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Abstract—Petri nets and transition systems are two important
formalisms used for modeling concurrent systems. One interest-
ing problem in this domain is the creation of a Petri net with a
reachability graph equivalent to a given transition system. This
paper focuses on the creation of a set of synchronizing Free-
choice Petri nets (FCPNs) from a transition system. FCPNs are
more amenable for visualization and structural analysis while
not being excessively simple, as in the case of state machines.
The results show that with a small set of FCPNs, the complexity
of the model can be reduced when compared to the synthesis of
a monolithic Petri net.

Index Terms—Transition system, Petri net, Free-choice Petri
net, decomposition, theory of regions, SAT, pseudo-Boolean
optimization.

I. INTRODUCTION

The problem of synthesizing a Petri net (PN) from a
transition system (TS) has been studied in the past [1], [2].
The main goal of the proposed techniques [3] is to derive a
PN with a minimum place/transition count. This goal often
results in the synthesis of tangled nets with a non-intuitive
behavior that is difficult to visualize.

Free-choice Petri nets (FCPNs) are a subclass of Petri nets
exhibiting structural properties that make their visualization
and analysis simpler. Visualization is simpler because FCPNs
can capture causality, choice and concurrency: elementary
structures which avoid complex intertwined PN representa-
tions. At the same time, concurrency allows representing more
complex sequential behaviors than those of state machines.
Analysis is simpler, instead, because several important prob-
lems can be solved in polynomial time [4, p. 403]. However,
not every behavior can be represented as an FCPN.

In this paper, we propose a method to decompose a behavior
into a set of FCPNs such that their synchronization reproduces
the original behavior. The goal is to avoid the analysis of
complex monolithic PNs and focus on the analysis of a small
set of simpler PNs that can be easily visualized.

The theory of regions [5] has been used for this synthesis
problem. After creating a set of regions (places) that can be
used for a monolithic PN, they are split into non-disjoint sets,
in such a way that each set of regions produces an FCPN. The
FCPNs synchronize via the common events. The goal of this
strategy is twofold: (1) produce a small number of nets and

(2) reduce the complexity of each net. Section III shows how
these goals can be achieved.

A. Previous vs current work

In [6], we showed how to decompose into sets of synchro-
nizing state machines (SMs). Both strategies are based on the
theory of regions and use the same method for the extraction
of regions from the TS. The fundamental difference resides on
how the regions are combined to derive a set of synchronizing
PNs. In [6], a set of SMs is produced: the main limitation of
the restriction to SMs is their sequential nature (SMs model
only causality and choice), i.e., do not capture concurrency,
and concurrent events must be split in different components.
This paper mitigates such restriction by allowing concurrent
events to be in the same component, under the constraint that
the component must be free-choice. With the new approach,
the number of components is reduced, trading-off number vs.
complexity of components. The step from SMs to FCPNs
requires the introduction of a more complex set of constraints
on the decomposition process, as we will explain in detail in
Sec. III, especially in Sec. III-C.

B. Overview

We give an overview of the method proposed in this paper
and illustrate the main contribution using a simple example.

Figure 1 depicts a TS and a PN net with an equivalent
behavior. A concurrent system often represents the cooperation
of different subsystems that interact through common events.
It is interesting to identify and distill the components of the
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Fig. 1: Transition system and Petri net.
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Fig. 2: Four SMs distilled from the TS in Fig. 1
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Fig. 3: Three FCPNs distilled from the TS in Fig. 1

system in a way that they can be visualized and analyzed
individually, thus hiding the other components.

This paper is an attempt to perform a distillation without
prior knowledge of the components, with two goals: (1)
extract subsystems with nice structural properties, i.e., easy to
visualize and analyze and (2) guarantee that their composition
reproduces the original behavior of the system.

Figure 2 depicts an SM-decomposition as proposed in [6].
Due to the inherent concurrency of the system, the decompo-
sition requires four SMs to fully capture the behavior.

In this paper, we allow incorporating concurrency into the
components by extending their structural properties. Figure 3
shows three components extracted from the TS in Fig. 1.
It can be observed that the system models the interaction
of two components with alphabets {a, b, c, d} and {x, y, z},
respectively, shown at the left (a) and right (c) of the picture.
In the middle, there is an arbitration process (b) that creates
a mutual exclusion between {b, d} and {y, z}.

This example illustrates the purpose of this work: extract
hidden knowledge from complex systems. In this case, we
enforce the components to have structural properties that are
formally captured by the concept of FCPN, which combines
causality, concurrency and choice with simple structural rules.

The example also illustrates the main contribution of this
work with regard to the SM-decomposition proposed in [6].
The use of FCPNs allows reducing the number of components
while preserving nice structural properties.

The possibility of extracting hidden knowledge from un-
structured data suggests that our decomposition may be ap-
plied to process mining. A TS can be created directly from a
set of traces [7], [8] and then given as input to our decomposi-
tion algorithm. As mentioned previously, there are advantages
in decomposing into a set of FCPNs, rather than representing
the entire behavior with only one PN, especially when the
PN is very complex. The application of TS decomposition to
process mining as an integration to established process mining
techniques is ongoing research to be reported in the future.

This paper is organized as follows. Sec. II introduces

the background theory, with a special reference to theory
of regions. Sec. III describes the proposed decomposition
flow, specifying the constraints used in the intermediate steps.
Sec. IV argues the equivalence by bisimulation of the com-
position of FCPNs to the original TS (proof in the appendix).
Sec. V reports our experimental results; conclusions follow in
Sec. VI.

II. PRELIMINARIES

A. Transition systems

Definition 1 (TS/LTS). [2] A Labeled Transition System
(LTS, or simply TS) is defined as a 4-tuple (S,E, T, s0) where:

• S is a non-empty set of states
• E is a set of events/labels
• T ⊆ S × E × S is a transition relation
• s0 ∈ S is an initial state

Every TS is supposed to satisfy the following properties:
• It does not contain-self loops: ∀(s, e, s′) ∈ T : s ̸= s′;
• Each event has at least one occurrence:
∀e ∈ E : ∃(s, e, s′) ∈ T ;

• Every state is reachable from the initial state:
∀s ∈ S : s0 →∗ s, i.e. ∃(s0, e0, s1), (s1, e1, s2), . . . ,
(sn, en, s) ∈ T ;

• It is deterministic: for each state there is at most one
successor state reachable with label e.

Fig. 1 shows the transition system used as a running
example to illustrate the decomposition procedure.

Definition 2 (Bisimulation). Given two transition systems
TS1 = (S1, E, T1, s0,1) and TS2 = (S2, E, T2, s0,2), a bi-
nary relation B ⊆ S1 × S2 is a bisimulation, denoted by
TS1 ∼B TS2, if (s0,1, s0,2) ∈ B and if whenever (p, q) ∈ B:

• ∀(p, e, p′) ∈ T1 : ∃q′ ∈ S2 such that (q, e, q′) ∈ T2 and
(p′, q′) ∈ B

• ∀(q, e, q′) ∈ T2 : ∃p′ ∈ S1 such that (p, e, p′) ∈ T1 and
(p′, q′) ∈ B.

Two TSs are said to be bisimilar if there is a bisimulation
between them.

The operation Reach deletes from a TS all the states that
are not reachable or accessible from the initial state and all
transitions attached to them.

Definition 3 (Synchronous product). Given two TSs,
TS1 = (S1, E1, T1, s0,1) and TS2 = (S2, E2, T2, s0,2), the syn-
chronous product is defined as

TS1||TS2 = Reach(S,E1 ∪ E2, T, (s0,1, s0,2)),

where S = S1 × S2 and (s0,1, s0,2) ∈ S.
T ⊆ (S1 × S2)× E × (S1 × S2) is defined as follows:

• if a ∈ E1 ∩ E2, (s1, a, s′1) ∈ T1, and (s2, a, s
′
2) ∈ T2,

then ((s1, s2), a, (s
′
1, s

′
2)) ∈ T ,

• if a ∈ E1, a /∈ E2, and (s1, a, s
′
1) ∈ T1, then

((s1, s2), a, (s
′
1, s2)) ∈ T ,

• if a /∈ E1, a ∈ E2, and (s2, a, s
′
2) ∈ T2, then

((s1, s2), a, (s1, s
′
2)) ∈ T ,
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• nothing else belongs to T .

The Reach operator is required for the synchronous product:
even if all states of TS1 and TS2 are reachable, some states
derived from the Cartesian product could be unreachable from
the initial state, given the definition of T .

The synchronous product is associative, so we can define
the product of a collection of n TSs: TS1||TS2|| . . . ||TSn =
((TS1||TS2) . . . )||TSn.

B. Petri Nets

We assume the reader to be familiar with Petri nets. We
refer to [9] for a deeper insight on the concepts used in this
work. This section introduces the nomenclature related to Petri
nets used along the paper.

In this work we will only deal with safe Petri nets, i.e.,
nets whose places do not contain more than one token in any
reachable marking. For this reason, we will model markings
as sets of places.

Definition 4 (Ordinary Petri Net). [9] An ordinary Petri net
is a 4-tuple, PN = (P, T, F,M0) where:

• P = {p1, p2, ..., pm} is a finite set of places,
• T = {t1, t2, ..., tn} is a finite set of transitions,
• F ⊆ (P × T ) ∪ (T × P ) is a set of arcs (flow relation),
• M0 ⊆ P is an initial marking,
• P ∩ T = ∅ and P ∪ T ̸= ∅.

For any x ∈ P ∪ T , then •x = {y|(y, x) ∈ F}. Similarly,
x• = {y | (x, y) ∈ F}.

Definition 5 (Firing rule). [1, p. 17] Let N = (P, T, F,M0)
be a safe Petri net. A transition t ∈ T enabled in marking
M is represented as M [t⟩. If t is enabled in M , then t can
be fired leading to another marking M ′, denoted as M [t⟩M ′,
such that M ′ = M\•t ∪ t•.

We call [M⟩ the set of markings that can be reached from
M by firing sequences of enabled transitions.

Definition 6 (Reachability graph). [1, p. 20] Given a safe
Petri net N = (P, T, F,M0), the reachability graph of N is
the transition system RG(N) = ([M0⟩, T, ∆,M0) defined by
(M, t,M ′) ∈ ∆ if M ∈ [M0⟩ and M [t⟩M ′.

Definition 7 (Free-choice Petri net). [9] A Free-choice Petri
net is an ordinary Petri net N = (P, T, F,M0) such that every
arc from a place is either a unique outgoing arc or a unique
incoming arc to a transition, i.e.,

for all p ∈ P , |p•| ≤ 1 or •(p•) = {p}; equivalently,
for all p1, p2 ∈ P , p•1 ∩ p•2 ̸= ∅ ⇒ |p•1| = |p•2| = 1.

In this paper, we consider sets of synchronized FCPNs.

C. From LTS to Petri nets by regions

In this paper we propose a procedure for the decomposi-
tion of Transition Systems based on the theory of regions
(from [2]). A region is a subset of states in which all the
transitions under the same event have the same relation with
the region: either all entering, or all exiting, or not crossing
the region.

Definition 8 (Region). Given a TS = (S,E, T, s0), a region
is defined as a non-empty set of states r ⊊ S such that the
following properties hold for each event e ∈ E:
enter(e, r) =⇒ ¬in(e, r) ∧ ¬out(e, r) ∧ ¬exit(e, r)
exit(e, r) =⇒ ¬in(e, r) ∧ ¬out(e, r) ∧ ¬enter(e, r)

where:

in(e, r) ≡ ∃(s, e, s′) ∈ T : s, s′ ∈ r
out(e, r) ≡ ∃(s, e, s′) ∈ T : s, s′ /∈ r

}
no cross

enter(e, r) ≡ ∃(s, e, s′) ∈ T : s /∈ r ∧ s′ ∈ r
exit(e, r) ≡ ∃(s, e, s′) ∈ T : s ∈ r ∧ s′ /∈ r

Definition 9 (Minimal region). A region r is minimal if there
is no other region r′ strictly contained in r (∄r′ | r′ ⊂ r).

The minimal regions of the TS in Fig. 1 are shown in
Table I.

Region States of the TS
r0 {s1, s3, s5}
r1 {s0, s2, s4, s7, s9}
r2 {s0, s2, s4, s10, s11, s12}
r3 {s6, s8, s10, s11, s12}
r4 {s6, s7, s8, s9}
r5 {s0, s1, s2, s3, s10, s11}
r6 {s2, s3, s8, s9, s11}
r7 {s4, s5, s12}
r8 {s0, s1, s6, s7, s10}

TABLE I: Minimal regions of the TS in Fig. 1

Theorem 1. If r1 and r2 are non-disjoint regions then r1∪ r2
is a region iff r1 ∩ r2 is a region.

Proof. See the appendix.

Definition 10 (Pre-region (Post-region)). A region r is a pre-
region (post-region) of an event e if there is a transition labeled
with e which exits r (enters r). The set of all pre-regions (post-
regions) of the event e is denoted by ◦e (e◦).

By definition, if r ∈ ◦e (r ∈ e◦) all the transitions labeled
with e are exiting r (entering r). Furthermore, if the transition
system is strongly connected, all the regions are also pre-
regions of some event.

Definition 11 (Excitation set / Switching set). The excitation
(switching) set of event e, ES(e) (SS(e)), is the maximal set
of states such that for every s ∈ ES(e) (s ∈ SS(e)) there is a
transition s

e→ ( e→ s).

The excitation sets of the TS in Fig. 1 are reported in
Table II.

Event Pre-regions ES(event)
a {r1, r2} {s0, s2, s4}
b {r0, r5} {s1, s3}
c {r3} {s10, s11, s12}
d {r4} {s6, s7, s8, s9}
x {r8} {s0, s1, s6, s7, s10}
y {r5, r6} {s2, s3, s11}
z {r7} {s4, s5, , s12}

TABLE II: Pre-regions and excitation sets for the TS in Fig. 1
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Definition 12 (Excitation-closed Transition System (ECTS)).
A TS with the set of labels E and the pre-regions ◦e is an
ECTS if the following conditions are satisfied:

• Excitation closure: ∀e ∈ E :
⋂

r∈◦e r = ES(e)
• Event effectiveness: ∀e ∈ E : ◦e ̸= ∅

The excitation set is very important because it represents
the starting point for the creation of a region: a region always
corresponds to the superset of the excitation set of one or more
events. Furthermore, the excitation set is used to check if a TS
satisfies the excitation closure. The EC property guarantees
that two states, si and sj , are bisimilar by checking that they
cannot be separated by any region, i.e., there is no minimal
region r such that si ∈ r and sj ̸∈ r.

If the initial TS does not satisfy the excitation closure
(EC) or event effectiveness property, label splitting [2] can be
performed to obtain an ECTS. Label splitting means splitting
a label which does not satisfy excitation closure into two
different labels trying to solve some of the violated constraints.
Label splitting is performed until excitation closure is achieved
i.e. there are no more events violating excitation closure.

In our example, there is no need for label splitting. It is
easy to check that the EC holds for all events of the TS, e.g.,
ES(a) = r1 ∩ r2, and similarly for the rest of events.

The synthesis of a Petri net from an ECTS, proposed in [2],
can be summarized by the following steps:

1) Generation of all minimal regions. The excitation sets are
expanded until they become regions.

2) Removal of redundant regions. Some minimal regions
may be redundant, meaning that they can be removed
while the EC property still holds.

3) Merging minimal regions. Disjoint minimal regions are
merged into non-minimal regions, thus reducing the num-
ber of places. This merging can be done as long as the
EC is preserved.

4) PN creation. Regions and events are converted into places
and transitions. A token is assigned to places derived from
regions containing the TS’s initial state. The arcs between
places and transitions are added following the enter and
exit properties of the related regions and events.

III. ALGORITHM FOR THE GENERATION OF FCPNS

Here first we define what is an excitation-closed set of Free-
choice Petri nets derived from an ECTS, and next we will see
how to generate the aforementioned decomposition.

Definition 13 (Excitation-closed set of Free-choice Petri nets
derived from an ECTS). Given a set of FCPNs N derived
from an ECTS TS, the set of all regions R of N , the set of
labels E of TS, the sets of pre-regions ◦e of the TS for all
e ∈ E:
N is excitation-closed with respect to TS if the following

conditions are satisfied:

• Excitation closure: ∀e ∈ E :
⋂

r∈(◦e∩R) r = ES(e)
• Event effectiveness: ∀e ∈ E : ∃r ∈ R | r ∈ ◦e

Input: TS: a transition system
Output: N : a set of FCPNs
R← GenerateRegions(TS) ; // Set of regions

N ← ∅ ; // Set of FCPNs

RN ← ∅ ; // Regions in the extracted FCPNs

repeat
R̂← ExtractFCPN(TS, R,RN );
N ← N ∪ {PN(TS, R̂)};
RN ← RN ∪ R̂;

until EC(TS, RN );
PetriNetSimplification(N );

Algorithm 1: Main algorithm for the generation of FCPNs.

Algorithm 1 sketches the methods to derive a set of FCPNs
from a TS.

Initially, the set of minimal regions R is generated. This set
can be directly used to derive a monolithic PN [3]. Instead,
we want to generate a set of synchronizing FCPNs. The
FCPNs are extracted sequentially, one after the other, until
the set of regions (places) used in the FCPNs RN fulfills the
excitation closure respect to the initial transition system TS,
i.e., EC(TS, RN ).

It is important to realize that not all minimal regions are
always required to satisfy the EC, i.e., some regions in R
might be not taken after all runs of ExtractFCPN(TS, R, RN ).

The core of the algorithm is the function ExtractFCPN, that
generates a new FCPN considering the set of regions R and
the set of regions, RN , that have already been used in previous
FCPNs. The function PN(TS, R̂) generates a PN from the set
of regions R̂ returned by ExtractFCPN. The PN is generated
by including all those events that enter/exit the regions in R̂1.

A final simplification step is included to reduce the com-
plexity of the FCPNs.

A. Extraction of one FCPN
The extraction of one FCPN consists of identifying a new

set of places, P̂ , such that two conditions are met:
• PN(TS, P̂ ) is an FCPN.
• |P̂ \ PN | is maximized.

The extraction of one FCPN can be modeled as a Pseudo-
Boolean optimization problem [10]. Each region (place) r ∈ R
and each event e ∈ E are represented by one Boolean variable.
When r is asserted, it means that r ∈ P̂ . The constraints to
derive an FCPN are the following2:

• Place connectedness. If a region r ∈ P̂ , then all incoming
and outgoing events are also present in the FCPN.

• Event connectedness. If an event e is present, at least one
pre-region and one post-region of e must belong to P̂ .

• Free-choiceness. if r is a choice present in the FCPN,
then r must be the only selected pre-region of its post-
events. Formally, if r ∈ P̂ , |r•| > 1, e ∈ r•, r′ ∈ •e, and
r ̸= r′, then r′ ̸∈ P̂ .

1The details of this function are not shown. We assume the reader can
easily figure out what is the PN induced by a subset of regions (places).

2Each constraint is modeled by a Boolean formula represented as a set of
clauses in CNF form.
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These FCPN constraints are modeled as constraints between
regions and their enter/exit events, in particular Place connect-
edness is necessary for the correct representation by places
of the connections between the regions which they represent
and their enter/exit events. Also both Place connectedness
and Event connectedness are necessary for the creation of
bounded PNs. Removing the latter constraints, we might have
a decomposition into a set of unbounded FCPNs, but still with
a bounded synchronous composition.

The maximization of |P̂ \ PN | can be modeled by Pseudo-
Boolean optimization. It increases the satisfaction of the
excitation closure, since the algorithm greedily incorporates
a higher number of new places into PN .

This approach is still heuristic and does not exploit the
newly used regions, indeed in rare cases it can fail, as with
the example intel edge in Table IV, which achieved a result
with four FCPNs, whereas the same heuristic with a different
initial choice was able to find a solution with three FCPNs.

Looking into the implementation of all previous constraints,
a SAT solver was used. Each of the previously described
properties was encoded into a set of CNF clauses, then by
incremental search instances of SAT problems were solved in
order to find the result of the maximization function (see [10]).

In some particular cases the SAT solver could find a set of
places which are not connected i.e. a set of places representing
two or more FCPNs without any common place and transition.
In this case, the smaller FCPNs are not selected for the current
computation in search of the optimal result, whereas the same
FCPNs could be individually taken in future iterations.

B. Minimization of the number of FCPNs

Once a set of synchronizing FCPNs is obtained, we can
improve our results minimizing the number and the size of the
obtained FCPNs; indeed, the next step is the greedy algorithm
performed as in the case of State Machines: starting from the
largest FCPN, we try to remove it checking the preservation
of excitation closure, if excitation closure is preserved then
the FCPN can be definitely removed, since the remaining set
of FCPNs is sufficient to model the behavior of the TS.

The minimization of the number of FCPNs should reduce
the occurrences of the synchronizing events, reducing the
redundancy among the set of FCPNs. Furthermore, minimizing
the number of FCPNs, excessive fragmentation can be avoided,
a problem which in some highly concurrent cases may persist
in SM decomposition.

C. Minimization of the size of single FCPNs: merge algorithm

The last minimization step i.e. merge of regions consists of
removing events by merging adjacent regions. This procedure
further removes the redundant events and places, leaving only
events not found in other FCPNs and the events essential for
the synchronization between FCPNs. This minimization allows
to focus on the uniqueness of each FCPN. An example of a
region derived by merge can be seen in Fig. 2(a): p9 is the
result of the removal of event b in SM0, merging the regions
r0 and r4 respectively representing places p0 and p4. Merge

within FCPNs is slight different from merge within SMs: a set
of constraints must be added in order to maintain the correct
behavior and FCPN property. Here the SAT constraints used
for the merge of regions are reported:

1) Preservation of excitation closure: all occurrences of
each used region can be removed except one occurrence
(preserves excitation closure).

2) Effective merge: when removing a label, remove the
connected regions.

3) Structural constraint: the merging regions have to be
disjoint or the intersection of the merging regions has
to be a region.

4) Free-choice structure preserving constraint: given a cou-
ple of merging regions r1 and r2 where event e is
removed and r1 is a pre-region for e and r2 is a post-
region for e, if r1 is a pre-region for an event e′ where
e ̸= e′ and r2 is a pre-region for an event e′′ where
e′′ ̸= e and there exists a pre-region of e′′ called r3 i.e.
r3 ̸= r2 then the merge between r1 and r2 cannot be
done in order to preserve the free-choice structure.

5) Minimization function: number of events.
The constraints 1, 2 and 5 are inherited from SMs.
Constraint 1 is our main constraint. The presence of at

least one occurrence of each region guarantees the excitation
closure, a sufficient condition in order to achieve a model
bisimilar to the initial transition system.

Constraint 2 is a structural constraint created in order
to impose the effective removal of labels merging adjacent
regions.

Constraint 3 is implicit in case of SMs because an SM
by construction is composed of a set of disjoint regions. In
case of FCPNs we could have non-disjoint regions, therefore
this kind of constraint has to be enforced explicitly in order
to be sure that merging regions will still create a region:
the following theorem gives a sufficient condition for this
to happen, improving the performance during the creation of
constraints.

This result justifies the fact that even though the union of
two non-disjoint minimal regions may not yield a region, after
some iterations which generate non-minimal regions, it may
be possible to obtain regions by merging non-disjoint regions.

Constraint 4 is fundamental in order to maintain the free-
choice property: merging a couple of regions the PN structure
is modified and could contain forbidden structures for the
chosen subclass of PNs e. g. a free-choice Petri net which
becomes an asymmetric-choice PN (Fig. 4).

The example in Fig. 4 is the simplest case of violation of
the free-choice structure; it can be extended to cases with the
same structure but more places/transitions, and it represents
the only way to lose the free-choice property by merge.

Theorem 2. Minimizing an FCPN, the free-choice property
can be lost only by merging two places involving a choice and
a join structure.

Proof. Given an already existing structure, to create an asym-
metric choice, a choice and a join must be overlapped by
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a merge. Initially the choice and the join structures cannot
have in common a transition because it would mean that we
already have an asymmetric choice. If the two structures do
not have anything in common the merge on one of them does
not affect the structure of the other, therefore in this case the
merge is safe. But what happens if the two structures have
one or more common places? Considering only the simplest
structures we cannot have three common places (overlapping
the two structures we can have at most two common places).
We enumerate the possible cases when merging a choice with
places p1, p2 and p3 and a join with places p4, p5 and p6
(Fig. 5).

Cases with one common place:
1) p1 = p6: each merge is safe;
2) p1 = p4 or p1 = p5: this case is not possible because it

already represents an asymmetric choice;
3) p6 = p2 or p6 = p3: each possible merge on a, b or c is

safe;
4) p2 = p4 or p2 = p5 or p3 = p4 or p3 = p5: merge

on c is safe and the same for the merge on either a or b
according to which one is not connected neither to p4 nor
to p5, otherwise, if either a or b is connected to either p4
or p5 we have the forbidden case represented in Fig. 4,
e.g, when p2 = p4 merging on a is forbidden.

Cases with two common places:
5) (p1 = p4 or p1 = p5) and (p2 = p6 or p3 = p6):

this case is not possible because it already represents an
asymmetric choice;

6) p2 = p4 and p3 = p5 (or p2 = p5 and p3 = p4):
this is a special case of 4, therefore only event c can
be removed, since both events a and b are connected to
places of the join construct. This case represents also a
deadlock situation therefore it should not occur as input
to the merge algorithm.

Constraint 5 is fundamental in order to find the smallest
solution without violating the other constraints; minimization
is again performed with binary search calls to a SAT solver.

When the SAT computation is finished not all merges are
directly performed, so an additional check is done in order to
avoid the unexpected removal of events. Suppose that the SAT
solver got as a result a sequence of merges where each merge
is valid, but the final result is the removal of an entire choice
branch: if the choice on the other side does not contain any

p0

p1 p2 p3

p4
a

b c d e

Fig. 6: Removing events b, c, d and e as a collateral effect
also event a is removed.

place but only one or more events, then these events would
be removed merging the entire set of places (Fig. 6). In this
case given a sequence of merging regions one merge is not
performed in order to keep both branches.

IV. COMPOSITION OF FCPNS AND EQUIVALENCE TO
ORIGINAL TS

In the previous section we showed how to decompose a
transition system into a set of synchronizing FCPNs, and we
proved that the free-choice structure is preserved until the
end of the decomposition process. In this section we prove
a structural equivalence between the original TS and the syn-
chronous composition of the reachability graphs of the FCPNs,
by defining a bisimulation relation between them, under the
assumptions of excitation-closure and place-connectedness of
the FCPNs.

Theorem 3. Given a set {FCPN1, . . . ,FCPNn} of FCPNs
derived from the ECTS TS, there is a bisimulation B such
that TS ∼B ||i=1,...,nRG(FCPNi) iff:

1) the set {FCPN1, . . . ,FCPNn} of FCPNs satisfies excita-
tion closure over the events of TS;

2) each component satisfies place-connectedness.

Proof. See the appendix.

In Fig. 7 we can observe the reachability graphs of the
FCPNs of our running example and their synchronous product
which is bisimilar to the original ECTS.

Notice that our proof is constructive, i.e. it builds the
bisimulation relation by defining the structural mapping. One
could take a behavioural approach showing a relation between
languages using the theory in [11] (which implies the existence
of a bisimulation for deterministic systems), but this would not
yield the actual bisimulation.

V. EXPERIMENTAL RESULTS

We implemented the procedure described in Sec. III, writing
a software in C++ with dependencies to PBLib [12], library
for the encoding and resolution of SAT formulas. We used the
same transition systems of [6] and the couple pparb 2 3 and
pparb 2 6 from [13]. Behaviors without concurrency were
excluded from the set of benchmarks because they cannot take
advantage of FCPN decomposition. Benchmark statistics were
reported in Table III.

Table IV reports the numbers of SMs derived in [6] and of
FCPNs derived by our procedure, the number of places after
each decomposition step (“Decomp.” column represents Alg. 1
without performing PetriNetSimplification(FCPN), “Minim.”
after algorithm in Sec. III-B, “Merge” after merging algorithm
presented in Sec.III-C.) and the total computation time. It
shows that in many cases FCPNs are fewer than SMs due to
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Fig. 7: Reachability graphs of FCPN of the running example
and their synchronous product.

States Transitions Events Min regions
alloc-outbound 17 18 14 15
clock 10 10 4 11
dff 20 24 7 20
espinalt 27 31 20 23
fair arb 13 20 8 11
future 36 44 16 19
intel div3 8 8 4 8
intel edge 28 36 6 27
isend 53 66 15 128
lin edac93 20 28 8 10
master-read 8932 36226 26 33
pe-rcv-ifc 46 62 16 7
pparb 2 3 1088 3392 22 45
pparb 2 6 96632 321536 34 75
pulse 12 12 6 33
rcv-setup 14 17 10 11
vme read 255 668 26 44
vme write 821 2907 30 51

TABLE III: Transitions systems used in the experiments.

the concurrency exhibited by FCPNs. There is still a number
of results with as many FCPNs as SMs (if so, usually FCPNs
coincide with the SMs). As to the impact on size of each
optimization step, we notice that the average decrease of places
and transitions after the optimizations performed during the
decomposition process is higher than 15% showing the utility
of these additional steps. Since the number of FCPNs is not
directly shown, one can deduce that at least one FCPN was
removed during the greedy FCPN removal by comparing the
number of places after this minimization step to the initial

# components Total FCPN places after Runtime3

SMs FCPNs Decomp. Minim. Merge (s)
alloc-outbound 2 2 21 21 17 <1s
clock 3 2 11 11 10 <1s
dff 3 3 50 38 33 <1s
espinalt 3 2 34 34 27 <1s
fair arb 2 2 12 12 12 <1s
future 3 2 42 30 19 <1s
intel div3 2 2 12 12 10 <1s
intel edge 4 4 53 53 43 2.49
isend 13 5 138 97 74 68.50
lin edac93 3 2 14 14 11 <1s
master-read 8 1 33 33 33 8.71
pe-rcv-ifc 2 2 49 49 43 8.98
pparb 2 3 11 2 46 46 46 2.46
pparb 2 6 18 3 86 86 83 658.46
pulse 2 2 7 7 7 <1s
rcv-setup 2 1 11 11 11 <1s
vme read 9 5 97 97 74 2.96
vme write 11 4 88 88 71 4.02
Total 101 46 804 739 624
Average 5.6 2.6 44.7 41.1 34.7
Normal. avg. 1.0 0.46 1.0 0.92 0.78

TABLE IV: Results of the decomposition.

number of places.
From the computation times reported in Table IV, the bench-

marks isend and pparb 2 6 are two outliers, explained by the
fact that they have many minimal regions, since the generation
of regions is the bottleneck of the overall computation process
accounting on average for more than 90% of it. In addition,
the size of the regions matters: indeed the computation time
of pparb 2 6 is an order of magnitude more than the one of
isend, even though pparb 2 6 has half the regions of isend,
since from Table III the regions in pparb 2 6 are much larger
than the ones of isend. Despite of the bottleneck to compute
regions, our approximate algorithm in Sec. III can handle quite
large transition systems. The result is not guaranteed to be a
minimum one, but the irredundancy procedure guarantees a
form of local minimality that guarantees the creation of free-
choice Petri nets.

VI. CONCLUSION

In this paper we described a new method for the de-
composition of transition systems. Our experimental results
demonstrate that the decomposition algorithm can be run on
large transition systems. The resultant set of synchronizing
FCPNs offers a good complexity trade-off compared to other
more expressive classes of PNs [4] vs. decomposition into
completely sequential SM, as Fig. 2 suggests.

Since the generation of minimal regions is currently a
computational bottleneck, future work will address this lim-
itation, while it will leverage the improvements in efficiency
of last-generation SAT solvers, and the power of HPC since
the generation of minimal regions is highly parallelizable.
As future work, we want also to apply this decomposition
paradigm to process mining.
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APPENDIX

A. Proof of theorem 1

Proof. Suppose that r1 and r2 are non-disjoint regions and
r1 ∩ r2 is also a region. Then r1 \ (r1 ∩ r2) = r1 \ r2 is a
region, since r1 and r1∩r2 are regions and (r1∩r2) ⊆ r1 (by
Prop. 1.50, p. 43, [1]). Then r1 \ r2 and r2 are two disjoint
regions and therefore (r1 \r2)∪r2 = r1∪r2 is a region, since
the union of two disjoint regions is also a region (by Prop.
1.64, p. 50, [1]).

Suppose that r1 and r2 are non-disjoint regions and r1 ∪ r2
is a region, then (r1∪r2)\r1 and (r1∪r2)\r2 are regions, as
differences of regions. So ((r1∪r2)\r1)∪ ((r1∪r2)\r2) is a
region as union of disjoint regions. Then r1 ∩ r2 = (r1 ∪ r2) \
(((r1 ∪ r2) \ r1) ∪ ((r1 ∪ r2) \ r2))) is a region as difference
of regions.

B. Proof of theorem 3

Place connectedness is a property which consists in keeping
all connections of a region (exit/enter) passing from regions to
the place representation in FCPNs. This fundamental property,
previously left implicit, enables us to use regions in the
bisimulation, as it will be described soon. The lack of place
connectedness means the loss of connections passing from a
region r to a place p. As result p does not represent r anymore,
but it represents an invalid region or a different region r′ which
has a no cross relation (neither enter nor exit) with the missing
event. A region could be represented by different instances
of places in two or more different FCPNs, but each of these

places still preserves the same connections to the events of the
represented region.

In this proof the following nomenclature will be used:
R is the total set of regions
Ri ⊆ R is the set of regions represented by places of FCPNi

R(s) is the set of regions that contain state s
Ri(s) = R(s)∩Ri is the set of regions represented by places
of FCPNi that include s.
R(s) = (R1(s), . . . , Rn(s)), this alias will be used for im-
proved readability.

The equivalence between an ECTS and the derived set of
FCPNs is proved by defining a bisimulation between the orig-
inal TS, defined as TS = (S,E, T, s0), and the synchronous
product of the reachability graphs of the derived free-choice
Petri nets RG(FCPN1)||RG(FCPN2)|| . . . ||RG(FCPNn), de-
noted by ||i=1,...,nRG(FCPNi) = (S||, E, T||, s0,||). Notice
that each RG(FCPNi) = (Ri, Ei, Ti, Ri(s0)), with Ti ⊆ Ri×
Ei ×Ri, is defined on a subset Ei of events of TS, its states
Ri corresponds to regions or sets of regions derived from TS
represented by the markings [M⟩ of FCPNi.

The initial state of RG(FCPNi) is represented by Ri(s0):
one or more regions containing the initial state s0 of TS.

Another fundamental property, is the excitation closure.
Indeed to prove the existence of a bisimulation we require
that the regions contained in the set of FCPNs satisfies EC,
where event-effectiveness guarantees that ∪Ei = E. Excita-
tion closure property is crucial to prove the steps 1) and 3) of
the proof.

Proof. We define the binary relation B as follows:

(s,R(s)) ∈ B ⇐⇒ s ∈
n⋂

i=1

r | r ∈ Ri(s) (1)

where:
• s ∈ S;
• R(s) or (R1(s), . . . , Rn(s)) is a tuple of markings where

each marking Ri(s) contains s.
Notice that writing (s,R(s)) ∈ B ⇐⇒ {s} =⋂n
i=1 r | r ∈ R(s) would be wrong, because the intersection of

regions could have two or more bisimilar (i.e., behaviourally
equivalent) states, as in the TS s0

a→ s1
b→ s2

a→ s3
b→ s0.

Now we prove that B is a bisimulation in three steps:
1) (s0, R(s0)) ∈ B.
2) If (sj , R(sj)) ∈ B and (sj , e, sk) ∈ T , then there

is R(sk) ∈ S|| such that (R(sj), e, R(sk)) ∈ T|| and
(sk, R(sk)) ∈ B.

3) If (sj , R(sj)) ∈ B and (R(sj), e, R(sk)) ∈ T||, then
there is sk ∈ S such that (sj , e, sk) ∈ T and
(sk, R(sk)) ∈ B.

4)
Let us now proceed with the proofs.

1) Since TS has a unique initial state s0, each FCPN FCPNi

has at least one initial region r ∈ Ri(s0) such that s0 ∈
r because the regions of an FCPN cover all the states
of initial TS (otherwise excitation closure wouldn’t be
satisfied). Therefore, s0 ∈

⋂n
i=1 r | r ∈ Ri(s0) and we

have that (s0, R(s0)) ∈ B.
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2) Since (sj , e, sk) ∈ T and (sj , R(sj)) ∈ B, then sj ∈⋂n
i=1 r | r ∈ Ri(sj). Now we will prove that there is sk

such that sk ∈
⋂n

i=1 r | r ∈ Ri(sk), so that we can have
(sk, R(sk)) ∈ B.
Notice that FCPNi may share places, but the property of
place-connectedness guarantees that shared places have
the same marking, i.e. if place p occurs in more than
one FCPNi and an event e is entering or exiting in one
occurrence of p then e will be entering or exiting in all
occurrences of p.
Since e is enabled in sj , no region Ri(sj) can be a post-
region of e. If one r ∈ Ri(sj) ∈ R(sj) would be a
post-region, then sj ̸∈

⋂n
i=1 r | r ∈ Ri(sj). Therefore,

the following cases can be distinguished for each r ∈
Ri(sj) ∈ R(sj):

• e is not an event of FCPNi. Thus, Ri(sk) = Ri(sj).
• e is an event of FCPNi,

– and all regions r ∈ Ri(sj) are no-cross regions
for e. Thus, Ri(sk) = Ri(sj). Explanation: say
that each of the n places of the current marking
Ri(sj) represents a region. By place-connectedness
each place is connected to all events of the corre-
sponding region. So, if e is no-cross with respect
to all regions, then no place of the FCPN will be
connected to e, and firing e cannot remove tokens
from any place of Ri(sj), and so Ri(sk) = Ri(sj).

– and all regions r ∈ Ri(sj) are pre-regions of e.
Thus, Ri(sk) ̸= Ri(sj) and each region r ∈ Ri(sk)
is a post-region of e. By place-connectedness.

– and some regions of Ri(sj) are pre-regions of
e. Thus, Ri(sk) ̸= Ri(sj) and each region r ∈
Ri(sk) \ Ri(sk) is a post-region of e. By place-
connectedness.

For the first and second case, FCPNi will not change
marking and TS will not change region when moving
from sj to sk. Therefore, sk ∈ r ∈ Ri(sj) = Ri(sk).
For the third and fourth case, e will exit r ∈ Ri(sj)
in at least one FCPN and will enter r ∈ Ri(sk) in
TS, which means that sk ∈ r ∈ Ri(sk). Therefore,
(R(sj), e, R(sk)) ∈ T||.
For all cases we have that sk ∈ r ∈ Ri(sk) and therefore
sk ∈

⋂n
i=1 r | r ∈ Ri(sk).

3) Since (sj , R(sj)) ∈ B, it holds that
sj ∈

⋂n
i=1 r | r ∈ Ri(sj). Given the existence of

the transition (R(sj), e, R(sk)), and knowing that
the excitation closure property holds, we know
that sj ∈

⋂n
i=1 r | r ∈ Ri(sj) ⊆ ES(e). The latter

inequality holds because we have 1) by PN construction,
∀i, i = 1, . . . , n, label e appears once in FCPNi or it
does not appear, and 2) being all states covered by at
least one region of the set of FCPNs, ∀i, i = 1, . . . , n,
if label e appears in FCPNi then r ∈ Ri(sj) could be
a no-cross region, otherwise r ∈ Ri(sj) ∈ (◦e ∩ R),
by which

⋃n
i=1 r | r ∈ Ri(sj) ⊇

⋃
r∈(◦e∩R){r} and

so by intersection of the regions seen as sets of states⋂n
i=1 r | r ∈ Ri(sj) ⊆

⋂
r∈(◦e∩R) r = ES(e).

Therefore, there is sk such that (sj , e, sk) ∈ T . We can
also see that sk ∈

⋂n
i=1 r | r ∈ Ri(sk), using the same

reasoning as in step 2, since all the pre-regions r ∈
Ri(sj) of e in R(sj) are exited by entering r ∈ Ri(sk),
whereas the no-crossing regions remain the same. We can
then conclude that (sk, R(sk)) ∈ B.
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