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Abstract

To fully bene�t from new agricultural technologies like improved seed varieties, signi�cant

investment in complementary inputs such as fertilizers and pesticides, and practices such as sys-

tematic planting, irrigation, and weeding are also required. Farmers may fail to recognize the

importance of these complements, leading to unsatisfactory crop yields and outputs and, eventu-

ally, dis-adoption of the variety. We provide a simple model of biased expectations, complemen-

tary input use and technology adoption and test its predictions using a �eld experiment among

smallholder maize farmers in eastern Uganda. We �nd that pointing out the importance of com-

plementary investments using a short, engaging video e�ectively deters some farmers from using

commercial improved varieties. Consistent with the theoretical model, we �nd some evidence that

this behavior change emanates from increased knowledge and expectations that are more in line

with realized outcomes.
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1 Introduction

To feed a growing population in an environmentally sustainable manner and in the midst of a long-
term climate crisis, farmers throughout the developing world are expected to grow more food on less
land with greater e�ciency (Tilman et al., 2011; Garnett et al., 2013). To achieve this goal, much is
expected from new technologies, especially from higher-yielding varieties that are resilient to pests,
diseases, and other biotic stresses and are tolerant of droughts, �oods, heat, and other abiotic stresses
(Evenson and Gollin, 2003; Lybbert and Sumner, 2012).

Unfortunately, the adoption of such technologies is lagging in areas where they may have the largest
impact. Recent trends in agricultural productivity growth in Africa show that technological progress
has largely stagnated on the continent (Suri and Udry, 2022). However, signi�cant heterogeneity
underlies this general stagnation. For instance, at the micro level, we often observe dis-adoption
patterns and trends, where farmers choose to switch back to technologies and inputs they have been
using for decades after trying out a new technology once or twice (Moser and Barrett, 2006; Chen,
Hu, and Myers, 2022). In many cases, these patterns and trends cannot be explained by a lack of
awareness or information about, for example, improved cultivars or inorganic fertilizers (Sheahan and
Barrett, 2017).1

There are many reasons why farmers may not move into a state of sustained adoption of a given
technology. An obvious one is that farmers cannot access the technology through local markets or other
means of supply, or may have enjoyed access only for a limited time as part of a promotional campaign
or project intervention (Shiferaw et al., 2015). Another reason may be that farmers learn over time
that a particular technology is not suitable for them or does not meet their expectations (Custodio
et al., 2016). Heterogeneity in the quality of the technology, coupled with the fact that it is often
di�cult to assess quality prior to purchase or application, may also result in dis-adoption (Bold et al.,
2017; Miehe et al., 2023). Farmers that face credit or liquidity constraints, or additional uninsured
risk may also reconsider past adoption behavior and tend towards dis-adoption (Karlan et al., 2014).
In the longer run, general equilibrium e�ects that accrue as more farmers adopt a new technology,
thereby increasing supply of the commodity and reducing output prices, may also lead farmers with
higher marginal costs to exit the market and dis-adopt (Cochrane, 1958).

In this paper, we consider the possibility that farmers hold in�ated expectations of new technologies
as an explanation for their dis-adoption. These in�ated expectations result from the possibility that
farmers may be unaware (or fail to recognize) the need for substantial complementary investment.
Indeed, for the new hybrid seeds suitable for East African maize farmers that came on the market
a few decades ago, the promise to double or even triple yields could typically only be achieved in
favorable climatic conditions and with the addition of fertilizer and other inputs (Quiñones, Borlaug,
and Dowswell, 1997). Chen, Hu, and Myers (2022) show that farming with improved maize varieties is
far more costly than farming with unimproved maize varieties. The additional production costs include
not just the (higher) cost of seed but also higher fertilizer costs required to achieve expected yield
improvements, as well as higher costs of labor for farm tasks that are associated with the cultivation
of higher-yielding maize.

In�ated expectations about technology performance can have lasting impacts on adoption if farm-
ers attribute poor outcomes to the technology, instead of to insu�cient complementary inputs and
e�ort. This learning failure is often understandable: if multiple factors simultaneously a�ect yields
and outputs, then learning about the causal impact of a new technology from a single experience is
di�cult, especially if the technology performs only under speci�c or stochastic circumstances such as
abiotic stress (Lybbert and Bell, 2010), or if the farmer is unable to learn in a Bayesian manner be-
cause it is too cognitively taxing (Gars and Ward, 2019), pays attention to the wrong attributes of the

1For simplicity, we use the term �technologies� to refer to agricultural technologies such as improved varieties, which
are genetic innovations embodied in seed. We use the term �inputs� to refer to organic and inorganic fertilizers and
pesticides, and we use the term �practices� to refer to labor and management e�ort such as precision planting, irrigation,
and weeding. Of course, we recognize that these terms can be used interchangeably�seed is also an input, while
fertilizers and precision practices can also be technologies�and that each �gures di�erently into our understanding of
the conventional agricultural production function.
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technology (Hanna, Mullainathan, and Schwartzstein, 2014), or is unable to su�ciently complement
own experience with social learning (Foster and Rosenzweig, 1995; Conley and Udry, 2010).

This paper was motivated by evidence suggesting that many farmers are unaware that agricultural
technologies such as improved varieties require substantial complementary inputs and e�orts to reap
bene�ts. Indeed, it is theoretically possible and quite reasonable to believe that farmers overestimate
the returns to a technology and are disappointed when they compare realized yields with what they
expected at the time of planting. Because it is hard for farmers to learn about the yield response
of a single input, farmers may decide that the technology itself is to blame. This is consistent with
the observation that farmers think inputs are often counterfeit or of low quality, even when objective
assessments of input quality �nd them to be acceptable (Barriga and Fiala, 2020; Michelson et al.,
2021).

Many researchers working in developing-country agriculture will have their own anecdotal evidence
of in�ated expectations that illustrate the presence of biased expectations, sub-optimal complementary
investments, and subsequent dis-adoption when disappointing outcomes are attributed to the technol-
ogy itself. For instance, researchers may be familiar with farmers' belief that using inorganic fertilizer
for one cropping cycle will lead to long-lasting soil fertility improvements. Others may be familiar with
another common belief among farmers�often promoted by extension agents and agro-dealers�that
an improved variety is a �miracle seed� that can be planted without additional inputs or manage-
ment to achieve exceptional harvests. Entire narratives�some with more nuance than others�have
been written on the singular power of genetic improvement, from the semi-dwarf �Green Revolution�
varieties of wheat and rice to genetically modi�ed crops (Lipton and Longhurst, 1989; Tripp, 2002;
Sumberg, Keeney, and Dempsey, 2012). An example the learning failure and its consequences was
provided by extension agents we worked with. Seed of improved maize varieties need a lot of nutrients,
often leaving soil more depleted than when farmer-saved seed is used. In the areas where our research
is situated, Striga (Striga hermonthica), a parasitic weed that feeds on the roots of maize plants and
cause stunted growth, is a serious problem. Unfortunately, Striga proliferates in poor soils and as
a result some farmers now believe that improved seed varieties are responsible for increased Striga
infestations on their �elds.

To develop our theory of in�ated expectations, we present a simple model of technology adoption
that incorporates the ideas discussed above. In this model, farmers compare the expected returns of an
improved technology to their business-as-usual choices. The new technology comes at a cost, while the
unimproved technology does not. Both technologies, though, require complementary inputs and e�orts
that directly a�ect productivity, with productivity gains from the new technology only materializing
when complementary inputs and practices exceed business-as-usual levels for the unimproved tech-
nology. Further, recognizing that farmers may be heterogeneous, we de�ne several farmer types and
derive predictions about how they might behave if they learn about the true shape of the production
function of the new technology.

We test our model's predictions using a �eld experiment conducted with almost 3,500 maize farmers
in eastern Uganda.2 At the heart of the �eld experiment is a light-touch information intervention
that highlights the importance of complementary investments when using improved maize varieties.3

Speci�cally, we show all farmers in our sample a short, engaging video about the use of improved inputs
and recommended management practices for maize cultivation. In the treatment group, we show the
same video, except that in certain points in the narration�for instance when the use of inorganic
fertilizers is demonstrated or when weeding is explained�we highlight the particular importance of
using additional inputs and performing certain management practices in conjunction with the improved

2The overarching study was pre-registered at the AEA RCT registryunder RCT ID 0006361. It was primarily designed
to examine quality-related constraints to technology adoption with a series of interventions at the agro-input dealer level.
This paper makes use of farmer-level interventions that were introduced alongside the main design and described in the
pre-analysis plan.

3We use the term �improved variety� throughout this paper to refer to both maize hybrids and open pollinated
varieties marketed and sold in our study areas, as opposed to farmer-saved seed or seed obtained through farmer-to-
farmer exchanges which, in the speci�c context of maize, may be less e�ective due to cross pollination and genetic drift
over multiple generations, or due to poor seed storage and handling between seasons.

2

https://www.socialscienceregistry.org/trials/6361


variety.
We begin by testing whether farmers are able to extract the relevant information from the treatment

video. We see that all coe�cients move in the expected direction, and �nd treatment e�ects that
di�er signi�cantly from zero for a subset of farmers. Turning to adoption behavior, we �nd evidence of
treated farmers dis-adopting between baseline and follow-up. We �nd no evidence that the intervention
a�ected the use of complementary inputs such as fertilizers and pesticides, or recommended practices
for maize management such as row planting and intensive weeding. We also see that among treated
farmers, expectations become more in line with realized output.

These �ndings have implications for our understanding of smallholder technology adoption dynam-
ics. If farmers do not use appropriate complementary inputs and practices when using improved maize
varieties because they believe in �miracle seeds�, their yields are likely to be disappointing. Often,
disappointment about the performance of a technology is then erroneously attributed to the technol-
ogy itself, potentially leading to dis-adoption. �Correcting� incorrect beliefs about the needed inputs
and e�orts may result in farmers dis-adopting technologies in the short run. However, if farmers'
expectations become more realistic, the ones that keep adopting (or start adopting in light of the
new information) will be less likely to be disappointed in the future, leading to sustained adoption,
which in turn could lead to e�ciency gains and positive spillover e�ects. Our �ndings also imply that
public and private actors in the agriculture sector need to promote new technologies as highly site- and
context-speci�c combinations of technologies, inputs, practices, and e�orts instead of single �miracle
seeds�.

The remainder of the article is organized as follows. In Section 2, we provide a brief overview of the
related literature. Section 3 provides a simple theoretical framework and derives testable hypotheses.
In Section 4, we discuss the intervention we will use to test model predictions. Section 5 provides
some descriptive statistics and illustrates the dynamics of varietal adoption in our sample, while also
presenting our empirical strategy. Section 6 explores our results, with subsections focusing on outcomes
related to knowledge, adoption, expectations, and complementary investments. Concluding remarks
are provided in Section 7.

2 Related literature

Agricultural technology adoption is at the heart of a rich body of research on food security, poverty
reduction, economic development, and structural transformation. Studies on the economics of technical
change in agriculture go back to at least Griliches (1957) and are reviewed in widely cited articles such
as Feder, Just, and Zilberman (1985) and Sunding and Zilberman (2001). More recently and with
the proliferation of �eld experiments and randomized controlled trials, economic theories that explore
alternative drivers of technology adoption have received greater empirical attention.

Most of these studies (implicitly) assume that some kind of graduation model underlies the technical
change process, wherein farmers switch from a low-level equilibrium to a high-level equilibrium in
which technology use is sustained once initial conditions�typically, access to information or �nance�
are satis�ed or binding constraints removed (Karlan et al., 2014; Shiferaw et al., 2015; Abate et al.,
2016). Yet most of these studies follow farmers across a limited number of agricultural seasons, and
are unable to fully appreciate the dynamics of technology adoption over time. Only a few studies o�er
a long-term perspective, with several documenting signi�cant levels of dis-adoption (e.g. Ainembabazi
and Mugisha, 2014), or transient technology use over time (Moser and Barrett, 2006; Chen, Hu, and
Myers, 2022).

At the core of our theoretical framework described in Section 3 is a model of learning failures where
farmers have in�ated expectations about the returns to a new technology, but fail to uncover the true
form of the production function through experience, leading to disappointment and subsequent dis-
adoption. Indeed, heterogeneity in farmer characteristics implies that farmers need to learn whether
using a new technology is optimal for their speci�c context given costs and bene�ts (Suri, 2011).
Farmers learn through a combination of own experiences and observing others (Foster and Rosenzweig,
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1995; Conley and Udry, 2010). However, learning about a new technology is often di�cult for reasons
related to the technology's complexity and the observability of its quality or performance (i.e., its
experience good nature) (Lybbert and Bell, 2010; Bold et al., 2017; Ashour et al., 2019), or the social,
psychological, and behavioral attributes of the farmer and her learning process (Foster and Rosenzweig,
1995; Hanna, Mullainathan, and Schwartzstein, 2014).

One strand of the literature argues that sequential adoption leads to experiential learning by farm-
ers. In cases where technologies are bundled in packages, it is often observed that farmers sequentially
adopt components of the package, rather than adopting the entire package at once (e.g., Byerlee and
De Polanco, 1986). Leathers and Smale (1991) argue that this occurs when farmers employ a Bayesian
approach to learning in which they try to isolate the impact of one component of the package at a
time. However, there are circumstances under which this strategy is not optimal because it can prevent
farmers from identifying potential synergies between technologies, inputs, and practices. Indeed, the
reason why many interventions are presented as a package is because these interaction e�ects are not
trivial. For instance, Kabunga, Dubois, and Qaim (2012) �nd that banana tissue culture, a technology
to ensure that banana plantlets are free from pests and diseases, leads to a seven percent yield gain
in Kenya. However, they also �nd that improving access to irrigation can lift yield gains above 20
percent. If many complementarities like this exist, it seems unlikely that farmers are in a position to
follow a sequential learning path that allows for all possible interactions between the di�erent tech-
nologies within a reasonable time frame. Furthermore, as mentioned above, farmers may face certain
behavioral constraints that inhibit their ability to learn about interaction e�ects if, for example, they
pay attention to minor or tangential attributes of the package and miss the more important attributes
(Hanna, Mullainathan, and Schwartzstein, 2014). Our study contributes to this literature by provid-
ing additional evidence on the limits of Bayesian learning in the context of agricultural technology
adoption.

Another strand of the literature addresses the technology learning process in terms of how farmers
compare realized yields against expected yields to inform their subsequent, longer-term adoption de-
cisions. The e�ect of incorrect expectations about future returns on decision-making has been studied
most in the context of education, but is readily applicable to learning in agriculture. For example,
both Nguyen (2008) and Jensen (2010) �nd that providing accurate information about the returns to
education signi�cantly increases investment in schooling (in Madagascar and the Dominican Republic
respectively). Van Campenhout (2021) �nds that a video intervention that informs Ugandan farmers
about the returns on intensi�cation investments in rice growing improved practices and increased input
use and production. Note that across these studies, it is assumed that the individual underestimates
the returns in question. In our study, as a result of under-investment in complementary inputs, farmers
are in a sense overestimating returns to a new technology, leading to over-investment in technologies.

Finally, the intervention we use to test our hypothesis builds on a strand of the literature that
focuses on the role of video-mediated messaging to convey salient information to farmers. This lit-
erature explores the ways in which informational videos can change behavior in a variety of settings
and through a range of mechanisms. Ferrara, Chong, and Duryea (2012) show how telenovelas have
an impact on fertility in Brazil. Riley (2022) �nds that in Uganda, students that watched a Disney
feel-good movie called �Queen of Katwe� about a chess prodigy growing up in the slums of Kampala
do better on their exams, particularly in math. In the context of agricultural technology adoption,
Van Campenhout, Spielman, and Lecoutere (2021) show that farmers that were exposed to videos
similar to those we use in the present study perform signi�cantly better on a knowledge test, and
are more likely to apply recommended practices and fertilizers than households that did not view the
video. These same households also report maize yields 10.5 percent higher than the control group.
In Ethiopia, Abate et al. (2023) assess the impacts of video-mediated agricultural extension service
provision on farmers' adoption of improved agricultural technologies and practices using data from
a two-year randomized experiment. Our study uses a light touch intervention where treatment and
control videos were very similar, expect for one small piece of information. Our study thus contributes
to this literature by testing if videos are also e�ective in conveying subtle messages.
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3 Theoretical framework

In our theoretical framework, we describe farmers as solving an intertemporal problem in which they
allocate resources at t in order to maximize pro�ts at t+1.4 In line with Suri (2011), we assume that
farmers (indexed i in the model below) are risk-neutral and choose to plant seed which is either of a
Variety H, a new variety that is stochastically dominant in yield and other attributes in all states, or
of a Variety L, an old variety that is stochastically inferior in yield and other attributes in all states,5

to maximize their pro�ts per area of land. In doing so, they compare the expected pro�t functions of

Variety H π∗H

it and Variety L π∗L

it which are de�ned as:
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where E is an expectations operator and E (pt+1) is the expected price at which output is valued,
assuming that the end commodity, maize grain, is indistinguishable to consumers by variety.6 E
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)
and E

(
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)
re�ect the expected yield for seed of Variety H and L respectively. Seed of Variety L

is assumed to be free, while for seed of Variety H, sit is procured at a cost bt > 0.7 In both pro�t
functions, the cost of a range of complementary inputs and management practices, referred to as inputs,
are deducted and summarized by the vector Xit with corresponding factor prices wt.

Farmers adopt the stochastically dominant Variety H if they expect it to be more pro�table than
using the stochastically inferior Variety L, that is, if E
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where we normalize by output price.8

Equation 3 shows that adoption decisions fundamentally depend on yield comparisons. We assume
that yield for Variety L is a function of inputs used:

Y L
it+1 = Yit

(
XL

it

)
(4)

and that this relationship is assumed to be positive with decreasing returns to scale: dYit

dXit
> 0 and

d2Yit

dX2
it

< 0.

Yield for Variety H follows the same function, but adds a positive and constant adoption premium
(A > 0). However, the adoption premium only applies when the farmer uses at least the same amount
of complementary inputs as they would when using Variety L

(
XH

it ≥ XL
it

)
:

Y H
it+1 = A

(
XH

it ≥ XL
it

)
+ Yit

(
XH

it

)
(5)

4For simplicity, we assume a discount factor of 1, but another discount factor will not alter the results.
5The model is applicable to a variety of cases as Variety H and Variety L can be interpreted as improved and

unimproved, farmer-saved and commercially-purchased, modern and traditional, newer and older, hybrid and open
pollinated varieties, etc.

6In a country like Uganda, where most grain is combined, milled, and sold without varietal denomination, this is a
reasonable assumption. In other countries such as Malawi or Mexico, where consumers have distinct varietal preferences
related to taste, texture, and color, this assumption might not always hold.

7Seed of Variety L may not be free but have a shadow price of at least the grain price, which could be subtracted
from the expected revenue in Equation 2, so that the adoption decision in Equation 3 would not only depend on yield
comparisons but also on cost comparisons. Suri (2011) takes this into account but also notes that the cost of, in her case,
farmer-saved seed is likely to be low, if not zero. Rather than complicating the model by explicitly modeling the price
of the stochastically inferior variety, we decide to set it to zero. Setting it to a small positive value would not change the
predictions derived from the model.

8For simplicity, we assume that farmers have only one plot and model the decision to adopt as a binary process,
instead of expressing sit in kilograms of seed used. As such, bt refers to the cost of planting an entire plot with seed of
Variety H.
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If farmers are able to predict yields�at least on average�in t+1, such that E (Yit+1) = Yit+1 + ε
and ε ∼ N(0, σ), their decision to adopt would depend on the di�erence in yield between Variety H
and L, on the relative prices of inputs, and on the yield responses to the inputs.

Next, we introduce farmer heterogeneity into the model by assuming that at least some farmers are
not aware of the true relationship between Y H

it and Xit, but instead believe that the adoption premium
is always present, that is E

(
Y H
it+1

)
= A+ Yit

(
XH

it

)
. As a result, some farmer will use Variety H but

not enough complementary inputs, leading to disappointing outcomes.
This variation in the model leads to di�erent farmer-types based on their dynamic pro�le and

knowledge, as summarized in Table 1. Some farmers are knowledgeable about the true relationship
between Y H

it and Xit in Equation 5, and as a result make correct investment choices. For at least
some of these farmers, referred to as Type 1 farmers in Table 1, the marginal cost of adoption will be
lower than the expected marginal return in Equation 3, and as a result they adopt (and will continue
to do so in the future unless there is a change in fundamentals such as the cost of seed). For another
subset of these farmers, referred to as Type 2 farmers in Table 1, the marginal cost of adoption will
be higher than the expected marginal return, so they will not adopt (and are unlikely to adopt in the
near future).

Another group of farmers is not knowledgeable about the true relationship between Y H
it and Xit

and believes there is always an adoption premium. A subset of these farmers may adopt because their
marginal cost of adoption is lower than their expected marginal return. We refer to these farmers in
Table 1 as Type 3 farmers. Another subset of this group of farmers that is not knowledgeable about
the true relationship between Y H

it and Xit, referred to as Type 4 farmers in Table 1, does not adopt at
baseline because, even though they have in�ated expectations of Variety H's yield, the marginal cost
of adoption still exceeds the expected marginal return.

Another group of farmers is also not knowledgeable about the true relationship between Y H
it and

Xit. But unlike Type 3 and 4 farmers, they underestimate the adoption premium (much like the rice
farmers underestimate the returns to intensi�cation investments in Van Campenhout (2021)), perhaps
due to a disappointing experience in the past. Some of these farmers, Type 5 in Table 1, adopt at
baseline as the expected marginal return may still be larger than the marginal cost of adoption, even
if they underestimate the return. For another fraction of farmers that underestimate the adoption
premium, referred to as Type 6 in Table 1, the expected marginal return will be less than the marginal
cost of adoption, such that they do not adopt.

Heterogeneity in terms of prior experiences, expectations, and adoption behavior will lead to dif-
ferent e�ects of an intervention aimed at �correcting� incorrect beliefs about the relationship between
the returns to Variety H and investments in inputs and practices (described in detail in the next sec-
tion). In some cases, such as for adoption, e�ects for di�erent farmers may go in opposite directions,
potentially canceling out an overall average treatment e�ect. In other cases, such as for knowledge,
some farmers may not be a�ected, diluting the overall e�ect. The model and the di�erent farmer
types summarized in Table 1 allow us to make predictions on the impact of an intervention designed to
increase knowledge about the true relationship between the performance of a stochastically dominant
variety and complementary e�orts on four key outcome areas:

1. E�ect on knowledge: As Type 1 and 2 farmers are assumed to be already knowledgeable about
the true relationship between Y H

it and Xit, the intervention will have little e�ect on them.9 Types
3 to 6 are assumed to be unaware of the true relationship between Variety H and complementary
inputs and practices; the intervention will thus increase knowledge. The knowledge e�ect will
be larger for farmers that adopt at baseline (Types 1, 3, 5) since this removes �Never Adopters�
who are likely to be less interested in the information (Types 2 and 4) from the sample.

2. E�ect on adoption: We predict opposing e�ects on adoption behavior for farmer Types 3 and 6.
Providing Type 3 farmers with information may cause them to dis-adopt if the new information

9Note that we do not know which farmers are knowledgeable and which farmers are not as we only measure knowledge
at endline to avoid priming e�ects.
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Table 1: Farmer types and model predictions
farmer baseline baseline e�ect on e�ect on e�ect on e�ect on
type expectations adoption knowledge adoption expectations inputs
1 correct exp. yes none none none none

of adoption (always adopt) (correct at
premium baseline)

2 correct exp. no none none none none
of adoption (never adopt) (correct at
premium baseline)

3 in�ated exp. yes yes dis-adopt due more none
of adoption ++ to decr. exp. realistic
premium marg. return

4 in�ated exp. no yes none none none
of adoption + (never adopt) (correct at
premium baseline)

5 reduced exp. yes yes none more increase
of adoption ++ (always adopt) realistic +
premium

6 reduced exp. no yes adopt due none increase
of adoption + to inc. exp. (correct at ++
premium marg. return baseline)

++ indicates a large predicted e�ect, + indicates a small predicted e�ect.

7



reduces their expected marginal return below their marginal cost. For Type 6 farmers, the
intervention may increase expectations of the return, and they may start adopting in response
to the treatment if the increase is su�ciently high. Reducing expectations of farmers that do
not adopt at baseline even though they have in�ated expectations will not change their mind
as this will reduce their expected returns even more (Type 4). Similarly, we do not expect that
the intervention will change the adoption behavior of farmers who already adopt even though
they underestimate potential yield e�ects (Type 5): these farmers will keep adopting as the
intervention increases their expected returns to the stochastically dominant variety. Finally, as
for knowledge, farmers that are aware of the correct relationship between inputs and Variety H
(Types 1 and 2) are not expected to change adoption behavior in response to the intervention.
The direction of the intervention's e�ect on adoption will thus depend on the share of Type 3
and 6 farmers respectively. Note that if we only consider farmers that adopt at baseline, the
expected e�ect on adoption will be negative as this excludes Type 6 farmers from the analysis.

3. E�ect on expectations: We predict that the intervention results in expectations that are more
in line with realized outcomes. This will likely only be the case for farmers that are unaware of
the true relationship, and so we again do not expect an e�ect for Types 1 and 2. Furthermore,
since our intervention aims to �correct� perceptions only for Variety H, expectations of farmers
that use Variety L at baseline are unlikely to be a�ected (as it is assumed that the production
function of stochastically inferior varieties is common knowledge). Thus, we only expect an
impact on farmers that plant the stochastically dominant variety at baseline and also have
incorrect expectations (Types 3 and 5).

4. E�ect on use of inputs and practices: Some farmers that were unaware of the true relationship
between Variety H and complementary inputs and practices and receive new information about
the importance of these complements may start investing more. This will be especially the case
for Type 6 farmers who adopt due to the intervention (potentially after previously dis-adopting
due to disappointing outcomes in the past) and will put the new knowledge into practice. To a
lesser extent, farmers that consider adoption to be pro�table despite low yield expectations may
try to further increase yields by increasing e�ort (Type 5). Hence, for inputs and e�orts, we
expect a positive e�ect that becomes less strong if we restrict ourselves to farmers that adopt at
baseline.

4 Intervention

The model predictions were tested using a �eld experiment conducted with almost 3,500 maize farmers
in eastern Uganda. The intervention consisted of screening short, engaging videos about best practices
in maize cultivation. The videos were shown individually to participating farmers on tablet computers
by specially trained �eld enumerators. The content of the video scripts was developed following exten-
sive interviews with experts, including agricultural extension agents, plant breeders, seed producers,
government o�cials, and farmers themselves.

The video opens with a woman and a man standing in a well-kept maize plot inspecting their crop.
The couple explains that they have been farmers for more than ten years but that their �elds have
not always been productive. They recount how they used to struggle to feed their children, but that
over time, they learned how to grow more maize on less land. The secret of their success, the couple
continues, lies in the adoption of improved technologies and best practices, such as the use of organic
fertilizer, optimal plant spacing, and reduced seed rates. Furthermore, they explain that the use of
an improved variety and inorganic fertilizer contributed signi�cantly to increased production. They
conclude this introduction by stating that they are proud to be successful farmers who can feed their
families and even produce surpluses that they can sell in the market. The viewer is then invited to
become equally successful in farming by paying close attention as the featured (role model) farmers
explain in detail the most important technologies, inputs, and practices that transformed their lives.
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The treatment was implemented in the form of two variations of this video. The control group
viewed the video as described above. The treatment group viewed a similar video that di�ered slightly
in terms of content. Speci�cally, we added subtle recommendations for inputs and practices that
are particularly important when cultivating improved maize varieties. The only di�erence between the
control and treatment videos is that the latter makes explicit the fact that signi�cant complementarities
exist between improved varieties and recommended inputs and practices such as inorganic fertilizers
and row planting. In e�ect, the treatment and control videos are identical, except that, after each
practice or input that is shown, the treatment video explicitly mentions that the practice or input is
�[...] particularly or even more important when you are using seed of an improved variety�.10 The
control video is about eight minutes long and can be found at https://vimeo.com/781882803. The
treatment video is about twelve minutes long and can be found at https://vimeo.com/781882930,
indicating four extra minutes of material. The other eight minutes are equal to the control video, no
scenes are replaced or modi�ed.

By randomizing which video is viewed by our sampled farmers, we can isolate the causal e�ect
of making salient the fact that improved varieties do not substitute for inputs and e�ort, but in fact
require more investment. The use of a control video has an additional advantage: since it is not clear to
farmers or enumerators which video is the treatment and which is the control, we reduce the likelihood
that results are driven by experimenter demand e�ects (Bulte et al., 2014). Furthermore, to reduce
the likelihood that treated households could provide information to households in the control group�a
common problem in video-mediated information treatments (Van Campenhout, 2021)�randomization
was conducted at the village level in a manner that ensured reasonable geographic and social distance
between villages.

The experiment targeted the second agricultural season of 2021, where maize is sown in August
and September and harvested in November and December. We implemented the treatment in April
2021, well before the start of the season, to ensure that farmers had the necessary information before
making decisions on seed and input use. At this point in time, we also collected baseline data on our
sample households.

The intervention was repeated just before planting in August 2021, and post-treatment data was
collected in January and February 2022. The intervention was again repeated in the �rst season of
2022, with a �nal round of data collection conducted in July and August 2022. Note that this paper
focuses on outcomes following the 2021 agricultural season since we do not expect signi�cant results
from continuing the intervention (i.e., providing farmers with the same information) in 2022. However,
we do explore descriptive results from 2022 to provide insight into patterns of sustained adoption
among treated farmers.

5 Data and empirical strategy

5.1 Sample

The �eld experiment was conducted in southeastern Uganda, an area known for its maize production
by smallholder farmers, and where maize is considered both a food and cash crop. Because it was
conducted as part of a larger study on maize seed supply chains, farmers were drawn from the catchment
areas (market-sheds) of agro-input shops. The sampling frame was developed as follows: �rst, we listed
all agro-input shops in 11 districts in southeastern Uganda, resulting in the identi�cation of 347 agro-
input dealers. We then asked these dealers to identify the villages where most of their customers come
from. This sampling frame allows us to assume that sampled farmers have both reasonable and similar

10For example, in the control video, the farmer explains that: �At planting time, I paid attention to recommended
spacing, carefully measuring 1 foot between plants and 2.5 feet between rows. I �rst dug a 4-inch deep hole and added
1 water bottle cap of Di-Ammonium Phosphate (DAP). Then I added some soil. Afterwards, I put 1 maize seed in and
covered it with soil.� In the treatment video, the farmer narrates the same scene but adds a pointed comment at the
end of the exposition, stating: �Did you know that recommended spacing and using DAP is even more important when
using improved seeds?�
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access to improved maize varieties if they choose to adopt as a result of our intervention, and that
other constraining factors such as seed quality, credit access, or individual preferences were similarly
distributed across our treatment and control groups.

Next, �eld supervisors compiled household lists for each village and randomly sampled ten maize-
cultivating households per village using systematic sampling (nth name selection technique). The
enumerators interviewed 3,470 farmers using a household survey instrument that contained a wide
range of questions about the individual, their household, and their farm. From an initial sample of
3,470 farmers who were interviewed in the baseline survey round, only 63 farmers dropped out in the
subsequent survey round. We did not �nd that attrition di�ered signi�cantly between treatment and
control group, and thus proceed with the analysis on a balanced panel of 3,407 farmers.

5.2 Adoption

In this section, we explore the dynamics of improved variety adoption by smallholder farmers in our
study area. We de�ne adoption of improved maize varieties as follows. First, we asked farmers on
how many plots they cultivated maize during the preceding season. From these plots, we randomly
selected one plot and asked detailed questions about seed and varietal use, input use, and management
practices. Based on the information collected, we then de�ned a farmer as an �Adopter� if they used
either non-recycled (newly purchased, not saved) seed of (a) a hybrid or (b) an open pollinated variety.
All others were de�ned as �Non-adopters�.11

Figure 1 illustrates the evolution of varietal adoption among farmers over di�erent survey rounds
using this de�nition. We see that the share of adopters slowly increases over time: at Survey 1
(baseline), about 43 percent of farmers report to have sown an improved maize variety on the randomly
selected plot. At the end of the �rst season, at the time of Survey 2 in April 2022, this �gure increased
to about 49 percent and, by Survey 3 in July and August 2022, to about 52 percent.

Figure 1 also illustrates the dynamics of adoption in our sample. At the top, we see a substantial
share of households (19 percent) that adopted in all three survey rounds. These could be considered
�Always Adopters� or Type 1 and Type 5 farmers, as described earlier. At the bottom of the chart, we
�nd an equally substantial share (22 percent) that can similarly be categorized as �Never Adopters�
or Type 2 and Type 4 farmers. However, we also see that a large group of farmers that adopts during
Survey 1 reverts to farmer-saved seed at the time of the second survey (13 percent) or still adopts
at the time of Survey 2 but eventually dis-adopts at the time of Survey 3 (6 percent). During this
same period, large numbers of households also start adopting. We see that 19 percent of non-adopting
households adopt at the time of Survey 2 and 10 percent of households do not adopt in both Surveys
1 and 2 but do adopt by Survey 3. Finally, we �nd that the some households seem to be moving in
and out of adoption (7 percent) or moving out and back into adoption (6 percent).

Another indication of the dynamic nature of adoption is the fact that a substantial share of farmers
that adopted at the time of the �rst survey seemed to be disappointed. Baseline data shows that 30
percent of farmers indicated that were not satis�ed with the quality of the planting material that they
used; one in four indicated that they will not use the seed again in the future.

5.3 Empirical strategy

Due to the random assignment of participants to treatment and control groups, comparing outcome
variable averages of treated and control participants provides unbiased estimates of the average treat-
ment e�ects. Using an Analysis of Covariance (ANCOVA) regression framework, we regress outcomes

11We acknowledge that this de�nition of adoption is not perfect. Seed of an open pollinated variety that has been
recycled (saved) up to four times could still be considered as improved, and farmers using this seed could still be counted
as adopters. However, we expect the problem of incorrect beliefs about �miracle seeds� and biased expectations to be
most pronounced when smallholders do not have experience with the seed. If farmers recycle and use seed several times,
their beliefs about the relationship between e�orts and the returns to improved varieties will become closer to reality
as they learn from season to season. That is why this stricter de�nition is useful to answer the questions raised in this
paper. Also, most of our results remain robust to di�erent de�nitions of adoption.
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Figure 1: Dynamics of varietal adoption

of interest (knowledge, adoption, input use and e�ort, and expectations) on an indicator variable
that takes the value of 1 if the household was in the treatment group and 0 otherwise, and include
baseline values of the outcome variables as controls. Furthermore, as this study was part of a larger
project with additional cross-randomized treatments, controls are included for the orthogonal treat-
ments (demeaned and interacted with the main (video) treatment (Lin, 2013; Muralidharan, Romero,
and Wüthrich, 2019)).

Since we have almost 3,500 observations in about 350 clusters, the original form of the sandwich
estimator (Liang and Zeger, 1986) is used, with standard errors clustered at the village level, the level of
randomization. For each of the four outcome families (knowledge, adoption, input use and e�ort, and
expectations), we compute outcome indices, which is a common way to account for multiple hypothesis
testing. To do so, we follow Anderson (2008), where each index is computed as a weighted mean of the
standardized values of the outcome variables. The weights are derived from the (inverse) covariance
matrix, such that less weight is given to outcomes that are highly correlated with each other. For
these indices, signs of outcomes were switched where necessary so that the positive direction always
indicates a �better� outcome.

6 Results

We look at impact on knowledge, adoption, expectations and harvest, and inputs and practices in
separate subsections.

6.1 Impact on knowledge

First, we examine whether the treated participants are able to pick up the subtle messages in the
treatment video. According to Prediction 1, we expect a positive e�ect of the treatment on farmers'
knowledge, and a larger e�ect for farmers that adopt at baseline. We test farmer knowledge by means
of a short quiz where a number of questions were asked and enumerators read a set of alternative
answers to farmers who then selected the response that they felt most appropriate.

The quiz begins with a general question asking farmers whether they think recommended cul-
tivation practices like weeding and fertilizer application are less, equally, or more important when
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using improved varieties. This is followed by a more speci�c multiple-choice question on a particular
practice�weeding�when cultivating an improved variety. Response options are: (1) you do not need
to weed and remove Striga because seed of improved varieties is treated to resist weed infestation;
(2) you do not need to weed and remove Striga in the �rst four weeks because seed of improved va-
rieties is better at competing for sun, nutrients, and water than normal seed; and (3) you need to
weed and remove Striga just as you would with unimproved varieties because maize seed does not
compete well for sunlight, water, and nutrients. The quiz contains a similar question a key input as
well�fertilizer�when cultivating an improved variety. The options here are: (1) you do not need to
use inorganic fertilizer because you already purchased seed; (2) you can use less fertilizer than you
normally would since seed of an improved maize variety grows faster; (3) you need to use the amount
of fertilizer that you would with unimproved varieties because also seed of an improved variety needs
nutrition; and (4) you should use more fertilizer than you would normally use.

The quiz also contains a question that checks if farmers use sub-optimal plots to cultivate improved
varieties by asking which plots are best suited. Response options are: (1) that it is best to save seed of
an improved variety for poor plots, as it needs less nutrients; (2) that is best to use seed of an improved
variety for plots that are furthest away from the home, as it needs less care; and (3) that the decision
on what plot to plant seed should not be a�ected by the seed type. Another question explores how
farmers think about the optimal investment in agriculture, i.e., whether to invest their resources in a
single input or in a combination of inputs. The options are: (1) it is best to invest all your money in
seed, because poor seed quality is the main cause of low yields; (2) it is best to invest all your money
in fertilizer, because poor soil is the main cause of low yields; and (3) it is best to buy both fertilizer
and seed, because good seed without fertilizer does not give good results.

Finally, the quiz includes a control question, answers to which are not expected to di�er between
treatment and control groups because they are featured in both versions of the video. Speci�cally, the
question asks about the optimal spacing and seed rate for maize, with response options as: (1) one
foot between plants and two and a half feet between rows with one seed per hill; (2) one foot between
plants and two and a half feet between rows with two seeds per hill; and (3) two feet between plants
and two and a half feet between rows with two seeds per hill. The four outcomes (excluding the control
question) are also combined in an index following Anderson (2008).

Estimates of the average treatment e�ects on knowledge can be found in Table 2. The �rst column
(1) provides the mean in the control group (with standard deviations in brackets below), mainly to
get an idea of e�ect sizes. We see that knowledge is already high: 87 percent of farmers in the control
group know that recommended inputs and cultivation practices like weeding or applying fertilizer are
also important when using improved varieties.

Column (2) shows the estimated di�erence between the treatment and control groups for outcomes
after the intervention, while Column (3) also reports this di�erence, but only for the subset of farmers
that adopted an improved variety at baseline. The rationale for restricting our sample is alluded to in
3: because the restricted sample retains farmers for whom the treatment e�ect is likely to be largest,
we expect larger estimates in Column (3) than in Column (2).

We �nd that knowledge, as measured by the quiz questions, increases for all variables, and generally
more so for the subset of farmers that used an improved variety at baseline. For instance, the share of
farmers that knows complementary inputs and practices are at least as important when using improved
varieties increases from 87.1 to 89.3 percent. Furthermore, the share of farmers that recommends
investing in di�erent inputs (as opposed to investing all money in only one input), increases from 73.5
to 75.7 percent. If we only consider farmers that adopted at baseline, the increase over the control
amounts to almost �ve percentage points.

After adjusting standard errors for clustering at the village level, none of the di�erences for the
entire sample is statistically signi�cant at conventional levels. However, if we only consider the subset
of farmers that adopted at baseline, we see that the intervention increased knowledge, as measured by
the index, signi�cantly, probably because these farmers were more interested in this information. The
overall e�ect is driven by increased knowledge about optimal agricultural investments among treated
farmers. Even though we cannot defect a treatment e�ect for the entire sample, we note that all
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Table 2: Average treatment e�ects on knowledge

(1) (2) (3)
Farmer knows inputs and practices are important 0.871 0.022 0.026

when using an improved variety (0.336) (0.015) (0.019)

Farmer knows weeding is important 0.790 0.025 0.028
when using an improved variety (0.407) (0.022) (0.026)

Farmer knows applying fertilizer is important 0.835 0.009 0.011
when using an improved variety (0.371) (0.016) (0.021)

Farmer knows plot selection should be independent 0.792 0.007 0.020
of using an improved variety (0.406) (0.025) (0.031)

Farmer knows it is best to invest in di�erent inputs 0.735 0.022 0.060∗

instead of putting all eggs in one basket (0.441) (0.023) (0.028)

Farmer knows recommended seed spacing and rate 0.687 0.029 0.017
(0.464) (0.024) (0.030)

Knowledge index 0.015 0.046 0.083+

(0.580) (0.036) (0.042)

Observations 1707 3407 1435

Note: Column (1) reports control group means post-intervention (and standard deviations below); column (2) reports di�erences
between treatment and control post-intervention; column (3) reports di�erences between treatment and control post-intervention
for farmers that adopt at baseline; **, * and + denote signi�cance at the 1, 5 and 10 percent levels; standard errors are clustered
at the village level.

coe�cient estimates are moving in the same direction. This may be due to the fact that, ex-post, it
turns out that many of the farmers were already able to indicate the correct response, and hence there
is little scope for further improvement. The signi�cant results for the baseline adopters are in line with
Prediction 1 in Section 3.

6.2 Impact on adoption

We now test the main hypothesis of this paper: whether farmers who were informed with subtle mes-
sages that improved varieties need substantial investment in complementary inputs and management
practices behave di�erently in terms of seed use in subsequent seasons than farmers that were not
similarly informed. To this end, we asked farmers which maize variety they planted on the randomly
selected maize plot in the season prior to the survey. We again de�ne adoption as described earlier and
used in Figure 1. In addition, we investigate other outcomes that are related or even partly overlapping.
For instance, we test if there are di�erences in the use of recycled seed between the treatment and
control group, where we de�ne recycled seed as seed that a farmer has saved themselves or obtained
from another farmer who saved it (e.g., a neighbor or relative). Another related outcome is the share
of farmers that report having purchased seed from an agro-input shop. The three outcomes are also
combined in an index following Anderson (2008).

Results are summarized in Table 3 and show that the intervention decreases adoption. Column (1)
shows sample means of the four outcomes at baseline with standard deviations in the brackets below.
We �nd that 44 percent of farmers use fresh seed of improved varieties and that one-third of farmers
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Table 3: Average treatment e�ects on adoption

(1) (2) (3) (4)
Farmer planted seed 0.435 -0.002 -0.042∗ -0.077∗∗

of an improved variety (0.496) (0.022) (0.021) (0.029)

Farmer planted seed 0.328 -0.004 -0.022 -0.056∗

from agro-input shop (0.469) (0.020) (0.020) (0.028)

Farmer planted seed 0.569 0.020 0.032 0.076∗∗

that was recycled (0.495) (0.022) (0.021) (0.028)

Adoption index1 0.009 -0.004 -0.068+ -0.121∗

(0.942) (0.042) (0.041) (0.055)

Observations 3470 3470 3407 1435

Note: Column (1) reports means at baseline (and standard deviations below); column (2) reports di�erences between treatment
and control at baseline; column (3) reports di�erences between treatment and control post-intervention; column (4) reports
di�erences between treatment and control post-intervention for farmers that adopt at baseline; **, * and + denote signi�cance
at the 1, 5 and 10 percent levels; standard errors are clustered at the village level. 1For this index, signs of outcomes were
switched where necessary so that the positive direction always indicates adoption of improved varieties.

reports that the seed that they planted on the randomly selected plot was obtained from an agro-input
dealer. Column (2) shows pre-treatment balance between treatment and control groups. We see that
the randomization was successful, as there is no signi�cant di�erence in varietal adoption behavior
between farmers that will be exposed to the treatment and those that will not.

Column (3) shows the di�erence between treatment and control groups for outcomes after the
intervention. Our theory suggests that in response to being sensitized about the importance of using
complementary inputs and management practices when using an improved variety, some farmers (Types
3 and 6) will change their adoption behavior (Prediction 2 in Section 3). A share of farmers that
initially underestimated the returns to improved varieties (Type 6) will start adopting as their expected
marginal return is increased by the treatment. Another share of farmers that initially overestimated
the probability of an adoption premium (Type 3) will dis-adopt as their expected marginal return is
reduced by the treatment. We �nd that adoption, as measured by the index, signi�cantly decreases
for the entire sample. Furthermore, all coe�cients move in the direction of dis-adoption. This implies
that farmers are less likely to use improved seed and seed bought at an agro-input shop but more
likely to use farmer-saved seed in accordance with our earlier de�nitions of adoption. Since the two
opposing e�ects for farmer Types 3 and 6 partly cancel each other out, the dis-adoption e�ect is not
pronounced.

To separate the two opposing e�ects, we restrict the sample to farmers that adopted at baseline
in Column (4). We see that the estimated e�ects become stronger when we restrict attention to this
subgroup (and exclude Type 6 farmers from the analysis). Farmers who were exposed to the treatment
are almost eight percentage points less likely to adopt fresh seed of an improved variety. We see another
particularly strong increase in the share of farmers that uses seed recycled from the previous harvest
in the treatment group and a somewhat lower but still signi�cant reduction in farmers who bought
seed from an agro-input dealer. The treatment also has a signi�cant and more pronounced negative
e�ect on the adoption index for this subgroup of farmers that adopted at baseline.
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Table 4: Average treatment e�ects on expectations and harvest

(1) (2) (3) (4)
Yield as expected 0.15 0.029+ 0.052∗

(0.36) (0.017) (0.024)

Production in kg 463.702 16.444 2.562 -4.289
(399.319) (18.004) (12.713) (19.308)

Yield in kg/acre 436.332 9.559 6.790 23.875
(280.790) (12.128) (12.129) (16.447)

Harvest index -0.004 0.006 0.026 0.051
(0.755) (0.038) (0.035) (0.049)

Observations 3470 3470 3407 1435

Note: Column (1) reports means at baseline (and standard deviations below); column (2) reports di�erences between treatment
and control at baseline; column (3) reports di�erences between treatment and control post-intervention; column (4) reports
di�erences between treatment and control post-intervention for farmers that adopt at baseline; **, * and + denote signi�cance
at the 1, 5 and 10 percent levels; standard errors are clustered at the village level.

6.3 Impact on expectations and harvest

Since the intervention is designed to a�ect farmer behavior by �correcting� their expectations, we
explore the plausibility of this impact pathway by testing if post-intervention farmers feel their yield
expectations were met. As mentioned in Prediction 3 in Section 3, we think this will particularly be
the case if we restrict the sample to farmers that adopt at baseline. We also measure harvest-related
outcomes (production and yield) on a randomly selected maize plot. The three outcomes are also
combined in an index following Anderson (2008).

The results in Table 4 show that yield expectations have been signi�cantly a�ected. We again
report baseline means and balance in Columns (1) and (2). However, we did not ask if expectations
were met at baseline, and so we report the control group average post-intervention and do not test for
baseline balance for the expectations variable. Note that a large majority of farmers indicated that
they harvested less than expected.

Column (3) shows that, in line with our prediction, a signi�cantly higher share of farmers in the
treatment group state that they produced what they expected. The e�ect is larger for the subset of
farmers that adopted at baseline, see Column (4). This suggests that a subset of farmers indeed started
out with in�ated expectations, which were �corrected� after they learned that improved varieties are
not �miracle seeds�.

Finally, the table shows that the average farmer produces about 460 kg of maize on the randomly
selected plot. The average size of these plots is slightly larger than one acre on average, such that yields
are about 440 kg per acre. The intervention does not seem to have any impact on maize production
or yield.

6.4 Impact on use of inputs and practices

Finally, we investigate how the intervention a�ects the use of inputs (other than seed) and practices.
For inputs and practices, the e�ect is expected to be positive, but weak (see Prediction 4 in Section
3).

We examine a range of cultivation practices and complementary inputs in line with what is featured
in both treatment and control videos. The �rst outcome is an indicator for single�stand row planting.
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Row planting is an important management practice that can lead to signi�cant yield gains. Under
row planting, space is used optimally such that plants have su�cient nutrients, sunlight, and room to
grow. However, row planting increases workload, meaning farmers often engage in broadcast planting,
which is less demanding on their labor.

Reducing the seeding rate (i.e., the number of seeds sown) is the second outcome of interest.
Farmers often plant more seed than necessary because they fear that it may not germinate. However,
using more than two seeds per hill leads to stunted maize growth due to competition for light and
nutrients. At the same time, just as for row planting, a lower seed rate may increase the workload, as
farmers need to engage in gap �lling after one week if seeds fail to germinate.

The next three outcomes relate to fertilizer use. The application of organic fertilizer is important
for soil structure, while inorganic fertilizers such as di-ammonium phosphate (DAP) or nitrogen, phos-
phorus, and potassium (NPK) and urea (nitrogen) are used to provide essential nutrients at particular
points in time. The cost of organic fertilizer is mainly in terms of labor, whereas both DAP and urea
need to be bought from an agro-input shop and applied during planting (DAP) and at early stages of
growth (urea).

Farmers should weed within the �rst week after planting and as often as possible. O�cial recom-
mendations are to weed at least three times per seasons. Furthermore, invasive insects such as the fall
armyworm (Spodoptera frugiperda) or maize stalk borer (Busseola fusca) can severely reduce yields.
Pesticides, herbicides, fungicides, and insecticides are widely available in agro-input shops under com-
mercial names such as Rocket, Lalafos and Dudu acelamectin. While weeding requires labor, pesticides
come at a pecuniary cost.

Finally, we look at di�erences in re-sowing or gap-�lling. This involves revisiting the plot after
planting and inspecting the hills for seed germination. If a seed does not germinate, a new seed
is planted in that location. Re-sowing, reduced seed rate, and row-planting are thus likely to be
correlated. We also combine all outcomes in an overall index following Anderson (2008).

Results are reported in Table 5 and show no impact of the intervention on the use of inputs and
practices. As in previous tables, Columns (1) and (2) report means and orthogonality for outcomes
before the treatment. We �nd an imbalance for the number of times that a farmer reports to have
weeded and the likelihood that farmers re-sow after one week. Note that the imbalance goes in di�erent
directions, which makes it less likely that it is caused by a structural di�erence between treatment and
control group such as consistently lower e�orts in one group, and more likely to be the result of chance.

Column (3) shows that farmers do not invest more e�ort in response to the intervention. On the
contrary (and especially if we only consider the subset of farmers that adopted at baseline, see Column
(4)), farmers appear to be less likely to plant in rows. The negative e�ect on some practices may be due
to the fact that farmers may adopt some complementary inputs or practices, but in su�cient quantities
and/or suboptimal combinations for the adoption premium to realize. When farmers subsequently dis-
adopt, they may also stop using these inputs or practices, leading to a negative expected e�ect on
practices for type 3 farmers in Table 1. In particular, for the case of row planting, it may be that
farmers that adopt at baseline simply follow planting instructions that are typically printed on the
seed bags. However, only row-planting without additional inputs such as fertilizer or pesticide use may
not lead to expected yields, and disappointed farmers may dis-adopt in the next season which case
they may also revert to plating methods used before adoption.

7 Conclusion

This paper was motivated by evidence suggesting that farmers are often unaware that many agricul-
tural technologies such as improved seed varieties require substantial complementary inputs, better
management practices, and greater e�ort for their bene�ts to be realized. In a sense, farmers overes-
timate the returns to a technology and are disappointed when they compare expectations to realized
yields. As learning about a new technology is hard, farmers may attribute the disappointing results
to the technology itself and dis-adopt. This is consistent with �ndings suggesting that farmers blame
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Table 5: Average treatment e�ects on use of inputs and practices

(1) (2) (3) (4)
Row-planting 0.243 0.025 -0.070∗ -0.093∗∗

(0.429) (0.022) (0.027) (0.033)

Reduced seed rate 0.237 0.010 0.009 -0.007
(0.425) (0.021) (0.019) (0.028)

Organic fertilizer use 0.075 -0.009 -0.013 -0.013
(0.263) (0.011 (0.017 (0.023

DAP/NPK use 0.251 -0.020 -0.029 -0.045
(0.434) (0.024) (0.019) (0.028)

Urea use 0.076 0.001 0.002 0.013
(0.265) (0.013) (0.015) (0.024)

Weeding frequency 2.561 0.084∗∗ -0.021 -0.001
(0.650) (0.026) (0.027) (0.037)

Pesticide etc. use 0.412 0.031 0.003 0.004
(0.492) (0.024) (0.023) (0.032)

Re-sowing 0.482 -0.046∗ 0.013 0.033
(0.500) (0.023) (0.022) (0.029)

Early planting 0.699 -0.018 0.012 0.021
(0.459) (0.024) (0.025) (0.031)

Early weeding 0.606 0.032 0.026 0.040
(0.489) (0.020) (0.021) (0.028)

Inputs index 0.008 0.009 -0.008 0.005
(0.400) (0.020) (0.019) (0.025)

Observations 3470 3470 3407 1435

Note: Column (1) reports means at baseline (and standard deviations below); column (2) reports di�erences between treatment
and control at baseline; column (3) reports di�erences between treatment and control post-intervention; column (4) reports
di�erences between treatment and control post-intervention for farmers that adopt at baseline; **, * and + denote signi�cance
at the 1, 5 and 10 percent levels; standard errors are clustered at the village level.
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poor returns on inputs they believe to be counterfeit or of low quality even when objective quality
assessments show otherwise (Barriga and Fiala, 2020; Michelson et al., 2021).

To credibly test this hypothesis�speci�cally, that farmers think of improved varieties as �miracle
seed��we conducted a �eld experiment built around a short, engaging video on recommended input
use and management practices for maize cultivation in eastern Uganda. We produced two versions of
the video that di�er only in terms of the presence (absence) of subtle messaging about the salience of
recommended inputs and practices for the treatment (control) group. Screenings of the two versions
were randomly assigned to villages in our study area, and then to maize farmers in those villages,
resulting in a sample of almost 3,500 farmers who were interviewed at regular intervals to uncover any
changes in their knowledge about best practices in maize cultivation as well as their seed or variety
choices, their expectations of yield and output, and their use of complementary inputs and management
practices.

While we do not �nd treatment e�ects that di�er signi�cantly from zero for knowledge outcomes
for the entire sample, we do observe that all coe�cients move in the expected direction and suspect
that the lack of statistical signi�cance may be caused by low power given an already high level of
knowledge among our sampled farmers. We do �nd, consistent with our theory, that the intervention
signi�cantly improved knowledge for farmers that adopted at baseline, probably because they were
more interested in the information.

For the main outcome of interest�behavior related to seed choices�we �nd that treated farmers
were less likely to use improved varieties, and generally more likely to dis-adopt. We also �nd that
farmers that received the treatment were more likely to report that their harvest was in line with what
they expected. Both �ndings are again consistent with our theory. We found no overall e�ect of the
treatment on input use and management practices, although there is some indication that especially
costly inputs and practices were reduced. Taken together, we conclude that there are indeed indications
that farmers consider improve maize seed varieties as �miracle seed� and that it is challenging to learn
from own experience.

Our �ndings have implications for the study of technology adoption dynamics. We have seen that
disappointment about the performance of a technology that is erroneously attributed to the technology
itself may lead to dis-adoption. As long as this learning failure is not corrected�for instance, by
pointing out that the seed is good; the problem is with complementary input use�farmers will not
adopt anew. Worse, as we learned from extension workers who complain farmers blame improved seed
varieties for the proliferation of the parasitic Striga weed, �fake news� may travel faster then correct
information (Ledgerwood and Boydstun, 2014; Hornik et al., 2015) leading to dis-adoption at more
aggregate levels, further complicating (social) learning.

Related to this, information about complementarities and changes in perceptions may reduce risk
premia, particularly in the longer run. In this scenario, farmers try improved seed with complementary
inputs and learn that outcomes are consistently in line with expectations. They may trade o� this
reduction in risk with with increased investment (and potentially lower margins). This seems to be
what we �nd as well: When we revisited the farmers after one additional agricultural season, we no
longer found any di�erences between treatment and control groups. At least some farmers who had
disadopted in response to new information and more realistic expectations were, in fact, cultivating
the new variety again; these may now be in for the long run.

Our study also casts some doubt on the suggestion that Bayesian learning via sequential adoption
can be a successful strategy for smallholder farmers in the long run (Leathers and Smale, 1991; Ma
and Shi, 2015). If there are important interaction e�ects between technologies, inputs and practices,
it seems unreasonable to assume that farmers can try out all possible combinations of inputs to learn
about these interactions in a Bayesian fashion, at least in a reasonable time frame.

Our results di�er from other studies that �nd that improved technologies increase agricultural
productivity by crowding in modern inputs and cultivation practices (Emerick et al., 2016; Bulte
et al., 2023). A possible explanation for our opposing results may be that Emerick et al. (2016) and
Bulte et al. (2023) provided the improved technology (also an improved seed variety) for free as part
of the experiment, potentially resulting in an income e�ect, i.e., the money that treated farmers did
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not use to purchase seed was instead allocated to the purchase of complementary inputs.12 In our
experiment, no free seed was provided, so when adoption decisions were made, farmers had to take the
combined cost of seed and cost of complementary inputs into account, further eroding the expected
pro�tability of the improved technology.

Finally, our �ndings have implications for how public and private actors in the agriculture sector
should promote new technologies. If smallholders' information sources such as private input dealers and
public extension agents are not su�ciently able to communicate the importance of complementary in-
puts and practices, then lower likelihoods of sustained adoption may result. Worse, if smallholders have
incorrect perceptions about poor quality caused by misattribution, the persistence of these perceptions
may crowd out the market for quality inputs (Bold et al., 2017). And while the distribution of free or
subsidized technologies and inputs may go some way in encouraging farmers' learning processes and
�correcting� their perceptions (for example, with unique standalone technologies (Omotilewa, Ricker-
Gilbert, and Ainembabazi, 2019)), this approach can break down when complementary inputs and
practices are not part of the package, which may again lead to disappointment among farmers.

Our �ndings suggest that agricultural development programs, extension providers, and agri-input
companies need to focus less on marketing single �miracle� technologies for smallholders, and more on
the design and communication of comprehensive packages that include both agronomic and economic
information on topics such as expected variation in yield and output, sensitivity of timing for speci�c
farming tasks, magnitude and costs of family and hired labor, and the relative drudgery of e�ort,
among many others. We conclude that the design and communication of comprehensive packages
requires greater investment in the form and content of rural education, extension and advisory services,
and agri-input marketing strategies.
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