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Abstract

Differential privacy is one of the most prominent privacy notions in the field of anonymization. However, its strong privacy
guarantees very often come at the expense of significantly degrading the utility of the protected data. To cope with this,
numerous mechanisms have been studied that reduce the sensitivity of the data and hence the noise required to satisfy
this notion. In this paper, we present a generalization of classical microaggregation, where the aggregated records are
replaced by the group mean and additional statistical measures, with the purpose of evaluating it as a sensitivity reduction
mechanism. We propose an anonymization methodology for numerical microdata in which the target of protection is a data
set microaggregated in this generalized way, and the disclosure risk limitation is guaranteed through differential privacy via
record-level perturbation. Specifically, we describe three anonymization algorithms where microaggregation can be applied
to either entire records or groups of attributes independently. Our theoretical analysis computes the sensitivities of the first
two central cross moments; we apply fundamental results from matrix perturbation theory to derive sensitivity bounds on
the eigenvalues and eigenvectors of the covariance and coskewness matrices. Our extensive experimental evaluation shows
that data utility can be enhanced significantly for medium to large sizes of the microaggregation groups. For this range of
group sizes, we find experimental evidence that our approach can provide not only higher utility but also higher privacy than
traditional microaggregation.
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1 INTRODUCTION

IN the past few decades, we have witnessed revolutionary changes related to data collection and usage. In particular,
triggered by the development of the Internet, we have transitioned from data scarcity to data abundance. This data

abundance and the development of novel data analysis methodologies have made research and decision-making processes
markedly data-centric. As a result, demands to access external data have increased and data sharing has become an
emerging trend. The open data initiative [21] is a paradigmatic example of this direction.

When a data set is to be shared, the privacy of the individuals therein must be taken into account. That is precisely
what privacy-preserving data publishing is about. While there is a large variety of techniques to limit disclosure risk, the
privacy guarantees offered by most of them [10], [31], [26], [25] depend on assumptions on the side knowledge available
to intruders. With the current data abundance, however, it is increasingly difficult to make such assumptions accurately.
In this context, privacy models whose privacy guarantees are strong and side-knowledge independent gain relevance.
Differential privacy (DP) [12] is the most prominent representative of this class of models1.

DP was proposed as a privacy model to limit disclosure risk in database queries. Soon after its inception, numerous
mechanisms to generate DP data sets began to appear. Nonetheless, except for the simplest data domains, generating useful
DP data sets remains a highly challenging task.

Two main approaches have been followed to generate DP data sets: histograms and record perturbation. In the first
case, the data set is generated by partitioning the data domain into a number of bins and giving DP counts of records
within each bin. In the second case, the DP data set is generated by perturbing the original records appropriately. Due to
the limitations of the histogram approach in complex data domains (e.g. for a fixed accuracy, the number of required bins
grows exponentially with the dimension of the domain), we focus on record perturbation.

Naively generating a DP data set by perturbing the original records according to their sensitivity is definitely unfeasible
—the typically large sensitivity of individual records in a database would render it useless. Consequently, there is an
evident need to apply some sensitivity reduction mechanism. In [36], [37], [32], [33], [35], microaggregation is leveraged
precisely with that purpose. Specifically, a protected data set is generated by collecting DP centroids, rather than records.
However, although the microaggregation step is essential in those works to keep perturbation under control, the fact that
the records within each cluster are replaced by a single statistic (i.e., the sample mean of all records in the cluster) has a
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side effect on the variability of the microaggregated data, which may severely limit the utility of the released data set. This
is more so because, in general, the sizes of the microaggregation clusters need to be quite large to effectively reduce the DP
noise.

1.1 Contribution and Plan of this Paper
In this work, we focus on anonymization of numerical data and generalize the classical microaggregation algorithms,
which are based on a single measure of central tendency within clusters, to include additional statistical measures such
as dispersion and dependency between attributes. We refer to this generalization as cross-moment microaggregation and we
will use it as a preliminary sensitivity reduction step in view of attaining differential privacy, while delivering more utility
(several moments are reported rather than just the within-cluster centroid).

Our study of cross-moment microaggregation as a sensitivity reduction factor contemplates two cases: one in which the
statistical measures are given as matrix coefficients, and another where this information is available as spectral decomposi-
tions. We investigate for each case the sensitivities of several central cross moments in a mathematically systematic fashion,
drawing upon the methodology of engineering optimization. Next, we summarize the major contributions of this work:
• We propose a microdata anonymization methodology that capitalizes on a generalization of microaggregation. Our

methodology relies on cross-moment microaggregation only to diminish data sensitivity, since the disclosure risk
limitation comes from the enforcement of DP. Accordingly, we describe three anonymization algorithms in which
microaggregation can be applied to either entire records or groups of attributes independently.

• We compute the sensitivities of the first two central cross moments and apply fundamental results from matrix
perturbation theory to derive sensitivity bounds on the eigenvalues and eigenvectors of the covariance and coskewness
matrices.

• We conduct an extensive, thorough experimental evaluation in which we analyze the impact on data utility caused by
26 different configurations of the proposed anonymization methods, including previous work. A variety of empirical
results show that data utility can be enhanced significantly for medium to large sizes of the microaggregation clusters,
which demonstrates the suitability of our approach. Interestingly, for this range of group sizes, our proposal may
provide not only higher utility but also higher privacy than traditional microaggregation.

The remainder of this paper is organized as follows. Section 2 establishes the notation and recalls key aspects of DP
and statistics. Section 3 reviews the state of art relevant to this work. Section 4 introduces cross-moment microaggregation,
investigates the sensitivities of several central cross moments and describes our approach to generate DP data sets through
record perturbation. Section 5 conducts an experimental evaluation of the proposed anonymization algorithms. Finally,
conclusions are drawn in Section 6.

2 NOTATION AND BACKGROUND

This section describes necessary background on microaggregation, DP and statistics. Prior to that, we deal with notation.
We shall adopt the same notation for vectors and matrices used in [39]. Specifically, we delimit matrices with parentheses,
with the components separated by space, and use parentheses as well to construct column vectors from comma-separated
lists. Occasionally, we shall use the notation xTy to indicate the standard inner product on Rn,

∑n
i=1 xiyi, and ‖x‖1 and

‖x‖2 to denote the L1- and L2-norms of a vector x ∈ Rn, i.e., ‖x‖1 =
∑n
i=1 |x| and ‖x‖2 = (xTx)1/2.

For matrices A = [αi,j ] ∈ Rd×d, recall that the Frobenius norm is defined as

‖A‖F =

 d∑
i=1

d∑
j=1

α2
ij

1/2

,

and the 2-norm as
‖A‖2 = max

x∈Rd

‖x‖261

‖Ax‖2.

It can be shown that ‖A‖2 = max16i6d
√
λi, where λ1, . . . , λd represent the eigenvalues of A.

In our analysis, databases will be modeled as matrices of dimensions n records by d attributes. If attribute j takes values
in the interval [0,Λj ], denote by Λ the column vector (Λ1, . . . ,Λd) and by Ω the square matrix with all d columns equal to
Λ. Occasionally, we shall use a set notation and hence databases will also be construed as sets of records. Throughout this
work, we shall use the terms data set and database interchangeably.

2.1 Microaggregation
In essence, microaggregation [9] is a family of anonymization algorithms for data sets that operates in two stages:
• First, the set of records in a data set is clustered in such a way that (i) each cluster contains at least k records, and (ii)

records within a cluster are as similar as possible.
• Secondly, records within each cluster are replaced by a representative of the cluster, typically the centroid record.
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Clearly, when microaggregation is applied to the projection of records on their quasi-identifier attributes, the resulting data
set is k-anonymous.

Microaggregation methods can be classified into univariate and multivariate:
• Univariate methods deal with multi-attribute data sets by microaggregating one attribute at a time. IR microaggrega-

tion [8] falls within this category. First, records are sorted by the first attribute; second, clusters of k consecutive values
of the first attribute are created; and, third, all values within each cluster are replaced by the cluster representative
(e.g., centroid). The same procedure is repeated for the rest of attributes. In general, microaggregation algorithms of
this category provide low levels of disclosure risk limitation.

• Multivariate methods deal with several attributes at a time. If we define optimal microaggregation as finding a partition
in clusters of size at least k such that within-clusters homogeneity is maximum, it turns out that optimal multivariate
microaggregation is NP-hard [29]. This motivates the use of heuristic multivariate microaggregation algorithms such
as MDAV [10].

2.2 Differential Privacy
DP was originally proposed by [12] as a privacy model in the interactive setting, that is, to protect the outcomes of queries
to a database. The assumption is that an anonymization mechanism sits between the user submitting queries and the
database answering them.

Central to DP is the notion of neighbor databases, which can be interpreted in two different ways. On the one hand,
the unbounded case assumes one entry is either removed or added. On the other hand, the bounded notion considers the
replacement of one record by another. An important difference is that the former case assumes the size n of the database
to be publicly known, whereas the latter assumes this parameter is private. Nonetheless, the two notions of neighborhood
are very related and mechanisms satisfying one can be adapted to meet the other. For the sake of mathematical simplicity,
we use the latter definition.
Definition 1 (L1-sensitivity). Let D be the class of possible data sets. The L1-sensitivity or global sensitivity of a query

function f : D → Rd is defined as
GS(f) = max

X,X′∈D
||f(X)− f(X ′)||1,

where X,X ′ are any two neighbor databases in the sense described above.

In the sequel, we shall often use just “sensitivity” to refer to global sensitivity. Also, to keep notation as light as possible,
in some cases we shall also use ∆f as a synonym of GS(f) or just ∆ if there is no possible confusion about which is the
function f .
Definition 2 (ε-Differential privacy). A randomized mechanism M on a query function f satisfies ε-differential privacy

with ε > 0 if, for all pairs of neighbor databases X,X ′ and for all O ⊆ range(M),

P{M(f(X)) ∈ O}
P{M(f(X ′)) ∈ O}

6 exp(ε).

Throughout this paper, the primary approach to design DP mechanisms is through the addition of Laplace noise [12].
The Laplace mechanism ML, as this approach is known, operates as follows: first, it computes the real value f(X) of
the response to a certain user query f , then it masks f(X) by adding noise L(X) distributed according to a Laplace
distribution, and finally it returns the randomized response ML(f(X)) = f(X) + L(X). It can be shown [12] that the
Laplace mechanism preserves ε-DP when the Laplace distribution has zero mean and is scaled to GS(f)/ε.

2.3 Individual Differential Privacy
DP is a popular privacy model within the research community because of the strong privacy guarantee it offers. However,
enforcing this strict guarantee may distort data significantly. Several relaxations of DP have been proposed that trade
off privacy guarantees for improved data utility. Among these, individual DP (iDP) [38] is of particular interest since it
preserves the privacy guarantees that DP gives to individuals. Namely, the presence or absence of any individual in a data
set does not significantly influence the results of analyses on the data set.

Specifically, iDP argues that the formalization of DP (see Definition 2) is more stringent than required by the underlying
intuitive view (the presence or absence of any record should not be noticeable). In particular, it argues that, to attain such
intuitive guarantees, it is sufficient to require indistinguishability of the responses to queries between the actual data set
and its neighbor data sets.
Definition 3 (Local sensitivity). Let D be the class of possible data sets. Given a data set X ∈ D, the local sensitivity of a

query function f : D → Rd is defined as

LS(f,X) = max
X′∈D

||f(X)− f(X ′)||1,

where the maximum is taken over all databases X ′ that are neighbors of X .
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Clearly, LS(f,X) 6 GS(f) for any query function f and input data set X . In practice, the local sensitivity is usually
small except for especially ill-conditioned databases.
Definition 4 (ε-Individual differential privacy). Given a data set X , a randomized mechanism M on a query function f

satisfies ε-individual differential privacy (or ε-iDP) if, for any data set X ′ that is a neighbor of X and any S ⊆ range(M),
we have

exp(−ε) Pr{M(f(X ′)) ∈ O} 6 Pr{M(f(X)) ∈ O} 6 exp(ε) Pr{M(f(X ′)) ∈ O}.

Remarkably, in the iDP model we can employ the mechanisms originally designed for DP and apply the properties
of sequential and parallel composition [28], with the sole difference that global sensitivity must be replaced with local
sensitivity.

2.4 Statistical Quantities
This section recalls several statistical quantities that will appear in the remainder of this work. We adopt the same notation
used in [11].

The sample (unbiased) covariance matrix of a database X is a d× d matrix QX = [qij ] with entries

qij =
1

n− 1

n∑
k=1

(xki − x̄i)(xkj − x̄j) (1)

for n > 2, where x̄i is the sample mean of the attribute i, that is,
∑n
k=1 xki/n.

The Fisher (unbiased) sample coskewness estimator [16] of a database X is a d× d2 matrix ΦX = [φijk], with entries

φijk =
n

(n− 1)(n− 2)

n∑
m=1

(xmi − x̄i)(xmj − x̄j)(xmk − x̄k) (2)

for n > 3. Notice that permuting the indices i, j, k does not alter the value of φijk. This property is called supersymmetry [4]
and, as a result of it, ΦX only has d(d+ 1)(d+ 2)/6 unique elements.

3 STATE OF THE ART

In statistical disclosure control (SDC) ones face two conflicting goals: to preserve the privacy of the individuals on the one
hand, and on the other to keep the protected data as useful as possible. Several approaches have been investigated in the
quest for a good balance between these conflicting interests.

3.1 Utility-first vs Privacy Models
In the early times of SDC, the methods used to limit disclosure risk in microdata releases took always a utility-first
approach: under this approach, data are only mildly masked (to keep the desired level of data utility), and then the risk
of disclosure is assessed on the generated data set (e.g., via record linkage). If the risk of disclosure is deemed too high,
the protected data set is discarded and a new version is generated using stricter masking. Masking methods used include
microaggregation, recoding and data swapping, among others [20].

The first attempt to provide formal privacy guarantees came with k-anonymity [31] and its extensions (e.g., l-diversity [26]
and t-closeness [25]). In particular, k-anonymity seeks to prevent re-identification of the individuals to whom the records
in the protected data set correspond. The intruder is assumed to be able to perform record linkage between the protected
data set and some external identified data set by using a subset of attributes called quasi-identifiers. To hinder linkage,
k-anonymity makes sure that each combination of values of quasi-identifiers is shared by at least k records in the protected
data set.

In k-anonymity and its extensions, assumptions on the side knowledge available to the intruder are necessary: for
example, which external identified data sets he can access and which attributes he can use as quasi-identifiers for linkage.
However, in the current landscape, where data collection is pervasive, the need for such assumptions on the intruder can
be seen as a flaw. It seems difficult to guarantee that a certain attribute is not externally available and, thus, that it does
not need to be taken as a quasi-identifier. Privacy models that avoid making assumptions about the externally available
information seem more appropriate. DP [12], which aims at making unnoticeable the presence or absence of any individual
in a data set, is the most prominent among them.

DP attains its intended guarantees by making the outcome of queries similar between data sets that differ in one
record. There is a general consensus about the strong privacy protection offered by DP. However, criticisms related to the
utility of the generated data are common [34] and several relaxations have been proposed: for example, (ε, δ)-DP [13],
(ε, δ)-probabilistic DP [27] and ε-individual DP [38].

Even if DP was initially proposed to protect query responses, mechanisms to generate DP data sets appeared soon after
its inception. There are two main approaches: histograms and record masking.

The histogram approach takes advantage of the low sensitivity of counting queries over a partition of the data
domain [15]. The naive application of this mechanism becomes problematic as the complexity of the data domain increases.
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Note that, for fixed accuracy, the cardinality of the partition (number of bins) grows exponentially with the number of
attributes. This has important effects on the computational cost and the accuracy of the protected data. The time and
space complexity of counting the number of records in each bin is proportional to the cardinality of the partition. The
state-of-the-art DP histogram-based method [23] runs in time O(n3 log n) for histograms of n bins. For histogram sizes in
the orders of tens of thousands, this method may take months to complete. Additionally, since the effect of the noise in the
various bins accrues, when the cardinality of the partition is large even a small noise may be too much. Works such as [24],
[41], [18] suffer from these issues. Some mitigation strategies have been proposed. In [17], given a partition, the authors
propose an algorithm that minimizes the error for a given family of counting queries. In [7], data summarization techniques
are used to reduce the time and space complexity. In particular, time and space are made proportional to the number of
non-empty cells in the summarized data set. An alternative way to tackle the issues caused by data dimensionality is to
apply dimensionality reduction techniques. In [42], the dependency between attributes is modeled to generate the DP data
set from a set of low-order marginals.

The alternative to obtain DP data sets based on record masking avoids partitioning the data domain. Instead, the DP
data set is generated by masking the original records. Masking each record by adding a Laplace-distributed noise with
magnitude proportional to the record sensitivity is not a feasible solution, however. Since the purpose of DP is to hide the
presence of any single record, such a naive approach inescapably needs to introduce too much noise, thereby producing
significant utility damage. Specifically, suppose we want to generate an ε-DP version of a data set X . Denote by Xε the
anonymized data set. For r = 1, . . . , n, define Ir(X) as the function that returns the attribute values of the r-th record of X .
Since X can be interpreted as the collected answers to the queries Ir(X) for all records r, an intuitive way to generate Xε is
collecting ε-DP responses to Ir(X) for all r. If the responses to the queries Ir satisfy ε-DP, then, since each query refers to a
different record, it follows from the parallel composition property of DP that Xε also meets the desired ε-DP requirement.
In short, with this methodology, Xε is generated by providing a DP response to the queries asking for the values of all
attributes in each record. Although this record-level perturbation methodology does not make any assumptions on the
uses of the output data, unfortunately it may come at the expense of a huge information loss. Since each query Ir refers
to a single individual, its L1-sensitivity is large and so is the masking required to attain ε-DP. The upshot is a database Xε

with very limited utility.
Thus, some strategy is needed to reduce the sensitivity of the records before masking them to achieve DP. The state of

the art on this matter is discussed next.

3.2 Microaggregation-based Differentially Private Data Publishing
In [36], [37], [32], [33], [35], DP data sets are generated via record masking. In these works, microaggregation is employed
to reduce the sensitivity of the queries used to generate the DP data sets: rather than querying each original record, in these
works representatives of the microaggregation clusters are queried. Since a cluster representative is an aggregation of the
records in the cluster, it is less sensitive to changes than any single record. The amount of sensitivity reduction depends on
how such representative values are computed.

Specifically, in [36], [37], multivariate microaggregation is used to partition the original data set into clusters of k or
more records. The DP data set is derived by querying the centroid (arithmetic average) of each cluster. Since multivariate
microaggregation with minimal cluster size k over all the attributes ensures k-anonymity, we can regard this approach
as combining k-anonymity and DP. A novel type of microaggregation called insensitive microaggregation had to be
designed for this approach. The main reason is that, in standard microaggregation algorithms, changing one value in
one record may yield a completely unrelated set of clusters, which would not reduce sensitivity; although it is certainly
unlikely that changing one record value changes all clusters, to guarantee DP we need to consider the worst case. In
insensitive microaggregation we require changes in a single record to produce a set of clusters that differ (at most) in
one record. In this way, the sensitivity of a centroid divides the sensitivity of the original records by the corresponding
cluster size. The downside of insensitive microaggregation is that it yields worse within-cluster homogeneity than standard
microaggregation and, hence, higher information loss. Furthermore, the minimum cluster size k grows with the data set
size, as we show next. Let n be the number of records in a data set. To obtain a DP version of it, n/k centroids are released,
each one computed on a cluster of cardinality k and having sensitivity ∆/k, where ∆ is the sensitivity of the original
records. Hence, the sensitivity of the whole data set to be released is n/k × ∆/k. Thus, for numerical data sets, Laplace
noise with scale parameter (n/k × ∆/k)/ε must be added to each centroid to obtain an ε-DP output. For this approach
to reduce the amount of noise required to attain ε-DP, the inequality n/k ×∆/k 6 ∆ must hold. Equivalently, one needs
k >
√
n.

To circumvent the previous problems of [36], [37], an alternative approach was proposed in [32], [33] based on individual
ranking (IR) microaggregation. Since IR microaggregates only one attribute at a time, it achieves insensitivity while
avoiding the information loss penalty of multivariate insensitive microaggregation. On the other hand, there is no lower
bound on k: when using IR microaggregation, we can bound the sensitivity of the set of centroids by ∆/k (to be compared
with n/k ×∆/k in the case multivariate insensitive microaggregation); hence, no matter the value of k, the sensitivity is
reduced.

The seeming superiority of the IR microaggregation approach is, however, severely limited by the fact that it can
only deal with data sets that contain a single attribute; combining the DP versions of several attributes via sequential
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Fig. 1: Our methodology relies on a generalized form of microaggregation (m-microaggregation) as an intermediate step to reduce query sensitivity.
Thus, there are two sources of error: one due to m-microaggregation itself, and another due to Laplace noise.

composition does not yield a DP data set. A way to avoid this issue was proposed in [35]. The difference with respect
to [32], [33] is that the target of DP protection is the microaggregated data set, rather than the original data set. That is, one
protects with DP a data set that consists of the centroids separately computed for each attribute via IR. Note that, since the
microaggregated data set contains less information than the original data set, no additional privacy risk is incurred when
shifting the target of protection from the original to the microaggregated data set. The main advantage of this transition is
that one can combine through sequential composition the DP versions of the attributes obtained via IR microaggregation
to obtain a single DP data set.

4 DIFFERENTIALLY PRIVATE DATA SETS VIA CROSS-MOMENT MICROAGGREGATION

In this section, we describe our methodology to publish DP data sets through record-level perturbation. Our proposal
is motivated by the fact mentioned in Section 3.1 that the prevailing approach for publishing DP microdata, based on
histograms, suffers from serious limitations in terms of computational efficiency and data utility. But, as also noted in
Section 3.1, plain independent masking of the records in the original data set may degrade utility severely.

To make record-level masking viable to generate DP data sets, there is an evident need to reduce the sensitivity of the
query function to be used. One way to achieve this is to query aggregate information on records rather than individual
records.

4.1 Sensitivity Reduction through Cross-Moment Microaggregation
Like [36], [37], [32], [33], [35], our methodology capitalizes on microaggregation as an intermediate anonymization step. In
spite of microaggregation being in its own right a well-known statistical disclosure control technique, we use it here with
the sole purpose of diminishing the sensitivity of the queries. The disclosure risk limitation comes from the enforcement of
DP. This change of purpose carries along a change in the traditional way of thinking about microaggregation.

Unlike the works cited in the previous paragraph, however, we assume a more general interpretation of microaggrega-
tion. As explained in Section 2.1, standard microaggregation splits the data set into clusters of at least k records and then
replaces the records in each cluster by the first raw moment, or cluster centroid, where the minimum value k prevents
the centroid from representing too closely any particular record in the cluster. In this work, we consider microaggregation
algorithms in which each cluster is replaced not only by the first raw moment, but also by central cross moments like the
covariance, coskewness or cokurtosis. More specifically, we define m-microaggregation, with m > 0, as an algorithm that
proceeds in these three steps:

1) partition the data set into clusters of at least k records;
2) compute the sample mean and the first m central cross moments of each cluster;
3) and replace the records in the cluster by the computed statistics.

Clearly, any standard microaggregation algorithm can be adapted to comply with the definition of m-microaggregation: it is
just a question of accompanying the centroid with more statistics about the cluster, an information that is easily computable
once the data set is clustered (first step above).

Apart from assuming a more general class of microaggregation algorithms, our anonymization methodology also differs
from those of [36], [37], [32], [33] using standard microaggregation, that is, 0-microaggregation. In particular, following the
approach suggested by [35] we consider that the data set to be protected is the microaggregated one, rather than the original
one. Put another way, given an original data set X , we generate Xm by m-microaggregation of the records in X and drop
X . Consequently, the aim is to publish Xm

ε , a DP version of Xm.
In the evaluation of the utility of Xm

ε , we need to consider then two sources of error. On the one hand, the error due
to m-microaggregation, that is, the error caused by using Xm instead of X ; and on the other hand, the noise introduced
to attain ε-DP. The advantage of the proposed method lies in the fact that the former error is likely to be more than
compensated by the reduction in the noise required to attain DP; the benchmark is the noise that would be required to
attain DP directly from the original data set X . Figure 1 provides a conceptual depiction of these two sources of error.

To reduce the error introduced by microaggregation, we shall require algorithms that generate clusters that are as
homogeneous as possible. For the sake of generality, throughout this work we do not favor any particular strategy to
create the microaggregation clusters: they can all have the same or different cardinalities, they can be optimal (maximally
homogeneous) or not, randomized or deterministic, etc.
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As to the second type of error, the purpose of cross-moment microaggregation in this work is precisely to reduce
the sensitivity of the query functions and thus the amount of Laplace noise to be added. As mentioned in Section 3.2,
some sensitivity reduction was also achieved by 0-microaggregation: replacing original records with centroids divides the
sensitivity by the minimum cluster size k.

4.2 Sensitivity of Cross-Moment Microaggregated Data Sets
In this subsection we present the theoretical analysis of the sensitivities of several statistical quantities central to cross-
moment microaggregation. Specifically, we analyze the sensitivity of the coefficients of the covariance and coskewness
matrices, as well as the sensitivity of the eigenvalues and eigenvectors of these matrices. As we shall elaborate later in
Section 4.3, the statistical information provided by an m-microaggregated data set can be given in the form of either matrix
coefficients or eigenvalues and eigenvectors.

The computation of the sensitivities of several statistical quantities, especially the covariance matrix, has been ap-
proached by various works seeking to provide DP versions of algorithms (e.g., principal component analysis) where those
statistics are relevant. In this section, we find the sensitivity of each coefficient of the covariance matrix and derive tighter
bounds on the sensitivity of the entire matrix. On the other hand and to the best of our knowledge, our work is the
first to investigate the sensitivities of the coskewness matrix and the eigenvalues and eigenvectors of the covariance and
coskewness matrices.

Before proceeding, we introduce some definitions that will facilitate presenting the results provided in this section. Let
X = {1, . . . , k}. For a, b ∈ {1, . . . , d} and a fixed r ∈X , define Aa =

∑
l∈X \{r} xla and Aab =

∑
l∈X \{r} xlaxlb.

Proposition 5 (Mean). Denote by fx̄ the query function that returns the sample mean of a cluster C ⊂ D of k records with
d attributes. The L1-sensitivity of this function is GS(fx̄) = 1TΛ/k.

Proof: The proof is immediate from the definition of sample mean. �

Proposition 6 (Covariance). Let C ⊂ D be a cluster of k records with d attributes and fqij be the query function that returns
the coefficient qij of the covariance matrix QC . The L1-sensitivity of this function, denoted by GS(fqij ), is ΛiΛj/k.

Proof: For the sake of brevity, we only show the case i 6= j. Consider two neighbor clusters C and C′. For any r ∈ X ,
denote by xr = (xri, xrj) and x′r = (x′ri, x

′
rj) the respective values of the different record in either cluster, and note that

x̄l = (Al + xrl)/k and x̄′l = x̄l + (x′rl − xrl)/k. Write Expression (1) as

qij =
k

k − 1

(
1

k

k∑
l=1

xlixlj − x̄ix̄j

)
,

and accordingly compute the difference between the query responses q′ij and qij as

q′ij − qij =
k

k − 1

(
x̄ix̄j − x̄′ix̄′j +

x′rix
′
rj − xrixrj
k

)
,

which after simple manipulation yields

1

k

(
x′rix

′
rj − xrixrj −

Ai(x′rj − xrj)
k − 1

− Aj(x
′
ri − xri)
k − 1

)
. (3)

Although the sensitivity is a maximum in absolute terms, we shall first find the maximum value of Expression (3) over
the compact set F = {0 6 xri, x

′
ri 6 Λi, 0 6 xrj , x

′
rj 6 Λj} with the rest of records C \ {xr} fixed. To this end, define

g : R2 → R as the function (α, β) 7→ αβ − Ai

k−1β −
Aj

k−1α and note that

max
xr,x

′
r∈F

q′ij − qij =
1

k
max

xr,x
′
r∈F

g(x′r)− g(xr), (4)

which allows us to write the maximization problem in question into the separable objective function g and separable
constraints on xr, x′r . For convenience, we shall interpret Expression (4) as a function of all but the r-th record, C \ {xr},
and denote it by h. Next, we proceed to find the maximum and minimum values of g over F .

First, we note that (α, β) =
(
Ai

k−1 ,
Aj

k−1

)
is the only stationary point of g. Since ∇2g at this point has eigenvalues of

different sign, the Hessian is indefinite and therefore the minimum and maximum are attained on the boundary of F .
We shall only check the case β = Λj , for which g becomes the linear function

g(α, β) =

(
Λj −

Aj
k − 1

)
α− ΛjAi

k − 1
.

Since Λj(k − 1) > Aj , it immediately follows that the minimum and maximum occur at α = 0 and α = Λi, respectively.
Systematic study of the three remaining boundaries permits us to derive the maximum and minimum of g over F , and the
difference between them, namely,



8

h(C \ {xr}) =
1

k(k − 1)
×


ΛjAi, if ΛiΛj(k − 1) 6 ΛiAj + ΛjAi and Ai > Aj (5)
ΛiAj , if ΛiΛj(k − 1) 6 ΛiAj + ΛjAi and Ai 6 Aj (6)
ΛiΛj(k − 1)− ΛiAj , if ΛiΛj(k − 1) > ΛiAj + ΛjAi and Ai > Aj (7)
ΛiΛj(k − 1)− ΛjAi, if ΛiΛj(k − 1) > ΛiAj + ΛjAi and Ai 6 Aj . (8)

We proceed to derive GS(fqij ) from Expressions (5) to (8), by observing that

GS(fqij ) = max
C,C′
|q′ij − qij |

= max
C\{xr}

max
xr,x

′
r∈F
{q′ij − qij , qij − q′ij}

= max
C\{xr}

max
xr,x

′
r∈F

q′ij − qij .

In plain words, we just need to find the maximum of h over all possible clusters of k − 1 records. It is straightforward
to verify that Expressions (5) and (6) attain the maximum at Ai = Λi(k − 1) and Aj = Λj(k − 1), or equivalently when
(xli)l 6=r = Λi and (xlj)l 6=r = Λj , respectively. On the other hand, Expressions (7) and (8) are maximized at Aj = 0 and
Ai = 0, or equivalently when (xli)l 6=r = 0 and (xlj)l 6=r = 0, respectively. In either case, the maximum value is ΛiΛj/k. �

The conclusions that can be drawn from Proposition 6 are rather straightforward. First, the global sensitivity of the
coefficients of a covariance matrix is directly proportional to the width Λ, and inversely proportional to the size of the
cluster, which shows the appropriateness of basing our anonymization methodology on cross-moment microaggregation as
a means to reducing sensitivity. Secondly, since the covariance matrix is symmetric, it follows that GS(fQC ) 6

∑d
j>i ΛiΛj/k.

As mentioned at the beginning of this section, the problem of estimating the sensitivity of key statistical quantities,
including the covariance matrix, has been tackled previously [14], [40], [6]. However, the bounds achieved by [14] are
admittedly crude, and the ones obtained by [40] are looser. Our result is also more general than [6] since we do not make
any assumption on the database or cluster. The result of [6] requires the database to be centered and essentially coincides
with ours. But our sensitivity bound is in fact smaller because we consider just the unique elements of the matrix.

Next, we examine coskewness. The exact L1-sensitivity of the coefficients of a coskewness matrix will be derived from
the following result, Lemma 7, which finds the solution to three related nonconvex quadratic problems.
Lemma 7. Consider the functions Bij , Cij ,Dij : R2(k−1) → R,

Bij(xi, xj) = k
k−1∑
c=1

xcixcj − 2
k−1∑
c=1

xci

k−1∑
c=1

xcj ,

Cij(xi, xj) = Bij(xi, xj) + Λi(k−2)Aj and Dij(xi, xj) = Cij(xi, xj) + Λj(k−2)Ai−ΛiΛj(k−1)(k−2). The following
optimization problems in the variables xi and xj yield the same maximum value,

max
04xi4Λi,
04xj4Λj

|Bij(xi, xj)| = max
04xi4Λi,
04xj4Λj

|Cij(xi, xj)| = max
04xi4Λi,
04xj4Λj

|Dij(xi, xj)| = ΛiΛj(k − 1)(k − 2).

Proof: For brevity, we only show the maximum of |Bij |. The derivation of the solution of the other two nonconvex
quadratic problems proceeds along the same lines and is omitted.

The proof consists of three steps. We first find the maximum of Bij , then its minimum, and finally check the maximum
of the two in absolute terms.

The existence of the solution is a consequence of the fact that we maximize and minimize a continuous function over
a compact set. Assume Xi = Λil + v and Xj = Λjm + w for some integers 0 6 l,m 6 k − 1 and real numbers satisfying
0 6 v < Λi and 0 6 w < Λj . The maximization problem can be equivalently recast as

max
l,m
v,w

g(Xi, Xj), (9)

where
g(Xi, Xj) = maximize Bij(xi, xj)

subject to 0 4 xi 4 Λi, 0 4 xj 4 Λj ,
k−1∑
c=1

xci = Xi,
k−1∑
c=1

xcj = Xj .

Recall from [19] that

xci =


Λi, c = 1, . . . , l
v , c = l + 1
0 , c = l + 2, . . . , k − 1

and xcj =


Λj , c = 1, . . . ,m
w , c = m+ 1
0 , c = m+ 2, . . . , k − 1

(10)
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is a global maximizer of Bij . A couple of observations follow. First, note that the tuple (xi, xj) satisfying xci = Λi, xcj = Λj
for an index c = 1, . . . , k − 1 and xci = xcj = 0 for the rest of indices is not necessarily a maximizer of Bij but yields

Bij(xi, xj) = ΛiΛj(k − 2) > 0,

by virtue of k > 3. Secondly, observe that if Xi = Λi(k − 1), then v = 0 and g(Xi, Xj) = ΛiXj(2 − k) < 0 for any
Xj ; and similarly, if Xj = Λj(k − 1), then g(Xi, Xj) is negative. The consequence of these three observations is that, if
Xi = Λi(k − 1) or Xj = Λj(k − 1), the corresponding maximizer (x∗i , x

∗
j ) of Bij satisfies

B(x∗i , x
∗
j ) < max

06Xi<Λi(k−1)
06Xj<Λj(k−1)

g(Xi, Xj),

which indicates we only need to consider the cases 0 6 l,m 6 k − 2.
That said, there exist three possibilities in Expression (10), namely, l < m, l = m and l > m. However, the symmetry of

the problem with respect to xi and xj and the fact that

g(Λil + v,Λj(l + 1) + w) > g(Λil + v,Λj(l + τ) + w)

for τ = 2, 3, . . ., allow us to dispense with one of the two inequality cases above and the case m > l + 1. Accordingly, we
shall examine

g(Xi, Xj) =

{
k(ΛiΛj l + Λjv)− 2(Λil + v)(Λj(l + 1) + w), if l = m− 1

k(ΛiΛj l + vw)− 2(Λil + v)(Λj l + w), if l = m.

We proceed with the case l = m− 1. Note that Expression (9) can be viewed as equivalent to maximizing the function

h(l,m) = max
06v<Λi
06w<Λj

g(Xi, Xj), (11)

subject to 0 6 l,m 6 k − 2. For any given l and m, observe that Expression (11) is a bilinear optimization problem and, as
such, is maximized at the vertices of the feasible set. Before we continue with each case, note that, when v = Λi or w = Λj ,
we just have to subtract one from l or m to ensure the consistency of the right-hand inequalities of Expression (11). Having
said this, verify that, if l > k/2− 1 (l 6 k/2− 1), then g(Λil,Λj(l+ 1)) is greater (smaller) than g(Λi(l+ 1),Λj(l+ 1)), and
hence

h(l) =

{
ΛiΛj l (k − 2(l + 1)) , if l > k/2− 1
ΛiΛj(l + 1) (k − 2(l + 1)) , if l 6 k/2− 1.

(12)

Denote by [·] the nearest integer function. Accordingly, we easily find that the maximum of Expression (12) is

ΛiΛj

[
k

4

](
k − 2

[
k

4

])
, (13)

which is attained at l =
[
k
4

]
− 1 and v = Λi, w = 0.

Now we turn to the case l = m and again, for any l, we check that the maximizer of (11) is one of the vertices of
[0,Λi]× [0,Λj ]. Straightforward manipulation shows

h(l) =

{
ΛiΛj l(k − 2l), if l > k−2

4

ΛiΛj(l + 1)(k − 2(l + 1)), if l < k−2
4 .

The case l < k−2
4 has been examined form = l+1, but the corresponding maximum value of Expression (13) is not attained

here. On the other hand, it is easy to verify that l =
[
k
4

]
maximizes h(l) when l > k−2

4 . In closing, we have m =
[
k
4

]
and

v = w = 0, that is, the same solution and objective value as those of case m = l + 1. Consequently, the maximum of Bij is
given by Expression (13).

Following a similar, systematic approach, next we proceed to find the minimum of Bij . With this aim, we define
g(Xi, Xj) now as the minimum of this function for a given Xi = Λil + v and Xj = Λj(k −m) + w, with l = 0, . . . , k − 1
and m = 1, . . . , k.

Intuitively,

xci =


Λi, c = 1, . . . , l
v , c = l + 1
0 , c = l + 2, . . . , k − 1

and xcj =


0 , c = 1, . . . , k −m− 2
w , c = k −m− 1
Λj , c = k −m, . . . , k − 1

is a global minimizer of Bij . Accordingly, we may represent the original problem equivalently as the minimization of

h(l,m) = min
06v<Λi
06w<Λj


−2(Λil + v)(Λj(k −m) + w), if m > l + 2

k v w − 2(Λil + v)(Λj(k − l − 2) + w), if m = l + 2

k (ΛiΛj(l + 1−m) + Λiw + Λjv)− 2(Λil + v)(Λj(k −m) + w), if m < l + 2
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subject to 0 6 l 6 k − 1 and 1 6 m 6 k. Any of the three cases pose again a bilinear problem in the variables v and w. The
solution, in any case, is found in one of the vertices of the feasible set.

We begin with the case m 6 l + 1 and the vertex v = w = 0. For brevity, we only show this vertex. In this case,

min
06Xi<Λi(k−1)
06Xj<Λj(k−1)

g(Xi, Xj) = min
06l6k−1
16m6k
l>m−1

ΛiΛj
(
l(2m− k)− k(m− 1)

)

= min
16m6k

{
2ΛiΛj(m− k)(m− 1), if 2m > k
ΛiΛj(m− k)(k − 2) , if 2m < k.

(14)

Clearly, if 2m > k, then g(Xi, Xj) is minimized at m =
[
k+1

2

]
and l = m− 1, and yields

2ΛiΛj

([
k + 1

2

]
− k

)([
k + 1

2

]
− 1

)
.

On the other hand, the solution for 2m < k is m = 1 and l = k − 1, and the corresponding minimum objective value is

−ΛiΛj(k − 1)(k − 2). (15)

Now we assume m > l + 2. It is easy to check that the solution to the problem h(l,m) is, in this case, the vertex
(v, w) = (Λi,Λj), which implies

min
04xi4Λi
04xj4Λj

Bij(xi, xj) = min
16m6k

min
06l6k−1
l<m−2

−2ΛiΛj(l + 1)(k −m+ 1). (16)

Then, since k−m+ 1 > 0, the minimum of the inner optimization problem occurs at l = m− 3, and accordingly, the outer
problem is minimized at m =

[
k+3

2

]
.

Lastly, we examine the case m = l + 2. The solution to the problem h(l,m) is one of the vertices (Λi, 0), (Λi, 0) and
(Λi,Λj), and the corresponding objective values are

h(l) =


−2ΛiΛj(l + 1)(k − l − 2), if (v, w) = (Λi, 0) (17)
−2ΛiΛj l(k − l − 1), if (v, w) = (0,Λj) (18)
kΛiΛj − 2ΛiΛj(l + 1)(k − l − 1), if (v, w) = (Λi,Λj). (19)

The minimizers in each case are
[
k−3

2

]
,
[
k−1

2

]
and l =

[
k
2

]
− 1, respectively.

Next, we show that Expression (15) is the global minimum. Substitute the nearest integer function of the solution of
Expression (14) when 2m > k, and of Expressions(16), (17) and (18), for the real value of each fraction; in other words,
remove the nearest integer function of each of those five minimizers. Evaluating these solutions in (9) yields the minimum
value −ΛiΛj(k − 1)2/2. Analogously with (19), we have the minimum is −ΛiΛjk(k − 2)/2. It is then immediate to check
that

2(k − 1)(k − 2) > (k − 1)2 > k(k − 2),

for k > 3.
Finally, it remains to show |minBij | > |maxBij |. To this end, note that the maximizer of Expression (12), without the

constraint that l must be an integer, is l = k/4. From this, we verify

(k − 1)(k − 2) >
k

4

(
k − 2

k

4

)
,

on account of k > 3, which completes the proof. �

Proposition 8 (Coskewness). Let C ⊂ D be a cluster of k records with d attributes and fφijl
be the query function that

returns the element φijl of the coskewness matrix ΦC . The L1-sensitivity of this function is GS(fφijl
) = ΛiΛjΛl/k.

Proof: For brevity, we only show the case in which i, j, l are all different. We start by computing the difference φ′ijl−φijl.
To this end, we adopt a notation similar to that of Proposition 6 and denote by xr = (xri, xrj , xrl) and x′r = (x′ri, x

′
rj , x

′
rl)

the record r ∈X that is different in the two neighbor clusters C and C′, respectively.
For k > 2, let g : R3 → R be the function

g(α, β, γ) =
αβγ

k
−Aiβγ +Ajαγ +Alαβ

k(k − 1)
−α(Ajlk − 2AjAl) + β(Ailk − 2AiAl) + γ(Aijk − 2AiAj)− 2AiAjAl

k(k − 1)(k − 2)
. (20)

Furthermore, define h : Rk−1 → R as
h(C \ {xr}) = max

xr,x
′
r∈F

g(x′r)− g(xr).

It follows from the definition of the Fisher sample coskewness estimator in Expression (2) that

φ′ijl − φijl = g(x′r)− g(xr),
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and accordingly that
max
C,C′
|φ′ijl − φijl| = max

C\{xr}
h(C \ {xr}). (21)

We now proceed to find the maximum and minimum of g over F = {0 6 xri, x
′
ri 6 Λi, 0 6 xrj , x

′
rj 6 Λj , 0 6

xrl, x
′
rl 6 Λl}. Define Rab = Aab(1 − k) + AaAb, where a, b take on values on the set {i, j, l}. We find and study the

stationary points by solving ∇g(α∗, β∗, γ∗) = (0, 0, 0) and by computing the Hessian of g, namely,

α∗ =
AlAij −AiAjl

Rjl
+ γ∗

Rij
Rjl

, β∗ = −AjAil −AlAij
Ril

+ γ∗
Rij
Ril

, γ∗ =
Al ±

(
kRilRjl
(2−k)Rij

)1/2

k − 1
, (22)

and

∇2g(α, β, γ) =
1

k

 0 γ − Al

k−1 β − Aj

k−1

γ − Al

k−1 0 α− Ai

k−1

β − Aj

k−1 α− Ai

k−1 0

 .
Note that γ∗ = Al/(k − 1) if, and only if, Ril = 0 or Rjl = 0. Also, observe from Expression (22) that, if any of these
two latter equalities hold, then β∗ or α∗ go/es to infinity and the two stationary points are infeasible. Consequently, for
α∗, β∗, γ∗ to be feasible we require γ∗ 6= Al/(k − 1). However, if this condition is satisfied, the second-order principal
submatrix obtained by removing the third row and third column of ∇2g(α, β, γ) has negative determinant, and hence
the Hessian is neither positive- nor negative- semidefinite. Since the first leading principal is zero, it follows then that
Expression (22) corresponds to saddle points. Since F is nonempty and compact and g is continuous, a global minimum
and a global maximum of g over F will be found at the boundary of this set.

We only show the case γ = 0. It is easy to check g(α, β, 0) has one single stationary point. However, if Al 6= 0, then

∇2g(α, β, 0) =
1

k

(
0 − Al

k−1

− Al

k−1 0

)
is indefinite and the point turns out to be a saddle point. On the other hand, if Al = 0, g becomes linear with α and β,
which ultimately means that the maximum and minimum are reached on one of the edges α = 0,α = Λi, β = 0,β = Λj .

Again, for the sake of brevity we only show the case α = 0. From Expression (20), we immediately see that g(0, β, 0)
is maximized (minimized) at β = 0 (β = Λj) or β = Λj (β = 0) depending on whether Ailk > 2AiAl or Ailk < 2AiAl.
Specifically,

1

k(k − 1)(k − 2)
max

06β6Λj

g(0, β, 0) =

{
2AiAjAl, if Ailk > 2AiAl
2AiAjAl − (Ailk − 2AiAl)Λj , if Ailk < 2AiAl

and

1

k(k − 1)(k − 2)
min

06β6Λj

g(0, β, 0) =

{
2AiAjAl − (Ailk − 2AiAl)Λj , if Ailk > 2AiAl
2AiAjAl, if Ailk < 2AiAl.

In light of this, it is straightforward to verify then that

h(C \ {xr})|xri=x
′
ri=0

xrl=x
′
rl=0

= max
xrj ,x′

rj

g(0, x′rj , 0)− g(0, xrj , 0) = Λj
|Ailk − 2AiAl|
k(k − 1)(k − 2)

,

which, as a function of all cluster records except the r-th, is one of the candidates to be GS(fφijl
).

An analogous study of the remaining faces and edges of F leads to

GS(fφijl
) =

1

k(k − 1)(k − 2)
max
C\{xr}

κ,λ,µ∈{i,j,l}
κ6=λ,λ6=µ,κ6=µ


Λκ|Aλµk − 2AλAµ|
Λκ|Aλµk − 2AλAµ + Λλ(k − 2)Aµ|
Λκ|Aλµk − 2AλAµ + Λλ(k − 2)Aµ + Λµ(k − 2)Aλ − ΛλΛµ(k − 1)(k − 2)|.

Observe that the three arguments of the maximum function above correspond, except for the factor Λκ, to the three
objective functions of Lemma 7. From this lemma, it follows then the global sensitivity value given in the statement of the
proposition. �

In the sequel, we shall investigate the sensitivities of the eigenvalues and eigenvectors of the covariance and coskewness
matrices. Unlike the previous results, however, we shall only be able to obtain upper bounds on those sensitivity values.
In the case of eigenvectors, besides, we shall derive just their local sensitivities.

For notational convenience, we assume the eigenvalues of both matrices, λ(Q) and λ(Φ), are sorted in nonincreasing
order and so are their corresponding eigenvectors, v(Q) and v(Φ). Accordingly, we define γ−1 = (γ−1

1 , . . . , γ−1
d ), where

γi = min
i
{|λi+1 − λi|, |λi − λi−1|}
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is the minimum eigengap of the eigenvalue λi [39]. Consistently, for i = 1, γi = λ1 − λ2, and for i = d, γi = λd−1 − λd.
Furthermore, for any cluster C ⊂ D of k records with d attributes, we define Λ(QC) as the matrix whose elements are the
L1-sensitivities of the entries of QC ,

Λ(QC) =
1

k
ΛΛT =

1

k


Λ2

1 Λ1Λ2 . . . Λ1Λd
Λ2Λ1 Λ2

2 . . . Λ2Λd
...

...
. . .

...
ΛdΛ1 ΛdΛ2 . . . Λ2

d

 .
The following two propositions provide bounds on the L1-sensitivities of the eigenvalues of a covariance and a

coskewness matrix, as well as bounds on the local sensitivities of the corresponding eigenvectors. To compute such
bounds, we resort to the theory of matrix perturbation [39], a field that tackles, among other problems, those of eigenvalue
perturbation. Informally, the problem at hand can be stated as follows: given a symmetric matrix A and a perturbation E
of A, how are the spectra of A and A+ E related?

As we shall see next, Propositions 9 and 10 will apply some fundamental results from matrix perturbation analysis to
derive our sensitivity bounds. However, the fact that we cannot analytically bound the minimum eigengap of a covariance
and coskewness matrix will preclude us from obtaining the L1-sensitivities of their eigenvectors.
Proposition 9 (Eigenvalues and eigenvectors of covariance). Let C ⊂ D be a cluster of k records with d attributes. Denote by

fλ(QC) the query function that returns the eigenvalues of the covariance matrix QC , and by fvi(QC) the query function
that returns the eigenvector corresponding to the i-th largest eigenvalue of QC . It holds that

GS
(
fλ(QC)

)
6

√
d

k
ΛTΛ, LS

(
fvi(QC), C

)
6

√
d γ−1

i

k
ΛTΛ.

Proof: We apply two important results from the field of matrix perturbation theory. On the one hand, recall [39, §IV,
Corollary 4.13] that, given two symmetric matrices A,E ∈ Rd×d, the eigenvalues of A and A′ = A + E, denoted by
λ = (λ1, . . . , λd) and λ′ = (λ′1, . . . , λ

′
d) and sorted in nonincreasing order, satisfy

‖λ′ − λ‖2 6 ‖A′ −A‖F.

On the other hand, denote by vi and v′i the i-th eigenvectors of A and A′, and recall [39, §V, Theorem 2.8] that

‖v′i − vi‖2 6 γ−1
i ‖A

′ −A‖2.

LetQC andQC′ be the covariance matrices of the neighbor clusters C and C′, and denote by λ and λ′ their corresponding
tuples of eigenvalues. Accordingly,

1√
d
‖λ′ − λ‖1 6 ‖λ′ − λ‖2

(a)
6 ‖QC′ −QC‖F

(b)
6 ‖Λ(QC)‖F,

where (a) follows from the cited former result, and (b) follows from Proposition 6 on account of |QC′ −QC | 4 Λ(QC). Let
vi and v′i denote the i-th eigenvectors of QC and QC′ . Then,

1√
d
‖v′i − vi‖1 6 ‖v′i − vi‖2

(a)
6 γ−1

i ‖QC′ −QC‖2
(b)
6 γ−1

i ‖Λ(QC)‖2,

where (a) follows from the cited latter result, and (b) follows from Proposition 6.
The proof is completed by checking that rank(Λ(QC)) = 1, which implies ‖Λ(QC)‖F = ‖Λ(QC)‖2, and by noting that

the largest singular value of Λ(QC) is
∑d
l=1 Λ2

l /k. �
To compute the sensitivity of the eigenvalues and eigenvectors of the coskewness matrix, we shall interpret Φ as d

matrices Φi of size d× d. For notational conciseness, we define Ψ as the matrix whose rows are the inverse eigengaps γ−1

corresponding to Φi.
Proposition 10 (Eigenvalues and eigenvectors of coskewness). Let C ⊂ D be a cluster of k records with d attributes.

Denote by fλ(ΦC) the query function that returns the eigenvalues of the coskewness matrix ΦC , and by fvi(Φj
C) the query

function that returns the eigenvector corresponding to the i-th largest eigenvalue of ΦjC . Then,

GS
(
fλ(ΦC)

)
6
√
d
k ΛTΩ Λ, LS

(
fvi(Φj

C), C
)
6
√
d
k γ−1

i Λj ΛTΛ.

Proof: Let λi denote the eigenvalues of Φi. The proof is analogous to that of Proposition 9 with the particularity that
|Φi ′ − Φi| 4 ΛiΛ(QC) from Proposition 8, and that GS

(
fλ(ΦC)

)
=
∑d
l=1 ‖λl ′ − λl‖1. �
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4.3 Anonymization Methods
Recall that our aim is to protect the m-microaggregated data set Xm, that is, we aim to publish a DP version of Xm,
denoted by Xm

ε . In this section, we specify how to generate Xm
ε for two families of m-microaggregation algorithms. In the

former family, the cross-moment microaggregation algorithm provides the matrix coefficients of the first m central cross
moments, while in the latter, the algorithm publishes the eigenvalues and eigenvectors of the corresponding matrices.
We refer to these two families as coefficient-based and eigenvalue-based microaggregation and denote the corresponding
m-microaggregated data sets by Xm,c and Xm,e, respectively.

In the previous subsection, we found the global sensitivities of the statistical data output by coefficient-based microag-
gregation form = 0, 1, 2. However, for eigenvalue-based microaggregation, we just derived bounds on the local sensitivities
of the eigenvalues and eigenvectors of the covariance and coskewness matrices.

The fact that we operate with local sensitivities for eigenvalue-based microaggregation (instead of global sensitivities)
unfortunately prevents us from applying DP to generate Xm

ε . To cope with this and thus compare coefficient-based and
eigenvalue-based microaggregation in terms of their impact on data utility, we resort to iDP [38]. iDP is an alternative
formalization of DP that relies on local sensitivity to offer exactly the same privacy guarantees (for numerical queries) as
standard DP to individuals. As mentioned in Section 2.2, iDP has the same properties of parallel and sequential composition
for Laplace noise addition and it is more utility-preserving than standard DP because it uses local sensitivity.

Thus, we rely on the Laplace mechanism to guarantee ε-DP for coefficient-based microaggregated data sets and ε-iDP for
eigenvalue-based microaggregated data sets. To apply this mechanism, however, we require estimating the sensitivity of
the cross-moment microaggregation functions. Next, we derive upper bounds on these sensitivities from the sensitivity
results obtained in Section 4.2 for each matrix coefficient, eigenvalue and eigenvector.
Theorem 11 (1,2-Cross-moment microaggregation). Let f1,c = (fx̄, fQ) and f2,c = (fx̄, fQ, fΦ) be the query functions

that return the elements of the first and the second central cross moments of a cluster C ⊂ D of k with d attributes.
Analogously, denote by f1,e = (fx̄, fλ(Q), fv(Q)) and f2,e = (fx̄, fλ(Q), fv(Q), fλ(Φ), fv(Φ)) the queries returning the
eigenvalues and eigenvectors of the first and the second central cross moments of that cluster. Define

Λ̂(f1,c) =
d∑
i=1

Λi +
d∑
j>i

ΛiΛj , Λ̂(f2,c) = Λ̂(f1,c) +
d∑

l>j>i

ΛiΛjΛl,

Λ̂(f1,e) = 1TΛ +
√
d
(
ΛTΛ + ΛT Ω γ−1

)
, Λ̂(f2,e) = Λ̂(f1,e) +

√
d
(
ΛT Ω Λ + ΛTΛ ΛT Ψ1

)
.

(i) The L1-sensitivities of f1,c and f2,c satisfy GS(f1,c) 6 Λ̂(f1,c)/k and GS(f2,c) 6 Λ̂(f2,c)/k.
(ii) The local sensitivities of f1,e and f2,e satisfy LS(f1,e, C) 6 Λ̂(f1,e)/k and LS(f2,e, C) 6 Λ̂(f2,e)/k.

Proof: We only show the upper bound of GS(f2,c). The proof is immediate from the sensitivity results derived in
Propositions 5, 6 and 8, by observing that

GS(f2,c) = max
C,C′
‖f ′2,c − f2,c‖1

6 max
C,C′
‖x̄′ − x̄‖1 + max

C,C′
‖Q′C −QC‖1 + max

C,C′
‖Φ′C − ΦC‖1

6 GS(fx̄) +
1

k

d∑
j>i

ΛiΛj +
1

k

d∑
l>j>i

ΛiΛjΛl,

where the summations are over the unique elements of QC and ΦC . The rest of the claims given in the statement follow
analogously. �

Having upper-bounded the sensitivities of 1,2-microaggregation, ε-DP and ε-iDP can now be attained just by adding
zero-mean Laplace noise with scale Λ̂(fm,·)/(k ε). Since clusters are non-overlapping, parallel composition ensures that, by
adding Laplace noise independently to each cluster, the list of cross-moment microaggregation statistics is ε-DP and ε-iDP,
respectively.

As with traditional microaggregation, m-microaggregation replaces each record within a cluster with the corresponding
estimators of the mean (centroid), covariance, coskewness, cokurtosis and so on. That is, the same tuple of statistics is
repeated as many times as there are records in the cluster. A central aspect of our anonymization method is that the
Laplace noise to be added to these estimators is the same within a cluster. The reason is to avoid canceling the benefits
of microaggregation. To see this for coefficient-based microaggregation, suppose the opposite case, i.e., we generate k
different samples drawn from a Laplace distribution. In this case, we would obtain k non-independent DP outcomes each
of which with a noisy component scaled to Λ̂(fm,c)/k. By the sequential composition property, the estimated sensitivity
upper bound corresponding to the list of repetitions of statistics in the cluster would then become Λ̂(fm,c), which would
render microaggregation useless. Consequently, to keep the sensitivity of the statistics repetitions at Λ̂(fm,c)/k, we must
have a single DP value of the cluster statistics, that is, we need to add exactly the same noise to all repetitions of a given
tuple of statistics. An entirely analogous argument applies to eigenvalue-based microaggregation by replacing DP with
iDP and Λ̂(fm,c)/k with Λ̂(fm,e)/k. Figure 2 illustrates the proposed methodology.
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Fig. 2: We generate an ε-DP (ε-iDP) data set Xm
ε from an m-microaggregated data set Xm, by adding the same noise sample to each tuple of

statistics within a given cluster.

Algorithm 1: Anonymization method that generates an ε-DP (ε-iDP) version of an m-microaggregated data set,
with m = 1, 2.

Input: A data set Xm = {xm1 , . . . , xmn } obtained from the m-microaggregation of an original data set X ∈ Rn×d;
the mapping Π between clusters and records in Xm; the desired level of protection ε

Output: Either an ε-DP data set Xm
ε if Xm is coefficient-based, or an ε-iDP data set Xm

ε if Xm is eigenvalue-based.
1 Let C1, . . . , Cκ be the set of clusters of Xm

2 for i = 1, . . . , κ do
3 if Xm is coefficient-based then
4 Set r = 7d/6− d3/6 + dm (d+ 1)(d+ 2)/6
5 else
6 Set r = d(dm+ d2m− d2 + 2)
7 Compute γ−1 and Ψ from Xm

8 Let ki be the cardinality of Ci
9 Generate a tuple li of r random draws from a Laplace distribution with zero mean and scale Λ̂(fm,·)/(ki ε)

10 Select any record xmj that belongs to Ci
11 Compute the noisy, representative record of Ci as c̃mε,i = xmj + li
12 Process c̃mε,i to obtain cmε,i
13 end
14 for j = 1, . . . , n do
15 Let Ci := Π(xmj )
16 Set xmε,j = cmε,i
17 end
18 return Xm

ε = {xmε,1, . . . , xmε,n}

We formally describe the procedure in Algorithm 1. The input parameters of our algorithm are the microaggregated
data set Xm, or more specifically, the clustered data set whose records are to be replaced by up to m cross moments; the
correspondence Π between records in Xm and clusters; and the privacy budget ε. Assuming clusters include all attributes,
the algorithm proceeds as follows. From Theorem 11, we compute the sensitivity bounds of each tuple of statistics, which
depend on the cardinality of each cluster and obviously Λ. For each cluster Ci, then (i) we generate a single draw li from a
Laplace distribution with zero mean and scale calibrated to the sensitivity bounds of Theorem 11 (and divided by ε); and
(ii) use that noise sample to perturb the |Ci| occurrences of such statistics.

An important point addressed by Algorithm 1 is that, after adding noise in line 11, the perturbed statistics may not
satisfy the properties they are expected to meet. For example, in the case m > 1 the perturbed sample covariance matrix
may cease to be positive semi-definite. To tackle this kind of issues, we use the generic method process in line 12, which, in
the particular example given, would compute the nearest symmetric positive semi-definite matrix in some matrix norm and
would truncate any coefficient qij exceeding ΛiΛj/4

2. Similarly, our algorithm would check the properties of additional
central cross moments are met.

Finally, an aspect that is not reflected in Algorithm 1 is the possibility of publishing a sampled version of an m-
microaggregated data set. Although database users would in principle be interested in the explicit statistical knowledge
provided by Xm

ε , a database containing only attributes values —like the original X— may be more manageable, especially
for large m, and practical, since the sampled data can retain such statistical knowledge to some extent, depending on
the minimum cluster size chosen. Also, from the standpoint of a database curator, a sampled version of Xm

ε , denoted
henceforth by X̃m

ε , allows evaluating the utility loss of our anonymization algorithm with respect to the original data set.

2. An analogous processing would be required for eigenvalue-based microaggregation. In the case of coefficient-based microaggregation, the
given upper bound follows easily from the Cauchy-Schwarz inequality and the fact that σi 6 Λi/2.
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Algorithm 2: Anonymization method that produces an ε-DP (ε-iDP) version of an m-microaggregated data set for
m = 1, 2 by perturbing each statistic independently, in accordance with a predefined masking strategy.

Input: A data set Xm = {xm1 , . . . , xmn } obtained from the m-microaggregation of the original data set X ∈ Rn×d;
the mapping Π between clusters and records in Xm; a masking strategy (ε1, . . . , εr) such that

∑r
i=1 εi = ε

Output: An ε-DP data set Xm
ε

1 Let C1, . . . , Cκ be the set of clusters of Xm

2 for i = 1, . . . , κ do
3 for j = 1, . . . , r do
4 Let GS(fj) denote the L1-sensitivity of the j-th component of the query tuple (fx̄, fq11 , . . .)
5 Generate a random draw lij from a Laplace distribution with zero mean and scale GS(fj)/εj
6 end
7 Select any record xmj that belongs to Ci
8 Compute the noisy representative record of Ci as c̃mε,i = xmj + li
9 Process c̃mε,i to obtain cmε,i

10 end
11 for j = 1, . . . , n do
12 Let Ci := Π(xmj )
13 Set xmε,j = cmε,i
14 end
15 return Xm

ε = {xmε,1, . . . , xmε,n}

4.3.1 Variants of the Proposed Anonymization Method
This subsection describes two variants of Algorithm 1. One of them proposes masking statistics independently, while the
other is a generalization that permits operating with microaggregation algorithms such as IR [8]. Both variants can be
applied to coefficient-based and eigenvalue-based microaggregation.

The first variant stems from the observation that the sensitivities of the coefficients of the first two cross moments grow
squarely and cubicly with Λ, in contrast to that of the sample mean—which grows linearly with this parameter. Clearly,
depending on the minimum cluster size and the statistical properties of the data set in question, this difference may cause
the sensitivity of such coefficients to dominate the sensitivity of fm,·, which would result in the sample mean being added
more noise than necessary. A significant reduction in data utility would ensue, since utility largely hinges on the masking
of the sample mean.

To avoid this potential effect, we propose the following publication strategy. Instead of using the joint query function
fm,·, which simultaneously queries the first raw moment and the first m central cross moments, we suggest querying such
statistics separately. In the case of coefficient-based microaggregation and m = 2, this means using fx̄, fq11 , . . . , fqdd and
fΦ111

, . . . , fΦddd
and operating with the sensitivity of each of these statistics independently, rather than the joint sensitivity

of f2,c.
More specifically, we consider an εi for each of those statistics, including the sample mean too; in the example above,

we would assign ε1 to fx̄, ε2 to fq11 and so on. Accordingly, we propose that the Laplace noise to be added to each statistic
is scaled to its own εi and its own sensitivity bound. Let r be the total number of statistical coefficients, or eigenvalues
and eigenvectors in the case of eigenvalue-based microaggregation. Consider a masking strategy (ε1, . . . , εr), possibly
satisfying ε1 � εi to cause less distortion on the sample mean than on the rest of statistics. Under the assumption that∑r
i=1 εi = ε, the sequential composition property ensures that the noisy cross-moment microaggregation statistics of any

cluster is ε-DP. Then again, as each cluster contains disjoint records, parallel composition guarantees that the list of cross-
moment microaggregation statistics is ε-DP. This procedure is described more formally in Algorithm 2, although to avoid
repetition and unnecessary duplication we only show the case of coefficient-based microaggregation.

We now introduce the second variant of Algorithm 1. Recall that Algorithm 1 assumed the clustering step of m-
microaggregation (step 1 in Section 4.1) was conducted for entire records. That is, we implicitly assumed that either the
data set had a single attribute or multivariate clustering was applied over all attributes. Our second variant assumes, per
contra, that in the process of generating the m-microaggregation clusters the algorithm is not applied to all attributes
simultaneously. This is the case of, for example, IR, which operates over each attribute individually. Thus, we describe here
a more general case in which the clustering is carried out independently for several individual attributes or disjoint subsets
of attributes.

Roughly speaking, Algorithm 3 works as follows. We first group the attributes into disjoint subsets, then apply
Algorithm 1 independently to each subset, and finally use the sequential composition property to compute the overall
level of protection. More formally, denote by S = {G1, . . . , G|S|} the set of disjoint groups of attributes resulting from the
clustering process in the aforementioned step 1. Recall from the sequential composition property that the independent use
of εi-DP mechanisms for i = 1, 2..., when taken together, accumulates the level of protection to satisfy (ε1 + ε2 + ...)-DP.
Consider a masking strategy (ε1, . . . , ε|S|) such that

∑|S|
i=1 εi = ε. Since we apply Algorithm 1 independently to each subset
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Fig. 3: We generate an ε-DP (ε-iDP) version of a data set that has been m-microaggregated on disjoint subsets of attributes independently.

Algorithm 3: Anonymization method that generates an ε-DP (ε-iDP) version of a data set that has been m-
microaggregated independently on disjoint groups of attributes.

Input: A set S = {G1, . . . , G|S|} of disjoint groups of attributes; a data set Xm, which has been m-microaggregated
by restricting X to each of the groups of S; the mappings Π1, . . . ,Π|S| between clusters in the group Gi and
records in Xm; a masking strategy (ε1, . . . , ε|S|) satisfying

∑|G|
i=1 εi = ε

Output: Either an ε-DP data set Xm
ε if Xm is coefficient-based, or an ε-iDP data set Xm

ε if Xm is eigenvalue-based
1 for i = 1, . . . , |S| do
2 Let Xm

i be the m-microaggregation of X when restricted to the attribute/s of Gi
3 Execute Algorithm 1 with parameters Xm

i , Πi and εi
4 end
5 return Xm

ε

of attributes, the publication of the list of cross-moment microaggregation statistics is ε-DP. An analogous reasoning applies
to eigenvalue-based microaggregation and iDP. We illustrate this procedure in Figure 3.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate experimentally the anonymization method proposed in Section 4.3 as well as the two variants
described in Section 4.3.1, and compare them with existing solutions relying on record-level masking. The ultimate purpose
is to show that our approach, which builds on m-microaggregation to reduce data sensitivity, may in fact diminish the
amount of noise required to attain ε-DP and ε-iDP. The empirical analysis provided in this section has been conducted in
its entirety with Matlab 2017a.

5.1 Anonymization Methods under Evaluation
As mentioned in Section 4.1, the proposed anonymization methods are not tied to any particular strategy to generate the
microaggregation clusters (step 1 in that section). However, it is clear that the selected clustering approach will have an
impact on the utility of the resulting DP (iDP) data sets, and hence on our empirical analysis.

In this work, we evaluate the utility provided by a set of anonymization methods in the special case when the clustering
step is performed with MDAV [10] and IR-MDAV. The former is a heuristic multivariate microaggregation algorithm,
whereas the latter operates by running independent univariate MDAV microaggregations on each attribute. The reason for
this choice is twofold. First, both are well-known algorithms in the literature of database anonymization; and secondly,
both have been used with the same aim of enhancing the utility of DP data sets via record masking [37], [33], [35].

Figure 4 shows the anonymization methods evaluated in this section, which include the two families of cross-moment
microaggregation algorithms (coefficient-based and eigenvalue-based) as sensitivity reduction procedures to generate DP
and iDP data sets. However, since IR-MDAV operates on a per-attribute basis, eigenvalue-based microaggregation is only
tested with MDAV.

In our series of experiments we investigate m-microaggregation for m = 0, 1, 2. For each m, each microaggregation
clustering and each family of cross-moment microaggregation, we test the Algorithms 1, 2 and 3 described in Section 4.3. For
the former two algorithms, although only in the case of coefficient-based microaggregation, we consider two possibilities:
• Xm contains all coefficients of covariance and coskewness;
• Xm contains only the variances and the marginal coefficients of coskewness.

We respectively refer to these two possibilities as pure and variances in Figure 4.
We evaluate two masking strategies for Algorithm 2. Recall that this algorithm scales Laplace noise to the sensitivity of

each statistical element independently. With the aim of assessing the impact of noise addition on each statistic, we test one
strategy that distributes the privacy budget evenly among the sample mean and the coefficients of covariance, and another
strategy that, instead, gives priority (i.e., larger ε) to the first raw moment; this latter strategy is justified by the fact that the
sample mean may be more informative than the other moments. The normalized weights of these strategies are (0.50, 0.50)
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Fig. 4: Anonymization methods evaluated in our experiments. Methods 1 and 20 correspond to the anonymization algorithms proposed in [35].
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Fig. 5: As baseline methods, we examine the standalone MDAV and IR-MDAV microaggregation algorithms for m = 0, 1, 2. By standalone we
mean there is no Laplace noise addition.

and (0.75, 0.25). Analogously for m = 2, we use these two distributions of weights: (0.50, 0.30, 0.20) and (0.75, 0.15, 0.10).
The same distributions are employed for eigenvalue-based microaggregation. We refer to the more balanced distribution
of weights as strategy 1, and the other as strategy 2.

In our experimental evaluation, we compare the above-mentioned methods with several baseline methods from the
literature, listed in Figure 5 and explained next:
• The anonymization algorithm proposed in [35] for multivariate microaggregation of entire records. This algorithm

relies on traditional MDAV microaggregation (m = 0) to generate DP data sets via Laplace noise addition. It
corresponds to method 1 in Figure 4.

• The method proposed in [35] for univariate microaggregation. It uses traditional IR-MDAV microaggregation and the
Laplace mechanism to produce DP data sets. This algorithm corresponds to method 20 in Figure 4.

• Plain Laplace noise without m-microaggregation. This method, described at the beginning of Sec. 4, adds Laplace
noise directly to unaggregated records. Although it is a rather naive strategy, it will allow us to assess the benefits of
m-microaggregation and derive worst-case bounds on the utility loss.

• Plain m-microaggregation with MDAV and IR-MDAV as clustering algorithms, but without the addition of Laplace
noise to satisfy ε-DP or ε-iDP. Although these methods do not provide DP or iDP, we want to study the contribution
of the m-microaggregation step to the utility loss.

5.2 Post-Processing and Sampling Distributions
We emphasized in Section 4.3 the need of post-processing the statistics masked by the Laplace noise. This section succinctly
describes some of the processing tasks carried out in our experiments and provides several implementation notes on the
sampling of m-microaggregated data sets. For brevity, we just list them:
• We rely on the quadratically convergent Newton method proposed by [30] to compute the positive semi-definitive

matrix nearest to a perturbed covariance matrix3.
• The implementation of Algorithm 2 for eigenvalue-based microaggregation computes the corresponding separate

sensitivity bounds from the results obtained in [39, §IV, Corollary 4.10]. Particularly, in the notation of Section 4.2, the
sensitivity of a single eigenvalue is upper-bounded by ‖Λ(QC)‖2.

• For m = 1, we use the normal distribution to sample the noisy statistics of Xm
ε . For m = 2, we employ the univariate

and multivariate skew-normal distributions proposed by Azzalini [1], [2]. In the univariate case, Azzalini’s skew-
normal distribution is one of the few tractable classes of distributions that include the Gaussian one as a proper one,
not just as a limit case. The multivariate version, on the other hand, provides a parametric family in which the marginal
densities are scalar skew-normal.

• For m = 2, Azzalini’s multivariate skew-normal distribution takes as input the marginal coefficients of coskewness
φiii

σ3/2 , instead of the whole coskewness matrix. This means that the methods evaluated for m = 2 only mask d
coefficients of this matrix.

5.3 Data Sets
To conduct our experimental evaluation, we use two reference data sets in the field of statistical disclosure control (SDC),
namely, Census and EIA; both were employed for the first time in the “CASC” European project [5] to test and compare SDC
methods. The Census and EIA data sets contain respectively 1 080 and 4 096 records, and 13 and 11 numerical attributes.
For the sake of comparison with [35], we restrict our analysis to the four attributes employed by the cited work for Census,
and the same number of attributes for EIA4. The selected attributes are shown in Figure 6.

3. We use the Matlab code available at http://www.math.nus.edu.sg/∼matsundf/
4. Census was the only data set evaluated in [35].
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Data set # of records
# of 

attributes
Selected numerical attributes

Census [5] 1,080 13

FICA (social security retirement payroll deduction), 

FEDTAX (federal income tax liability), 

INTVAL (amount of interest income), 

POTHVAL (total other persons income)

EIA [5] 4,092 11

RESREVENUE (revenue from sales to residential consumers),

RESSALES (sales to residential consumers)

COMREVENUE (revenue from sales to commercial consumers),

COMSALES (sales to commercial consumers) 

Fig. 6: Overview of the data sets used in our experiments.

In our analysis, we consider the projections of both data sets onto 2, 3 and 4 such attributes, starting with the first
attribute listed in Figure 6 and ending with the last one. That is, we consider a data set Census 2 taking the first two
attributes (FICA and FEDTAX), another data set Census 3 taking the first three attributes, and finally the full data set that
we call Census 4. For EIA, we define data sets EIA 2, EIA 3 and EIA 4 in an analogous way. The reason for this multiple
data set analysis lies in the well-known curse of dimensionality, which is about the information loss caused by clustering
growing with the number of attributes. In other words, with this series of data sets we also want to analyze the impact of
m-microaggregation on data utility.

5.4 Utility Metric and Privacy Parameters
We use the sum of squared errors (SSE) to evaluate the impact on data utility caused by anonymization. The SSE is
a measure of overall information loss that is frequently employed in the evaluation of SDC methods, particularly in
traditional microaggregation. The SSE between X and X̃m

ε is given by

SSE(X, X̃m
ε ) =

n∑
i=1

d∑
j=1

(rij − rmεij )2,

where rij is the j-th attribute value of original record ri, and rmεij is the j-th attribute value of record rmεi (of X̃m
ε ) that

corresponds to ri. Since the SSE results provided in our experiments only involve the databases X and X̃m
ε , we shall omit

the database names and write just SSE.
On the other hand, recall that the anonymization methods under study aim to provide, respectively, DP and iDP

versions of coefficient-based and eigenvalue-based microaggregated data sets. In this section, we conduct our series of
experiments for levels of privacy protection in the interval ε ∈ [1, 2], which cover the usual range of values observed in the
literature [3], [22], [37], [32], [33], [35].

Lastly, we note that the attributes shown in Figure 6 are not naturally upper-bounded. Since the sensitivity bounds
derived in Section 4.2 are essentially proportional to the length of the intervals in which these attributes take values, we
need to delimit the domain of each attribute. For the sake of comparison, we follow the methodology described in [37],
[32], [33], [35] and upper-bound the domain of an attribute to be 1.5 times the maximum value of this attribute in the data
set.

5.5 Results
We start examining coefficient-based microaggregation and assuming MDAV is applied to all attributes.

Figure 7 shows the impact caused by the anonymization methods 1 to 13 on the utility of the Census data set for ε = 1.
The top-row figures represent the cases in which the sample mean (m = 0), and the sample mean together with the sample
covariance (m = 1), are included in each cluster. The figures from (d) to (f), on the other hand, show the case m = 2 where
the second central cross moment is added to the previous statistics. For the sake of comparison among different values of
m, the bottom-row figures also depict the case m = 0 and the best anonymization method for m = 1.

Recall that the baseline methods summarized in Figure 5 represent lower bounds on minimum distortion; the degra-
dation in data utility comes just from cross-moment microaggregation, since no Laplace noise is injected. In Figure 7, we
use dotted lines to plot such methods and observe that their graphs are roughly monotonically increasing. The reasoning
is the following: as the number of records within a cluster increases, so does the potential variability of the data and the
less the records can be accurately represented them with just a mean or a covariance matrix. This is obviously under the
assumption that, in a real data set, the data are likely to be multimodal and not necessarily normal or skew-normal, which
is the case here.

In the cases m = 1, 2, we see that the distortion caused by all anonymization methods substantially decreases with
the cluster size. Essentially, what this means is that the reduction of Laplace noise due to increase of k is greater than the
microaggregation error. In fact, the difference in SSE between an anonymization algorithm and its corresponding baseline
method is the distortion caused by the DP protection. When this difference vanishes, as we observe for m = 0 and the
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Fig. 7: Information loss in the Census data sets for coefficient-based microaggregation, MDAV and ε = 1.
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Fig. 8: Information loss in the Census data sets for coefficient-based microaggregation, MDAV and ε = 2.

range of values of k assumed in these experiments, the generation of a DP version of the cross-moment microaggregated
data set comes at no additional cost in terms of data utility.
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TABLE 1: Information loss (log2 SSE) incurred by plain Laplace noise addition.

ε Census 2 EIA 2 Census 3 EIA 3 Census 4 EIA 4

1 47.68 60.28 49.13 61.45 49.97 62.87

1.2 47.16 59.75 48.60 60.93 49.44 62.34

1.4 46.71 59.30 48.16 60.48 49.00 61.89

1.6 46.33 58.92 47.77 60.09 48.61 61.50

1.8 45.99 58.58 47.44 59.76 48.27 61.16

2 45.68 58.27 47.14 59.46 47.97 60.86

In addition to this decreasing trend, Figure 7 confirms the intuition that there must exist a value of k beyond which
leveraging one or several central cross moments causes less distortion than just using the mean. Formally, we denote by
k1,2

min the cluster size beyond which 1,2-microaggregation is better than 0-microaggregation in terms of SSE.
An important conclusion that can be drawn from Figures 7(a-c) is that, for the Census data set and a level of protection

of ε = 1, methods 3 and 6 are the most utility-preserving. We note that the errors incurred by both methods are in fact
very similar (for this reason, we only plot method 3) and that, respectively for Census 2, Census 3 and Census4, k1

min takes
approximate values 283, 400 and 510. The reason for this behavior is due to two factors. On the one hand, the curse of
dimensionality. On the other hand, the larger the number of attributes, the larger the number of matrix coefficients, and
the smaller the privacy budget assigned to each of them. The fact that ε is distributed among more coefficients implies
that the most relevant statistics (here, the mean and the variances) are added more noise. However, since there are fewer
coefficients in the “variance-only” methods (compared with the “pure” ones), we consistently observe greater differences
in SSE between these two types of anonymization procedures as the number of attributes grows.

One of the most remarkable results of the bottom-row figures is that the best anonymization methods for m = 1
outperform those for m = 2. The result can be explained as follows. First, a higher number of statistics reduces the privacy
budget of each statistical coefficient and hence increases the scale of the Laplace noise to be injected. Secondly, unless the
distribution of the data within a cluster is very skewed, the benefits of providing the marginal coefficients of coskewness
may not outweigh the redistribution of the weights εi of a masking strategy. As we shall see later in Figure 10, however, a
combination of few attributes, large k (1 000) and large ε (2) will lead to smaller microaggregation errors and Laplace noise,
which will result in less distortion for m = 2 than for m = 1.

The most interesting observation of this first series of experiments is probably the win-win effect of 1, 2-microaggregation
over m = 0 and standalone microaggregation. Although privacy and utility are two confronting aspects in database
anonymization, cross-moment microaggregation is shown to improve both of them for certain values of k. We illustrate
this effect next with Figure 8(a).

Recall, first, that multivariate microaggregation with minimal cluster size k over entire records yields k-anonymity.
In Figure 8(a), B1 represents the case in which a database curator microaggregates Census 2 with m = 0 to satisfy k-
anonymity. Since our anonymization methodology is not applied subsequently by B1, the measure of protection of the
microaggregated data set is just k. In the present work, however, the target of protection is the microaggregated data set,
which we safeguard with DP. That said, suppose the database curator chooses k = 100, which gives a distortion 35.4,
approximately. If the curator had selected m = 1 instead and applied a higher level of protection, say k = 390 (in the
k-anonymity sense), the additional application of our methodology to meet 2-DP would have yielded SSE = 34.9. This
procedure corresponds to method 6 and shows that cross-moment microaggregation, when used as a sensitivity reduction
mechanism to attain DP, can provide higher utility and higher privacy than classical microaggregation. Note that higher
privacy, in this case, comes not only because the microaggregation parameter k is greater but also because 2-DP is enforced
on top of microaggregation.

A couple of additional observations follow from Figure 7. On the one hand, we observe that, among the six anonymiza-
tion methods that include covariance, the one that provides only variances and masks the statistical coefficients separately
gives the smallest impact on data utility. This is in stark contrast with the best algorithm for m = 1, which relies on
Algorithm 1 and applies the masking jointly. On the other hand, compared with the plain Laplace noise strategy, we
see that cross-moment microaggregation offers substantial reductions in data distortion. Specifically, the largest SSE value
observed for our anonymization algorithms (43.5) represents a 8.39% diminution with respect to direct noise addition. In
the best-case scenario, in contrast, SSE is reduced by 25.67%. Table 1 shows the performance of this naive strategy for the
six data sets considered in our experiments.

Figure 8 shows the same graphs of Figure 7 but for ε = 2. Clearly, the reduction in SSE we observe with respect to the
previous figure is due to the smaller scale of the Laplace noise added, as the error associated to microaggregation remains
unaltered. As a result, k1

min is, respectively, approximately 167, 239 and 350 for Census 2, Census 3 and Census 4, which
represents, respectively, 40.99%, 40.25% and 31.37% reductions compared with ε = 1.

Most of the conclusions drawn from Figure 7 also apply to ε = 2. Among the most relevant results, it can be seen that
methods 3 and 6 have the least impact on data utility for m = 1, 2, and that method 12 is the most utility-preserving of its
class. Unlike the previous figure, however, we observe that m = 2 outperforms m = 0 in Census 3 and 4 for k greater than
370 and 493 respectively, whereas this only occurred in Census 2 for ε = 1.



21

5 200 400 600 800 1000

40

43.25

46.5

49.75

53

56.25

1

2

3

4

5

6

7

B1

B2

B3

(a) EIA 2, m = 1.

5 200 400 600 800 1000

40

43.25

46.5

49.75

53

56.25

(b) EIA 3, m = 1.

5 200 400 600 800 1000

40

43.25

46.5

49.75

53

56.25

(c) EIA 4, m = 1.

5 200 400 600 800 1000
40

43.25

46.5

49.75

53

56.25
1
8
9

10
11
12

13
B4
B5

3
2

(d) EIA 2, m = 2.

5 200 400 600 800 1000

40

43.25

46.5

49.75

53

56.25

(e) EIA 3, m = 2.

5 200 400 600 800 1000

40

43.25

46.5

49.75

53

56.25

(f) EIA 4, m = 2.

Fig. 9: Information loss in the EIA data sets for coefficient-based microaggregation, MDAV and ε = 1.
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Fig. 10: Information loss in the EIA data sets for coefficient-based microaggregation, MDAV and ε = 2.

In Figure 9, we test the EIA data set with ε = 1. Here, we see a much larger error due to microaggregation than in the
Census data set, which could be expected because EIA has approximately 4 times more records and SSE is an absolute
measure of error. We also observe important differences in SSE between the standalone methods B2 and B3 on the one
hand, and between B4 and B5 on the other, which reflects a stronger dependency among attributes in EIA; in the Census
data set, the baseline methods showed extremely similar results.
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Fig. 11: Dependency of k1min on the value of the DP parameter ε. As ε increases, the performance of m = 0 is matched with smaller cluster sizes.

In comparison with Census, we notice that the SSE graphs of all methods decay much more slowly. Specifically, k1
min is

approximately 736, 959 and 1050 for EIA 2, EIA 3 and EIA 4, respectively, which corresponds to 39.40%, 41.71% and 48.57%
increases with respect to Census. The result is that larger cluster sizes are required to effectively reduce the contribution of
Laplace noise to the overall SSE.

Again, method 3 is the 1-microaggregation algorithm causing the least impact on EIA 3 and EIA 4. In EIA 2, however,
this method is outperformed by method 2 for k > 469, which is consistent with the dependencies among attributes
mentioned above. Note that the latter method differs from the former in that it incorporates the covariance coefficient q12.

Finally, we check that none of the methods using coskewness improve on the best algorithms of m = 1. In this case,
method 12 is again the most utility-preserving one, but it only beats m = 0 in EIA 2 and for k ≈ 1 000.

Figure 10 shows the case ε = 2 for the same data set. Essentially, less privacy protection results in less distortion and
this is roughly what we observe in each of the six figures. In particular, we note k1

min now yields 491, 608 and 689 for the
2, 3 and 4-attribute versions of EIA, respectively, which are more practical cluster sizes. In addition, we check for the first
time in these experiments that the methods corresponding to m = 2 are comparable to those of m = 1. Specifically, for
k ≈ 1 000, methods 8 and 12 are slightly better than 2 and 3. Apart from these observations, the same conclusions drawn
from Figure 9 apply here.

In Figure 11, we show k1
min for different values of DP protection and check that, as ε increases, smaller microaggregation

clusters are required to reach the performance of m = 0. The most important remark is that the ranges of values of k are
reasonably practical in microaggregation. We must acknowledge, however, that the adequacy of medium to large cluster
sizes will ultimately depend on the level of utility to be guaranteed, which in turn hinges on the database in question,
particularly on the number of records and attributes, the dependencies among the latter, and the variability of the data.

Next, we evaluate the anonymization algorithms based on IR-MDAV. We only examine their impact on Census 4 and
EIA 4 since the number of attributes has no effect here on microaggregation.

Figure 12 shows the information loss incurred by methods 20 to 26 for ε = 1. As with the previous figures, the top-row
results correspond to the case m = 1 and the bottom-row ones to m = 2. For the sake of comparison, the bottom-row
figures also represent the performances of the best method for m = 1 and m = 0.

In Census 4, we observe that the only method outperformingm = 0 is number 21, which operates with joint sensitivities
as described in Algorithm 1. This method performs similarly and slightly better, however, for k greater than 364. The other
methods rely on Algorithm 2 and are shown to cause much greater impact on utility. The scenario in EIA 4 is rather similar
and the only difference is that method 21 only beats method 20 for k close to 1 000.

Figures 12(c) and (d) show a clear advantage of the methods that use the sample mean and variance, with respect to
those that, in addition, employ skewness. Nonetheless, the baseline methods for Census 4 indicate that there is room for
improvement and that total Laplace noise reduction might be attained for larger data sets.

On the other hand, we show in Figure 13 the case ε = 2. Reducing the scale of the Laplace noise leads to smaller values
of k1,2

min. In particular, we see that k1
min = 351 and k2

min = 364 in Census 4, and that the best methods for m = 1, 2 in EIA 4
cause less impact than m = 0 for values of k around 800.

In our last series of experiments, we proceed to examine eigenvalue-based microaggregation. Recall that, for this class
of algorithms, we use iDP rather than DP.

We analyze a single level of protection, namely, ε = 2. As we shall show next, the results are so unfavorable even for
this limited protection —in comparison with coefficient-based microaggregation—, that a single value of ε is sufficient to
discard this class of microaggregation algorithms; taking a smaller ε would only lead to worse results.

Figure 14 shows the impact of using eigenvalue-based microaggregation as a sensitivity reduction mechanism. The
main observation is that method 1, which is designed to protect coefficient-based microaggregated data sets and is plotted
here as a reference, causes less distortion than any eigenvalue-based method for nearly all values of k and data sets. What
is interesting about this observation is that all such methods (from 14 to 19) use local sensitivity to provide iDP. That is,
their performance in fact represents a best-case scenario in terms of Laplace noise addition —when compared with those
relying on coefficient-based microaggregation—, since the latter adjust noise to the global sensitivity; this implies that any
conceivable protection of eigenvalue-based microaggregated data sets with DP would cause at least the same distortion
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Fig. 12: Information loss for coefficient-based microaggregation, IR-MDAV and ε = 1.

than with iDP. Hence, we can conclude that, for the data sets of our study, coefficient-based microaggregation comes at the
cost of less information loss than eigenvalue-based microaggregation.

Having said this, we observe the best method is number 15, which operates with the sensitivity of each statistical
coefficient separately (see Algorithm 2) and uses the sample mean and covariance matrix. In fact, all “separate” methods
produce much less distortion than those utilizing joint sensitivities (see Algorithm 1). Interestingly, these latter methods
(14 and 17) yield the worst results in our experiments.

In Figure 14, we also notice that strategy 1 causes less information loss than strategy 2 for m = 1 and m = 2 and almost
all values of k. This means that a more balanced distribution of the privacy budget towards the covariance matrix produces
better results. Finally, we note that, as the number of attributes grows, so does the gap between the reference method 1 and
the methods using eigenvalue-based microaggregation.

6 CONCLUSIONS

With the advent of the Internet and the development of sophisticated data analytics, the availability of massive amounts of
information has increased the demand for data sharing. Before data can be shared among different parties, however, their
holders must ensure the privacy of data subjects is protected.

DP is popular among the scientific community working in data anonymization, mainly because it does not make any
assumption on the side knowledge available to attackers. While it offers strong privacy guarantees, its main practical
limitation is the severe degradation in data utility it typically causes.

A variety of mechanisms, including microaggregation, have been investigated in order to reduce the sensitivity of the
data and hence the noise required to enforce DP. However, although microaggregation may certainly keep perturbation
under control, replacing the original records in each cluster by just their centroid attenuates the variability of data and thus
the utility of the released data set.

In this work, we have proposed a generalization of classical microaggregation as a means of reducing sensitivity. Our
generalization replaces the original records in a cluster not only by their centroid but also by additional statistics that
reflect their variability and the dependencies among attributes more accurately. We have investigated two families of cross-
moment microaggregation algorithms, one in which these statistics are given as matrix coefficients and another where they
are provided as spectral decompositions.

Following the approach suggested by [35], we assume the target of protection is a data set microaggregated either
of those two ways. We emphasize, however, that the disclosure risk limitation comes from the enforcement of DP via
record-level perturbation. Accordingly, we have proposed three anonymization algorithms where microaggregation deals
with all attributes together or with subsets of attributes separately. Our theoretical analysis has computed the sensitivity of
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Fig. 13: Information loss for coefficient-based microaggregation, IR-MDAV and ε = 2.

the coefficients of the covariance and coskewness matrices, and has applied fundamental results from matrix perturbation
theory to derive sensitivity bounds on the eigenvalues and eigenvectors of such matrices.

Our extensive experimental evaluation demonstrates the suitability of utilizing cross-moment microaggregation to
generate high-utility DP data sets. For the data sets under study, the results provide confirmatory evidence that coefficient-
based microaggregation causes substantially less impact on data utility than eigenvalue-based microaggregation. We show
that, for medium to large cluster sizes, 1,2-microaggregation is more utility-preserving than previous work relying on
traditional microaggregation as a sensitivity reduction mechanism. Remarkably enough, for this range of sizes, we observe
that our approach may provide higher utility and higher privacy than classical microaggregation. We acknowledge,
however, that the suitability of such cluster sizes will depend on the level of utility to be ensured by the database curator,
which in turn depends on the database itself, particularly on the number of records, attributes, dependencies among them
and variability of the data.

In the EIA data set, where there seem to be strong dependencies among attributes, we observe that publishing all
covariance coefficients may cause less distortion than giving just the variances. In the Census data sets, where those
dependencies are weaker, we note the opposite effect. Our findings also show that, for large k, few attributes and large
ε, the methods exploiting coskewness are better than those not using it. In the other cases, on the contrary, m = 1 is
essentially better than m = 2.
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