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Abstract

Survey data often includes missing values. An approach to deal with missing values is imputation in order
to obtain a complete dataset. However, the process of imputation requires researchers to make various
decisions regarding the imputation method to be applied, the number of values to be imputed for each
missing value, the selection of predictor variables, the treatment of multivariate nonresponse and the
conduct of variance estimation. This survey guideline provides an overview of imputation procedures for
missing values. It aims to support the reader with respect to aforementioned decisions when imputing
missing values in survey data.
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1. Introduction

Survey data frequently include missing values, which aggravate the application of standard analysis
procedures. Ignoring the nonresponse mechanism or assuming a wrong nonresponse mechanism in
the treatment of nonresponse may lead to heavily biased estimates, while a reduced sample size may
strongly increase the variance of the estimation. Data users, such as researchers of different areas, may
not be able to apply typical analysis procedures that often require complete observed data. The research
community may avoid the use of a data set that includes many missing values. Publishers of data sets,
therefore, may have to offer solutions to the users on how to work with the missing values in their data
set. One solution is the imputation of missing values.

Imputation is the process of assigning values to missing values of a variable with a possible use of aux-
iliary variables (predictors) to obtain a complete data set (see Kim & Rao (2009), see also Bruch (2016),
Chauvet, Deville, & Haziza (2011) and Haziza (2009)). It is, particularly, applied to compensate for item
nonresponse (i.e., a respondent takes part in a survey but does not answer all questions). Imputation
procedures can also theoretically be used for unit nonresponse (Haziza (2009), e.g., a respondent refuses
to participate in a survey) but usually weighting procedures are applied for unit nonresponse. In partic-
ular, imputation procedures can be applied when the nonresponse mechanism is missing completely at
random (MCAR) or missing at random (MAR) (for the following explanations to the missing mechanism
see Little & Rubin (2019) and Van Buuren (2018)). In very simple terms, MCAR means that the missingness
neither depends on the observed values nor missing values. All elements have the same probability of
being missing for a certain variable. In case of MAR, the missingness depends only on observed compo-
nents and not on the missing components. For example, the probability of being missing for a certain
variable of the elements depends only on values of variables that are observed and not missing. In case
of not missing at random (NMAR), the missingness depends on the missing components of the data set,
for example, the probability of item nonresponse in the income question depends on a respondent’s in-
come (Little & Rubin, 2019; Van Buuren, 2018). There are some studies that deal with imputation in the
context of NMAR (see for example, Pfeffermann & Sikov (2010) or Carpenter, Kenward, & White (2007))
but this issue is still highly challenging in theoretical and practical application.

2. Imputation of missing values

2.1 Aims of imputation

The application of imputation procedures can relate to different aims (see for the following explanations
Kim & Rao (2009), Chauvet et al. (2011), Haziza (2009), Van Buuren, Brand, Groothuis-Oudshoorn, & Rubin
(2006), Van Buuren (2018), Van Buuren & Groothuis-Oudshoorn (2011), Schafer & Graham (2002) and Little
& Rubin (2019)). Firstly, a complete data set should be obtained so that the data users can apply their
standard analysis procedures. Secondly, nonresponse bias can be reduced by constructing appropriate
imputation models and selecting appropriate auxiliary variables that are connected to the nonresponse
mechanism (see also Section 2.3) when a MAR nonresponse mechanism can be assumed. According to
Schafer & Graham (2002), a further important aim is that joint distributions of (relevant) variables and
their features such as means, variances and correlations are preserved after imputation. In comparison to
the complete case analysis (i.e., all elements with at least one missing value are deleted, see Van Buuren
(2018) for more explanations), a larger information loss should be avoided. Furthermore, the imputed
values should be plausible and combinations that cannot occur in reality have to be avoided. Since survey
data sets often include variables with different levels of measurements, imputation procedures should
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be able to deal with metric, ordinal and (multi-) nominal variables (Van Buuren et al., 2006).

In survey data sets, imputation is often applied before weighting as weighting requires complete observa-
tions in the weighting variables (for an overview of weighting procedures see, for example, Gabler, Kolb,
Sand, & Zins (2015) and Sand & Kunz (2020)). In recent years, imputation procedures have often been
applied in connection with split questionnaire designs (Raghunathan & Grizzle, 1995). Using split ques-
tionnaire designs, respondents receive only parts of the questionnaire instead of the full questionnaire.
Thus, design-based missing values are generated. The nonresponse mechanism can be considered to be
MCAR since the parts of the questionnaire are assigned randomly to the respondents. The missing val-
ues resulting from questions that are not received by the respondents can be compensated by applying
imputation procedures (see for example, Raghunathan & Grizzle (1995)).

2.2 How does imputation work

Figure 1: Example imputation

Figure 1 shows a basic application of imputation (for the following explanations see also Little & Rubin
(2019)). Let us assume a situation in which we have two highly correlated variables y and x1, where the
variable y has some missing values and should be imputed. The variable x1 is the predictor variable. In
practice, it is probably necessary to consider more variables and that the predictor variables also include
missing values (the latter case is called multivariate missing data, see Van Buuren (2018)). However, to
explain the basic procedure of imputation we keep the example simple and assume that only one predic-
tor x1 is available and this variable has no missing values. We will come back to the case of multivariate
missing data in Section 4.2. Furthermore, we have to mention that, theoretically, it is possible to apply
imputation without predictors but in Section 2.3 we will explain that it is meaningful to include predictors
to ensure a high imputation quality.
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In our example, respondent 2 has a missing value (indicated by the NA) in variable y but an observed
value in variable x1. One possibility is to consider only complete cases and to delete respondent 2 from
the data set. By doing so, the information of respondent 2 regarding variable x1 is lost. If there is a large
number of respondents in the data set with missing values in y but observed values in other variables,
a lot of information may be lost by applying this procedure. To avoid this information loss and to obtain
a complete data set we can impute missing values. When applying imputation, an imputation model is
built that specifies the relationship between the variable to be imputed y and the predictors, in our ex-
ample x1. The relationship can usually be estimated on the basis of the respondents of the data set who
have observed values in y and x1 (Van Buuren et al. (2006); for example, respondents 1, 3 and n have
observed values in y and x1). To estimate the relationship and to impute missing values on the basis of
the predictors a certain imputation method has to be chosen. We will present several imputation meth-
ods in Sections 3 and 4. By doing so, an appropriate value (or depending on the imputation procedure
multiple appropriate values) for the missing value of respondent 2 can be imputed on the basis of the
estimated relationship and on the basis of the observed value of the variable x1 for respondent 2. Partic-
ularly, the value should be plausible for respondent 2. To obtain a complete data set, imputation must
be applied for all missing values in the data set. The description of this basic concept shows some impor-
tant determinants of imputation. First, the variable to be imputed (y in this example) and the predictors
of the imputation model (x1 in this example) should have enough pairwise observed values to train the
model that is used for imputation. Second, the imputation model for the variable to be imputed needs
to be defined. This includes the selection of the predictor variables and the form in which predictors are
included in the model (for example, two predictors may be included via interactions). Furthermore, an
appropriate imputation method has to be chosen.

The selection of predictor variables can be highly challenging. Thus, we will discuss this issue in the next
section. In Section 3, we will present classifications of imputation methods and we will give an explana-
tion of single and multiple imputation methods. There exists a wide range of methods that can be applied
to impute missing values. Unfortunately, it is not possible to discuss all these imputation methods in this
guideline. Thus, in Section 4, we will present some selected imputation methods that are often discussed
in the literature.

2.3 Imputation model and selection of predictor variables

In our example we have only two variables which makes the variable selection straightforward. In most
applications, survey data sets include a multitude of variables, and researchers must decide on the vari-
ables to be used as predictor variables for conducting imputation. On the one hand, a lot of information
and thus a sufficient number of predictors should be included in the imputation model. This is necessary
to preserve the joint distribution of relevant variables and their features, for example, variable correla-
tions (see Schafer & Graham (2002) for a detailed explanation). Furthermore, in practice, it is often the
aim to include as many relevant auxiliary variables as possible so that a MAR missing mechanism can
be assumed (see, for example, Van Buuren (2018)) or to include variables to increase efficiency (Collins,
Schafer, & Kam, 2001). On the other hand, a large number of predictor variables may result in problems
1 regarding multicollinearity (Nicoletti & Peracchi, 2006; Van Buuren, 2018), degrees-of-freedom, partic-
ularly, when the sample size is small (Nicoletti & Peracchi (2006), see also Axenfeld, Bruch, & Wolf (2022))
or long computational times (Van Buuren, 2018). Van Buuren (2018) proposes to use a subset of the data
set with about 15 – 25 predictor variables. Particularly, the imputation model should include the fol-
lowing variables as predictors (see for the following explanations Van Buuren (2018) and Van Buuren &

1See also the discussion to a large number of variables in imputation models in Graham(2009)
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Groothuis-Oudshoorn (2011), see also the discussion to inclusive and restrictive strategies in Collins et
al. (2001)):

1. All variables that are analysed jointly with the variable to be imputed should be included as predic-
tor in their imputation model (for further illustration of this point also see the discussion of conge-
niality and uncongeniality in Meng (1994)). For example, when conducting regression analysis, the
independent and dependent variables should be included mutually in their imputation models. If
variables with a certain degree of correlation are not mutually included in the imputation models,
the correlation of these variables may be reduced or even destroyed after imputation. This may
introduce bias which can have a large impact on the results, particularly, when analyzing the re-
lationships between the variables (see also the explanations in Grund, Lüdtke, & Robitzsch (2016)
and Graham (2009)). Further examples of variables and information that have to be included in the
imputation model is information regarding the survey design (Zhou, Elliott, & Raghunathan, 2016)
or information regarding the multilevel/hierarchical structure (Grund et al. (2016), see also Black,
Harel, & McCoach (2011), Graham (2012) and Van Buuren (2011)). When interactions of variables are
analysed, these interactions also have to be included in the imputation model (Enders, Baraldi, &
Cham, 2014; Grund et al., 2016). An important rule is that the imputation model must be at least as
complex as the analysis model (Grund et al., 2016).

2. All variables that are highly correlated with the variables to be imputed should be included as a
predictor in the imputation model of the variable to be imputed. This is necessary to reduce impu-
tation uncertainty.

3. Variables that are highly correlated to the nonresponse mechanism that causes the missing values
in a variable should be included in the imputation model of this variable. This is necessary to reduce
the nonresponse bias when the nonresponse mechanism can be considered as missing at random.

4. A predictor variable that was chosen in steps 2 and 3 may be removed from the imputation model
when the amount of missing values in the predictor variable within the subgroup of units that have
missing values regarding the variable to be imputed is too large.

Using the above rules may help to narrow down the imputation model to a manageable number of vari-
ables by including the relevant information. Furthermore, one can also make use of approaches to select
or to build appropriate predictors (that include the relevant information) to build the imputation model.
For example, it is possible to apply stepwise regression (Koller-Meinfelder, 2009)2, lasso regression (Za-
hid, Faisal, & Heumann, 2021; Zhao & Long, 2016) or partial least square regression (Robitzsch, Pham, &
Yanagida, 2016) 3 before conducting imputation.

3. Classification of imputation methods: Single vs. multiple imputation

There are many different imputation methods and classifications of imputation methods. One such dif-
ferentiation is the classification into Hot Deck and Cold Deck imputation. Hot Deck imputation means
that imputed values are drawn from similar respondents of the same data set. In contrast, Cold Deck
imputation uses values from external sources such as a previous wave or other surveys (Little & Rubin,
2019).

2Stepwise regression is, for example, implemented in IVEware (Raghunathan, Solenberger, & Hoewyk, 2002) or in the R (R
Core Team, 2020) imputation package BaBooN (Meinfelder & Schnapp, 2015)

3Partial least square regression is, for example, implemented in the R (R Core Team, 2020) imputation package miceadds
(Robitzsch & Grund, 2021)
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A further structuring of imputation is the classification between deterministic and stochastic imputation
methods. Särndal & Lundstrom (2005) argue that an imputation procedure can be described as deter-
ministic when a repeated application of the same imputation procedure (particularly, the same imputa-
tion method with identical predictors and same modelling of the relationship between the variable to be
imputed and predictors) results in the same value under same conditions (same sample with same ob-
served and missing values). For stochastic imputation procedures, the imputed value can change when
repeating the imputation procedure under otherwise same conditions, since the value is drawn randomly
(Särndal & Lundstrom, 2005). Pure deterministic imputation procedures do not account for imputation
uncertainty. Such procedures, for example, mean imputation or deterministic regression imputation, can
result in a distortion of the distribution of the imputed variable.

The most common differentiation is between single and multiple imputation methods. In case of single
imputation one value is imputed for each missing value while in case of multiple imputation more than
one value is imputed for each missing value (see, for example, Särndal (1992)). However, both procedures
are associated with different theories ,and we will discuss both procedures in more detail in the following
sections.

3.1 Single imputation

In case of single imputation only one imputed value for each missing value is drawn. In comparison to
multiple imputation, this may reduce the complexity of analysis based on the imputed data set, since
one does not need to work with numerous data sets as will be described in Section 3.2. However, it raises
the question on how to include the imputation uncertainty, specifically, how to include the imputation
process in the variance estimation. Frequently, when applying single imputation, the imputed values
are treated as actually observed ones and standard variance estimation procedures are applied on the
single imputed data set. However, this procedure may lead to a variance estimate that strongly under-
estimates the true variance since the imputation procedure is not considered (see, for example, Shao &
Sitter (1996)). As a result, hypothesis testing and confidence intervals may lead to false conclusions (see,
for example, Haziza (2009)).

To consider the imputation process in the variance estimation, a variance decomposition of the imputed
estimator „̂I under single imputation is necessary. For example, in case of a stochastic imputation pro-
cedure4, this variance can be decomposed as follows (see Mashreghi, Léger, & Haziza (2014), particularly,
for the different variance components; furthermore see the reverse framework of Fay (1991), and Shao &
Steel (1999)):

V („̂I) = ENRVSEI(„̂I |s; d)| {z }
V1

+ VNRESEI(„̂I |s; d)| {z }
V2

+ENRESVI(„̂I |s; d)| {z }
V3

(1)

s describes the sample and d the response vector that indicates whether a unit has a missing value or
not. The subscript S,NR and I in the expected valuesE and variances V are related to the sampling (S),
the nonresponse (NR) and stochastic imputation (I). In simple terms, variance component V1 includes
the sampling variability, V2 the nonresponse variability and V3 the variability due to stochastic imputa-
tion (all variability terms are conditioned on the sample and nonresponse vector). It is worth mentioning
that the variance decomposition in (1) under single imputation should not be confused with the vari-
ance decomposition of multiple imputation that will be presented in Section 3.2.1. The components

4The variance decomposition for a deterministic imputation procedure is described in Mashreghi, Léger and Haziza (2014).
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describe different mathematical constructs and are based on different imputation procedures. Under
some assumptions such as a negligible overall sampling fraction, variance component V2 has a negligi-
ble contribution to the overall variance and it may be sufficient to estimate only the components V1 and
V3 (Mashreghi et al., 2014).

The variance decomposition in (1) can be used to derive an estimator for the variance V („̂I) via ap-
proaches such as resampling methods (as for example done in Mashreghi et al. (2014)) or to evaluate
how reliable a certain resampling method estimates the variance V („̂I) under different parameter con-
stellations. In general, the application of resampling methods means that subsamples are drawn from
the original sample and the statistic of interest is computed based on each subsample. The variance es-
timate is the variance computed across the different point estimates (a point estimate results from each
subsample; for an overview of resampling methods see, for example, Shao & Tu (1995)). To consider im-
putation, for example, in the Monte-Carlo bootstrap (Efron, 1979, 1994), the Shao & Sitter (1996) method
can be used (see also Mashreghi et al. (2014)). Under some assumptions, for example, a small sampling
fraction and a negligible component V2, the procedure is in case of a simple random sampling design as
follows (for the following procedure see Shao & Sitter (1996)):

1. A subsample of the same size as the original sample is drawn with replacement from the original
sample.

2. Each missing value in the subsample is reimputed based on the observed values of the subsam-
ple using the same imputation procedure (particularly, the same imputation model, imputation
method) that was used in the original sample. This procedure is called reimputation of imputed
values (Shao, 2002).

3. The statistic of interest, for example a certain proportion, is computed based on the reimputed
missing values and the observed values of the subsample.

4. Steps 1 to 3 are repeatedQ times. In each run, a subsample is drawn, missing values are reimputed
and the statistic of interest is calculated.

5. Q estimates „̂∗I;q result (one estimate for each subsample q) and the variance estimator of an esti-
mator „̂I under single imputation via the Shao & Sitter (1996) method is calculated by:

V̂boot;MC

“
„̂I

”
≈ 1

Q

QX
q=1

 
„̂∗I;q −

1

Q

QX
v=1

„̂∗I;v

!2

Some important limitations of the procedure are:

1. If random components are included in the imputation procedure and the subsample size is not of
the same size as the original sample, the variance can be overestimated when applying reimputa-
tion (Shao, 2002). The adjustment of imputed values as described in Shao (2002) may be applied
under some assumptions. However, for simple random sampling, the subsample size of the Monte
Carlo bootstrap is of the same size as the original sample. This does not have to be the case for
other sampling designs (see, for example, the explanations in Rao & Wu (1988) and Saigo, Shao, &
Sitter (2001) for stratified random sampling).

2. The procedure to consider the imputation in the variance estimation was described for the Monte
Carlo bootstrap. For other resampling methods such as the rescaling bootstrap, larger adjustments
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may be required (for such an adjustment, for example, for the rescaling bootstrap of Chipperfield &
Preston (2007) see Bruch (2019) and Bruch (2016)). Variance estimation based on a single imputed
data set for the jackknife is presented in Rao & Shao (1992) and for balanced repeated replication
in Shao, Chen, & Chen (1998).

3. This limitation is highly related to the previous limitations: For more complex sampling designs
than simple random sampling, stronger adjustments of the procedure described above may be
necessary. Besides the consideration of the imputation procedure (particularly, when reimputa-
tion cannot be applied as described in the first limitation), adjustments are linked to the consider-
ation of the complex sampling design in the bootstrap procedure in general (see, for example, the
explanations in Antal & Tillé (2011)). Variance estimation under imputation for complex sampling
designs is an important topic that is also discussed for more complex bootstrap procedures (see,
for example, the modification of the rescaling boostrap for multistage designs of Preston (Preston,
2009) under single imputation in Bruch (2022) and Bruch (2016)).

4. The procedure assumes that V2 is negligible. When V2 has a larger contribution to V („̂I), the pro-
cedures described in Mashreghi et al. (2014) may be applied.

To sum up: The procedure described above is simple under the assumptions we discussed before. How-
ever, the variance estimation can be much more complex, for example, in case of more complex sampling
designs, more complex resampling or imputation methods, when the simple consideration of the impu-
tation process via reimputation cannot be applied or if the sampling fraction and component V2 are not
negligible and, particularly, combinations of these conditions.

3.2 Multiple imputation

Multiple imputation was developed by Donald B. Rubin in the 1970s. The development of multiple im-
putation was motivated by the criticism on single imputation methods to not consider imputation un-
certainty since only one imputed value is used for every missing value (Van Buuren, 2018). Donald Rubin
summarizes the problem in his famous quote: “Imputing one value for a missing datum cannot be cor-
rect in general, because we don’t know what value to impute with certainty (if we did, it wouldn’t be
missing)” (Rubin, 1978, p. 21). As a further consequence, it is often criticised that standard errors are too
low, at least without additional corrections (Honaker & King, 2010; Van Buuren, 2018). However, single
imputation procedures remain widely in use. This is motivated by the additional complexity multiple
imputation procedure may bring due to the analysis of multiple data sets such as increasing effort, the
combination of estimates for complex estimators or storage (Little & Rubin, 2019; Särndal, 1992). Further-
more, as mentioned and shown in the previous section, in the meantime, the literature proposes ways to
correctly cover the estimator’s variance based on single imputed data sets (see, for example, Mashreghi
et al. (2014) or Shao & Sitter (1996)) even when this task is far from being simple.

3.2.1 How to conduct multiple imputation: Basic procedure

The basic procedure of multiple imputation is presented in Figure 2 (see Rubin (1987) as well as Van Bu-
uren (2018), Rässler & Schnell (2004) and Bjørnstad (2007) for the following explanations of this section).
Suppose we have a sample with n respondents. The column Original shows the variable of interest in the
original sample with missing values and before multiple imputation is applied. For example, respondent
1 and respondentnhave observed values for the variable of interest, respondent 2 and respondent 3 have
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missing values. In this example, we choose to impute five values for each missing value. As a result, five
data sets are obtained. Each data set includes the observed value for each respondent without missing
value and for every respondent with a missing value one of the five imputed values that are imputed via
a certain method and model. The five imputed data sets are displayed in the columnsm = 1; : : : ; m = 5.
Respondents 1 and respondent n have the same value 3 and 4 in each of the data sets since the value is
actually observed. For respondents 2 and respondent 3 with a missing value in the original sample, the
missing values are imputed in each of the five data sets. The imputed values for both respondents can
differ between the five data sets which expresses the uncertainty of the imputed value.

Figure 2: Example for multiple imputation; Rubin (1987), Van Buuren (2018) and Rässler and Schnell
(2004)

In case of multiple imputation, the five imputed values for each respondent are not combined directly.
Instead, the statistic of interest „ (which may be, for example, a proportion, the mean or the total value),
is computed separately for each of the five data sets (for each column m) on the basis of the observed
and imputed values of each data set. It results in a point estimate „̂m for each data set. In our case, we
obtain five point estimates of our statistic of interest (one for every imputed data set). Afterwards, these
five point estimates „̂1 : : : „̂5 are combined to a single point estimate by applying Rubin’s combining rule.

The formulas to combine point estimates and variance estimates with respect to Rubin’s combining rule
are given by the following equations:

„ =
1

M

MX
m=1

„̂m (2)
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W =
1

M

MX
m=1

V̂m (3)

B =
1

M − 1

MX
m=1

(„̂m − „)2 (4)

T = W +
M + 1

M
· B (5)

M is the number of repeated imputations for each missing value and thus the number of imputed data
sets that result from the multiple imputation (in our example M=5). Rubin’s rules are based on the as-
sumptions that the estimated parameter is at least approximately normally distributed. This assump-
tion holds for statistics like mean values, proportions, and regression coefficients. In case of statstics for
which the assumption of normal distribution is not met, e.g., correlations or odds rations, transforma-
tions should be applied to ensure normality (after applying the combining rules, backtransformations to
the original scale are conducted). For example, the Fishers z-transformation can be used for correlations
(Van Buuren, 2018).
Rubin’s rule to combine point estimates is presented by formula (2). As can be seen, the overall estimator
is a simple average across the point estimates of theM imputed data sets. Let us assume that we intend
to estimate, for example, a certain proportion such as the share of highly educated people in the popu-
lation. To do so, we estimate the proportions separately for the five imputed data sets (which result from
a multiple imputation of the original sample) based on the observed and imputed values of each data
set. This results in five estimated proportions of persons with a high education. Applying Rubin’s rule, a
simple average is taken across the five estimated proportions to obtain an overall estimate of the share
of people with a high education. Often, researchers are interested in standard errors and thus a variance
estimation has to be applied. Rubin’s combining rule is also used to derive a variance estimate (for the
estimated statistic) that accounts for the imputation process. Formula (5) shows the total varianceT that
consists of two components: the within imputation varianceW and the between imputation varianceB.
For the within-imputation variance in formula (3), the variance for each of the M (in our example: five)
estimated statistics (in our example: for each estimated proportion) is computed (this variance estimate
is indicated by V̂m) in a first step. Afterwards, theM variance estimates V̂m are combined by averaging the
M variance estimates V̂m. The between-imputation variance in equation (4) is calculated by the variance
computed across theM point estimates. This variance reflects the uncertainty of imputation. Finally, the
within-imputation variance and the between-imputation variance are combined to the total variance as
described by formula (5). This variance estimate can, for example, be used as a basis for the standard er-
ror estimates in hypothesis tests or confidence intervals (Bjørnstad, 2007; Rässler & Schnell, 2004; Rubin,
1987; Van Buuren, 2018). 5

To conduct multiple imputation, users can draw upon computer software. In R (R Core Team, 2020), multi-
ple imputation procedures are, for example, implemented in the packages mice (Van Buuren & Groothuis-
Oudshoorn, 2011) or Amelia (Honaker, King, & Blackwell, 2011).

5To achieve valid statistical inferences via multiple imputation, the imputation should have particular characteristics and
procedures that ensure such imputations are proper (see Rubin (1987), see also Van Buuren (2018)). To explain these theoretical
construct in more detail goes beyond of the scope of this survey guideline. For the interested reader, we refer to the explanations
in Rubin (1987) or Van Buuren (2018).
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3.2.2 How to chooseM?

In our example, we set M to five so that five imputed values are used for each missing value and five
imputed data sets are obtained. With this choice, we follow the typical advice to choose a rather small
number of repeated imputations. However, multiple imputation is a simulation-based procedure and
thus, a high choice of M might be better. Nonetheless, a high M requires a higher computation time
and storage. In general, the choice of M depends on determinants such as the extent of missing values
and the complexity of estimated parameters. According to Van Buuren (2018), when point estimates are
of interest (and not, for example, standard errors or p-values), between 5 and 20 repetitions are often
enough, in case the number of missing values is not too large. M should be higher (approx. 200) for
parameters which are difficult to estimate such as variances or highly uncertain estimations at a lower
level (for example estimations at a lower regional level that are uncertain due to a small sample size, for
the explanations of this section see Van Buuren (2018)).

In practice,M is sometimes set to one resulting in a single imputation. The idea of this procedure is to ap-
ply the approaches implemented in standard multiple imputation software such as mice (Van Buuren &
Groothuis-Oudshoorn, 2011) and to reduce the complexity of combining estimates of different data sets
by using a single imputation. We cannot recommend proceeding in this way, since standard multiple im-
putation software applications are primarily implemented with respect to the requirements of multiple
imputation and single imputation procedures have their own particularities. We show this for the vari-
ance estimation. Applying standard multiple imputation software with M = 1 with variance formulas
(3), (4) and (5) does not consider the variance decomposition in (1).

3.3 Single vs. multiple imputation

Table 1 summarizes some important characteristics of single and multiple imputation. Whether to pre-
fer single or multiple imputation depends on the specific application. Multiple imputation shows some
clear advantages with respect to a flexible variance estimation (Münnich et al., 2015). In particular, it may
present a more straightforward procedure to include imputation uncertainty in the variance estimation.
Variance estimation for single imputation remains highly challenging, particularly under complex con-
ditions as mentioned in Section 3.1. However, single imputation procedures are still useful in practical
applications, especially when the combination of different estimates of different data sets is too complex
for data users in some situations or the data provider cannot publish multiple imputed data sets.
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Single Imputation Multiple Imputation
For every missing value
only one value is im-
puted

For every missing value
more than one value is
imputed

Creates only one data set Creates more than one
data set

Does not consider im-
putation uncertainty
in terms of imputing
more values for a certain
missing value

Consideration of imputa-
tion uncertainty

Larger adjustments in
the variance estima-
tion, for example, for
resampling methods are
necessary

Variance estimation via
Rubin’s combining rule

Table 1: Single vs. multiple imputation, see for example Rubin (1987), Little & Rubin (2019), Van Buuren
(2018), Mashreghi et al. (2014), Särndal (1992) and Shao & Sitter (1996)

4 Imputation methods and multivariate missing data

4.1 Imputation methods

To impute missing values, a wide range of methods exists. In this section, we present some important
methods that are discussed in the literature. Some of these methods, such as mean imputation, should
not be applied in most situations. We only discuss these procedures briefly since they are commonly
used while pointing out their disadvantages. It is also worth mentioning that pure deterministic impu-
tation procedures such as mean imputation and deterministic regression imputation are classical single
imputation methods. These methods do not account for the uncertainty of the missing values and thus it
is not meaningful to apply them to create multiple imputation (see also the explanations to predictions
and predicted values in Van Buuren (2018)). Furthermore, in this section we do not consider multivariate
missing data patterns. We assume, that missing values appear in the variable y and not in the predictors
x1; : : : ; xK . After this section, we will present imputation methods that deal with multivariate missing
data patterns.

1. Mean imputation: The mean value of observed values is taken as imputed value. Instead of taking
the mean over all observed values, imputation classes may be formed to consider auxiliary infor-
mation. The procedure is easy to apply and can be implemented quickly. However, the imputed
value can take a value that is not an observation of the non-missing cases. Furthermore, there is
a high loss of variation and the distribution of the imputed variable and covariances may be dis-
torted (Landerman, Land, & Pieper, 1997; Little & Rubin, 2019; Särndal & Lundstrom, 2005). Thus,
mean imputation should be avoided in most situations.

2. Imputations based on the normal linear model and extensions to categorical variables to be im-
puted: The simplest form is deterministic regression imputation. A regression with the variable to
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be imputed y as dependent variable and auxiliary variables x1; : : : ; xK as independent variables
is conducted on the basis of respondents with observed values for y described by the set R. Pre-
dictions are calculated from the estimated regression model for respondents with a missing value
regarding y i ∈ G (G is the set of elements with a missing value with respect to y ) on the basis
of their values for x1; : : : ; xK . These predictions are taken as imputed values (Little & Rubin, 2019).
Regression imputation is a basic procedure to include information from other variables in the impu-
tation process (see Van Buuren (2018)). However, regression imputation has some disadvantages.
The relationship between y and x1; : : : ; xK can artificially be strengthened and an upward bias of
correlations can appear (Van Buuren, 2018). Furthermore, since it is a deterministic procedure, a
loss of variation may appear and the distribution of the imputed variable may be disturbed (but,
usually, not as much as for mean imputation) (Landerman et al., 1997; Little & Rubin, 2019). Ad-
ditionally, as for mean imputation, the imputed values may not represent actual observed values
(that occur for R). However, the distortion of the distribution of the imputed variable can be coun-
teracted by adding a randomly drawn residual or a random draw from a normal distribution to the
imputed value (see Landerman et al. (1997), Kim (2001) and Little & Rubin (2019)). This is done
when using a stochastic regression imputation. According to Van Buuren (2018), additionally, it is
necessary to consider the uncertainty of the parameters of the regression model (intercept, slope
and standard deviation of the residuals). Thus, he proposes to apply Bayesian methods and draw-
ing these parameters from their posterior distribution. As alternative proposal to include the pa-
rameter uncertainty, Van Buuren (2018) suggests to take bootstrap samples from the observed data
and to re-estimate the parameters based on the bootstrap samples.
Furthermore, the level of measurement of the variable to be imputed is important. Applying ordi-
nary regression models assumes that the variable to be imputed is metric. In case of a non-metric
variable to be imputed, a value may be imputed that cannot be realized within the original sur-
vey question when applying an ordinary regression imputation. For example, in case of a nomi-
nal variable with categories 1,2,3,4, and 5, applying an ordinary regression imputation may lead
to imputed values that are not integer or negative. Thus, for non-metric variables to be imputed,
generalized linear models with the corresponding level of measurement of the dependent vari-
able should be used. Van Buuren (2018) discusses logistic regression imputation for binary incom-
plete variables, a multinomial logit model for categorical incomplete variables with unordered cat-
egories and an ordered logit model for categorical incomplete variables with ordered categories.
Such procedures are also implemented in the mice package (Van Buuren & Groothuis-Oudshoorn,
2011). Using generalized linear models with the corresponding level of measurement can ensure
that only variable categories are imputed that are used in the questionnaire. However, the pro-
cedures may lead to a bad performance (see the studies described in Van Buuren (2018)). This,
particularly, applies to categorical data with respect to degree of freedom problems in the estima-
tion. When including many categorical variables with many categories, a lot of parameters have
to be estimated which may require a large sample size with many observed values. However, par-
ticularly in social surveys, the sample size may be rather small and thus the number of observed
values to ensure a valid estimation of many parameters (Van Buuren (2018), see also Axenfeld et al.
(2022)).

3. Hot Deck random imputation (see, for example, Little & Rubin (2019), see also Brick & Kalton
(1996)): An imputed value for a missing value is drawn randomly from a donor set of observed
values. Auxiliary variables x1; : : : ; xK can be used to form imputation classes via cross classifica-
tion. In this case, an imputed value for a missing value is selected randomly from observed values
within the same imputation class. The procedure has the advantage that the distribution of the
imputed variable is not disturbed, and real observed values are used for imputation. Problems
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may arise for sparse cells, particularly, when using a lot of predictor variables: no or only a few
observed values may be available in the imputation class or observed values might be used too
often as imputed value. Furthermore, metric auxiliary variables need to be categorized, which
may lead to a larger information loss.

4. Nearest neighbor imputation: This imputation method is, for example, described in Chen & Shao
(2000). The distance of an element with a missing value is computed to elements with an observed
value on the basis of the auxiliary variables x1; : : : ; xK . To compute the distance, measures such as
the Mahalanobis distance (Little & Rubin, 2019) for metric variables or the Gower distance (Gower,
1971) for ordered categorical variables6 may be used. Afterwards, the observed values of an ele-
ment that has the least distance to the element with the missing value is used as imputed value.
Particularly for categorical variables or to include variability in the imputation process, it is also
possible to randomly draw the imputed value from a set of elements that have the least distance
to the element with a missing value (Chen & Shao, 2000; Little & Rubin, 2019). According to Chen &
Shao (2000), advantages of the nearest neighbor imputation are the efficient use of auxiliary vari-
ables and that the imputed value is a real observed value. Furthermore, the procedure does not use
an explicit model for the auxiliary variables and the variable to be imputed. Therefore, the proce-
dure may be more robust against model violations in comparison to regression imputation (Chen &
Shao, 2000). A disadvantage of nearest neighbor imputation is described in Longford (2005) which
is the case of isolated elements with missing values. For such missing values, a similar nearest
neighbor may be very difficult to obtain. The other way around, some observed values may be lo-
cated in a way that they are the nearest neighbor of many units with missing values. In that case,
they might be a frequent donor (Longford, 2005). Furthermore, large sample sizes lead to large
distance matrices, and this may computationally be highly intensive (Münnich et al., 2015).

5. Predictive mean matching (see Rubin (1986), Little (1986), Little (1988), Koller-Meinfelder (2009),
Van Buuren (2018) and Landerman et al. (1997)): This procedure can be considered as a special
case of nearest neighbor imputation. To obtain the imputed value, the distance between elements
with missing values and elements with an observed value is computed but not directly on the ba-
sis of the auxiliary variables x1; : : : ; xK . First, a regression model with the variable to be imputed
y as dependent variable and predictors x1; : : : ; xK as independent variables is estimated for ele-
ments with observed values i ∈ R. Afterwards, predicted values are computed for elements with
observed as well as elements with missing values on the basis of the predictors x1; : : : ; xK and the
estimated regression model. In the following step, the distance between elements with observed
and elements with missing values is computed by using the predicted values. The observed value
of the element that has the least distance to an element with a missing value is taken as imputed
value. It is also possible to construct a set that includes a certain number of observed values of
elements with least distance to an element with a missing value and to draw the imputed value
randomly from this set (Van Buuren, 2018). The described predictive mean matching procedure
can be applied to a metric variable to be imputed. When y is binary, a binomial logit model can be
used. When y is an unordered categorical variable, a multinominal logit model can be applied. For
both cases, the distance is computed with propensities calculated based on the estimated model
coefficients and auxiliary variables (Koller-Meinfelder, 2009). According to Koller-Meinfelder (2009),
an advantage of predictive mean matching is that more robust estimations are obtained when the
model is misspecified compared to a purely model-based imputation. Moreover, the imputed value
is a real observed value. As for the classical nearest neighbor imputation procedure, large sample

6The Gower distance is, for example, used in the R-Package VIM (Kowarik & Templ, 2016) for computing the distance within
nearest neighbor imputation, see also the discussion in Münnich et al. (2015)
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sizes may lead to large distance matrices and a high computational effort. Predictive mean match-
ing is implemented in many software applications, for example, in the pmm and midastouch rou-
tine in mice (Van Buuren & Groothuis-Oudshoorn, 2011) or in the BaBooN package (Meinfelder &
Schnapp, 2015) in R (R Core Team, 2020).

6. Random forest imputation: To obtain imputed values, it is also possible to use random forest proce-
dures. In essence, a random forest model is trained on the variable to be imputed y and predictors
based on the observations for which y is not missing. Afterwards, the trained random forest model
is applied to the predictor variables of respondents with a missing value regarding y to obtain the
corresponding imputed value (Stekhoven & Bühlmann, 2012). The random forest consists of a cer-
tain number of trees. For the training process a bootstrap sample of elements with observed values
is drawn from the original sample for each tree. For splitting at each node of a tree, a certain number
of predictors is randomly drawn from all predictors in the data set. This subset is searched through
for the optimal split (Breiman, 2002; Stekhoven & Bühlmann, 2012; Van Buuren, 2018). To obtain an
imputed value for a certain missing value different approaches are possible. For example, based on
the predictors, the leaf or terminal node of each unit with missing value can be determined for each
tree. Each leaf includes the observed values for the variable to be imputed of the elements that are
used to train the random forest model and that belong to the particular leaf. Afterwards, the ob-
served values of the leafs to which the element with missing value belongs across the different
trees can be taken together and one of the observed values is drawn randomly as imputed values
for the missing value (Doove, Van Buuren, & Dusseldorp, 2014). Particularly, there are two impor-
tant parameters of random forest imputation: the number of trees and the number of variables
randomly selected at each node. Setting these values high may increase the quality of imputation
but also the computation time (Stekhoven & Bühlmann, 2012). Besides this trade-off some further
advantages and disadvantages are, for example, discussed in Shah, Bartlett, Carpenter, Nicholas, &
Hemingway (2014). An advantage of random forest procedures is that they can consider nonlinear-
ity and interactions. As disadvantage Shah et al. (2014) mention that random forest predictions of
extreme values of continuous variables may be biased downward. Random forest imputation tech-
niques can be found in the R-packages missForest (Stekhoven, 2013; Stekhoven & Bühlmann, 2012)
and mice (Van Buuren & Groothuis-Oudshoorn, 2011). In addition to the random forest imputation
implementation rf, mice includes a further procedure to impute missing values that is based on
classification and regression trees. This function is called cart (Van Buuren, 2018). In some aspects
cart is different from the previously described procedure. It, for example, is based on only one tree
(Axenfeld et al., 2022; Doove et al., 2014; Van Buuren et al., 2021). However, the study of Axenfeld
et al. (2022) reveals some disadvantages of this cart imputation implementation, particularly, with
respect to the rather small sample sizes in surveys.

4.2 Multivariate missing data

While we assumed univariate missing data in the previous section, in practice, we often deal with multi-
variate missing data. This means that nonresponse also occurs in the predictor variables. Such a missing
pattern brings more complexity to imputation. There are two common approaches to deal with multi-
variate missing data: Joint modelling and fully conditional specification. In case of joint modelling, a
multivariate distribution with certain parameters is chosen to describe the data (i.e., the data set with
variables, for example, the variable of interest y and auxiliary variables x1; : : : ; xK). Frequently, the mul-
tivariate normal distribution is selected but other multivariate distributions are also possible. Using a
Bayesian framework and assigning appropriate prior distributions to the model parameters, imputations
can be drawn from the posterior predictive distribution that is derived for the missing part of the data set
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given the observed part (Van Buuren, 2018; Van Buuren et al., 2006). For data users it may not be easy to
explicitly specify a multivariate distribution in practical applications. The user may need more flexibil-
ity to specify imputation models, to apply imputation methods and to include special features such as
interactions or bounds (Van Buuren et al., 2006).

The second possibility is the fully conditional specification, which makes the imputation model building
more flexible. Thus, we will present this procedure in more detail to show the application of imputation
procedures in case of multivariate missing data. Fully conditional specification is, for example, imple-
mented in the R package mice (Van Buuren & Groothuis-Oudshoorn (2011), for the following explanations
of this section see Van Buuren et al. (2006) and Van Buuren (2018)). To describe the procedure, we will
again use a concrete example that is displayed in Figure 3. The aim of this example is to explain the basic
idea of fully conditional specification. The technicalities behind this procedure are much more complex
and go beyond of the scope of this survey guideline.

Figure 3: Example fully conditional specification; Van Buuren et al. (2006), Van Buuren and Groothuis-
Oudshoorn (2011), Van Buuren (2018)

Let us assume that we have four variables: Age, Education, Job and Gender. We further suppose that
item nonresponse occurs in the variables Education, Age and Job. Gender is completely observed. At
first, as in the univariate case, we define an imputation model for each variable with missing values, i.e.,
Age, Education and Job. For each imputation model this is done by choosing an imputation method and
appropriate predictors. As mentioned previously, the selection of predictors should be done carefully.
However, in our example, we only have a small number of variables in the data set, and we assume that
all of the other variables have to be included in the imputation model of each variable to be imputed (for
example, since they are analyzed together, have some important correlation or are important to model
the nonresponse mechanism). Thus, the imputation model of each variable to be imputed (the variable
to be imputed is shown at the left side of the arrow of the corresponding imputation model) includes all
other variables of the data set that are shown at the right side of the arrow of the corresponding imputa-
tion model. In case of fully conditional specification, the imputations are created in an iterative process.
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The imputation process may start with a simple random selection from the marginal distribution of the
variables. In each iteration the procedure goes successively through all imputation models (in our ex-
ample three imputation models) and imputes the missing values. When the last variable is imputed, the
process starts anew. In case imputed variables are used in other imputation models as predictors (for
example, the variable Job in the imputation model of Education), the most recent imputed version (can
be the version resulting after imputation in the previous or in the current imputation round depending
on the imputation sequence of the variables) of these variables is used. The process is repeated a certain
number of times. According to Van Buuren (2018), a small number of iterations 5 to 20 may be enough.
When applying fully conditional specification, the multivariate distribution is not specified explicitly but
implicitly by defining a separate conditional density for the different variables to be imputed. This may
allow a larger flexibility for the user to specify the imputation models and to include special features such
as interactions. However, the procedure may also result in a larger effort when a lot of imputation models
have to be defined, and it may be more computationally intensive. Furthermore, the quality of imputa-
tion may be difficult to evaluate when the implied joint distribution does not exist theoretically and as a
result of ambiguous convergence criteria (Van Buuren et al., 2006).

5. Some notes on the diagnostics of imputed values and evaluation of im-
putation procedures

Some procedures to evaluate the plausibility of the imputed values are presented in Van Buuren (2018)
and Van Buuren & Groothuis-Oudshoorn (2011) (see these references for the further explanations of this
section). Plausibility means that it should be possible that the imputed values could have been realized
for a certain unit in case its value had not been missing. One should avoid to impute values that cannot
occur for certain respondents, for example, to impute a certain school degree for a 2 year old child.

To evaluate the imputation in a practical application (without knowing the population), measures can be
applied as described in Van Buuren (2018) and Van Buuren & Groothuis-Oudshoorn (2011) that examine
the distributional discrepancy, i.e., deviations between the distributions of the observed and imputed
data. As Van Buuren (2018) points out, particularly, graphical tools are helpful to compare the distri-
butions. Differences between both distributions may reveal a problem but a further examination with
respect to the reason of the deviation is necessary.

Also, the R-package VIM offers some graphical tools to analyse missing values and imputed values (e.g.,
the analyses of the amount and structure of missing values or imputed values in each variable or combi-
nation of variables) (Kowarik & Templ, 2016; Templ et al., 2021).

Furthermore, to evaluate imputation procedures simulation studies can be applied. In simulation stud-
ies, the population is known and samples can be drawn repeatedly from the population. In addition,
response indicators following a certain mechanism can be generated (repeatedly) by the user. Thus, the
user has complete information in the simulation study in contrast to the application in practice. However,
an important point is that measures that simply use the deviation of the imputed value from the true
value (when having the true value, for example, in simulation studies when the population and all values
of elements are known) should be avoided. As described in Section 3.2.1, particularly, in the example in
Figure 2, some variability in the imputation is often intended to include imputation uncertainty (see also
the explanations in Van Buuren (2018) in Section 2.6, see also the problems of deterministic imputation
procedures described before). It is thus not meaningful to apply measures that simply use the deviation
of the imputed value from the true value to determine the quality of the procedure. Rather, in the sim-
ulation study, the estimated statistic of interest (for example, proportions, means or totals) computed
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based on the imputed data of the different simulation runs can be compared to their true benchmark in
the population.

6. Conclusion

This survey guideline provides a short overview of and first insights into imputation procedures that can
be applied on survey data to compensate, particularly, for item nonresponse. The guideline shows that
the imputation task may be highly complex in practical applications. For many applications, there is no
standard solution to how imputation should be conducted. Instead, for imputation the specific applica-
tion is important, particularly, the goals that need to be achieved with the imputation procedure and the
analyses that should be conducted after imputation. Thus, the user who wishes to conduct imputation
has to make decision with respect to:

• the predictors that are to be included,
• the specification of the relationship between the variable to be imputed and the predictors as well

as the applied imputation method,
• and many further parameters such as the number of imputed values drawn for each missing value.

These decisions have to be made with respect to a particular application. The literature cited in the guide-
line gives a starting point to find a solution. Furthermore, there are some other guidelines that give a
good overview of imputation procedures, as for example, Durrant (2005). However, each users need to
evaluate whether the imputations are plausible for their concrete applications and whether a sufficient
estimation quality can be ensured.

Furthermore, imputation research includes a wide field of different approaches that cannot all be con-
sidered in this guideline. For example, there is research about improving imputation by using complex
procedures such as neural networks (Maiti, Miller, & Mukhopadhyay, 2008; Nordbotten, 1996). However,
this goes beyond the scope of this survey guideline.7

7This guideline is based on the lecture Bruch, C., and Sand, M. (2019), Handling Missing Data in Sample Surveys, ESRA 2019
Short Courses, Zagreb as well as the presentation Bruch, C., and Sand, M. (2020), Gewichtung von Erhebungsdaten: Kalib-
rierung, Anpassungsgewichtung und Imputation, Meet the Experts, https://www.youtube.com/watch?v=dSFwgviw7-c
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In the guideline, we mentioned different R-packages and software. They will be summarized in the fol-
lowing table:

Software Purpose
R-package mice
(VanBuuren & Groothuis-
Oudshoorn, 2011)

R-package to apply
multiple imputation via
chained equations

R-package miceadds (Ro-
bitzsch & Grund, 2021)

R-package with addi-
tional functions for
multiple imputation,
particularly for mice, for
example, partial least
square regression

R-package VIM (Kowarik
& Templ, 2016; Templ et
al., 2021)

R-package with graphical
tools to analyse missing
values and imputed val-
ues

R-package missFor-
est (Stekhoven, 2013;
Stekhoven & Bühlmann,
2012)

R-package with Ran-
dom forest imputation
techniques

R-package Amelia
(Honaker, King, & Black-
well, 2011)

R-package for multiple
imputation of missing
data

IVEware (Raghunathan,
Solenberger, & Hoewyk,
2002)

Software for multiple im-
putation, variance esti-
mation and draw infer-
ences on the basis of data
with missing values

R-package BaBooN
(Meinfelder & Schnapp,
2015)

R-package for single and
multiple imputation with
bayesian bootstrap pre-
dictive mean matching

R (R Core Team, 2020) Software for statistical
computing

Table 2: Software and R-packages mentioned in this guideline
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