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Abstract: Applying complex mathematical models of physiological systems is challenging due to
the large number of parameters. Identifying these parameters through experimentation is difficult,
and although procedures for fitting and validating models are reported, no integrated strategy exists.
Additionally, the complexity of optimization is generally neglected when the number of experimental
observations is restricted, obtaining multiple solutions or results without physiological justification.
This work proposes a fitting and validation strategy for physiological models with many parameters
under various populations, stimuli, and experimental conditions. A cardiorespiratory system model
is used as a case study, and the strategy, model, computational implementation, and data analysis are
described. Using optimized parameter values, model simulations are compared to those obtained
using nominal values, with experimental data as a reference. Overall, a reduction in prediction error
is achieved compared to that reported for model building. Furthermore, the behavior and accuracy
of all the predictions in the steady state were improved. The results validate the fitted model and
provide evidence of the proposed strategy’s usefulness.

Keywords: fitting; mathematical modeling; sensitivity analysis; parameter estimation; cardiorespira-
tory system; aerobic exercise

1. Introduction

Mathematical modeling is an interdisciplinary field that, applied to medicine, has
allowed a better understanding of physiological functions and relationships. Its support in
this field has been related to the education and training of clinical staff, the identification,
monitoring, and treatment of diseases, and equipment development [1–5]. Mathematical
models of physiological systems constitute approximations fitted to bounded populations
and specific sets of physiological events or stimuli, so their practical and conceptual
utility depends on their ability to predict experimental measurements of physiological
variables [2,3,6]. Its mathematical complexity increases with accuracy and physiological
relevance, so the number of parameters and equations is considerably high for describing
the regulation mechanisms of the most complex physiological systems [7,8].

The cardiorespiratory system stands out as one of the most relevant physiological
systems regarding the diagnosis, treatment, monitoring, and prevention of diseases, mainly
due to the importance and usefulness of their related variables for the identification of
the correct state and functioning of the organism [9–11]. The cardiorespiratory variables
result from different and complex regulatory mechanisms focused on maintaining correct
physiological functioning, even under different external conditions, such as diseases [12,13].
Different mathematical models have focused on the cardiorespiratory system, highlighting
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its support for personalized diagnosis applications due to its ability to be fitted to a subject
or population under a specific stimulus [1,8,14].

Physical exercise is a natural stimulus that generates significant cardiorespiratory
variations that cannot be evidenced under resting conditions and constitute a well-defined
characteristic pattern in healthy human subjects [15,16]. Several mathematical models of
the cardiorespiratory system have been proposed, but few of them can correctly represent
the human response to exercise. The handicaps of those reported models to simulate the
cardiorespiratory response to this stimulus are diverse. For instance, although some physi-
ological models [8,17] detail some behaviors, they do not consider important mechanisms
of neuronal regulation and omit the prediction of essential variables related to the exercise
response. In contrast, other more complete models [18,19], despite including a complete
description of the systems and allowing the prediction of variables useful for exercise
analysis, are not adequate for predicting the human response under the stimulus due to the
lack of related physiological mechanisms. For this aspect, models of the respiratory [20,21]
and cardiovascular [15] controller, and even more recent works such as the model by [22],
involve mechanisms and dynamics related to the response under aerobic exercise. How-
ever, the application of these models in a complex study is limited by their specificity and
specialization in only one of the systems involved.

Although mathematical models can describe the physiological response under a spe-
cific stimulus, their computational simulation using parameters’ nominal values constrains
their use in populations with the same characteristics and conditions used during their
development [14,23]. Fitting processes allow the personalization of physiological models
to a specific subject or population by estimating the parameter values that minimize the
difference between predictions and experimental observations [6,8]. Applying these tech-
niques to physiological models could involve high complexity due to the large number of
parameters that need to be identified. In addition, the restricted number of experimental
observations could imply multiple solutions, and several parameter values could not have
a physiological sense [8].

Different techniques to solve the fitting problem of models with many parameters
have been proposed. They all focused on identifying the minimum number of parameters
that must be fitted to correctly predict the experimental response. In [6], a deterministic
sensitivity analysis focused on those parameters that are resolvable in the presence of noise,
based on the effect of parameter value variations on the interest variables, was described. In
a different approach, Ref. [24] validated a subset selection method that focused on finding
the well-conditioned independent parameters for reliable identification using experimental
measurements. Refs. [6,24] do not consider the evaluation of different levels of stimulus.
In contrast, Ref. [8] proposed a classification technique based on the overall sensitivity of
the model regarding parameter variations and considering different stimulus levels [23].
However, this proposal underestimates sensitivity measures by considering the sum of
changes in different directions and assuming that all variables contribute equally to the
error. Although the subsequent fitting could be designed for a steady state, its sensitivity
computation includes time lags that are not consistent.

The validation procedure aims to verify whether the model predictions agree with
the experimental data for the defined conditions and disturbances. For this purpose,
measures that consider the transient and steady-state response features of the analyzed
physiological variables are usually implemented. Although there is no consensus on the
proper methodology for validating mathematical models of physiological systems, different
works coincide with the criteria proposed by [25]. Such criteria allow validating a model
when the dynamic of its responses is consistent with the expected behavior and the values
in the steady state are accurate.

This work aims to propose a fitting and validation strategy for physiological mod-
els with many parameters that consider different populations and stimuli. This strategy
includes several techniques and approaches to classify, select, and optimize model param-
eters under steady-state conditions. A model validation methodology is also presented.
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Some described methods are new proposals or correspond to improvements to previously
reported methods. The strategy application in a cardiorespiratory model during dynamic
aerobic exercise is presented and described as a case study.

This paper is structured as follows. First, the fitting and validation strategies are
presented. It describes in detail the procedures for the classification, selection, and opti-
mization of parameters and methodology validation. Second, a case study is presented.
It includes a qualitative description of the cardiorespiratory model and the simulation,
fitting, and validation. Third, predictions at different levels of aerobic exercise, both with
the fitted model and the nominal values, are compared with experimental data obtained
from healthy subjects under a cardiopulmonary exercise test [26]. Finally, the proposed
strategy and the model performance results are discussed.

2. Materials and Methods
2.1. Fitting and Validation Strategy

The strategy proposed in this work consists of applying three main procedures or steps
that must be done sequentially: (a) classification and selection of parameters, (b) model
fitting, and (c) model validation. The first procedure involves classifying the model param-
eters according to some predefined roles in the model (gain, threshold, initial conditions,
etc.) and selecting the most relevant ones according to different model-fitting approaches.
The second one consists of four sequential stages of parameter value identification related
to the model fitting regarding the available experimental information, the overall accuracy,
the specific prediction of each variable, and the predictions’ behavior concerning the eval-
uated stimulus. The final procedure focuses on validating the fitted model regarding its
predictions’ accuracy, behavior, and transient and steady-state regimes. Each procedure
is presented in Sections 2.1.1–2.1.3, and its application is described according to the case
study. Figure 1 shows a schematic summary of the strategy, in which the main procedures
and their respective stages are shown.
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Figure 1. Schematic diagram of the fitting and validation strategy. The dotted lines divide the diagram
into the main procedures and their respective stages: the first procedure is at the top and corresponds
to the classification and selection of parameters; the second is in the middle and corresponds to model
fitting, and the third one is at the bottom and corresponds to model validation.

2.1.1. Classification and Selection of Parameters

This procedure aims to highlight and select the parameters that can be considered
best-fit candidates. The selection of parameters is justified according to their relationship to
available experimental data, role in the model, identifiability, sensitivity to variations, and



Diagnostics 2023, 13, 908 4 of 33

their relationship to the stimulus evaluated. Initially, it reduces the number of parameters
depending on their role in the model and the objective of fitting predictions in steady-state
conditions. Subsequently, the resulting parameters are classified and selected according to
two reported techniques and established criteria regarding the model fitting approaches.

Classification and Selection of Parameters by Role
It consists of an initial classification of the model parameters according to their roles.

It comprises five parameter classes generally found in structured models of physiological
systems. They correspond to (i) time constants, i.e., parameters related to transient response;
(ii) conversion parameters, which are constant values related to equivalences among mea-
surement units; (iii) covariates, corresponding to values that allow defining simulation
conditions regarding external disturbances, environment conditions, and features of the
population to be simulated; (iv) initial values, corresponding to initial conditions of the
model variables, usually required as initial states of integrators and whose action mainly
affect the temporal characteristics of the responses before reaching the model steady state;
and (v) gain and thresholds, that either module or saturate variables related to model mech-
anisms, i.e., the weighting of the chemoreceptors response to set the parasympathetic and
sympathetic activity regarding the regulation of peripheral resistances in cardiovascular
control models.

The selection of parameters comprises choosing those parameters that mainly define
the steady-state behavior of the cardiorespiratory system response and, therefore, can be
used to fit the model response in such a condition. The time constant parameters and
initial values are discarded, considering that the proposed fitting procedure focuses on
the response once the steady state is reached. Conversion parameters do not need fitting
because of their nature and meaning. Therefore, only gain and threshold parameters, whose
variations have physiological sense, and are correlated with experimental conditions, and
covariates will be considered for the subsequent selection procedures and fitting process.
Covariates are only used for the standardization of the simulation conditions.

Parameter Classification Techniques
The proposed strategy involves modifying and implementing two of the most widely

implemented parameter classification techniques for fitting physiological models [8,23].
A detailed description of each is presented below.

Subset Selection of Parameters
It is a technique based on the classification of model parameters according to how

well-conditioned or ill-conditioned they can be identified [27]. Well-conditioned parameters
correspond to those that can be reliably estimated from the constrained experimental data,
while ill-conditioned ones are those for which there are multiple fitting solutions.

In this study, the subset selection of parameters is based on QR Factorization with the
Column Pivoting method [28]. It was selected because it has been widely implemented in
different physiological models [2,8,23,29], presented one of the best results regarding car-
diorespiratory models among the other methods reported [28], and considers the difference
between model predictions and experimental data as a reference [2]. This technique is based
on the solution of optimization problems using gradient techniques. It establishes a ranking
of the well-conditioned parameters for identification by analyzing the interdependencies in
the Jacobian.

This technique is complemented by integrating the different stimulus exercise levels
(according to the experimental data) and variations in the parameters previously selected
in the appropriate physiological range (around their nominal values). These additions
would allow the selection of parameters that are more consistent with the desired fit.

According to the above, the Jacobian is calculated according to Equation (1).

r′kl

(
ujl

)
=

∂rikl

(
ujl

)
∂ujl

, (1)
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where the indexes i, j, and k represent the variable, parameter, and stimulus level to be
evaluated, respectively; l is an index that identifies the parameter variation regarding its
nominal value. r′kl is the Jacobian for a specific stimulus level and parameter value variation,
formed as the matrix of variations of the differences for each variable rikl regarding the
change of each parameter for a specific variation level ujl; r corresponds to the difference
between each experimental data and the model prediction given each parameter’s change
for a particular level of variation. The singular value decomposition is calculated for r′kl,
according to Equation (2).

r′kl

(
ujl

)
= UjklΣjklV

T
jkl, (2)

where Ujkl is the matrix of left singular vectors, Σjkl is the diagonal matrix of singular values

of r′kl

(
ujl

)
in decreasing order, Vjkl is the matrix of the right singular vectors, and T denotes

the matrix transpose. Matrix Vjkl must be partitioned, as expressed in Equation (3).

Vjkl =
[
Vjkl,ρ(j,k,l) Vjkl,W−ρ(j,k,l)

]
, (3)

where W is the total number of parameters analyzed, and ρ(j, k, l) is a numerical rank that
indicates the number of maximally independent columns of r′kl

(
ujl

)
. ρ(j, k, l) is equivalent

to the number of parameters that can be identified given the model output and can be
determined by the selection of the smallest allowed singular value according to the relation
expressed in Equation (4) [23].

σjkl,ρ(j,k,l)

σjkl,1
= σNjkl,ρ(j,k,l) > ε, (4)

where σjkl,ρ(j,k,l) is the singular value for ρ(j, k, l), σjkl,1 is the largest singular value,
σNjkl,ρ(j,k,l) is the normalized singular value for ρ(j, k, l), and ε is a tolerance value that
allows differentiating the most significant eigenvalues.

The parameters associated with the ρ(j, k, l) highest singular values are found using
QR decomposition with column pivoting, according to Equation (5).

VT
jkl,ρ(j,k,l)Pjkl = QjklRjkl, (5)

where Pjkl is a permutation matrix, Qjkl is an orthogonal matrix and the first ρ(j, k, l)
columns of Rjkl form an upper triangular matrix with diagonal elements in decreasing
order. Pjkl is then used to reorder the parameters according to Equation (6).

ûjkl = PT
jkluI, (6)

where uI is an identification vector of the parameters and ûjkl is the vector of the parameters
reordered, which is partitioned regarding ρ(j, k, l), as presented in Equation (7).

ûjkl =
[
ûjkl,ρ(j,k,l) ûjkl,W−ρ(j,k,l)

]
, (7)

where ûjkl,ρ(jk,l) is a vector containing the ρ(j, k, l) estimable parameters and ûjkl,W−ρ(k,l)
are the parameters that would be fixed at nominal values.

The standard 2-norm of the normalized singular value for each parameter in each
ranking obtained for each parameter variation must be determined to obtain a general
ranking independent of the stimulus level, as presented in Equation (8).

Zjl = ‖Zjlk‖2 =

√
1
K ∑K

k=1

(
Zjkl

)2
, (8)
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where Zjl corresponds to the standard 2-norm of the normalized singular value of the
parameter j for the variation level l, Zjkl is the normalized singular value of the parameter
j for the stimulus level k and the parameter variation level l, and K is the number of
stimulus levels.

Finally, the result of this technique corresponds to the presented in Equation (9).

Zj = ‖Zjl‖2 =

√
1
L ∑L

l=1

(
Zjl

)2
, (9)

where Zj is the standard 2-norm of Zjl of the parameter j, and L is the total number of
parameter variations.

This technique is usually implemented with sensitivity analysis techniques because
their approaches complement each other regarding the problem solution. QR decomposi-
tion identifies the parameters to which the model is sensitive as a group, while sensitivity
analysis finds the parameters to which the model is individually sensitive [2].

Sensitivity Analysis
Sensitivity analysis involves the integration and improvement of the techniques intro-

duced by [6,8,23]. It comprises a deterministic analysis that evaluates the global model and
variables’ sensitivity to variations in model parameters and stimulus levels. It also involves
an experimental data dependency term that weighs such sensitivity by the error reached
by the model at each parameter variation and stimulus level.

The model variable’s sensitivity regarding each parameter variation is based on the
standard local differential equation described by [30] and used by [8,19,23,31,32] to calculate
time-dependent sensitivities in cardiovascular and respiratory models. Equation (10) shows
the computation of this sensitivity.

sij(t, u)
∣∣
u=un

=
∂Yi
(
t, uj

)
∂uj

uj

Yi(t, u)

∣∣∣∣
u=un

; uj, Yi(t, u) 6= 0 , (10)

where sij represents the relative sensitivity of the variable Yi to parameter uj, which is
dimensionless by the ratio between the parameter uj and the variable Yi values at nominal
conditions (no parameter variation). n refers to the parameter’s nominal value.

This work proposes modifying the measurement of relative sensitivity to make it
independent of the time and dependent on the stimulus. Therefore, an approach based on
steady-state conditions at different stimulus levels is used. Relative sensitivity is evaluated
by varying each parameter over a range around its nominal value, while the others are kept
at their nominal values. Equation (11) shows the proposed relative sensitivity measure.
Time independence avoids significant differences between sensitivity measures due to time
lags, considering that the fitting model procedure is focused on minimizing the steady-
state differences between the experimental measurements and the model predictions. The
evaluation of the stimulus is included by considering the influence of its variations on
sensitivity measures.

sijk =

∣∣∣∣∣∂Yik
(
uj
)

∂
(
uj
) ∣∣∣∣∣

∣∣∣∣ ujn

Yik (un)

∣∣∣∣, (11)

where, i, j, and k are indexes that refer to the analyzed variable, parameter, and stimulus
level. sijk is a scalar value of the relative sensitivity; Y is the variable value in the steady state;
u is the parameter value; n refers to the parameter’s nominal value. Therefore, Equation (11)
evaluates changes in the variable Yi regarding variations in the parameter uj at the stimulus
level k (first quotient), which is dimensionless by the ratio between the parameter’s nominal
values ujn and the variable Yi at the stimulus level k (second quotient).

Deriving sensitivity equations can be tedious and error-prone for large systems, mainly
when they involve nonlinear features, such as those analyzed in this case study. Alterna-
tively, Equation (11) can be solved using a computational approach consisting of a simple
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finite difference method. A numerical approximation of the derivatives, which also consid-
ers the variation of the parameter relative to its nominal value, is expressed in Equation (12).

sijlk ≈
∣∣∣∣∣Yik

(
ujn + hlujn

)
− Yik(un)(

ujn + hlujn
)
−
(
ujn
) ∣∣∣∣∣

∣∣∣∣ ujn

Yik (un)

∣∣∣∣, (12)

where sijkl is a scalar value of the sensitivity for the variable Yi regarding the variation hl
in the parameter uj at the stimulus level k. h is the vector of change proportions of the
parameter regarding its nominal value. This expression can be reduced and organized as
expressed in Equation (13).

sijlk ≈
∣∣∣∣∣Yik

(
(hl + 1)ujn

)
− Yik(un)

Yik (un)

∣∣∣∣∣
∣∣∣∣ 1
hl

∣∣∣∣ = DYijlk

∣∣∣∣ 1
hl

∣∣∣∣, (13)

where the first quotient of the equation, also identified as DYijkl, is a dimensionless term
representing the rate of change of the variable Yi when a percentual variation hl in the
parameter uj is applied at the stimulus level k. The second quotient is a dimensionless term
representing a weighting factor, giving heavier importance to slight parameter variations.
Therefore, the sensitivity sijlk corresponds to a dimensionless scalar value that measures the
weighted relative variations of the analyzed variables according to four degrees of freedom.

Standard 2-norm is applied to sijlk to obtain a measure of the relative sensitivity
independent of the parameter variations, as expressed in Equation (14). As a result,
a positive dimensionless scalar value related to the relative sensitivity’s mean trend is
obtained for all parameters.

sijk = ‖sijlk‖2 =

√
1
L ∑L

l=1

(
DYijlk

∣∣∣∣ 1
hl

∣∣∣∣)2
, (14)

where L is the total number of parameter variations or elements of the vector h.
The stimulus level independency relative sensitivity is calculated according to

Equation (15).

sij =

∣∣∣∣∣∣∣∣ sP,ijk

max(sik)

∣∣∣∣∣∣∣∣
2
=

√
1
K ∑K

k=1

( Pik·sijk

max(sik)

)2

, (15)

where K is the total number of stimulus levels; max(sik) is the maximum relative sensitivity
obtaining for the variable i at the stimulus level k considering all parameters; sP,ijk is the
weighted relative sensitivity; and Pik is a weighting factor representing the variable error at
the stimulus level k.

Sij corresponds to the standard 2-norm of sijk normalized by its maximum value at each
stimulus level k and weighted by Pik. Normalization of sijk allows comparing the sensitivity
measures between different stimulus levels, whereas the inclusion of the weighting factor
Pik prioritizes the sensitivity obtained at the stimulus levels for which the variable’s error
is more significant (i.e., errors obtained from predictions resulting from using parameter’s
nominal values). As a result, a ranking of the model parameters concerning their variation
impact for each variable is obtained.

Pik is calculated according to Equation (16).

Pik =
Eik

K·EiT
, (16)

where Eik is the error of the variable Yi at the stimulus level k, and EiT is the total error for
the variable Yi (considering all stimulus levels). Equations (17) and (18) are proposed to
calculate the mentioned errors.
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Eik =

∣∣∣∣∣Yexp,ik − Yik(un)

Yexp,ik

∣∣∣∣∣, (17)

EiT =
1
K

K

∑
k=1

Eik, (18)

where Yexp,ik represent the experimental value of the variable Yi at the stimulus level k.
The model’s total sensitivity to each parameter is calculated according to Equation (19).

sj =

∣∣∣∣∣∣∣∣ sP,ij

max(si)

∣∣∣∣∣∣∣∣
2
=

√
1
I ∑I

i=1

(
Pi·sij

max(si)

)2

, (19)

where I is the total number of variables evaluated; max(si) is the maximum value of
sensitivity among all the parameters for the variable Yi; sP,ij is the weighted sensitivity of
each parameter uj for the variable Yi; Pi is the weighting factor related to the variable and
it is calculated according to the Equation (20).

Pi =
Ei

I·ET
, (20)

where Ei is the error of the variable i, and ET is the total model error. Equations (21) and (22)
are proposed to calculate the mentioned errors.

Ei =

√√√√ 1
K ∑K

k=1

(
Yexp,ik − Yik(un)

Yexp,ik

)2

, (21)

ET =
1
I

K

∑
k=1

Ei, (22)

Sj corresponds to the standard 2-norm of Sij normalized by the maximum sensitivity
obtained in each variable and weighted by Pi. Normalization of sij allows comparing the
sensitivity measures of the parameters among different variables, whereas Pi prioritizes the
sensitivities of the parameters for which the variable’s error is more significant. As a result,
a ranking of the model parameters representing the effect of their variation on the model’s
whole output is obtained.

Parameter Selection Criteria
This procedure focuses on applying the selection criteria of the classified parameters

concerning four different fitting approaches.
Selection for the Standardization of Simulation Conditions
It consists of selecting the model’s parameters, which can be determined from the

available experimental data. It involves those related to the subjects’ characteristics, the
stimulus evaluated, or the environmental conditions. They can be established by direct
equivalence or by applying previously validated equations.

Selection for the Base Fitting Approach
It comprises selecting the set of parameters for which the model has the highest

global sensitivity. This selection aims to reduce the model’s total prediction error by
considering the parameter’s overall effect on model behavior. They correspond to the
union of the set of parameters obtained in subset selection (i.e., those parameters that
have been identified as well-conditioned to be adjusted, Equation (9)) and total sensitivity
techniques (i.e., those parameters whose variations generate significant changes in the
model output, Equation (19)). In this work, this selection is defined according to the
following criteria.
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1. Parameters from the subset selection ranking are chosen according to the criterion
defined in Equation (4), considering ε as the square root of the termination tolerance
on the function evaluation defined for the fitting procedure (Table 1).

2. Parameters from the total sensitivity ranking are chosen in descending order until
at least one is obtained for each system and controller of the model, including those
already selected in the previous step.

Table 1. Parameter values used for the CMA-ES algorithm.

Name Definition Value

Fitness limit Value to reach Infinite
TolFun Termination tolerance in the function evaluation 10−12

TolX Termination tolerance on x 10−3

MaxIter Maximal number of iterations 100× N2 *
MaxFunEval Maximal number of function evaluations 500
MaxRestart Number of restarts 10

PopSize Population size 4 + 3 ln(N)2

σ Initial coordinate-wise standard deviation(s) 0.2(UB− LB) **
* N is defined by the number of the objective variables. ** UB and LB are the upper and lower bounds of objective
variables (related to the model parameters’ evaluation ranges).

Selection for a Specific Fitting Approach
It corresponds to the set of parameters for each variable’s highest sensitivity at the

individual level. Its optimization aims to modify each variable’s predictability to bring
it closer to the respective experimental data without significantly affecting the other pre-
dictions. It is based on relative sensitivity measures independent of the stimulus level
(Equation (15)). Based on the following criteria, only one parameter is selected by each
ranking obtained for the evaluated physiological variables.

1. Remove the parameters selected for the base fitting approach from each variable ranking.
2. Remove the parameters of systems and controllers that are not directly related to

regulating the variable of interest.
3. Select only those parameters whose sensitivity is high for the variable of interest

and low for the remaining ones. Parameters with high sensitivity for other variables
could be selected if those variables belong to or are dependent on the same system or
controller of the variable of interest.

Selection for the Stimulus-Related Fitting Approach
This corresponds to the parameter selection criteria that relate the stimulus to the

regulation mechanisms addressed in the model under study. Their selection is based on
the parameters’ role concerning the mechanisms mainly associated with the stimulus,
highlighting the weighting factors or gains that link them to regulatory activities.

Eight mechanisms directly related to the exercise stimulus were evaluated in this work.
Only one parameter per mechanism was selected.

2.1.2. Model Fitting

Fitting a parametric model involves solving an optimization problem in which the
values of the set of parameters minimizing the differences between experimental data and
model predictions are identified [6]. The identification of the parameter values in this
strategy results in applying an optimization algorithm in three stages that must be carried
out sequentially: first, a base optimization; second, a specific optimization; and third,
a stimulus-related optimization. Each stage focuses on the value identification of a specific
and reduced number of parameters. It is proposed to apply the following procedures before
the mentioned optimization stages to obtain correct, fast, and physiological meaning results:
the standardization of simulation conditions, the selection and parameterization of the
optimization algorithm, the definition of the parameter evaluation ranges, and the choice
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of a metric to evaluate the model’s goodness of fit [33]. Each procedure and optimization
stage is detailed below.

Standardization of Simulation Conditions
Its objective is to bring the simulation conditions close to the data used as a fitting ref-

erence. To do this, it proposes modifying some model parameters using the values obtained
from the experimental data. It replaces the selected parameters’ values with the direct
equivalences or results of applying previously validated equations. Its implementation has
been previously presented in works on the design and fitting of physiological models, e.g.,
for the estimation of blood volumes and mechanical characteristics of cardiovascular and
respiratory systems [8,34,35]. It reduces the number of fitting candidates and, therefore, the
complexity of the optimization problem and the possibility of multiple solutions.

Optimization Algorithm
Different optimization algorithms reported could be applied for the fitting of physio-

logical models. They are divided into those that use deterministic or stochastic methods.
Their correct selection depends on the model’s specific characteristics under study and the
validation requirements [33,36].

In this paper, an evolutionary strategy with a covariance matrix and adaptation (CMA-
ES) was selected. It is a stochastic global optimization algorithm based on adaptive and
evolutionary strategies [37]. This algorithm was selected considering the best conver-
gence speed, precision, and accuracy results reported in a comparative study concerning
a physiological model similar to the case study [33].

Parameterization of the Optimization Algorithm
This corresponds to the parameter assignment of the selected optimization algorithm.

It is generally related to the number of evaluations, iterations, and error tolerances. These
parameters are specific to the algorithm and must be defined based on the fitting’s strictness
and computational cost.

The parameter values used for implementing the CMA-ES algorithm are presented
in Table 1. These values are similar to those reported by [33], considering the similar-
ity regarding the case study model and that the fitting’s strictness is analogous to the
desired one.

Evaluation Ranges of the Parameters
The optimization algorithms seek to identify model parameters through strategic

variations of their values. The variation ranges should depend on the parameter’s specific
function concerning the associated model mechanism since not all possible values provide
a consistent result. For physiological models, in addition to obtaining predictions close to
experimental data, it is desirable to find optimized values that reflect consistent physiologi-
cal conditions or characteristics, further constraining the optimization problem [33].

According to the above, this work proposes the following criteria to determine the
evaluation range for each selected parameter:

1. Determine an initial variation range for each parameter in proportion to its nominal
value. The range bounds depend on the expected closeness between the optimized
and nominal values. Such closeness can be estimated overall by considering the
parameter’s relationship with the condition for which its nominal value was defined
and the nature of the experimental dataset for which it is intended to optimize, e.g.,
variation of respiratory mechanics parameters during rest and exercise [38]. The
variation range is recommended to contain the values evaluated in the parameter
selection techniques.

2. Evaluate the values’ constraints from the equations describing the model mechanisms
associated with each parameter and redefine the previously established bounds.

3. Redefine the variation range’s bounds if the reported information relates the parameter
to the experimental conditions. Since not all model parameters are directly related to
physiological measures, i.e., those from empirical equations that have been fitted to
experimental data, evaluating their variations considering different works in which it
has been used is necessary.
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Performance Evaluation
It uses a metric that compares the model’s predictions with the experimental data. The

optimization algorithm uses this measure as a criterion function to identify the goodness of
fit of the model predictions for each parameter’s optimization. Different metric options
have been applied in several works related to physiological models. However, the most
commonly used is based on the root mean square error (RMSE) [6,12,33], and its applica-
tion is justified because it is considered more suitable for revealing differences in model
performance [6,39].

This paper modified the RMSE metric to consider all analyzed variables at different
stimulus levels, as expressed in Equation (23).

CF =
1
I ∑I

i=1

√√√√ 1
K ∑K

k=1

(
yexpi,k

− ysimi,k

yexpi,k

)2

, (23)

where CF denotes the cost function for the optimization algorithm; yexp and ysim represent
the variable’s experimental and simulated values; I and K indicate the number of variables
and stimuli levels; the subscripts i and k denote each variable and stimulus level.

The error between predictions and experimental data is initially computed by ob-
taining a dimensionless measurement of each variable’s difference at each stimulus level.
Subsequently, the standard 2-norm is calculated regarding stimulus levels to measure each
variable’s mean trend. Finally, the global error is calculated as the mean value of every
variable’s errors.

Fitting Stages
This work proposes fitting the model using three approaches. They involve those pre-

sented in the parameter selection procedure’s subsections and represent stages sequentially
applied to obtain a complete fit of the case study model. In one stage, the previously fitted
parameters remained fixed, and only those selected for the current one are optimized.

The first stage corresponds to a base fitting approach. It optimizes the parameters
with the highest total sensitivity, whose variations have the most significant overall impact
on the controllers and system outputs.

The second stage corresponds to a specific fitting approach. Each variable comprises
the parameters’ optimization with the highest relative sensitivity and the least side effect
for the remaining variables. This is focused on minimizing the prediction error of each
variable individually.

The third stage involves a model mechanisms’ fitting approach. It optimizes the
mechanisms’ parameters, mainly associated with the evaluated stimulus, to improve the
predictions’ behavior.

2.1.3. Validation Methodology

This procedure assesses the model predictions under conditions and disturbances
that match the experimental data. Although there is no consensus on a defined val-
idation methodology for mathematical models of physiological systems, most of the
evaluations described in related works generally coincide with the criteria proposed
in [25]. Therefore, model simulation results are evaluated using directional, accurate,
and consistent approaches.

Different metrics can be used to evaluate the performance of a model in steady-state
conditions, highlighting mean absolute error (MAE) and RMSE as the most common
ones. Their selection must be related to the critical interpretation of the results and the
statistical distribution of errors. However, there is no consensus on which of these is most
appropriate [39,40]. In this work, the measure presented in Equation (24) was used to
calculate the model’s prediction error of PE.

PE =
1
N ∑N

v=1

(
Medians,l

(∣∣∣∣∣yexps,v,l
− ysims,v,l

yexps,v,l

∣∣∣∣∣
))
× 100%, (24)
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where yexp and ysim represent the experimental and predicted values; N indicates the
number of variables; and s, v, and l are used to distinguish the subject, variable, and
stimulus level.

The PE measurement was selected because (a) it corresponds to the PE measure used
in the structural evaluation work of the case study model [26], (b) it allows straightforward
interpretation of differences as proportions of experimental data, and (c) it considers median
values due to the non-normal distribution of the experimental data.

Regarding dynamic transitions, changes in magnitude and response speed are usu-
ally implemented to evaluate predictions under stimulus changes [15,17,18]. Due to the
above, and considering the measures adopted in previous evaluation and characteriza-
tion works under the stimulus of exercise [26,41–43], this study considers evaluating each
variable’s percentage change regarding its rest conditions and the settling time of the
obtained predictions.

2.2. Case Study
2.2.1. Cardiorespiratory Model

The cardiorespiratory model follows a multi-compartmental structure comprised
of subsystems for cardiovascular circulation, respiratory mechanics and gas exchange
processes, and controllers that allow cardiac and respiratory self-regulation. It results
from adapting different published models to achieve a model that can correctly mimic the
main cardiorespiratory variables of a healthy adult under incremental aerobic exercise. Its
development, nominal parameter values, and complete description of mechanisms are not
reported here for brevity. The reader can refer to the previous paper for full details [26].

The cardiovascular system includes systemic circulation, pulmonary circulation, and
the heart. Systemic circulation is divided into large arteries, peripheral and venous ves-
sels, and the vena cava. Pulmonary circulation involves the pulmonary arteries, periph-
eral vessels, and veins. The heart differentiates elements of the left and right compart-
ments, where the atriums are modeled as passive compliance and the ventricles’ activity
as a variable-elastance model. Changes in the pressures, resistances, blood flows, and
blood volumes of the different vascular beds are regulated in response to cardiovascular
regulation and exercise stimulus.

The cardiovascular control response is initially mediated by the activity of afferent
pathways (baroreceptors, lung stretch receptors, and peripheral chemoreceptors), the blood
flow local control, the central nervous system to acute ischemic conditions, the central
respiratory neuromuscular drive, and the mechanism of the central command (evaluated
as the metabolic regulation response). The efferent pathways modulate their actions as
sympathetic and parasympathetic activities. Subsequently, these results, together with the
central command response (I), allow the effector mechanisms to regulate heart rate (HR),
peripheral resistances (Rjp), unstressed venous volumes (Vu,jv), and maximum end-systolic
elastance of the ventricles (Emax,jv).

The respiratory system comprises respiratory mechanics, gas exchange, and
a respiratory controller. Respiratory mechanics are divided into upper airway mechanics
and pulmonary mechanics. Signals such as respiratory muscle pressure (Pmusc(t)), pleural
pressure (Ppl), alveolar pressure, ventilatory flow (

.
V) and tidal volume (VT) are generated

in the pulmonary mechanics’ compartment according to variables of the upper airway
mechanics and the parameters regulated by the respiratory controller (Nd). The upper
airway compartment describes the dynamics of air from the mouth to the lungs. It allows
calculating the conductance of the upper airway (Gaw), necessary for determining

.
V and

VT according to the air movement equation.
The gas exchange system describes the exchange, mixing, and transport of O2 and

CO2. The gas exchange and mixing compartment described the alveolar gas partial pres-
sures (PACO2 and PAO2), the arterial gas partial pressures (PaCO2 and PaO2) and the
gas concentrations in the arterial blood (CaCO2 and CaO2). They are determined by the
blood flow signals, blood flow of each peripheral compartment (Qjp) and blood flow from
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the pulmonary peripheral compartment (Qpp), respiratory mechanics waveforms (
.

V and
VT) and environmental conditions such as the atmospheric pressure (Patm) and inspired
fractions of dry gas (FiCO2 and FiO2). The gas transport compartment describes the gas
concentrations in the venous blood (CvCO2 and CvO2), the venous gas partial pressures
(PvCO2 and PvO2), the brain gas partial pressure (PbCO2) and the tissues gas metabolic
ratios (MRTCO2 and MRTO2). It also involves a metabolically related neural drive compo-
nent to ventilation (MRV), from which information related to metabolic changes during
exercise for respiratory regulation processes is provided.

The respiratory controller performs regulation processes based on the chemical and
mechanical optimization approaches described by a ventilatory controller and a respiratory
pattern optimizer. The ventilatory controller estimates the ventilatory demand at the end
of each respiratory cycle in response to the average activity of the central and periph-
eral chemoreceptors for CO2 and O2, the neural drive ventilation related to metabolism
(MRV) and the basal alveolar ventilation. The respiratory pattern optimizer estimates
the variables related to the global breathing pattern, specifically the breathing frequency
(BF) and the inspiratory time (TI), and the parameters defining the respiratory mechanics’
waveforms according to the ventilatory demand and the minimization of the mechanical
work of breathing.

The model has different parameters that can be configured as inputs to simulate
a healthy human subject’s response with specific characteristics under several stimuli,
e.g., at different levels of aerobic exercise and environmental conditions. Carbon dioxide
output (

.
VCO2) and oxygen uptake (

.
VO2) can be used to represent different aerobic exercise

levels due to their direct relationship with the body tissues’ metabolic rates involved in the
gas exchange system. The fractions of inspired CO2 (FiCO2) and O2 (FiO2) define environ-
mental gas concentrations, helping to simulate ventilatory stimuli, such as hypoxia and
hypercapnia. Atmospheric pressure (Patm) provides information about the environment
reference pressure, which helps simulate different altitude conditions. The pressure at the
airway opening (Pao) is assumed to be equal to Patm for spontaneous breathing conditions,
but its value can be varied to simulate different ventilatory therapies. The total time of the
muscular contraction (Tc) and the period of the muscular contraction-relaxation cycle (Tim)
are parameters related to muscle contraction times involved in systemic circulatory activity
and characterize different physical activity protocols. Other parameters can also be used
to characterize the population or the subject whose cardiorespiratory system tries to be
simulated, highlighting the anaerobic threshold (AT) and basal respiratory tidal volume
(VTn) for the exercise stimulus.

2.2.2. Experimental Data

The experimental data correspond to those recorded to build and evaluate the car-
diorespiratory model. The records comprise signals of

.
VO2,

.
VCO2,

.
VE, TI, VT, BF, HR,

PAO2 and PACO2; systolic (PS), diastolic (PD) and mean (PM) arterial blood pressures; and
environment and subjects’ features such as Patm, FiCO2, FiO2, AT and VTn. The procedures
and characteristics are reported in a previous paper [26]

2.2.3. Simulation, Fitting, and Validation

The simulations performed for fitting and validation processes correspond to a healthy
human under rest and aerobic exercise. The parameters’ nominal values correspond to
those reported in the model-building work [26]. The experimental values of

.
VO2 and

.
VCO2

corresponded to the simulation inputs of the model to establish the stimulus levels. This
approach has been used to simulate aerobic exercise in physiological models [20,38,44,45].
It is justified because the physiological response under this stimulus is directly related to
metabolic rates of O2 consumption and CO2 production. In addition, the model does not
consider workload as a model input. The simulation time was set at 3000 s for each exercise
level to guarantee steady-state reach in all variables under study [26]. Steady-state values
were calculated as the signal average at the last minute of each simulated stimulus level.
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The experimental data were restricted to AT because the model is constrained to
aerobic exercise. The cardiorespiratory variables evaluated for the selection and fitting
procedures correspond to

.
VE, TI, BF, HR, PS, PD, PM, PAO2 and PACO2. These variables

were selected because they are the available experimental measurements most commonly
reported in cardiopulmonary exercise tests. They also provide information about the mech-
anisms and controllers of the involved systems [41,42,46]. All the subjects’ measurement
trends were used to calculate the PE and CF in the parameter selection and fitting proce-
dures. Regarding the validation process, the same variables were evaluated together with
VT. Although VT is part of the available records, it was not considered for the selection and
fitting processes due to its direct relationship with

.
VE and BF (VT =

.
VE/BF), which are

output variables of the model’s respiratory controller [26].
Model simulations and data processing were carried out in SIMULINK/MATLAB®.

The computational characteristics for the simulation were the same as those reported in the
model building [26], corresponding to the numerical solver ODE23 with a variable step size
lower than 0.01 s. Simulations were run once because all model equations are determinists.

The specific implementation characteristics for each procedure are described below.
Classification and Selection of Parameters
Steady-state predictions under different stimulus levels and parameter values were

used for subset selection and sensitivity analysis techniques. The stimulus levels corre-
sponding to rest, intermediate exercise, and anaerobic threshold were sequentially eval-
uated as steps of the same duration to cover the entire range of aerobic exercise. The
steady-state model predictions corresponded to each variable’s mean values at the last
minute of each simulated stimulus level. Five variations in the parameters resulting from
the selection by role procedure were applied. The variations were uniformly distributed in
a range of ±5% regarding the nominal values, since a close variation is expected, consider-
ing that the experimental data also correspond to healthy adult subjects. Experimental data
average measurements of all registered subjects were used for each variable in the three
stimulus levels.

Model Fitting
This corresponds to the adjustment of the model parameters following the approaches

presented in Section 2.1.2. The boundaries for the searching space are defined around the
nominal values of the model parameters. The evaluated model predictions corresponded
to the steady-state simulation results under variations of

.
VO2 and

.
VCO2. These variations

consisted of the same three consecutive, equidistant, and incremental steps previously
described for classifying and selecting parameters. The experimental data for comparison
were also the same, and the CF implemented corresponds to Equation (23).

Validation Methodology
Steady-State Simulation
PE values obtained from the steady-state model response to the exercise stimulus were

used to evaluate the model’s performance (Equation (24)). The model predictions were
obtained under simulated variations of

.
VO2 and

.
VCO2 as eight incremental, successive,

and equidistant steps from rest to the mean experimental value of AT. Regarding the
experimental data, the model predictions were evaluated by considering the differences
concerning each subject.

Transient Simulation
The experimental data dynamic responses of the first exercise phase load step were

compared with the simulation results under equivalent variations of
.

VO2 and
.

VCO2. All
variables’ simulation results are shown as proportional changes concerning their initial
value to evaluate the change in magnitude due to the stimulus without considering PE.
The settling time was calculated as the time elapsed from the stimulus onset to the time for
which the model response reached the tolerance band of ±5% of its final value. Systemic
arterial pressures were not included here because transient-state experimental values
were unavailable.
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3. Results
3.1. Classification and Selection of Parameters

Descriptions of the model parameters are presented in this section in order to elucidate
their selection according to the different fitting approaches. The reader can see the model
equations in the Supplementary Material for detail.

3.1.1. Selection by Role

The cardiorespiratory model has 316 parameters (78 of the cardiovascular system,
155 of the cardiovascular controller, 14 of the respiratory mechanics, 13 of the respiratory
controller, and 56 of the gas exchange system) distributed according to the proposed
classification presented in Table 2.

Table 2. Distribution of the model parameters according to their role.

Role Number of Parameters

Covariates 12
Conversion parameters 1

Gain and thresholds 239
Initial values 24

Time constants 40

Only the parameters with the role of covariates, gain, and thresholds were considered
for the model fitting. Among gains and thresholds, the maximal abdominal pressure pa-
rameter (Pabdmax,n) was not considered for the subsequent procedure of parameter selection.
It should not be modified for the simulation of healthy adult subjects.

3.1.2. Standardization of Simulation Conditions

The parameters used for the standardization of simulation conditions corresponded
to FiO2, FiCO2, Patm, basal respiratory tidal volume (VTn), anaerobic threshold (AT), total
blood volume (Vtot) and unstressed blood volumes. FiO2, FiCO2, Patm correspond to the
recorded environmental conditions and were assigned by direct equivalence with the
reported information. VTn, AT, Vtot, and the unstressed blood volumes are related to
the subjects’ specific characteristics and were estimated using equations applied to the
experimental data. The results are reported in the model-building work [26].

According to the above, only 216 parameters were selected for the subsequent param-
eter selection procedures, reducing the number of parameters considered for the fitting
procedures by 31.6%.

3.1.3. Parameters Selected for the Base Fitting Approach

Figure 2a shows the first ten parameters for subset selection, and Figure 2b shows the
total sensitivity analysis ranking, in descending order from left to right. The parameters
selected for the base fitting approach are highlighted in each ranking.

Eight base fitting parameters were selected from the rankings, three from the subset
selection technique under consideration of the tolerance range of 1× 10−12 (Table 1 and
Equation (4)), and five from the total sensitivity analysis corresponding to those whose
sensitivity was greater than 46% of the maximum sensitivity found (Section 2.1.1).

Regarding the subset-selection results, it is highlighted that there is a single significant
difference between the parameter in the first position and the others presented, evidencing
the difficulty of identifying a single optimal solution for more than one parameter using
gradient-based techniques [27]. Regarding the total sensitivity analysis, all the selected
parameters directly affect the model’s controllers, which are the ones that have the most
significant influence on the model’s base behavior, as expected.



Diagnostics 2023, 13, 908 16 of 33Diagnostics 2023, 13, x FOR PEER REVIEW 16 of 35 
 

 
Figure 2. Top ten positions in the rankings of classification techniques: (a) correspond to the results 
for subset selection and (b) to the results for sensitivity analysis techniques. The light gray bars 
correspond to the selected base setting parameters, and the dark gray bars correspond to the pa-
rameters that will remain fixed at the nominal values. 

Eight base fitting parameters were selected from the rankings, three from the subset 
selection technique under consideration of the tolerance range of 1 × 10  (Table 1 and 
Equation (4)), and five from the total sensitivity analysis corresponding to those whose 
sensitivity was greater than 46% of the maximum sensitivity found (Section 2.1.1). 

Regarding the subset-selection results, it is highlighted that there is a single signifi-
cant difference between the parameter in the first position and the others presented, evi-
dencing the difficulty of identifying a single optimal solution for more than one parameter 
using gradient-based techniques [27]. Regarding the total sensitivity analysis, all the se-
lected parameters directly affect the model’s controllers, which are the ones that have the 
most significant influence on the model’s base behavior, as expected. 

This approach evidences the impact of the modifications on selection methods, 
mainly those related to the error and stimulus-level evaluation. In this sense, the distribu-
tion of the parameters regarding the systems and controllers (5 parameters of the respira-
tory controller, 2 of the cardiovascular system and controller, and 1 of the gas exchange 
system) is associated with the error contribution of the related variables [26]. 

After applying the selection criteria, the number of parameters considered for this 
fitting procedure was reduced by 97.4%. The selected parameters, the corresponding 
model equations and mechanisms, and the possible variation range information are pre-
sented below. 𝐾𝑅  is a parameter that describes the dependence of the left ventricle resistance (R ) 
on the isometric pressure (P , ) in the cardiovascular system [47]. Its nominal value re-
sults from scaling data extracted from animal experiments to reflect changes in ventricle 
volume in human beings. It has been used in different works without presenting varia-
tions [15,18,19,22,47,48], even in studies focusing on personalized cardiovascular models 
[35]. Considering the simulation results under nominal conditions of R  and P , , and 
applying the rescaling approach of vascular resistance implemented in [35] concerning 
the mean total blood volume from experimental data, variations close to 6% of the nomi-
nal value could be expected. 

Figure 2. Top ten positions in the rankings of classification techniques: (a) correspond to the results
for subset selection and (b) to the results for sensitivity analysis techniques. The light gray bars corre-
spond to the selected base setting parameters, and the dark gray bars correspond to the parameters
that will remain fixed at the nominal values.

This approach evidences the impact of the modifications on selection methods, mainly
those related to the error and stimulus-level evaluation. In this sense, the distribution
of the parameters regarding the systems and controllers (5 parameters of the respiratory
controller, 2 of the cardiovascular system and controller, and 1 of the gas exchange system)
is associated with the error contribution of the related variables [26].

After applying the selection criteria, the number of parameters considered for this
fitting procedure was reduced by 97.4%. The selected parameters, the corresponding
model equations and mechanisms, and the possible variation range information are
presented below.

KRlv is a parameter that describes the dependence of the left ventricle resistance
(Rlv) on the isometric pressure (Pmax,lv) in the cardiovascular system [47]. Its nominal
value results from scaling data extracted from animal experiments to reflect changes in
ventricle volume in human beings. It has been used in different works without presenting
variations [15,18,19,22,47,48], even in studies focusing on personalized cardiovascular
models [35]. Considering the simulation results under nominal conditions of Rlv and
Pmax,lv, and applying the rescaling approach of vascular resistance implemented in [35]
concerning the mean total blood volume from experimental data, variations close to 6% of
the nominal value could be expected.

MRBCO2 denotes the metabolic production rate for CO2 in the brain tissue [21] and
allows us to relate PaCO2 with PvbCO2, the CO2 brain venous blood pressure. Its reported
nominal value is 0.0009 L/s STPD and has not been fitted in the different validation works
in which the associated model has been used [14,21,22,45]. Works related to other validated
models report values for parameters with the same physiological sense ranging from 0.0007
to 0.00104 L/s STPD [8,19,49–51]. Therefore, fitted values between −22.2% and 15.6% of
the nominal value could be expected.

T0 is a cardiovascular controller parameter representing the heart period (HP) in the
absence of cardiac innervation [48]. It is the offset term in the equation that relates to
the changes in HP induced by sympathetic and parasympathetic stimulation (∆Ts and
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∆Tv, respectively). Its reported nominal value results from a fitting process to mimic
animal experimental data [47,52]. It has been used without any modification in different
publications related to cardiovascular control models [15,18,19,22,47,48]. Considering this
value as a proportion of the reported HP at rest (0.833 s), variations close to –7% of the
nominal value could be expected whether the median experimental value of HP at rest
(0.775 s) is considered a reference.

Pmax is a parameter of the respiratory controller that denotes the maximum inspiratory
pressure [20]. It relates to the inspiratory muscles’ capacity to minimize the work of
breathing. In [20], a nominal value of 150 cmH2O is proposed, and variations of around
±66% of this value are evaluated. Subsequent work has used a value of 50 cmH2O on fitting
and validating such a model with healthy subjects [53]. Following the above, although the
optimization procedure can identify a value near the nominal value, variations higher than
100% could be expected.

Ers is a parameter that denotes the overall elastance of the ventilatory system. It is
used in the model’s respiratory controller and lung mechanics to represent the motion
equation of the respiratory system. Its nominal value is 21.9 cmH2O/l and agrees with that
reported in [20,53] for healthy adult subjects. However, other authors report lower values
of 10, 8.55, and 8.52 cmH2O/l. According to the above, variations of around –66% of the
nominal value could be expected [14,21,50,54].

KpO2, KcCO2, and Kbg are the parameters of the respiratory controller associated
with the control of ventilation. KpO2 and KcCO2 correspond to constant weighting factors
related to the peripheral chemoreceptors for O2 and the central chemoreceptors for CO2
contributions, respectively. Kbg is an offset term that relates to the blood gas dissociation
constant for the controller [26]. These parameters correspond to fitted values to mimic the
change in alveolar ventilation from rest. They have not been modified in studies in which
experimental data on healthy adult subjects are used [14,21,22,55].

3.1.4. Parameters Selected for the Specific Fitting Approach

Figure 3 shows each variable’s relative sensitivity ranking results after removing the
parameters selected for the base fitting approach. They are presented in descending order
from left to right. The parameters selected for the specific fitting approach are highlighted
in the ranking of each variable.

The results highlighted that not all the parameters selected for each variable cor-
responded to the first ranking positions, which shows the significant influence of the
regulation results between the model’s different systems and controllers. This fact was
presented mainly for variables not directly related to the controllers (PM, PD, and PACO2),
evidencing that the parameters of the main regulatory mechanisms have the most signifi-
cant influence on the model. The parameter selected for PACO2, corresponding to VLCO2,
is not even among the positions presented in the respective ranking, showing the high
sensitivity of the variable to the results of other systems and controllers. The number
of parameters considered for this fitting procedure was reduced by 97.2%. The selected
parameters, the related model equations and mechanisms, and the information reported
regarding their possible variation ranges are presented below.

GT,v corresponds to the weighting factor that relates parasympathetic activity with
heart rate regulation in the cardiovascular controller [48]. This parameter was initially
adjusted to mimic the humans’ cardiac period’s response in [47]. Its nominal value is not
related to direct physiological measurement and has not been modified in subsequent
applications of the model [15,18,19].

Rsa is a parameter of the cardiovascular system that represents systemic arterial
hydraulic resistance [48] and relates Psa to systemic arterial blood flow (Qsa). Its nominal
value was initially computed according to experimental cardiac output and cardiovascular
pressure measurements [56]. It has been modified in different cardiovascular system
versions due to the inclusion of new vascular beds [47]. The latest reported nominal
value corresponds to that defined for the case study model [26]. Although it has not been
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modified in other validation works [15,19,48,57], a rescaling approach was proposed in [35]
for personalized fitting based on experimental data on total blood volume. Following the
above, using the average experimental value of total blood volume reported in [26] as
a reference, a variation close to 5.42% of the nominal value could be expected.
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approach. The light gray bars correspond to the selected parameters for the specific fitting approach,
and the dark gray bars correspond to the parameters that remain fixed at nominal values. The
subfigures from (a) to (i) correspond to the result for each of the variables evaluated.

KE,lv describes the left ventricle’s function at the end of the diastole based on the
pressure–volume relationship [47]. Its nominal value was initially identified to fit the
exponential relationship proposed in [52] to healthy humans’ experimental measurements.
According to the experimental measurements reported in [52,58,59], variations of less than
−35.7% and greater than 7.1% of the nominal value could be associated with symptoms of
cardiac pathologies.

Φmax is a cardiovascular controller parameter associated with the vasodilation of the
peripheral resistance of the active muscles (Ramp) during exercise [26]. It corresponds to
the upper saturation bound of a sigmoid function used to describe the vasodilator effect
independent of tissue hypoxia during exercise [15,60]. The parameter’s nominal value is
not related to a direct physiological measure but results from optimization procedures to
imitate experimental data.

λ1 is a parameter related to the breathing pattern optimizer and corresponds to
a weighting factor that relates the mechanical work of the inspiratory phase (

.
WI) with the

average square magnitude of volume acceleration [26]. Its value was fitted in [14,33] to the
experimental data of healthy subjects. Considering their results implies possible variations
in the nominal value of around −43%.
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V0dead is a parameter of the respiratory controller related to the regulation of
.

VE [26].
This corresponds to the offset term of the empirical equation used in [21] to calculate
the dead space volume as a function of alveolar ventilation. It has not been modified in
subsequent validation studies on healthy subjects [14,22].

n is a parameter related to the breathing pattern optimizer, used as a power index
of efficiency factors that relate

.
WI with Pmusc(t) [26]. Following the values fitted in the

validation work by [20,33], a variation ranging from −9.17% to 81.7% of the nominal value
could be expected.

C1 is a parameter related to the dissociation of oxygen in the blood and denotes
the maximum concentration of hemoglobin-bound oxygen [50]. Its nominal value was
taken from [61] and calculated from predefined pressure, temperature, and the amount of
hemoglobin conditions. Although this value has not been modified in subsequent studies
of the same blood gas dissociation model, other values are reported for this physiological
measure [62], allowing a variation of approximately −3.6% of the nominal value.

VLCO2 is a parameter that relates PACO2 with the blood concentrations of CO2 and
Qpp [26]. It denotes the lungs’ storage volume for CO2, and can be understood as a fraction
of the functional alveolar volume of the lung [22,50,51,63]. Therefore, using the alveolar
volume values reported in [63], a study based on subjects under exercise as a reference,
variations around 50% of the nominal value could be expected.

3.1.5. Stimulus-Related Fitting Parameters

For this approach, the selected parameters relate to each of the eight mechanisms
reported for the case study model [26]. Only one parameter for each mechanism’s regulatory
activity, which was not selected in the previous fitting approaches, was selected. The
mechanisms evaluated were: the central command action (I-EP) and the central respiratory
neuromuscular drive (NT) on regulation control activities; the central vasodilatory action
on active muscles due to central command (I-Ramp); the independent description of venous
vascular beds from active muscles (V-Ramv); the muscle (MP) and the respiratory (RP)
pumps; the neural driving ventilation related to metabolism (MRV); and the respiratory
control action based on mechanical work of breathing minimizing (minWOB). I-EP, I-Ramp,
V-Ramv, MP and RP are mechanisms that relate I (exercise intensity) to the regulatory
activities of the cardiovascular controller and system. Their parameters were defined and
optimized from human and animal experimental data [15]. No parameter was selected
concerning blood flow signals in the gas exchange system because it is not considered
a mechanism that explicitly relates to the exercise stimulus.

The selected parameters, their corresponding mechanisms, and regulatory activity are
presented in Table 3. The number of parameters considered for this fitting procedure was
reduced by 95.3% with respect to the total after applying the selection criteria.

The related mechanisms and the information reported on the possible variation range
of each selected parameter are presented below.

γsh,max, γsp,max, γsv,max and γv,max are the upper saturation values of sigmoid functions
that relate I to sympathetic and vagal efferent activity. In I-Ramp, gM is a static gain that
relates I to the effect of tissue hypoxia concerning the regulation of the active skeletal
muscle’s peripheral resistance (Ramp). In V-Ramv, kr,am is a constant parameter that char-
acterizes the inversely proportional behavior of the active muscles’ venous vascular beds
(Ramv) concerning the total volume of blood it contains (VTamv) during exercise. In MP,
Aim is a parameter that denotes the peak value of Pim, which affects the vascular venous
pressure during exercise (Pamv). Finally, in RP, gabd and gthor are constant gain factors that
relate changes in the tidal volume with the maximum and minimum values of Pabd and
Pthor, respectively.

Wt,sh, Wt,sp, Wt,sv and Wt,v are weighting factors that relate Nt to sympathetic and
parasympathetic efferent activity. Their values were optimized in [50] to ensure that the
dynamic behavior of the model under various conditions remains realistic, and they have
been used in later works without any modification [14,22].
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Table 3. Selected parameters for stimulus-related fitting.

Mechanism Parameter Regulatory Activity

I-EP

γsh,max Sympathetic activity to heart
γsp,max Sympathetic activity to peripheral resistances
γsv,max Sympathetic activity to veins volumes
γv,max Vagal activity

NT

Wt,sh Sympathetic activity to heart
Wt,sp Sympathetic activity to peripheral resistances
Wt,sv Sympathetic activity to veins volumes
Wt,v Vagal activity

I− Ramp gM Effect of hypoxia on vascular vasodilation of active muscles during exercise
V− Ramv kr,am Changes in venous resistance of active muscles during exercise
MP Aim Venous return of active muscles

RP
gabd Abdominal pressure signal
gthor Thoracic pressure signal

MRV KcMRV Change in alveolar flow from its resting value
minWOB λ2 Total work of breathing

KcMRV is a parameter of the respiratory controller associated with ventilation. It
corresponds to a constant gain that relates MRV to

.
VA. It was initially defined as equal

to 1 in [21] under the consideration of a direct action of MRV. However, in the case study
model, it was defined as a constant parameter to consider a weighting factor for the
related mechanism.

λ2 is a factor that weighs the expiratory mechanical work (
.

WE) in the total mechanical
work of breathing (

.
WT). According to [14,20,33], a variation ranging between −28.4% and

170% of its nominal value could be considered.

3.2. Model Fitting

A general evaluation range of±30% regarding the nominal value was defined for those
selected parameters whose variation could not be established or constrained to reported
values in the literature. For that, the following considerations were taken into account: (a) it
is suitable for the constrictions of each associated mechanism of the model, and (b) it agrees
with the expected closeness of the results for the nominal values. It was also considered
that these parameter values are related to subjects with physiological characteristics similar
to the subject’s experimental data (healthy adult males). The evaluation ranges for the
other parameters are presented in Table 4, following what was previously described in the
selection parameter results.

Table 4. Evaluation ranges of parameters according to the variations and constraints reported.

Parameter Lower Bound (%) Upper Bound (%)

Ers −70 30
KE,lv −30 5

λ1 −50 30
λ2 −30 200
n −30 90

Pmax −30 200
VLCO2 −30 50

The values are shown for upper and lower bounds correspond to the percentage of variation regarding the
parameter’s nominal value.

It should be noted that most of the selected parameters were adapted to the defined
general evaluation range; the remaining ones were mainly related to the increase of either
lower or upper bounds. Only KE,lv required a decrease in the range due to its relationship
with cardiovascular diseases.
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Table 5 compares the nominal parameter values against the best optimization results
for each fitting stage. Most optimizations were between ±15% of the nominal value, con-
firming the expected closeness, considering that the nominal values and the experimental
data are related to subjects with similar physiological characteristics. The most significant
changes that occurred in the second and third fitting stages related to the specific and
stimulus-related fitting approaches. The following main modifications were obtained re-
garding the specific fitting approach: (a) a decreased effect of volume on left ventricular
pressure due to the decrease in KE,lv; (b) an increase in VD, and therefore an increase in
.

VE not related to
.

VA, due to the increase in V0dead; (c) a decrease in the PACO2 due to the
decrease in VLCO2 .

Table 5. Comparison of the parameter nominal values and optimization results for each fitting stage.

Parameter Nominal Value Fitted Value Units

Base fitting approach
KpO2 4.7200 × 10−9 4.3473 × 10−9 mm Hg−4.9

KRlv 3.7500 × 10−4 3.9120 × 10−4 s/mm Hg
MRBCO2 9.0000 × 10−4 9.3366 × 10−4 L/s STPD
Kbg 17.4000 16.6734 Dimensionless
KcCO2 0.2332 0.2395 mm Hg−1

T0 0.5800 0.5877 s
Pmax 50.0000 42.4337 cm H2O
Ers 21.9000 22.2940 cm H2O/L

Specific fitting approach
GT,v 0.0900 0.0951 Dimensionless
Rsa 0.0600 0.0522 mm Hg·s/mL
KE,lv 0.0140 0.0105 mL−1

Φmax 20.0000 22.0349 Dimensionless
λ1 0.8600 0.8901 Dimensionless
V0dead 0.1587 0.2059 L
n 1.1010 1.0157 Dimensionless
C1 9.0000 9.5133 mmol/L
VLCO2 3.0000 2.1479 L

Stimulus-related fitting approach
γsh,max 9.0 6.3 spikes/s
γsp,max 5.50 3.85 spikes/s
γsv,max 64.90 84.37 spikes/s
γv,max 1.9000 2.0708 spikes/s
Wt,sh 0.4000 0.5043 Dimensionless
Wt,sp 0.4000 0.4016 Dimensionless
Wt,sv 0.4000 0.4268 Dimensionless
Wt,v 0.4000 0.4341 Dimensionless
gM 40 28 Dimensionless
kr,am 24.1700 27.7488 s/mL
Aim 50.0000 59.6992 mm Hg
gabd 3.3900 4.0826 mm Hg/L
gthor 6.800 6.818 mm Hg/L
KcMRV 1.000 0.895 Dimensionless
λ2 0.4890 0.3423 Dimensionless

Where STPD is standard temperature and pressure, dry.

For the Stimulus-related fitting approach, the following results were obtained:
(a) a decrease of the sympathetic activity related to the regulation of peripheral resistances
and heart elastances and an increase for the sympathetic activity for venous volumes due
to the modifications in γsh,max, γsp,max and γsv,max; (b) a decrease in the tissues’ hypoxic
effect on the vasodilation action of Ramp due to the decrease in gM; (c) an increase in the
muscular and respiratory pump activity on venous return due to increased Aim and gabd;
(d) a decreased weighting of

.
WE regarding

.
WT due to decreased λ2. The results obtained
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from NT are mainly related to increased sympathetic activity regarding heart elastances,
but the I-EP results overshadowed this effect.

3.3. Validation
3.3.1. Steady-State Response

Figure 4 presents the steady-state model predictions under nominal conditions and
at each fitting stage. Eight equidistant step inputs of

.
VCO2, from 0.3 L/min to 1.0 L/min

were used.
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Figure 4. Steady-state model predictions for each cardiorespiratory variable evaluated. Results are
shown as a function of

.
VCO2 values. Gray dots denote the experimental data limited at each subject’s

AT; the black dot-line the experimental data average; the square marker the model predictions under
nominal conditions (Nominal); the cross marker the predictions of the model at the first fitting stage
(Base); the plus sign marker the model predictions at the second fitting stage (Specific); and the
diamond marker the model predictions at the third fitting stage (Stimulus). The subfigures from (a)
to (j) correspond to the result for each of the variables evaluated.

The steady-state results confirm the overall improvement of the model predictions after
the fitting stages. The base fitting stage improves respiratory variables and gas exchange
predictions during rest and exercise. Similar behaviors as nominal results are observed,
but with an offset change, wherein the model results are closer to the experimental data’s
mean trend. The predictions of cardiovascular variables showed only an improvement in
PS. The model’s specific fitting improves most respiratory and cardiovascular predictions,
evidencing behavior modifications under the stimulus’s increase concerning the base fitting
results.

.
VE, VT, BF, PS, PM, and PD showed improvements mainly regarding rest and

moderate stimulus levels, while HR improved his behavior for high levels of exercise. The
stimulus fitting does not significantly improve the model accuracy but primarily benefits
the systematic blood pressure predictions.

Figure 5 shows the PE values obtained from the model predictions under nominal
conditions and at each fitting stage. The mean, median, interquartile range, overall values,
and statistically significant differences among the predictions are presented.

The PE results confirm the steady-state predictions’ observations. The highest errors
are obtained under nominal conditions, and the last fitting stage reduces the overall
PE by 21.9%. The most significant PE value changes are presented for the predictions
of respiratory variables and systemic blood pressure measurements, with statistically
significant differences for

.
VE, VT, PS, PM, and PD. Although the results for PACO2 and
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PAO2 do not show significant differences between consecutive fitting stages, a lower
dispersion for PACO2 and an improvement of 0.07% and 39.30% was obtained for PACO2
and PAO2 predictions, respectively. The most significant decrease in the overall PE was
obtained for the specific fitting approach, which also had the most negligible negative effect
on the previous prediction results, followed, in order, by the base fitting approach and the
stimulus-related fitting approach.
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(**) highlight the statistically significant differences found between the obtained PE values (ρ < 0.05
and ρ < 0.01, respectively).

Table 6 presents the PE mean and standard deviation values for the model predictions
under nominal conditions and at each fitting stage for the related subsystems.

Table 6. Prediction error results (%) at each fitting stage for the model subsystems.

Fitting Stage Cardiovascular Respiratory Mechanics Gas Exchange

Nominal 8.33 ± 1.73 15.54 ± 3.87 4.03 ± 0.97
Base 8.71 ± 1.62 13.25 ± 2.02 3.27 ± 1.67

Specific 8.22 ± 1.46 10.83 ± 2.13 3.24 ± 1.78
Stimulus-related 7.41 ± 1.53 11.16 ± 1.35 3.28 ± 1.78

Table 6 shows the model PE under nominal conditions and at each fitting stage. The results are presented in
function to the model subsystems: cardiovascular, respiratory mechanics, and gas exchange.

In general, a significant decrease in PE was found at each fitting stage. Slight adverse
effects were evidenced at the base and stimulus-related fitting approaches. Improvements
associated with cardiovascular variables were mainly obtained in the last fitting stage. They
were related to the effects of exercise mechanisms on systemic arterial pressures. The most
significant results for gas exchange predictions were obtained after the model’s base fitting.
The other stages do not present significant variations in PE, as Figures 4 and 5 show. The
results related to respiratory mechanics present the most significant variations between
stages. This subsystem has the highest contribution to PE under nominal conditions and
was reduced by around 30% after the specific fitting approach.
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3.3.2. Transient Response

Figure 6 presents the model transient results under nominal conditions and at each
fitting stage for a single-step load simulation. Experimental and model-predicted data are
depicted as proportional changes to the variable’s initial values. Comparisons for every
variable are presented, even though the experimental record length was shorter than the
model simulation time.

Diagnostics 2023, 13, x FOR PEER REVIEW 25 of 35 
 

The most significant results for gas exchange predictions were obtained after the model’s 
base fitting. The other stages do not present significant variations in PE, as Figures 4 and 
5 show. The results related to respiratory mechanics present the most significant varia-
tions between stages. This subsystem has the highest contribution to PE under nominal 
conditions and was reduced by around 30% after the specific fitting approach. 

3.3.2. Transient Response 
Figure 6 presents the model transient results under nominal conditions and at each 

fitting stage for a single-step load simulation. Experimental and model-predicted data are 
depicted as proportional changes to the variable’s initial values. Comparisons for every 
variable are presented, even though the experimental record length was shorter than the 
model simulation time. 

 
Figure 6. Transient results for a single load step. Model inputs correspond to variations of 𝑉𝑂  and 𝑉𝐶𝑂  from 0.64 to 0.82 L/min and 0.58 to 0.76 L/min, respectively. They were obtained from the 
experimental mean values at the beginning and end of the first exercise load step. The dotted lines 
are the simulation results under nominal conditions (Nominal); the dashed lines are the simulation 
results at the first fitting stage (Base); the dash-dot lines are the simulation results at the second 
fitting stage (Specific); and the dotted lines with cross marker are the simulation results at the third 
fitting stage (Stimulus). The simulation results are compared with the corresponding experimental 
data. The solid gray and black lines represent the subject-by-subject experimental data restricted at 
AT, and their total mean value. The subfigures from (a) to (i) correspond to the result for each of the 
variables evaluated. 

The simulation results do not present significant variations for the different fitting 
stages, consistent with the proposed fitting strategies focused on predictions in the steady 
state. As part of the validation strategy, it is shown that the predictions had consistent 
behaviors regarding the dynamic response of the experimental data, mainly highlighting 
the similarity for HR and VE. The rest of the predictions do not entirely mimic the dynam-
ics of the experimental data. 

Table 7 shows the model predictions’ settling times for a single load step simulation 
under nominal conditions and at each fitting stage. The settlement time results showed 
changes among the fitting stages. The obtained time values show adverse effects on the 
respiratory variables’ predictions and significant improvements concerning the variables 
of the gas exchange system. No significant effect was obtained for HR. 

  

Figure 6. Transient results for a single load step. Model inputs correspond to variations of
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VCO2 from 0.64 to 0.82 L/min and 0.58 to 0.76 L/min, respectively. They were obtained from the
experimental mean values at the beginning and end of the first exercise load step. The dotted lines
are the simulation results under nominal conditions (Nominal); the dashed lines are the simulation
results at the first fitting stage (Base); the dash-dot lines are the simulation results at the second fitting
stage (Specific); and the dotted lines with cross marker are the simulation results at the third fitting
stage (Stimulus). The simulation results are compared with the corresponding experimental data.
The solid gray and black lines represent the subject-by-subject experimental data restricted at AT,
and their total mean value. The subfigures from (a) to (i) correspond to the result for each of the
variables evaluated.

The simulation results do not present significant variations for the different fitting
stages, consistent with the proposed fitting strategies focused on predictions in the steady
state. As part of the validation strategy, it is shown that the predictions had consistent
behaviors regarding the dynamic response of the experimental data, mainly highlighting
the similarity for HR and

.
VE. The rest of the predictions do not entirely mimic the dynamics

of the experimental data.
Table 7 shows the model predictions’ settling times for a single load step simulation

under nominal conditions and at each fitting stage. The settlement time results showed
changes among the fitting stages. The obtained time values show adverse effects on the
respiratory variables’ predictions and significant improvements concerning the variables of
the gas exchange system. No significant effect was obtained for HR.

Table 7. Settling time (seconds) of the model predictions for each fitting stage.

Fitting Stage
.

VE VT BF TI PACO2 PAO2 HR

Nominal 280.8 277.9 290.4 277.9 2544.6 2831.0 290.6
Base 314.5 314.4 328.2 314.5 2136.1 2795.4 281.9

Specific 295.1 294.0 276.8 266.0 1506.6 2407.5 281.6
Stimulus-related 351.6 351.5 351.6 351.6 1800.6 1622.8 284.3
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4. Discussion
4.1. Parameter Classification

This work presents a methodology focused on selecting reduced sets of model param-
eters that can be reliably fitted in steady-state conditions following several classification
approaches. The methodology is based on applying complementary and sequential tech-
niques of parameter classification that evaluate criteria, such as the role in the model,
identifiability, and sensitivity to its variation. It involves modifications to reported tech-
niques that evaluate different stimulus levels, imply variations in the parameter values,
and consider the experimental data by evaluating the error contribution.

The parameters’ role classification initially constrained those parameters that should
be considered for subsequent selection and fitting procedures. Five role classification
groups of the parameters most commonly found in mathematical models of physiological
systems were proposed. They were based on time constants, conversion parameters,
covariates, initial values, and gain and thresholds that facilitated the case study model’s
parameter selection.

The parameter identifiability classification was based on Jacobian matrix analysis,
which focused on determining which parameters can be reliably fit from available exper-
imental data. Different stimulus levels were evaluated, considering their effects on the
model’s prediction behavior. The first three parameters, classified as most identifiable for
the case study, were selected (Figure 2a). Each one belongs to one of the main subsys-
tems of the evaluated model (cardiovascular, respiratory, and gas exchange), and their
well-conditionality for reliable estimation could be related to the order of magnitude of
their nominal values (Table 5). A single significant difference between the parameters in
the first position concerning the others presented shows the difficulty of finding a unique
identification solution considering more than one parameter (Figure 2a) [27]. This fact is
related to the model’s limitation to better mimic the experimental data regarding the results
under nominal conditions, which could already be considered sufficiently close. The above
can be related to the small decreases in overall PE at each fitting stage (Figure 5) and was
involved in the value selection of termination tolerance in the function evaluation for the
optimization algorithm (Table 1).

Parameter sensitivity analysis is based on finite difference measurements. It evaluates
model variable predictions in steady-state conditions under parameter variations and
different stimulus levels. In particular, steady-state conditions allowed considering variable
magnitude changes instead of changes to temporary lags among simulated variables,
mainly observable in variables with oscillating dynamic behaviors such as Psa, BF, PAO2
and PACO2. Normalization measures were applied to the obtained relative sensitivities
for each stimulus level and variable to obtain unbiased results (Equations (15) and (19)).
Finally, given that the sensitivity analysis does not consider the closeness between the
predicted and experimental data, PE for each case (variable and stimulus level) was used
as a weighting factor to highlight cases where the error was exceptionally high. This
consideration results in classifications that are more consistent with the selecting and fitting
procedures (Equations (15)–(22)). These modifications are related to obtaining the most
respiratory control and mechanics parameters in the first positions of the total sensitivity
ranking (Figure 2b), considering that their predictions provide the most significant error
under nominal conditions at different stimulus levels (Figure 5 and Table 6). For the specific
rankings by variable, obtaining parameters related to the own systems and controllers
in the first positions is related to the equitable evaluation of the sensitivities, except for
PAO2 and PACO2 due to their high sensitivity concerning variables from other systems
(Figure 3h,i).

4.2. Parameter Selection

Parameter selection based on the parameter’s classification according to their role in
the model allowed a significant reduction of the complexity associated with subsequent
selection and fitting procedures, mainly evidenced by the computational cost involved in
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the simulations. Its correct application depends on the model mechanisms’ knowledge, its
parameters, and the conditions to be simulated because some parameter variations may
not be adequate or relevant for the stimulus, environmental conditions, and population
features to be represented. Only parameters related to the response in magnitude were
selected in this work, which is consistent with the model predictions in steady state and
allowed to reduce the PEs in the fitting stages (Figures 4 and 5, and Table 6). In applications
focused on fitting the temporal response of model predictions, it is necessary to consider
parameters related to time-dependent characteristics.

The procedure results based on the base fitting approach were mainly related to
the respiratory system parameters and controller parameters, which is coherent consider-
ing that the model predictions under nominal conditions provide the highest PE values
(Figures 4 and 5, and Table 6). The model selected parameters agree with the most influen-
tial ones, both for its systems and controllers, and their influence on the regulations with
the most significant impact on all subsystems in closed-loop: KpO2, KcCO2 and Kbg of the
ventilatory controller, related to

.
VE; Ers and Pmax related to BF, VT, and TI; T0 related to HR;

KRlv related to systemic arterial pressures and blood flows; and MRBCO2 related to MRV.
Parameter selection based on the specific fitting approach was proposed to obtain

optimal results focused on decreasing the PE values for each variable without negatively
affecting the rest of the predictions, as usually happens under the traditional fitting ap-
proach. For the case study model predictions, a single parameter per variable was chosen
based on its relative sensitivities (Figure 3). Most of the selected parameters agreed with
the first positions in the rankings. They belonged to the controllers and were related to the
essential regulations of the model in a closed loop. In contrast, the parameters selected
for PM, PD, and PACO2 were not the most relevant for their rankings because of the high
influence of the system controllers in such variables (they can be simultaneously affected by
a considerable number of parameters of different subsystems and controllers). Following
the above and adding that several variables can belong to the same system or controller,
some of the selected parameters were found in relevant positions of other rankings, which
could be related to the adverse effects obtained for PM, TI, and PACO2 in the second fitting
stage (Figure 5 and Table 6).

Parameter optimization under the stimulus-related fitting approach aims to improve
the behavior of predictions. This procedure is justified for the case study, considering that
although the model was previously evaluated [26], the mechanisms related to the exercise
stimulus have not been fitted considering the experimental data. Due to the above, param-
eters directly related to the effect of the mechanisms on regulatory activities were selected.
The fitting of these parameters mainly affected the systemic blood pressure variables (PS,
PM, and PD), which agrees with what was expected because most of the mechanisms are
related to regulating blood flows and cardiovascular resistances (Figures 4f–h and 5, and
Table 6).

4.3. Model Fitting

The fitting procedure was proposed as a sequential application of three stages based on
different approaches that improved the model’s prediction capacity. The order of the stages
was selected considering, firstly, reducing the overall PE, bringing the general trends of
simulation results and experimental data closer; secondly, decreasing specific PEs with the
least possible adverse effect between predictions; and finally, improving the behavior of the
predictions regarding the stimulus. The stages’ results are related to the modification of the
values of the selected parameters for each one, considering the constriction of the evaluation
ranges for optimization according to the function in the model and the physiological sense
(results Section 3.1 Classification and Selection of Parameters and Section 3.2 Model Fitting).

The stage based on the base fitting approach presented an improvement in steady-state
respiratory and gas exchange variables. The predictions’ displacements characterized the
results without significant changes in the behaviors regarding the stimulus (Figure 4a–e,j).
The best respiratory variable results are mainly related to most of the respiratory controller
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parameters selected for this stage. The decrease in Pmax promotes the respiratory con-
troller to decrease TI and increase BF [20], which, considering its linear behavior regarding
the stimulus (Figure 4c,d), favors a constant increase in

.
VE at each level (equations of

the ventilation controller in the Supplementary Material). The increase in
.

VE involves
more appropriate gas exchange, evidenced by decreases in PACO2 and increases in PAO2.
Feedback from the gas exchange allows regulating

.
VA in the respiratory controller, ac-

cording to the changes in KcCO2, KpO2, Kbg and MRBCO2 (affecting MRV) (equations of
the ventilation controller in the Supplementary Material). Concerning the cardiovascular
variables, the overall decrease in systemic blood pressure measurements (PS, PM, and
PD) and the non-significant change in HR are mainly due to the decrease in KRlv (heart’s
equations in the Supplementary Material) and the slight increase in T0 (effector’s equations
for reflex control in the Supplementary Material), respectively, in an attempt by the model
to maintain adequate blood flow values for gas exchange.

The stage based on the specific fitting approach presented improvements in most
predictions concerning what was previously obtained (Figures 4 and 5). This is related
to the model’s capacity for adapting mechanisms related to each variable by parameter
modifications with minimal interference in the other predictions. The adverse effects
presented can be attributed to the optimization difficulty concerning two main aspects:
similarities in the sensitivity rankings of parameters for different variables and the effect of
other predictions on regulation processes. Regarding TI, the parameters selected for

.
VE

and BF have important positions concerning their sensitivity ranking. They are variables
regulated by the same controller (Figure 3e–g), which, in turn, are involved in the regulation
of themselves (equations of the respiratory controller in the Supplementary Material). The
PACO2 ranking of sensitivities showed that due to the similarity concerning the rankings of
the respiratory variables and the low importance of the parameters related to its regulation
(Figure 3h), its prediction is mainly affected by other predictions. The improvements in
blood pressure predictions are mainly related to the increase in cardiac pressure and the
decrease in arterial and peripheral resistance. The increase in KE,lv increases Pmax,lv and
compensates for the previous change in KRlv (heart’s equations in the Supplementary
Material), while the increase in Φmax and the decrease in Rsa are related to lower input
resistance to the peripheral and arterial beds (equations of blood flow local control and
systemic arteries in the Supplementary Material), obtaining a Psa signal with an increase
in the base level at all stimulus levels (Figure 4g–i). A more significant improvement was
obtained regarding HR because the increase in GT,v allows a decrease depending on the
parasympathetic activity at each stimulus level (effector’s equations for reflex control in the
Supplementary Material). The correct increase in

.
VE is related to increases in V0dead and

BF (equations of the ventilation controller in the Supplementary Material), which, in turn,
is related to decreases in TI due to changes in n and λ1 (equations of the breathing pattern
optimizer in the Supplementary Material). Changes in the behavior of the cardiovascular
and respiratory variables regarding exercise were evidenced in this fitting stage and are
mainly related to (1) modifying the vasodilation mechanism during exercise due to Φmax
and (2) changing the respiratory controller due to n and λ1. This promotes similar changes
in the gas exchange system, consistent with decreases in PACO2 and increases in PAO2, also
related to increased C1 and decreased VLCO2 , respectively (equations of the gas exchange
and mixing in the Supplementary Material).

The parameter optimization of mechanisms directly related to the stimulus presented
improvements mainly for systemic blood pressure measurements because most of them are
related to regulations of vascular resistances and blood flows (Figure 4g–i, and Stimulus-
related Fitting Parameters in the Results Section 3.1. Classification and Selection of Param-
eters). Adverse effects of the fitting were evidenced in

.
VE, VT and HR, and are mainly

related to the optimization priority of cardiovascular parameters. The optimizations related
to the cardiovascular controller were mainly characterized by a more significant role of NT
and a minor role of I in sympathetic and parasympathetic activities regarding the previous
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fitting stage (Table 5 and the equations of the efferent pathways in the Supplementary
Material). Besides the decrease in the effect of I-Ramp (Table 5 and equations of the blood
flow local control in the Supplementary Material), these results generated smaller increases
relative to stimuli for HR (effector’s equations for reflex control in the Supplementary
Material), peripheral vascular resistances, unstressed venous volumes, and ventricular
elastances. The cardiovascular controller regulations and the increased effect of V-Ramv,
MP and RP (Table 5 and the equations of the systemic peripheral and venous circulation,
respiratory pump, and muscle pump in the Supplementary Material) generated a Psa signal
with higher amplitude and base level at low exercise, and smaller increases as a function of
the stimulus. Cardiovascular modifications change the behavior of gas exchange system
variables, evidenced by slight improvements in PACO2 and PAO2, but feedback to the res-
piratory controller implies a variation in the

.
VE slope, moving away from the experimental

data at low stimulus levels.
.

VE is compensated at high levels of stimulus by the decrease
in KcMRV and the increase in BF (Table 5 and the equations of the ventilation controller
in the Supplementary Material), and the latter is due to the decrease in TE, which is an
expected result during exercise [42], and is achieved by the decrease in λ2 (equations of
breathing pattern optimizer in the Supplementary Material).

Some results reached the bounds of the proposed evaluation range, evidencing greater
differences than expected between the characteristics represented by the nominal values
and the experimental data (Table 5). These results were presented for parameters whose
value cannot be compared with physiological measurements, and the reported data are
mainly related to optimizations focused on mimicking experimental responses. According
to the above, they can be considered candidates from a wider evaluation range in future
fitting works for the same model.

4.4. Validation
4.4.1. Steady-State Response

A decrease in PE for the entire model for each variable and subsystem was obtained
throughout the fitting stages (Figure 5 and Table 6), showing that the model’s parameter
optimization allows the experimental data to be more adequately predicted in comparison
with nominal values. This result was evidenced mainly by changes in the base trend and
the behavior of the predictions concerning the stimulus, presented differently depending
on the variables and the stimulus level (Figure 4). Although the predictions have behaviors
and values that still differ from the experimental mean trend, all the results reasonably
approximate a directionally appropriate trend regarding the stimulus change.

The respiratory variables were adequately predicted at rest, but the PEs increased with
the exercise level (Figure 4a–d). The simulation results showed linear behaviors regarding
the stimulus.

.
VE and VT results were similar to expected, although with higher slopes,

and BF and TI disagreed. This fact can be related to the limitations of the fitting procedure
and the model mechanisms used to represent the experimental behavior, considering that
the main parameters related to the stimulus and the respiratory controller’s feedback had
been optimized.

Most cardiovascular variables’ predictions presented a behavior opposite respiratory
predictions, characterized mainly by lower PE at high stimulus levels. The simulation
results in steady state exhibit non-linear behaviors, with similarities regarding the experi-
mental variables related to the number of different regulatory mechanisms. The differences
concerning the mean experimental data showed a priority for adjusting PS at all stimulus
levels and a proper prediction for HR, PM, and PD only at medium and high exercise
levels (Figure 4f,h,i). This is due to the proper optimization of parameters mainly related to
stimulus and PS. Even so, the possible fitting of the mechanisms related to the predictions
at rest stands out.

The minor decreases in PE were obtained for the gas exchange system and are related
to the PACO2 and PAO2 predictions under nominal conditions already presented the best
fit compared to the other variables (Figure 5 and Table 6). Considering that the regulated
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variables in this system correspond to the most crucial feedback of both controllers of
the model, slight variations in behavior and values are significant and related to the
improvement of the entire model’s prediction results. Thus, obtaining higher PAO2 and
lower PACO2 values agreed with the expected response of healthy subjects under the
simulated stimulus levels and allowed better predictions for the other variables [42,46,64];
but, the increase in the PE of these variables regarding the increase in exercise could be
related to the presented fitting limitations, mainly regarding the respiratory variables
(Figure 4e,j).

4.4.2. Transient Response

The simulation results in the transient regime did not present significant variations
in magnitude change or behavior between the model under nominal conditions and in
the fitting stages (Figure 6), probably because the strategy procedures were only focused
on steady-state fitting. The most significant variations regarding the model results un-
der nominal conditions were related to the settling time, highlighting an increase in the
respiratory variables, no significant changes in HR, and a significant decrease in the gas
exchange variables (Table 7). These results are mainly related to changes in the magnitude
of the predictions. Although parameters related to the model’s temporal behavior were
not optimized, the equations that describe the different dynamic behaviors are affected
by the transition’s speeds and initial integration values. Even so, the transient predictions
exhibited behaviors that, although they did not fully mimic the complex dynamics of
the experimental data, reasonably approximated the general trends and are directionally
appropriate considering the change in stimulus.

4.5. Strategy Application

In this work, a fitting and validation strategy for physiological models with a large
number of parameters and with the consideration of different populations and stimuli was
proposed. This strategy was implemented in a case study of a cardiorespiratory model to
fit and validate it regarding experimental data from healthy adult subjects on incremental
aerobic exercise. According to the results, it can be considered that the fitted model agrees
with the validation criteria of physiological models [12,25,65] and predicts with reasonable
accuracy and precision the experimental data in both transient and steady-state regimes.
This result demonstrates the usefulness of the proposed strategy and the procedures that
comprise it.

The purpose of the presented strategy was to provide a systematic methodology for
fitting and validation that could be implemented generically in physiological system mod-
els, considering predictions under different stimuli, subjects, and experimental conditions.
This strategy comprises different procedures and modified techniques that improve the
prediction capacity for steady-state predictions. A fitting approach based on the transitory
regime’s model predictions could be included as future complementary work. In this
case, the procedures for classifying, selecting, and optimizing parameters that characterize
temporal dynamic behavior should be considered.

It is important to note that the proposed strategy aims to reduce the optimization
problem’s complexity, constraining parameter optimization results to values with physi-
ological justification, and reducing the possibility of obtaining multiple fitting solutions.
The benefits of its application will depend on (a) the relationship between the quantity
and variety of experimental measures available regarding the number of parameters of the
model to be fitted; (b) the model’s capacity to mimic the behaviors of the experimental data;
and (c) proper knowledge of the physiological system and the mechanisms of the model.
The lack of any of these aspects will constitute a limitation in the application of the strategy,
and its consequences will be evident in the poor results of applying the procedures and
techniques that compose the approach. A constrained number of experimental variables or
a low relationship between them and the model parameters would affect the parameter
classification techniques, obtaining low and similar sensitivity values and the different
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optimization stages, and encouraging multiple identification solutions. The inappropriate
choice of a physiological model to represent the experimental data will impact the opti-
mization stages, leading to a lack of precision and accuracy of the results in the validation.
Finally, the lack of knowledge about physiological systems and the different mechanisms
associated with the model will affect the proper classification, selection, and constraint of
parameter values.

Due to the improvement of the prediction capacity and the adequate validation results
of the cardiorespiratory model of the case study, both the model and the proposed fitting
and validation strategy could be implemented in future works related to diagnostic appli-
cations, including athlete evaluation studies, detection of cardiorespiratory diseases, and
simulation of the cardiorespiratory response under therapeutic treatments. Furthermore,
the application of this strategy regarding experimental data from longitudinal records
over time could be considered the basis for developing a dynamic fitting strategy. In this
sense, the information obtained from the role, sensitivity, evaluation ranges, and parameter
optimization at each instant in time could be used to analyze the temporal evolution of
physiological system parameters and predict their future value.

The implementation of the proposed strategy mainly involves the development and
execution of software based on data storage and processing. The storage corresponds to the
digital recording of the data of physiological variables in databases. At the same time, the
processing includes the execution of code and algorithms related to the mathematical model
of the physiological system under study and the techniques, stages, and procedures defined
by the strategy. The recording of physiological measurements and signals will involve the
use of applications that concentrate data from different possible sources, such as personal
health devices, laboratory equipment, or medical equipment from clinical environments.
The execution of the processing software should be semi-supervised, considering the
importance of knowledge of the physiological system and its mathematical model, although
in future works, training based on artificial intelligence could be evaluated to fully automate
the process. New findings, such as model improvements, new parameter classification
techniques, optimization, or validation criteria, can be incorporated into the strategy as
long as the order described in each main procedure is considered. The results obtained
must be interpreted by medical staff and can support clinical decisions regarding diagnosis
and health monitoring.

5. Conclusions

This paper presents a strategy for fitting and validating physiological models with
a large number of parameters under the consideration of different populations and stimuli.
The strategy consists of different procedures and techniques that improve the model’s
prediction capacity, considering the complexity reduction of the optimization problem,
the results of parameter values with physiological justification, and minimization of the
possibility of multiple fitting solutions.

The validation results demonstrate that the case study model is adequate for predicting
the cardiorespiratory response of healthy adult subjects under rest and aerobic exercise
conditions with reasonable precision and accuracy. This model can constitute an analysis
and diagnostic tool related to studies and evaluations of the cardiorespiratory system.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/diagnostics13050908/s1. Figure S1: Schematic diagram of the model
under study; Table S1: Symbols’ description of the model’s schematic block diagram; Experimental
data description; Model equations and parameters.
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