests that it will be important for the
planned curriculum to comprise a large set of skills adaptable
to many job profiles. A recurring topic during the interviews
was both, the understanding of modern hardware, the relevant
architectures and technologies as well as the ability to exploit
the underlying hardware resources efficiently. This means that
good knowledge and understanding of computer architectures
must be foreseen as an important part of the Master in HPC
education.

The interview partners also highlighted that they consider
a good understanding of the basic principles more important
than a detailed knowledge of certain technologies. The ratio-
nale is that most architectures and technologies are based on
principles that stay relevant for longer periods of time, like
the principles of a von Neumann processor architecture that
continue to apply to all current HPC processors as well as
compute accelerators like GPUs.

One outcome of the interviews was the reaffirmation of
the importance of soft skills. The importance of soft skills
in IT industry has already been identified more than 10 years
ago (see, e.g., [3] and references therein). Different ways of
training soft skills in the context of computer science education
have been proposed (see, e.g., [4], [5]). But none of these
are widely implemented as education typically focuses on
technical skills. In the context of our efforts the need for
soft skills training was raised by several of the interviewed
companies. While there is overlap with earlier formulated
requirements (see, e.g., [3]) the feedback contains interesting
nuances. Interviewees suggested focusing on developing high
levels of curiosity, encouraging a willingness to ask questions
and relying on other people’s expertise, and encouraging
ambition to acquire more skills and knowledge.

C. Outlook

During an early phase of the EUMaster4HPC project, which
has the ambition of formulating a curriculum for a European
Master in HPC, an extensive list of skills has been collected
that reflect the requirements of the HPC-related labor market.
The project is now starting the work on the curriculum. The list
of skills will serve as a checklist to guide this effort and ensure
that students will be trained taking into account the needs
of future employers. This approach will allow to highlight
highly interesting career opportunities, which can be used for
attracting more students to pursue a Master in HPC degree.

Acknowledgments
The authors would like to thank the various organizations

for their significant efforts to provide input through question-
naires and interviews. Funding for this work has been received
from the EuroHPC Joint Undertaking under Grant Agreement
101051997 (EUMaster4HPC).

III. AN ARTIFICIAL INTELLIGENCE BOOTCAMP FOR
CYBERINFRASTRUCTURE PROFESSIONALS

By: Katharine Cahill, Jany Chan, Eric Fosler-Lussier, Arpan
Jain, Raghu Machiraju, Shameema Oottikkal, Dhabaleswar

K. Panda, Rajiv Ramnath, Aamir Shafi, Hari Subramoni,
Karen Tomko

Artificial Intelligence (AI) is used in many aspects of
modern life such as language translation and image analysis. In
addition to consumer and business applications, researchers are
increasingly using AI techniques in their scientific processes.
The growth in AI is heavily dependent on new Deep Learning
(DL) and Machine Learning (ML) schemes. As datasets and
DL and ML models become more complex the computing
requirements for AI increase and researchers turn to high
performance computing (HPC) facilities to meet these needs.
This is leading to a critical need for a Cyberinfrastructure
(CI) workforce that supports HPC systems with expertise in
AI techniques and underlying technology.

We are piloting a bootcamp-style training model to ad-
dress this AI workforce gap. Our premise, after attending
the bootcamp CI professionals are better equipped to provide
computing and data services to AI research users. This in turn
will broaden adoption and effective use of advanced CI by
researchers in a wide range of disciplines and will leave an
impact on science and corresponding benefits to society from
their successes.

In this lightning talk we will give an overview of our
CyberTraining project to pilot the bootcamps, our learning
objectives and experiences from our inaugural offerings.

A. Description of Work
Our AI Bootcamps for CI professionals have the overarch-

ing goal of increasing the confidence and effectiveness of their
support of AI researchers. We leverage the CI professionaliza-
tion efforts of the Campus Research Computing Consortium
(CaRCC) to organize our training outcomes based on four
career facings [6]: Strategy/Policy facing, Researcher facing,
Software/Data facing, and Systems facing. We can identify
learning outcomes for each CI facing and organize training
tracks customized to specific roles. For this pilot we are
focused on developing a comprehensive training experience
for Software/Data facing CI professionals. The AI Bootcamp
is offered virtually in two sections of six weeks each. Taking
advantage of tools used in the CS classroom as well as
those developed at OSC for access to research computing
resources, this program combines lecture, discussion, and
hands-on activities to engage participants.

The novelty of this project is its holistic approach to
addressing the AI expertise gap for CI professionals. Our



project team is comprised of CI professionals, experienced in
training CI users and providing CI operations, and Computer
Science faculty members, experienced in offering courses in
Data Analytics, AI, and High-Performance AI with active AI-
based research programs. Drawing on extensive experience
and materials in hands-on experiential learning for AI, the
team is continuing to put together a comprehensive curriculum
spanning foundational AI, software frameworks, and high-
performance computing for AI in a modularized virtual format
to minimize barriers to access for the CI professional learner.

We have identified learning outcomes and developed cor-
responding curricula for the AI Bootcamp Core foundations
track as a pre-requisite track for all CI Professionals. The
curricula included the following topics: Python tools for data
Analysis and typical data types (tables, images, time series,
maps and text); Fundamentals of Machine Learning, Bayesian
Modeling and Neural Networks; Machine Learning and Deep
Learning software frameworks; Parallel and distributed DNN
training; Data science using Dask; Challenges in exploiting
HPC technologies for DL, ML, and data science.

B. Outcomes

We carried out a six-week AI Bootcamp covering the Core
Foundations Track (CFT) from March 22nd to April 27th,
2022. The bootcamp was offered two days per week for two
hours virtually via Zoom. The instruction included a mix
of lectures, questions and answers, and exercises. Exercises
progressed from notebooks provided via web interfaces to
command line exercises submitted via traditional HPC batch
submission at Ohio Supercomputer Center. We have utilized
classroom services offered by Ohio Supercomputer Center and
Google Colab.

There was strong interest from the community in the boot-
camp. We had 156 responses to our Call for Participation
(CFP) within 48 hours of posting. We invited 62 professionals
to attend the initial bootcamp. These participants represented
50 organizations from 28 states. We are getting ready for
our Fall 2022 AI Bootcamp covering the Software and Data
Facing Track (SDFT). It is being offered to participants of the
spring CFT bootcamp. More than half of the spring attendees
are planning to return. The SDFT bootcamp will provide a
deeper dive into the subjects visited last spring by walking
through the steps in a typical AI pipeline. For each step in
the pipeline, we will cover best practices and state-of-the-art
software and tools. We will also discuss common pitfalls and
lessons learned. In response to participant feedback, we will
include experiences for troubleshooting common problems

We surveyed the participants after the spring CFT boot-
camp. Participants were overwhelmingly positive about the
materials and activities and had improved confidence in their
understanding of AI projects. One respondent said, “The
bootcamp makes me better understand how users are using
the AI packages installed on our systems. It also expands my
knowledge of how to run and examine parallel and distributed
jobs, hardware requirements like memory, GPU, IB, etc when
supporting AI work. I also got a chance to sharpen my python

programming skills.” Our SDFT session will complete before
EduHPC. We will include our experiences from the fall SDFT
bootcamp in our talk. We plan to offer both sessions again in
spring 2023.

Acknowledgement

This work is sponsored by NSF award #2118250

IV. A GPU PROGRAMMING LESSON IN THE
PEDAGOGICAL STYLE OF THE CARPENTRIES

By: Alessio Sclocco, Hanno Spreeuw, Mateusz Kuzak

A. Introduction

Graphics Processing Units (GPUs) are not anymore con-
fined to the domain of computer graphics but are nowadays
used to accelerate a wide range of applications, from artificial
intelligence to science and engineering. GPUs are such an
integral part of the current landscape of high-performance
computing (HPC) that seven out of ten systems in the June
2022 TOP500 [7] are powered by them; among these GPU-
powered systems, there is also Frontier, the first exascale
supercomputer.

Being able to use these devices is therefore becoming even
more important for students and software engineers alike, in
particular the ones working in research and academia. How-
ever, most GPU programming courses are aimed at learners
with a computer science background and require notions in
computer systems that are not always available to students
and practitioners in other fields.

Within the Netherlands eScience Center, we have been
teaching the principles of GPU programming, both internally
and externally, since at least 2015 [8]. When teaching we
noticed that most learners without a background in computer
science would struggle to follow the more theoretical parts
of our course. Moreover, these learners would also find it
difficult to interact with a typical HPC system via the terminal
to complete the assignments.

The Carpentries [9] is a global community with a goal of
teaching programming and data science skills to researchers,
and to do so the Carpentries, and the communities around it,
develop lessons based on the pedagogical principles presented
in [10]. The Carpentries courses are not taught in the classic
classroom style, structured around lectures with learners pas-
sively listening to the instructor, but by writing code together
with the instructor and doing exercises. This approach is called
participatory live coding [11], and it has proven very effective
in teaching programming to novices and researchers without
a computer science background, and therefore we decided to
develop a new GPU programming course based on it.

In this paper we introduce the GPU programming lesson
developed by the Netherlands eScience Center according to
the pedagogical principles of the Carpentries; this lesson is
currently available in the Carpentries Incubator [12] under an
open-source license.



B. GPU Programming Carpentries Lesson

The development of this lesson began in early 2021, within
the first edition of the Carpentries lesson development study
group [13], and since then the lesson has been taught four
times, both online and in-person. The lesson is meant to be
taught in one full day, but can be naturally split into two half-
days; we prefer this latter approach when teaching online to
avoid screen fatigue.

As mentioned in Section IV-A, the lesson is almost en-
tirely hands-on, with frontal teaching confined mostly to the
introduction, while for the majority of the course the learners
type along the code with the instructors. The programming
languages used in the lesson are Python and CUDA; Python
is used both as a way to achieve GPU acceleration without
too much effort, and to manage the GPU when writing CUDA
code.

Requirements to participate in the course are therefore
maintained reasonably low: we only ask learners to be familiar
with programming in general, and Python and Numpy in
particular, and do not require them to have previous experience
in HPC. Furthermore, learners are not required to have a
programmable GPU on their laptops or have access to a GPU
remotely because the whole course is taught by writing code in
a Jupyter notebook via the browser. We therefore only require
them to have a laptop with a reasonably modern browser
installed. The lesson has been tested and taught using both
Google Colab and SURF’s JupyterHub for education.

There are three identifiable parts in the lesson, with this
structure loosely based on Minto’s pyramid principle [14],
so that the complexity of the concepts increases during the
course, but each part provides valuable content for some of
the learners. The three steps are the following and are based
on different ways to use GPUs when writing software: 1)
use GPU accelerated libraries, 2) accelerate Python code with
decorators, and 3) write CUDA kernels.

The first part of the lesson is aimed at Python programmers
that make extensive use of libraries in their code. We show
them how they can improve the performance of the presented
code by replacing Numpy and SciPy calls with equivalent
CuPy functions. This part helps introduce important concepts,
such as the memory separation between GPU and host, without
overloading learners with details while at the same time
providing practical benefits to beginner programmers. After
this part participants should be able to recognize the potential
performance gains of using GPUs and be aware that some of
the libraries they use may be replaced with GPU accelerated
ones.

The second part of the lesson focuses on accelerating arbi-
trary Python code using Numba, therefore allowing learners
to use GPUs even if their code does not make use of external
libraries or if those libraries are not the bottleneck. When this
lesson is taught as an online course, we combine parts one and
two and teach them on the first day of the course, leaving part
three for the second day. After this part participants should be
able to recognize the sections of their Python code that could

benefit from GPU acceleration and use Numba decorators to
execute those on the GPU without major code refactoring.

The third and final part of the lesson is dedicated to CUDA
programming. In this last part, learners are taught how to
write their own code in a GPU-specific language to have
more flexibility and performance, at the cost of increased
code complexity. To manage the GPU and the data transfers
between the GPU and the host, we use the interface to CUDA
provided by CuPy. In our experience, this interface is easy
to explain to Python programmers and simple enough to not
distract course participants from the goal of writing their GPU
code using CUDA. After this part participants should be able
to write their own simple CUDA kernels and execute them
using Python while at the same time being familiarized with
the different CUDA memories and the concept of data sharing
and synchronization.

C. Lessons Learned

Feedback from participants is fundamental to improve the
lesson, and therefore we conclude every day of the course,
be it a full in-person or a half online day, by asking each
participant for feedback. Each learner is requested to provide
one thing that he or she liked about the day and something that
could be improved. It is based on this constant feedback from
our students that in this section we present a short summary of
the lessons learned while developing and teaching this lesson.

In a course like this, it is important to manage the expecta-
tions of the participants. At the Netherlands eScience Center,
we provide this and other courses, for free, to a variety of
students and researchers in the country, from different fields,
of different ages, and from different backgrounds. We cannot
make each of them a GPU expert in a few hours. Instead, we
focus on giving them actionable skills and an understanding
of how to keep growing from this point.

We decided to use CUDA, although proprietary and limited
to NVIDIA GPUs because it is the most known and used GPU
programming language. However, during each course, we are
asked about solutions that are not limited to a single vendor.
We try to keep this course general enough that the concepts,
if not the details, that we teach can be easily translated to
other languages such as OpenCL and HIP, and plan to develop
extensions of the last part based on other languages.

Not requiring the participants to have GPUs available and
instead basing the whole course on the access to Jupyter
notebooks executed on an external cloud service has been
highly praised by students. In this way, we avoid having to
deal with heterogeneous environments and long setup and
debugging time while at the same time providing a solution
that is familiar also to the less experienced participants. At
the end of the day, the learners can download a copy of the
notebook they have been working on and run it on their own
or on another system later.

One issue we have seen various learners struggle with is the
CUDA syntax. Only a handful of the students and software
engineers that took part in our courses had experience in C,
and even if they had, they may not have written C code in



a while. As a result, they often struggle with the exercises
that require them to write CUDA code. To alleviate this issue,
if students are struggling with the syntax we provide, as an
optional hint, a version of the same algorithm in standard C.

D. Conclusions

In this paper, we introduced the GPU programming lesson
that the Netherlands eScience Center developed according to
the Carpentries principles. The lesson is meant as an intro-
duction to GPU programming for students, researchers, and
software engineers from scientific fields other than computer
science.

The lesson is based on a participatory live coding ap-
proach where learners write code together with instructors, and
teaches participants how to 1) use GPU accelerated libraries,
2) accelerate Python code with decorators, and 3) write simple
CUDA kernels.

The lesson is currently available, with an open-source li-
cense, in the Carpentries Incubator and has been taught online
and in-person since 2021.

V. PEER-REVIEW ASSIGNMENTS FOR A NEW
GENERATION OF RESEARCH SOFTWARE ENGINEERS

By: Pratik Nayak, Marcel Koch, Fritz Göbel, Hartwig Anzt

The progress of science and research in the age of com-
puting has been accelerated by two things that have been
co-designed and co-developed: Hardware, enabling massive
computing power with GPUs, CPUs and scaling them to form
massive supercomputers, and software, that forms the interface
that processes scientific ideas into meaningful data to enable
new discoveries.

In the recent past, hardware architectures have been special-
ized, and this specialization has led to fragmentation, which in
turn has led to a myriad of programming paradigms, especially
for parallel and high performance computing. To be able to run
software on large high performance machines, one might need
knowledge of GPU programming for various architectures,
distributed programming with MPI and various other generic
techniques such as task based programming.

While the knowledge and mastery of the above program-
ming paradigms is important, in many cases without a focus
on software quality, reproducibility and maintainability, the
job of an RSE is incomplete. There are various tools that
can improve productivity for an RSE. The use of a version
control system in conjunction with well-defined continuous
integration (CI) workflows can allow for easy tracking and bug
detection in large software code bases. Additionally, adopting a
workflow for collaborative software development using version
control systems and web-based peer review platforms such as
GitLab and GitHub can greatly improve software quality while
encouraging contributions from various developers.

In our Numerical Linear Algebra for High Performance
Computing (NLA4HPC) course at the Karlsruhe Institute of
Technology [15], we aim to educate students in these essential
RSE practices of version control, continuous integration, unit
testing and peer review based workflow, in addition to teaching

them parallel programming concepts and numerical linear
algebra.

A. The Workflow

Our objective with the assignment was to integrate RSE
practices into the assignments to demonstrate to the students,
not only the ease of usage of these practices, but also the
benefits of incorporating these in their own projects. The
NLA4HPC course covers programming paradigms such as
GPU programming with CUDA/HIP, multicore CPU program-
ming with OpenMP and some basic distributed programming
with MPI. We also cover numerical linear algebra concepts
ranging from matrix-matrix multiplication, sparse matrix op-
erations to direct and iterative solvers. The course is distributed
over one semester over approximately 12 lectures and 12
exercise sessions. The exercise sessions can be used to discuss
a reference solution with the students, or to give individual
feedback.

The grade for the course involves the coding assignments,
one end-term project and an oral exam.

B. The Setup

There are 6 coding assignments, covering the core concepts
of the course, and are incremental in nature. As the focus of
the course is to teach numerical linear algebra in the context
of high performance computing, these assignments ask the
students to implement building blocks which they can use in
their own projects or other application codes they want to
contribute to. Hence, the exercises generally consist of:

1) HW0: An introductory exercise to familiarize with the
framework (not graded).

2) HW1: Single threaded dense BLAS operations: norm2,
matrix-vector and matrix-matrix multiplication.

3) HW2: Parallel Dense matrix vector multiplication with
OpenMP and CUDA.

4) HW3: Dense LU factorization using OpenMP tasks.
5) HW4: Compressed sparse row (CSR), SpMV with

OpenMP and CUDA.
6) HW5: Conjugate gradient iterative solver with OpenMP

and CUDA.
A constant feedback from the previous offerings of our

course was that students were spending a significant amount
of time on the build and compiling setup and bugs related
to those. To allow the students to focus more on the kernel
implementation and performance tuning rather than on the
build system, we provided them with a complete framework,
including scaffolding and a CMake setup.

Our next objective was to encourage students to write unit
tests to ensure code correctness and easily figure out bugs
in their code. Using the GoogleTest testing framework, we
encouraged students to write unit tests for each kernel’s edge
case, providing basic unit tests which their kernels needed
to pass to be valid. This testing framework was also built
transparently within the build system.

Benchmarking was another important aspect that we wanted
to familiarize the students with. Most exercises required them



Fig. 1. The homework assignment workflow

to measure the performance of their implementations and
provide an analysis with a report. To ease their burden, within
the framework, we added support for Google’s benchmark
and provided benchmarking capabilities. Because the students
are usually not familiar with relevant problem sizes for each
assignment, it is still necessary to provide them sensible ranges
for it.

C. Bringing It All Together with Continuous Integration and
Peer review

In addition to the multitude of tools and libraries we
provided the students with, it was essential to automate the
process of building the code and running their tests to emulate
the workflow of a real research software library. To this end,
we used the GitLab platform to provide CI support and allow
students to just push to the repository and see if their code
runs on the GitLab runners. In some cases, the students were
not able to use the GitLab runners, and we provided custom
runners on our machines to make sure that each student had
CI access.

Finally, to bring it all together, we asked the students to
create Pull Requests/Merge Requests (PR/MR) to the central
repository from their forks. We assigned students to review
each other’s code, allowing them to look at their peers’ code,
give critical feedback, gain experience at code review and
encouraged them to incorporate the feedback into their code.
1 shows the workflow schematic.

D. Student Feedback

The main audience for the course were Masters students
in Mathematics and Computer Science and some Bachelors
students who have had some previous courses in linear algebra
and programming in C/C++. We expected the students to have
some familiarity with C/C++ programming and some basic
knowledge of computing. To familiarize the students with
the tools and libraries used in the course, the initial exercise
sessions consisted of hands-on sessions on using git, writing
unit tests with GoogleTest, writing benchmarks with Google’s
benchmark and getting familiar with the CI and peer review
workflow on GitLab. I shows the feedback we received from
the students. The overall feedback was positive, which has

encouraged us to continue this practice in our future course
offerings.

TABLE I
STUDENT FEEDBACK (1-STRONGLY AGREE TO 5-STRONGLY DISAGREE)

Statement Avg Rating (1–5)

It was easy to use the framework 1.8

The exercises instructions and documentation was
clear

1.5

It was easy to compile and run the code as provided 2.6

The code review from my peer was useful 1.6

The reviewing process was easy 3.3

I would like to see this type of framework adopted by
other courses

1

E. Variants and Adapting to Other Courses

We believe that incorporating these practices into courses
with coding assignments can encourage students to contribute
to open-source software, adopt these practices in their own
projects, preparing them for careers in sustainable program-
ming. The core of the framework, including the CI, can be
adapted to any other course. Most web-based platforms such
as GitLab and GitHub provide computing resources for open
source projects, and in case special hardware is needed, it is
very easy to enable the CI to run on self-hosted machines.

REFERENCES

[1] “The European High Performance Computing Joint Undertaking.”
[Online]. Available: https://eurohpc-ju.europa.eu/

[2] “European Master For High Performance Computing.” [Online].
Available: https://eumaster4hpc.uni.lu/

[3] C. Aasheim, J. Shropshire, L. Li, and C. Kadlec, “Knowledge and skill
requirements for entry-level IT workers: A longitudinal study,” Journal
of Information Systems Education, vol. 23, no. 2, pp. 193–204, 2012.

[4] G. Zheng, C. Zhang, and L. Li, “Practicing and Evaluating Soft Skills
in IT Capstone Projects,” in Proceedings of the 16th Annual Conference
on Information Technology Education, ser. SIGITE ’15. New York,
NY, USA: Association for Computing Machinery, 2015, p. 109–113.
[Online]. Available: https://doi.org/10.1145/2808006.2808041

[5] W. Groeneveld, B. A. Becker, and J. Vennekens, “Soft Skills: What Do
Computing Program Syllabi Reveal About Non-Technical Expectations
of Undergraduate Students?” ser. ITiCSE ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 287–293. [Online].
Available: https://doi.org/10.1145/3341525.3387396

[6] N. Berente, J. Howison, J. Cutcher-Gershenfeld, J. L. King, S. R. Barley,
and J. Towns, “Professionalization in cyberinfrastructure,” Available at
SSRN 3138592, 2017.

[7] “https://top500.org/lists/top500/2022/06/.”
[8] “https://github.com/benvanwerkhoven/gpu-course.”
[9] “https://carpentries.org/.”

[10] S. A. Ambrose, M. W. Bridges, M. DiPietro, M. C. Lovett, and M. K.
Norman, How Learning Works: Seven Research-Based Principles for
Smart Teaching. John & Sons: Wiley, 2010.

[11] A. Nederbragt, R. M. Harris, A. P. Hill, and G. Wilson, “Ten quick tips
for teaching with participatory live coding,” PLoS Comput Biol, vol. 16,
p. 9, 2020.

[12] “https://github.com/carpentries-incubator/lesson-gpu-programming.”
[13] “https://carpentries.org/blog/2020/12/lesson-development-study-

groups/.”
[14] B. Minto. The pyramid principle, 1981.



[15] P. Nayak, F. Göbel, and H. Anzt, “A Collaborative Peer Review
Process for Grading Coding Assignments,” in Computational Science
– ICCS 2021: 21st International Conference, Krakow, Poland,
June 16–18, 2021, Proceedings, Part VI. Berlin, Heidelberg:
Springer-Verlag, Jun. 2021, pp. 654–660. [Online]. Available: https:
//doi.org/10.1007/978-3-030-77980-1 49


