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Significance

Smallholder farming systems 
support the livelihoods of 
estimated two billion people on 
the planet. They are often 
characterized by challenging 
environments critically exposed 
to the climate crisis, with limited 
access to inputs including 
improved seed technology. To 
achieve the sustainable 
intesification of smallholder 
farming systems, crop breeding 
needs to tailor varietal 
development to local farmer 
needs. Here, we devise a method 
to integrate wheat genomics with 
participatory varietal selection 
that allows to capture farmers’ 
traditional knowledge in a fully 
quantitative framework and 
inform breeding decisions. Our 
work demonstrates that cultural 
and natural agrobiodiversity can 
be leveraged together to increase 
the effectiveness of genomics-
driven breeding toward varietal 
development for smallholder 
farming systems.
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In the smallholder, low-input farming systems widespread in sub-Saharan Africa, farmers 
select and propagate crop varieties based on their traditional knowledge and experience. 
A data-driven integration of their knowledge into breeding pipelines may support the 
sustainable intensification of local farming. Here, we combine genomics with partic-
ipatory research to tap into traditional knowledge in smallholder farming systems, 
using durum wheat (Triticum durum Desf.) in Ethiopia as a case study. We developed 
and genotyped a large multiparental population, called the Ethiopian NAM (EtNAM), 
that recombines an elite international breeding line with Ethiopian traditional varieties 
maintained by local farmers. A total of 1,200 EtNAM lines were evaluated for agro-
nomic performance and farmers’ appreciation in three locations in Ethiopia, finding 
that women and men farmers could skillfully identify the worth of wheat genotypes and 
their potential for local adaptation. We then trained a genomic selection (GS) model 
using farmer appreciation scores and found that its prediction accuracy over grain yield 
(GY) was higher than that of a benchmark GS model trained on GY. Finally, we used 
forward genetics approaches to identify marker–trait associations for agronomic traits 
and farmer appreciation scores. We produced genetic maps for individual EtNAM fami-
lies and used them to support the characterization of genomic loci of breeding relevance 
with pleiotropic effects on phenology, yield, and farmer preference. Our data show that 
farmers’ traditional knowledge can be integrated in genomics-driven breeding to support 
the selection of best allelic combinations for local adaptation.

crop breeding | genomic selection | multiparental populations | smallholder farming |  
Triticum durum Desf.

Crop production systems worldwide are expected to be negatively affected by the climate 
crisis (1). To achieve and maintain a sustainable and equitable food production in a 
changing climate, farming systems need to increase their resilience while reducing their 
reliance on external inputs (2). This is crucial in the highly heterogeneous smallholder 
farming systems that are widespread in emerging countries (3), where limited access to 
agronomic inputs, including irrigation, fertilizers, and seed technology, limits buffering 
capacity to external shocks. Smallholder farming is a pivot of global food security (4), and 
strains to the system threaten the livelihoods of the millions of people depending on it 
(5). Crop breeding can support their resilience by accelerating the development of crop 
genotypes with adaptation to local growing conditions and end-user preferences, reducing 
the need for chemical inputs and increasing the impact of varietal innovation (6).

Smallholder farmers often rely on traditional varieties which evolved at the crossroads 
between anthropic and natural selection. If characterized and made accessible to breeding, 
this agrobiodiversity can contribute with adaptation traits (7), lowering the need for 
external inputs while increasing resilience in challenging farming environments. Vast 
genetic agrobiodiversity is maintained by farmers in situ as well as collected in genebanks, 
and current genomics methods allow to efficiently screen it to identify allele pools that 
may contribute to crop improvement (8). The most promising genotypes can be exploited 
as they are or be piped in breeding programs in various crossing designs, including back-
crosses (9) and multiparental populations (10, 11), creating favorable allelic combinations. 
When genotyped collections of germplasm are tested in multiple growing environments, 
genomic selection (GS) models can be trained to capture genotype x environment inter-
actions and predict the performance of specific allelic combinations, further accelerating 
genetic gain (12, 13). Forward genetic approaches may complement GS to identify quan-
titative trait loci (QTL) for complex traits including adaptation and agronomic perfor-
mance, providing breeders with genetic targets to further crop improvement (14).

Agrobiodiversity that is found in smallholder farming systems is both nature and 
culture. When farmers select and maintain specific crop varieties and therefore specific 
allelic combinations, they consider a combination of traits that include performance, 
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adaptation, and use (15). To support and improve varietal devel-
opment for smallholder farming systems, researchers and breeders 
need to understand how varieties and seed demands vary by types 
of farmers, how these differences are reflected in seed acquisition 
dynamics, and how seed production can meet end-user demands 
(16). Today, only about 40% of smallholder beneficiaries adopt 
new varieties developed by breeding, a gap that calls for a recon-
sideration of the objectives of crop improvement targeting these 
farmers (17). Participatory variety selection (PVS) can be used 
to directly involve farmers in the selection of genetic materials 
and better align breeding decisions to end-user needs (18). In 
Ethiopia, PVS approaches showed that local wheat smallholder 
farmers select genetic materials according to a clear hierarchy of 
traits and may prioritize adaptation over performance (19). 
Previous studies confirmed that the evaluation of wheat pheno-
types given by local farmers is repeatable and genetically deter-
mined as any other measure of agronomic performance (15) and 
can be used to map wheat genetic loci associated with farmer 
preference (20). Farmer evaluations of crop performance, an 
expression of their traditional knowledge in regard to farming, 
can thus be harnessed in a quantitative way and used to inform 
varietal recommendation (21) and improve genetic gain in chal-
lenging farming systems with decentralized, on-farm evaluation 
of genetic materials (22). Yet, the understanding of the factors 
underlying varietal suitability to local farmers’ requirements 
remains a major challenge for breeding.

To effectively target local adaptation, breeding must fully 
embrace a data-driven approach considering both cultural and 
natural aspects of agrobiodiversity. Here, we use a large multipa-
rental population of Ethiopian durum wheat lines developed from 
local landraces to show that farmers’ traditional knowledge may 
be fully integrated in genomics-driven breeding methods relying 
on GS and QTL mapping. We run a PVS experiment in collab-
oration with local men and women farmers evaluating 10,400 
plots in three locations in Ethiopia, exploring their preference in 
relation to genotypic and phenotypic diversity of tested wheat 
lines. We break down farmers’ overall appreciation (OA) into cor-
related agronomic traits to understand the effect of gender and 
location on farmers’ choice. We compare the predictive ability of 
grain yield (GY) with that of OA given by local farmers, finding 
that farmers’ OA can predict yield in untested environments with 
higher accuracy than agronomic measures. We then use forward 
genetics to map the genetic basis of OA, identifying QTL for 
phenology, yield, and farmer preference. Our results support the 
value of incorporating PVS in genomics-driven breeding to 
enhance genetic gain for local agriculture.

Results and Discussion

Agronomic Performance of Ethiopian Durum Wheat. To 
test the added value of PVS in genomics-driven breeding, we 
focused on two sets of Ethiopian durum wheat genetic materials. 
A diversity panel (DP) of 400 varieties, mainly local landraces, 
was previously phenotyped for two consecutive seasons in two 
locations representative of Ethiopian agriculture (23) (SI Appendix, 
Fig.  S1). PVS was conducted on DP lines involving men and 
women smallholder farmers with experience of wheat cultivation 
in the tested areas, collecting farmers’ OA on a Likert scale from 
one (poor) to five (very good). PVS data analysis on the DP was 
previously reported (15). Subsequently, landraces selected from 
the DP were intercrossed with a modern variety with international 
pedigree to produce a nested association mapping population, 
named the Ethiopian NAM (EtNAM) (11). Here, we focus on 
1,200 recombinant inbred lines (RILs) belonging to 12 EtNAM 

families that were grown and phenotyped in three locations 
in Ethiopia in a fully replicated design (SI Appendix, Fig. S1). 
EtNAM RILs can be considered prebreeding materials in an early 
phase of varietal development. Both the DP and the EtNAM 
were phenotyped for yield, phenology, and yield components. 
PVS was conducted on the EtNAM on the same fields used for 
phenotyping, following the same procedure employed on the 
DP. Different farmer groups evaluated the genetic materials in 
each location. In all locations, the farmers involved in PVS were 
chosen to be representative of those residing in the area and to 
be expert wheat growers. Men and women were kept separated 
during PVS to untangle gender-specific differences in evaluating 
genetic materials. The DP and the EtNAM were both genotyped 
with dense molecular markers (11, 23).

To better frame the wheat genotypes’ performance in different 
locations, we conducted a climatological characterization of the 
experimental sites. Geregera (experimental site for both DP and 
EtNAM) and Kulumsa (experimental site for EtNAM) are in tepid 
submoist mid highlands. Hagreselam (experimental site for DP) 
is in the warm submoist lowlands, while Adet (experimental site 
for EtNAM) is in tepid moist mid highlands. The three EtNAM 
locations had different planting and harvesting dates and experi-
enced different temperature and rainfall regimes throughout the 
cropping season. Kulumsa experienced the highest temperatures 
and the most consistent rainfall between flowering and full matu-
rity of the EtNAM lines (SI Appendix, Fig. S2). Throughout the 
season, this site experienced the highest variability both in terms 
of weekly temperature range and in mean temperature 
(SI Appendix, Fig. S3). The experimental locations were chosen at 
sites commonly used by local breeding programs to test prebreed-
ing materials and, regardless of local specificities, are all represent-
ative of the average climate of the wheat cropping area in the 
country (SI Appendix, Fig. S4).

Farmers’ Preference is a Quantitative Trait. OA evaluations 
given by men and women farmers at each location showed similar 
distributions (Fig. 1A). Scoring was prudent in all the testing sites, 
with most materials ranking below average, so that “very good” 
EtNAM RILs were rare (SI Appendix, Fig. S5). The distribution 
of farmer evaluations was consistent across genders, though men 
provided higher OA than women in Adet and Kulumsa, and lower 
in Geregera (P < 0.001) (Fig. 1B). Although EtNAM materials 
achieved the highest yields at the Kulumsa site (Fig. 1C), farmers 
in Adet provided the most positive evaluations. Local communities 
provided scoring according to their own perception, and yield 
was not the sole component being considered while assigning 
OA values to genotypes. On the EtNAM, broad-sense heritability 
(H2) of farmer scores combined across genders (H2 = 0.45) was 
comparable to that of yield (H2 = 0.49) and of yield component 
traits (SI Appendix, Fig. S6), meaning that farmer preference for 
genetic materials is a repeatable, genetically determined trait that 
can be targeted by breeding programs and contribute to genetic 
gain. While evaluating OA in the EtNAM lines, men farmers 
provided higher heritability (H2 = 0.54) than women (H2 = 0.32, 
Table 1), as if their evaluation was less influenced by nongenetic 
factors. In sub-Saharan smallholder farming systems, men 
farmers mostly focus on agronomic traits, while women are more 
concerned with postharvest traits (24, 25). A different perception 
of OA by men and women is likely to affect the heritability of 
the evaluations, that are given on-field nearing flowering time. 
Regardless of their differences, men and women farmers selected 
a matching set of entries as their top choice, pointing to similar 
combinations of genetic and phenotypic trait values (Fig. 1 D 
and E). Among the genotypes scoring in the top 5% for OA, 26 D
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were chosen by both men and women, while the remaining were 
chosen by either of the two groups (SI Appendix, Table S1). The 
genetic makeup of lines selected by both men and women farmers 
can be reconducted to the crossing that was used to develop the 
EtNAM (11). The EtNAM families most represented in the top 
farmer choice were N51, from the intercross of Asassa with the 
Italian variety Bidi, and N1 and N8, both from the intercross of 
Asassa with Ethiopian landraces.

Farmers involved in the PVS were local wheat growers repre-
sentative of the socioeconomic context in the surroundings of the 
experimental sites. Although they cannot be considered represent-
ative of the diversity of Ethiopian farming systems, they are rep-
resentative of smallholder farmers living in the wheat-growing 
areas in the country (SI Appendix, Fig. S4). PVS studies conducted 
in Ethiopia on teff (26) and durum wheat (15) showed that farm-
ers living in different agroecologies may provide matching evalu-
ations of crop performance and preference. Lager panels of farmers 
involved with decentralized approaches also express similar pat-
terns of varietal preference across locations, although with local 
specificities (21, 22). The consistency of evaluations given across 
farmer groups is rooted in their perception of crop performance 
in local farming conditions. Farmer evaluations were indeed cor-
related with agronomic traits in all locations (SI Appendix, Fig. S7). 
We found that OA was always positively correlated with yield and 
yield components, and mostly negatively correlated with phenol-
ogy, suggesting that farmers preferred high yielding, tall and thick 
plants with early maturity, in agreement with previous assessments 

(19). The correlation between OA and GY was significant in all 
location and farmer groups and ranged from 0.41 to 0.66 
(SI Appendix, Table S2). Yield and farmer appreciation were higher 
for modern varieties and EtNAM RILs than for landraces in all 
locations, though the advantage over landraces was less evident in 
Geregera, the most limiting environment. Some EtNAM RILs 
greatly outperformed both landraces and modern varieties for both 
yield and OA, supporting the breeding relevance of these genetic 
materials (SI Appendix, Fig. S8). Farmers’ OA was positively cor-
related with biomass and days to maturity in Kulumsa, but not 
in Adet and Geregera. The highest correlation was observed in 
modern varieties, followed by EtNAM RILs (SI Appendix, Fig. S9). 
Landraces grown in Geregera achieved yield and OA comparable 
to those of modern varieties, a hallmark of local adaptation. 
Modern wheat varieties that have a longer time to maturity, when 
grown in locations that allow a longer growing season like Kulumsa 
(SI Appendix, Fig. S2), express higher yield and are preferred by 
farmers. The relation between farmers’ preference and phenology 
is opposite in Geregera, a growing environment exposed to ter-
minal drought. The selection of farmers thus depends on local 
adaptation and on the combination of traits in the materials of 
choice.

Farmers’ appreciation derives from a combination of traits 
depending on local uses and cropping conditions; thus, GY alone 
cannot summarize OA (15, 27). To test whether farmer evaluations 
could capture wheat stability across environments, we correlated OA 
values given in each location with yield stability indexes across 
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Fig. 1. Diversity and agronomic performance in the EtNAM by BLUP value distributions. (A) Distribution of OA scores by gender and by location, with colors 
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locations (SI Appendix, Fig. S10). OA values given by farmers in 
Geregera, the most limiting environment, were significantly anti-
correlated with yield variation across environments (R2 = −0.29) and 
significantly correlated with measures of increased stability across 
locations. The same does not hold true for OA given by farmers in 
high potential areas (Adet, Kulumsa) (SI Appendix, Fig. S10), sug-
gesting that OA expressed by wheat growers in challenging environ-
ments may capture not only yield (R2 = 0.45 for men and R2 = 0.47 
for women), but also its stability across environments.

Characterization of Farmers’ Choice for Breeding Applications. 
We used a Plackett–Luce model (28–30) to bring farmer choice 
patterns into a ranking framework and evaluate their potential 
contribution to breeding decisions on the EtNAM. Building upon 
the results of our exploratory analyses, we considered two factors 
that could drive farmers’ choice. The first were farmers’ individual 
differences, such as different gender and locations influencing how 
farmers appreciate the different genotypes. The second factor were 
the individual characteristics of the wheat genotypes evaluated, 
as represented by best linear unbiased predictors (BLUPs) of 
measured traits. This approach to the characterization of farmer 
choice criteria could be at the core of a breeding program 
integrating PVS and is focused on identifying the relative worth of 
tested genotypes as a function of local performance and preference 
by farmers.

Indeed, the worth of EtNAM prebreeding lines varied across RIL 
families, locations, and farmer groups (Fig. 2). Farmers in Geregera 
had a strong preference for genotypes with early maturity (days to 
booting and flowering), an indication that higher GY was not the 
priority for this group (P < 0.001) (SI Appendix, Table S3). In the 
other two locations, farmers’ choices were also influenced by gender. 
In Adet, women and men favored genotypes based on plant height 
(PH) and spike length (shorter spikes), while men also preferred 
genotypes with early maturity (flowering) but late booting. In 
Kulumsa, both men and women directed their choices toward 

genotypes with higher GY and biomass, and shorter days to flow-
ering (DF) and heading (P < 0.001). Men in this location also 
preferred genotypes with shorter spikes, a trait valued in durum 
wheat breeding and associated to larger grains. In all cases, individ-
ual EtNAM RIL families could outperform the reference modern 
variety, Asassa (Fig. 2). Clearly, our study design based on quanti-
tative scoring of appreciation with PVS cannot capture the subtle 
gender dynamics existing in local communities. These findings 
however can support the development of product profiles for 
demand-led breeding programs considering farmers’ drivers of vari-
ety selection as a mean to develop breeding materials with a higher 
likelihood for future adoption, fostering adaptation of cultivations 
to local uses and needs (31–34). In our case, EtNAM family N45 
should be prioritized for Geregera and Adet, but not for Kulumsa. 
N51 had the highest worth in Geregera (Fig. 2). Further testing of 
these genetic materials may then be combined with on-farm decen-
tralized data-driven approaches, which would allow the evaluation 
of genotypes in a broader set of environments in combination with 
socioeconomic drivers for selection and adoption (22). A similar 
design could allow further stratifying farmers’ features to inform 
more tailored and equitable varietal recommendations. Moreover, 
it could capture further details on socioeconomic and gender 
dynamics that influence variety selection at the household level, 
including gendered roles in agriculture and deeper inequalities 
related to access to agricultural innovation (34).

GS Using Farmers’ Traditional Knowledge. Having assessed that 
farmer scores were repeatable, heritable, and aligned with local 
performance of wheat genotypes, we tested whether PVS scores 
provided by men and women farmers could improve GS accuracy 
in the considered environments. To do this, we used GY and OA 
measured in the DP, that included genotypes that were used to 
produce the EtNAM (11), to predict the same phenotypes on the 
EtNAM. We found that a GS model trained on GY in the DP 
could not positively predict GY combined across locations in the 
EtNAM (Fig. 3A). However, the same GS model trained on OA in 
the DP positively predicted EtNAM GY with an accuracy of 0.09 
(SI Appendix, Table S4). Although the magnitude and direction 
of prediction accuracy depended on the experimental sites, OA 
consistently outperformed GY in predicting EtNAM GY (Fig. 3A). 
Likewise, models trained on OA measured in the DP consistently 
outperformed GY in predicting farmers’ OA of EtNAM lines 
(Fig. 3B). In all cases, OA provided higher prediction accuracies, 
consistently above 0.20 on combined data and when predicting data 
measured in Adet and Geregera (SI Appendix, Table S4). Kulumsa, 
a CIMMYT test site representing high potential wheat-growing 
areas, was negatively predicted by the DP. This may be due to an 
opposite effect of allelic combinations that were suitable for highland 
cultivation, captured by the DP sites (Geregera, Hagreselam) and 
depending on local conditions. Despite the substantial inadequacy 
of DP data in predicting the EtNAM performance at Kulumsa, 
models trained on OA still performed better relative than GY when 
predicting yield and yield components. We found that OA scores 
could predict a combination of traits, with highest accuracies for 
biomass (0.15), SPS (0.15), PH (0.26), and thousand seed weight 
(0.27) (SI Appendix, Table S4). The prediction accuracy of both 
GY and OA improved when GS was restricted to the EtNAM 
germplasm, and the model was trained and tested across locations 
(SI Appendix, Table S5 and Fig. S11). These results suggest that 
OA may be especially relevant as a predictor when the training set 
and the test set of the GS are furthest apart, in line with farmers’ 
ability to capture wheat potential.

GS models could also work in the opposite direction. We found 
that EtNAM data could be used to predict DP performance, once 

Table  1. Broad-sense heritability (H2) of EtNAM traits 
measured across the tested locations. OA, overall  
appreciation; BM, biomass; DB, days to booting; DH, days 
to heading; DF, days to flowering; DM, days to maturity; 
GY, grain yield; NSPKPS, number of spikelets per spike; 
NTPP, total number of tillers; PH, plant height; SPL, spike 
length; SPS, seeds per spike; TGW, thousand grain weight.

Trait Gender H2

OA Women 0.32
Men 0.54

Combined 0.45
BM – 0.09

DB – 0.62

DH – 0.60

DF – 0.59

DM – 0.07

GY – 0.49

NSPKPS – 0.28

NTPP – 0.05

PH – 0.44

SPL – 0.23

SPS – 0.30

TGW – 0.67
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again with higher accuracies achieved by models trained on OA 
and, in this case, particularly by OA evaluated by men (Fig. 3C). 
OA measured on the EtNAM positively predicted GY in the DP 
with an accuracy of 0.11 and could predict OA on the same panel 
with an accuracy of 0.41 (SI Appendix, Table S6). Conversely, GS 
models trained on GY measured in the EtNAM could predict GY 
in the DP only with an accuracy of 0.02. It is worth stressing that 
farmer groups evaluating the EtNAM and the DP were different, 
as different were farmer groups conducting the PVS experiment 
in each of the locations. Differences in GS prediction performance 
by gender reflected differences in the heritability of OA traits 
(Table 1) and may derive from different degrees of agreement 
within farmer groups.

PVS traits for farmer appreciation of earliness, spike morphol-
ogy, and tillering capacity on the DP were collected with a method 
similar to that used for OA (20). PVS traits collected on the DP 
were correlated with components of agronomic performance: 
farmers preferred high yielding and early genotypes, with bigger 
seed size and thicker spikes (SI Appendix, Fig. S12). When PVS 
traits collected on the DP were used to predict phenology and 

yield components on the EtNAM, we found that spike morphol-
ogy appreciation provided prediction accuracies comparable to 
those of OA for yield component traits, including biomass, num-
ber of spikelets per spike, PH, and thousand seed weight 
(SI Appendix, Fig. S13). The appreciation of earliness, which was 
strongly anticorrelated with DF and maturity, provided negative 
prediction accuracies for yield components and phenology.

When conducting PVS, farmers are simply inspecting plants 
in the field, nearing flowering time. The fact that OA predicts GY 
better than GY itself is striking and we could advance different 
hypotheses as to why this happens. A higher GS prediction accu-
racy may derive from the fact that farmer’s OA is given based on 
yield component traits with higher heritability than yield, thus 
achieving higher predictability. A higher accuracy may also derive 
from the fact that farmers provide OA based on their experience 
over multiple seasons, and thus capture the expected performance 
of genotypes in a similar environment with a greater accuracy than 
that can be derived from a limited number of GY observations. 
This is reinforced by the significant correlations that were observed 
between farmers’ OA and measures of yield stability (SI Appendix, 

Fig. 2. Breakdown of farmer choices on EtNAM genotypes. The x-axis reports the log-worth, the probability that each genotype within EtNAM families (y-axis) 
to be selected against the other genotypes. EtNAM families are reported with the corresponding code, N followed by a number. The entry RF represents the 
recurrent founder used to develop the EtNAM, the modern variety Asassa. The worth of RF was set at 0 for reference. Different groups classified by location and 
gender according to the model represent different choices in selecting genotypes. Drivers of farmers’ choices, based on agronomic metrics, are presented in 
SI Appendix, Table S1. Intervals are based on quasi-variance estimates. Data analysis was conducted on BLUP values.
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Fig. S10). High prediction accuracies for OA derived from farm-
ers’ ranking of wheat genotypes were also observed in a data-driven 
decentralized breeding approach (3D-breeding) focusing on local 
adaptation via on-farm testing (22). Our experimental design 

allows only a partial deconstruction of farmers’ appreciation on 
plant traits, but the consistency of the scoring system and accuracy 
achieved by the GS trained on OA suggest that PVS evaluations 
may capture underlying features of trait preference that are 
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Fig. 3. Accuracy of GS models considering GY and OA values measured in the DP and the EtNAM. (A) Prediction accuracy of a model trained on DP data and 
tested on GY in the EtNAM. The pink shading highlights combined data, while location-specific prediction accuracies are given separately. The accuracy of the 
prediction is reported on the y-axis with bars indicating SEM across 100 repetitions. The predictors are color coded according to legend, while predicted OA 
and GY measures are reported on the x-axis. (B) Prediction accuracy of a model trained on DP data and tested on OA in the EtNAM, plotted as in panel A. (C) 
Prediction accuracy of a model trained on the EtNAM and tested on DP data. OA values are split by gender (W, women; M, men) and combined across genders. 
Data analysis was conducted on BLUP values.
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independent from farmer group, location, and gender. Further 
studies may expand the understanding of farmers’ decision-mak-
ing processes (24, 35), and complement our findings to fully 
unravel the underlying reasons why farmers, at a glance, can suc-
cessfully predict wheat performance across seasons and across 
location.

Genetic Targets for Wheat Prebreeding. To further explore the 
potential contribution of PVS to molecular breeding, we used 
marker data developed on the EtNAM to conduct forward genetics 
approaches aimed at describing QTL for farmers’ preference and 
agronomic performance. The single-nucleotide polymorphisms 
(SNPs) used to genotype the EtNAM were assigned to their 
estimated physical positions mapping the array SNP probes to 
the Triticum durum reference genome (SI Appendix, Table S7). 
A genome-wide association study (GWAS) identified altogether 
81 unique marker–trait associations (MTAs), 10 of which 
were for farmers’ OA, while the rest were for agronomic traits 
(SI Appendix, Table S8). Men and women OA scores identified 
significant associations on chromosomes 3B, 4B, 5B, and 6A. 
Gender differences in the evaluations were also reflected by the 
different set of loci targeted by men and women. The MTA 
for OA on chromosome 4B comapped with an MTA for GY 
(Fig. 4A). Previous studies reported a QTL hot spot for wheat 
yield stability on chromosome 4B (36), that could correspond 
to the MTA mapped by farmer scores. OA identified an MTA 
overlapping with GY also on the short arm of chromosome 5B 

(SI Appendix, Table S8), yet PVS MTAs were not exclusive to GY 
loci. OA comapped with thousand grain weight, a measure of 
seed size, in several loci including at approximately 650 Mb on 
chromosome 1B, 740 Mb on chromosome 3B (also comapping 
with days to maturity), and 689 Mb on chromosome 5B. OA 
matched phenology MTAs on the short arm of chromosomes 2A 
and 2B. Interestingly, an MTA for OA at approximately 175 Mb 
on chromosome 6B did not comap with any of the agronomic 
traits measured in this study. Farmers’ evaluation is based on a 
combination of different traits and may provide genetic targets 
beyond those for yield and yield components. Farmer scores could 
be thus used to complement molecular breeding to prioritize loci 
for breeding and support local adaptation and varietal acceptance.

To strengthen the identification of EtNAM subfamilies with 
higher relevance for prebreeding, we developed genetic maps spe-
cific for each of the original cross combination (SI Appendix, 
Table S9). We developed linkage groups in numbers ranging from 
32 (EtNAM N16) to 46 (EtNAM N1), with a total length from 
162 cM to 311 cM. Family N51, developed by the intercross of 
Asassa with the modern variety Bidi, is the only one lacking an 
Ethiopian landrace parent and showed the shortest genetic map 
span, with 1,187 markers included (x = 1,846, σ = 298.5). We 
used individual genetic maps to support QTL mapping specific 
to subfamilies, identifying 382 partially overlapping QTL 
(SI Appendix, Table S10). These individual genetic maps can be 
used to identify relevant haplotypes at QTL and locate significant 
associations on genetic backgrounds of interest to wheat breeding 

A B

Fig. 4. Genetic targets for participatory wheat improvement. (A) GWAS reporting marker trait associations for OA scored by women, OA scored by men, OA 
combined across genders, and GY. On the x-axis, SNP markers are arranged by their estimated physical position, with alternating colors corresponding to the 14 
chromosomes of durum wheat plus an unmapped linkage group (UN). The y-axis reports the significance of the association, with SNPs surpassing the Bonferroni 
threshold (green line) marked as significant. The dashed green line, when present, represents a less stringent threshold for FDR-corrected P-values. (B) QTL 
mapping on individual EtNAM families. Markers included in EtNAM genetic maps are reported as black ticks according to their physical position. QTL are shown 
in colors according to legend and correspond to phenotypes grouped by phenology (DB, DH, DF, DM), yield components (GY, TGW, SPL, NSPKPS, SPS, PH, NTPP, 
BM), and farmers’ appreciation (OA). QTL markers are semi-transparent and have deeper shades of color proportionally to the number of EtNAM subfamilies 
in which they are detected. Data analysis was conducted on BLUP values combined across locations.D
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(Fig. 4B). In individual EtNAM families and in local experiments, 
OA was often mapped in association with phenology QTL, con-
firming the importance of early maturity traits for local farmers 
(SI Appendix, Fig. S14). These included chromosome 1A and 1B 
in EtNAM families N5, N19, N45, as well as several signals on 
chromosome 2A in families N16 and N5, which correspond to 
meta-QTL already reported in literature (37). On chromosome 
1B, we identified OA QTL specific for the Adet environment in 
family N3. In this analysis, several OA QTL comapped with yield 
component traits including number of spikelets per spike, spike 
length, and GY (SI Appendix, Fig. S14). These positions may not 
be relevant to the trait in other genetic backgrounds (SI Appendix, 
Table S10) and may support the prioritization of EtNAM sub-
families for breeding. In both GWAS and QTL mapping on the 
EtNAM, accuracy is currently insufficient to support the identi-
fication of candidate genes. However, thanks to the rapid devel-
opment of genomic tools on durum wheat (38) and associated 
species (39), further studies may explore QTL candidate genes 
and narrow down mapping intervals using a combination of for-
ward and reverse genetics approaches (40, 41).

Implications for Breeding Programs. Data-driven methods are 
causing a transformational change in breeding. The availability 
of large-scale data including those deriving from genomics, 
phenomics, and remote sensing discloses new possibilities to 
accelerate genetic gain and deliver innovation tailored to end users 
(21). Our data show that, in a quantitative breeding framework, 
PVS data can add to the phenotypic characterization of tested 
materials to enhance selection accuracy for target environments. 
The involvement of smallholder farmers has the advantage of 
targeting local adaptation in challenging environments, prioritizing 
genetic materials with higher appreciation and therefore potential 
for uptake by local farmers. Farmer evaluations, however, cannot 
be the only driver of selection. There is the need for different 
data and approaches to come together into a coherent data-driven 
dimension bringing together farmers, breeders, and data scientists.

GS coupled with PVS could be used at early stages of the breed-
ing pipeline. The resulting selection of lines, reinforced by quan-
titative data about farmers’ preference, can be moved on farm to 
test their performance in a larger set of environments closer to the 
intended use (42) while informing about farmers’ choice processes 
(15). GS could then be moved in a decentralized framework to 
improve selection accuracy and genetic gain via 3D-breeding (22). 
Indeed, the PVS approach described here still relies on a centralized 
breeding system that brings several limitations. These include high 
cost per datapoint and limited capacity for representation of envi-
ronmental variation (43). Moreover, experimental stations are 
seldom representative of true cropping conditions in smallholder 
farmer fields, which typically make use of lower fertilizer rates and 
less intense weeding. This may skew the farmers’ evaluation to 
follow more closely yield potential and consequently bias the eval-
uation of materials. However, thanks to its substantial alignment 
with ongoing major centralized breeding programs, the combina-
tion of on-station PVS coupled with GS could be readily integrated 
with low attrition to conduct early selection of genetic materials 
to be then validated on farm (22). The involvement of much larger 
number of farmers in a decentralized evaluation scheme building 
upon PVS-driven GS would allow to gather a broader representa-
tion of end users and consumers and further contribute to the 
tailoring of seed innovation for smallholder farming systems. A 
formal integration of PVS in modern breeding at all levels may 
also reinforce farmer organizations (44), recognized as a major 
player in supporting food security in emerging countries exposed 
to climate change. Finally, by better characterizing the role of 

gender in varietal adoption, researchers could contribute to 
empowering local women and improving their access to agricul-
tural innovation, a hallmark of food security (45).

Conclusions

We found that OA measures derived from PVS can be used in 
genomics-assisted breeding, either being explicitly factored in GS 
models to improve prediction accuracy of yield, or by mapping 
genomic loci associated to farmers’ OA. We do not underestimate 
the need to reach a better understanding of farmers’ decision pro-
cesses and preferences regarding local cultivation. The intercross-
ing of traditional genetic materials with an international breeding 
line in the EtNAM generated lines that both met farmer needs 
and provided increased production traits in target environments. 
Multiparental populations such as the EtNAM are at once research 
tools and prebreeding materials and represent an avenue to lever-
age local agrobiodiversity for crop improvement (46). Currently, 
the EtNAM RILs lines are being evaluated for prebreeding in 
different locations in Ethiopia.

In Ethiopia, durum wheat is being rapidly replaced by semi-
dwarf bread wheat varieties introduced since the 1980s (47). Durum 
wheat is cultivated on a fraction of the wheat area in the country, 
more than 99% of it represented by farmer varieties is mainly used 
for traditional preparations despite lower productivity as compared 
to bread wheat (48). Ethiopian durum wheat is markedly separated 
from the international allele pool (23), and a GS coupled with PVS 
could help unlocking its breeding potential for national and inter-
national programs. Farmers’ acceptance of new varieties is crucial 
to determine breeding success (49), and we believe that GS methods 
based on participatory approaches may improve local adaptation 
of genotypes. This calls for an effort requiring multidisciplinary 
approaches, ranging from genomics to agronomy, to climate and 
social sciences (32). This experiment shows that the traditional 
knowledge of farmers may capture varietal potential for perfor-
mance and adaptation, contributing to higher prediction accuracies, 
particularly in challenging environments.

Materials and Methods

Plant Materials. Plant materials in this study derive from two sources: a DP 
of 400 Ethiopian wheat genetic materials and a nested association mapping 
population (EtNAM) originated from a selection of landraces from the DP. The 
DP was sourced from the ex situ wheat collection at the Ethiopian Biodiversity 
Institute (EBI) and is composed of 372 wheat landraces and 28 improved varieties 
derived from breeding. Landraces were for the most part durum wheat (Triticum 
turgidum subsp. durum L.) but some were bread wheat (Triticum aestivum L.) 
(23). Landrace accessions as obtained from the EBI collection were purified in 
open field during the 2011 main season by selecting a representative spike for 
each entry and reproducing it in the following seasons. Seedlings from five seeds 
from a single spike were germinated and used to extract genomic DNA with 
a GenElute Plant Genomic DNA Miniprep Kit (Sigma‐Aldrich). DNA extraction 
was conducted in Ethiopia at the laboratories of Mekelle University, Tigray. DNA 
was pooled among seedlings from the same accessions and genotyped with the 
Infinium 90k wheat chip (50) at TraitGenetics GmbH (Germany), with details given 
in the study by Mengistu et al. (23).

The EtNAM was developed intercrossing 50 Ethiopian landraces plus an Italian 
improved variety (Bidi) with the improved durum wheat variety Asassa with inter-
national background, all belonging to the DP. Selection of the EtNAM founder lines 
was aimed at maximizing i) genetic diversity, ii) segregation of traits of agronomic 
relevance, and iii) farmer preference of genetic materials. Details on the develop-
ment of the population are given in the study by Kidane et al. (11). EtNAM RILs 
were derived from single seed descent until F8. A subset of 1,200 EtNAM RILs 
were selected from 12 families, 100 RILs each, to represent the broader diversity 
of the population. One of the selected 12 EtNAM families derives from the cross D
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between Asassa and the Italian improved variety Bidi (family N51). The remaining 
families (N1, N3, N5, N8, N10, N16, N19, N32, N36, N45, and N46) were derived 
from Asassa and landrace parentals. EtNAM RILs in the selection were genotyped 
with a subset of 13,000 most informative markers from the Infinium 90k wheat 
chip (50) at TraitGenetics GmbH (Germany). Details on the selection of the EtNAM 
families and their genotyping are given in the study by Kidane et al. (11).

Field Trials and Measurement of Agronomic Traits. The DP and the EtNAM 
were evaluated in multiple locations using similar experimental designs. Details on 
the agronomic management of field trials are given in the SI Appendix. The DP was 
phenotyped in the main season in 2012 and 2013 in Geregera (11°40′N/38°52′E) 
and Hagreselam (13°38′N/39°10′E) (SI Appendix, Fig. S1). GY was measured as 
grams of grains produced per plot and then converted into t·ha−1. Full details are 
given in the study by Mengistu et al. (23). The EtNAM was phenotyped in the main 
season of 2016 in Adet (11°15′N/37°29′E) and in Geregera (11°40′N/38°52′E), 
and in the main season of 2017 in Kulumsa (8°01′N/39°09′E) (SI  Appendix, 
Fig. S1). On the EtNAM, field technicians measured days to booting (DB), heading 
(DH), flowering (DF), and maturity (DM) when 50% of each plot reached such phe-
nological stage. After harvesting, five plants per plot were selected at random and 
used to measure PH (cm), number of total tillers per plant (NTPP), spike length (SPL, 
cm), number of seeds per spike (SPS), and number of spikelets per spike (NSPKPS). 
Biomass (BM, t ha−1), (GY, t ha−1), and thousands grain weight (TGW, grams) were 
measured on full plots’ harvest. Methods for the climatic characterization of exper-
imental locations are given in the SI Appendix.

Participatory Variety Selection. Participatory variety selection (PVS) was 
conducted when half of the plots reached flowering stage so as to maximize 
the discernment capacity between plots. Farmers taking part in the PVS were 
wheat growers living in the surroundings of each of the phenotyping loca-
tions. Before PVS, farmers were divided by gender and sorted in groups with 
five people each. Farmer groups were conducted across the field from random 
entry points and asked to evaluate their overall appreciation of each individual 
plot, defined as OA, on a Likert scale from 1 (poor) to 5 (very good). OA may be 
expressed as an answer to the following question: “how much do you like this 
plot?”. Therefore, OA scores are not bound to predefined traits, but rather reflect 
a measure of how much a farmer likes a specific variety. Farmer scores were 
individually recorded and numerically analyzed as phenotypes with details in 
the section below. Details about farmer selection and scoring procedure are 
given in the SI Appendix.

Phenotypic Data Analysis and Breakdown of Farmers’ Preference Choice 
Processes. All data analyses were conducted in R (51). Agronomic and PVS traits 
collected on the DP and on the EtNAM were used to derive best linear unbiased 
prediction (BLUP) values with R/ASReml (52). BLUP models and equations are 
given in the SI Appendix. Pearson’s correlations were performed among BLUPs 
for PVS and agronomic traits on the DP and the EtNAM if not stated otherwise. 
To avoid incurring in the Simpson’s paradox—that is, misleading correlation esti-
mates due to stratification in the data—we independently performed correlation 
according to groupings in the data (e.g., gender, location, and year). Stability 
metrics of EtNAM genotypes performance across different locations were com-
puted following the multitrait stability index method (53) implemented in R/
metan (54). The rationale of this analysis was to see whether farmer scoring 
measured in each location would correlate with yield stability that is computed on 
agronomic traits across locations. This would be a sign that farmers may capture 
adaptation potential of genotypes and thus performance across environments. 
Yield stability was measured according to Shukla’s (55) and Annicchiarico’s (56) 
methods. The Multi-Trait Stability Index was also used (53). Measures of yield 
variation as coefficient of variation and genotypic variance were also included. 
Farmers’ OA measures given in each location were then used in a Spearman’s 
correlation with stability indexes.

We used a Plackett–Luce model (28–30) to estimate farmers’ appreciation 
on genotypes. The model applies Luce’s Axiom that estimates the probability 
that a given genotype has in outperforming all the other genotypes in a set. This 
probability may be interpreted as the worth of any given genotype. Farmers’ 
assessments were converted to pairwise comparisons, in which genotypes with a 
higher value (from 1 to 5) got a “win” when compared to another genotype with 
a lower value. To optimize model convergence, we did not consider ties in the 
pairwise comparisons. Data from each individual farmer were then aggregated by 

RIL families. We considered two main effects that could potentially drive farmers’ 
choice. The first were farmers’ individual differences, such as different gender and 
locations influencing how farmers appreciate the genotypes. The second factor 
were the individual characteristics of genotypes, reported by BLUPs (57) Details 
on the procedure are given in the SI Appendix.

GS Model. Allele calls were filtered for failure rate (<20%) and heterozygosity 
(<50%) in both DP and EtNAM data. R/rrBLUP (57) was used to conduct GS with 
the GBLUP model. SNPs were imputed with the mean method in the A.mat() 
function in rrBLUP. The set of SNPs overlapping among the DP and EtNAM 
was used to run the GS. The selection model was run according to different 
scenarios. To test whether farmers’ knowledge could accurately predict wheat 
performance, we focused our GS on OA and GY. The DP was used to predict 
EtNAM performance by training the model on 100 random subsets of 4/5 of 
the DP data. All traits measured on the DP were used as predictors over EtNAM 
traits. In a second scenario, a cross validation was performed across locations 
predicting the EtNAM over EtNAM data, iteratively using data collected in one 
of the locations to predict performances in the remaining two locations. In a 
third scenario, EtNAM data were used to predict DP data by training the model 
on 100 random subsets of 4/5 of the EtNAM data, using all partitions of com-
puted BLUPs. Finally, an extended set of PVS evaluations collected on the DP 
was used to predict phenology and yield component traits on the EtNAM as in 
the first scenario described above. In all prediction scenarios, mean prediction 
accuracy and SE were derived from Pearson’s correlations between individual 
predictions and observed data.

Forward Genetics and Genetic Map Construction. The same SNP set used in 
GS was employed in a GWAS focusing on BLUPs for agronomic traits and farmer 
appreciation traits. Sequences of SNP marker probes were obtained by TraitGenetics 
GmbH (Germany) and mapped on the Svevo reference genome (38) available at the 
European Nucleotide Archive (Project: PRJEB22687) using bwa (58) and samtools 
(59) with no upstream filtering, obtaining a hypothetical genomic physical position 
for each marker. The GWAS was run in R/GAPIT (60), using the Bayesian-information 
and LD iteratively nested keyway (BLINK) method (61). The first three principal com-
ponents of SNP data were used as covariates. The QQ plots produced by the model 
were manually inspected to evaluate model fit. A Bonferroni multiple test threshold 
was used to determine significance at a nominal P-value of 0.05. A less stringent 
FDR-corrected p-value threshold (62) is reported on plots when relevant.

SNPs were loaded in JoinMap® 5 (63) to construct linkage maps. Genotype 
data were filtered, allowing a marker segregation distortion (departure from the 
expected 1:1 segregation ratio, considering a:b genotypes) up to a threshold 
P = 1E−05, corresponding to a χ2 value of >23.9. For each family, linkage 
groups (LGs) were determined using the group function including markers with 
a recombination frequency <0.35 and a minimum LOD = 6.0. LGs were selected 
to possibly include makers belonging to the same chromosome or markers from 
different chromosomes that were not separated at LOD 16. Details for marker 
cleaning and LG consolidation are given in SI Appendix.

Mapping of QTL was performed in R/qtl2 (64). Linkage maps were associated 
to SNP data and phenotypes for each EtNAM family. Pseudomarkers were included 
with step 1, and mapping was conducted with kinship correction estimated with 
the leave-one-chromosome-out method, i.e., on all chromones except the one 
on which mapping is performed. QTL were mapped with a linear mixed model 
with a polygenic effect estimated under the null hypothesis of no QTL. The 90th 
percentile of the permuted LOD score distributions with 1,000 permutations was 
used to define significant QTL. QTL confidence intervals were defined with a peak 
drop of LOD=1 and Bayes credible intervals at 0.9.

Data, Materials, and Software Availability. Data management relied on R/
tidyverse (65) and R/rgdal (66). Plotting made use of R/ggplot2 (67), R/raster 
(68), and R/patchwork (69). All scripts are available on the GitHub page of the 
corresponding author at https://github.com/mdellh2o/EtNAM.GS. Raw data are 
available through Dryad at https://doi.org/10.5061/dryad.w6m905qrv.

ACKNOWLEDGMENTS. We thank Dejene Kassahun Mengistu and Mulugeta 
Tilahun for their contribution in the development of the EtNAM and in the 
coordination of the fieldwork. We are grateful to Mercy Macharia Wairimu and 
Leonardo Caproni for the useful discussions. We thank the farmers who took part 
in the participatory evaluation of the EtNAM. In Adet: Balew Dessie, Tewachew D

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.p

na
s.

or
g 

by
 1

72
.2

26
.2

6.
11

 o
n 

M
ar

ch
 2

7,
 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

17
2.

22
6.

26
.1

1.

http://www.pnas.org/lookup/doi/10.1073/pnas.2205774119#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205774119#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205774119#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205774119#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205774119#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205774119#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205774119#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205774119#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205774119#supplementary-materials
https://github.com/mdellh2o/EtNAM.GS
https://doi.org/10.5061/dryad.w6m905qrv


10 of 10   https://doi.org/10.1073/pnas.2205774119 pnas.org

Alebachew, Sintayehu Hunegnaw, Atalaye Demle, Abraraw Balew, Nitsuh 
Geremew, Abebu Geremew, Sindu Hunegnaw, Yezebalem Kassa, Alima Emiyu. 
In Geregera: Admasu Yigizaw, Getie Adane, Mulat Yigzaw, Adino Tesfaw, Birhan 
Alemu, Eset Tesifaw, Asnaku Gizaw, Bizuayehu Yigizaw, Tsegaye Birku, Emaway 
Admasu. In Kulumsa: Eshetu Muger, Tekolla Tamiru, Solomon Agonafir, Ashete 
Bekele, Mohammed Lenjiso, Helen Tesfaye, Demekech Shimels, Mulu Gebi, 
Etenesh Melese, Merima Aman.

Author affiliations: aCenter of Plant Sciences, Scuola Superiore Sant’Anna, Pisa 56127, 
Italy; bAmhara Regional Agricultural Research Institute, Bahir Dar 6000, Ethiopia; cDigital 
Inclusion, Bioversity International, Parc Scientifique Agropolis II, Montpellier 34397, 
France; dDepartment of Agricultural Sciences, Inland Norway University of Applied 
Sciences, Hamar 2322, Norway; eDepartment of Biosciences, University of Milan, Milan 
20133, Italy; fCenter for Desert Agriculture, King Abdullah University of Science and 
Technology, Thuwal 23955-6900, Saudi Arabia; gBiodiversity for Food and Agriculture, 
Bioversity International, Addis Ababa 1000, Ethiopia; and hBiodiversity for Food and 
Agriculture, Bioversity International, Nairobi 00621, Kenya

1. C. Rosenzweig et al., Assessing agricultural risks of climate change in the 21st century in a global 
gridded crop model intercomparison. Proc. Natl. Acad. Sci. U.S.A. 111, 3268–3273 (2014).

2. P. L. Pingali, Green revolution: Impacts, limits, and the path ahead. Proc. Natl. Acad. Sci. U.S.A. 109, 
12302–12308 (2012).

3. S. K. Lowder, J. Skoet, T. Raney, The number, size, and distribution of farms, smallholder farms, and 
family farms worldwide. World Dev. 87, 16–29 (2016).

4. Ending hunger: Science must stop neglecting smallholder farmers. Nature 586, 336 (2020).
5. J. F. Morton, The impact of climate change on smallholder and subsistence agriculture. Proc. Natl. 

Acad. Sci. U.S.A. 104, 19680–19685 (2007).
6. G. N. Atlin, J. E. Cairns, B. Das, Rapid breeding and varietal replacement are critical to adaptation of 

cropping systems in the developing world to climate change. Glob Food Sec. 12, 31–37 (2017).
7. F. Casañas, J. Simó, J. Casals, J. Prohens, Toward an evolved concept of landrace. Front. Plant Sci. 8, 

145 (2017).
8. S. G. Milner et al., Genebank genomics highlights the diversity of a global barley collection. Nat. 

Genet. 51, 319–326 (2019).
9. A. Monteagudo et al., Harnessing novel diversity from landraces to improve an elite barley variety. 

Front. Plant Sci. 10, 434 (2019).
10. L. M. Nice et al., Development and genetic characterization of an advanced backcross-nested 

association mapping (AB-NAM) population of wild x cultivated barley. Genetics 203, 1453–1467 
(2016).

11. Y. G. Kidane et al., A large nested association mapping population for breeding and quantitative 
trait locus mapping in Ethiopian durum wheat. Plant Biotechnol. J. 17, 1380–1393 (2019).

12. E. J. Millet et al., Genomic prediction of maize yield across European environmental conditions. Nat. 
Genet. 51, 952–956 (2019).

13. P. Juliana et al., Improving grain yield, stress resilience and quality of bread wheat using large-scale 
genomics. Nat. Genet. 51, 1530–1539 (2019).

14. J. K. Haile, M. M. Nachit, K. Hammer, A. Badebo, M. S. Röder, QTL mapping of resistance to race 
Ug99 of Puccinia graminis f. sp. tritici in durum wheat (Triticum durum Desf.). Mol. Breed. 30, 
1479–1493 (2012).

15. C. Mancini et al., Joining smallholder farmers’ traditional knowledge with metric traits to select 
better varieties of Ethiopian wheat. Sci. Rep. 7, 13076 (2017).

16. M. A. McEwan et al., “Breaking through the 40% adoption ceiling: Mind the seed system gaps”. 
A perspective on seed systems research for development in One CGIAR. Outlook Agric. 50, 5–12 
(2021).

17. K. Mausch, C. J. M. Almekinders, C. Hambloch, M. A. McEwan, Putting diverse farming households’ 
preferences and needs at the centre of seed system development. Outlook Agric. 50, 356–365 
(2021), 10.1177/00307270211054111.

18. S. Ceccarelli, S. Grando, Participatory plant breeding: Who did it, who does it and where? Exp. Agric. 
56, 1–11 (2019).

19. E. T. Teferi, G. T. Kassie, M. E. Pe, C. Fadda, Are farmers willing to pay for climate related traits of 
wheat? Evidence from rural parts of Ethiopia Agric. Syst. 185, 102947 (2020).

20. Y. G. Kidane et al., Genome wide association study to identify the genetic base of smallholder farmer 
preferences of durum wheat traits. Front. Plant Sci. 8, 1230 (2017).

21. J. van Etten et al., Crop variety management for climate adaptation supported by citizen science. 
Proc. Natl. Acad. Sci. U.S.A. 116, 4194–4199 (2019).

22. K. de Sousa et al., Data-driven decentralized breeding increases prediction accuracy in a challenging 
crop production environment. Commun. Biol. 4, 944 (2021), 10.1038/s42003-021-02463-w.

23. M. Dk et al., High-density molecular characterization and association mapping in Ethiopian durum 
wheat landraces reveals high diversity and potential for wheat breeding. Plant Biotechnol. J. 14, 
1800–1812 (2016).

24. B. Teeken et al., Beyond “Women’s Traits”: Exploring how gender, social difference, and household 
characteristics influence trait preferences. Front. Sustain. Food Syst. 5, 490 (2021).

25. E. Weltzien, F. Rattunde, A. Christinck, K. Isaacs, J. Ashby, Gender and farmer preferences for varietal 
traits. Plant Breed Rev. 43, 243–278 (2019).

26. A. B. Woldeyohannes et al., Data-driven, participatory characterization of farmer varieties discloses 
teff breeding potential under current and future climates. Elife 11, e80009 (2022).

27. D. Burman et al., Participatory evaluation guides the development and selection of farmers’ 
preferred rice varieties for salt- and flood-affected coastal deltas of South and Southeast Asia. Field 
Crops Res. 220, 67–77 (2018).

28. R. L. Plackett, Analysis of permutations. J. Appl. Stat. 24, 193–202 (1975).
29. V. Cane, R. D. Luce, Individual choice behavior: A theoretical analysis. J. R Stat. Soc. Ser. A 123, 486 

(1960).
30. H. L. Turner, J. van Etten, D. Firth, I. Kosmidis, Modelling rankings in R: The PlackettLuce package. 

Comput. Stat. 35, 1027–1057 (2020).
31. R. K. Varshney, C. Ojiewo, E. Monyo, A decade of Tropical Legumes projects: Development and 

adoption of improved varieties, creation of market-demand to benefit smallholder farmers and 
empowerment of national programmes in sub-Saharan Africa and South Asia. Plant Breed. 138, 
379–388 (2019).

32. J. R. Witcombe et al., Adoption of rice varieties. 2. Accelerating uptake. Exp. Agric. 53, 627–643 
(2017).

33. J. Crossa et al., Genomic prediction of gene bank wheat landraces. G3: Genes, Genomes, Genet. 6, 
1819–1834 (2016).

34. C. Fadda et al., Integrating conventional and participatory crop improvement for smallholder 
agriculture using the seeds for needs approach: A review. Front. Plant Sci. 11, 1 (2020).

35. J. Steinke, J. van Etten, Gamification of farmer-participatory priority setting in plant breeding: 
Design and validation of “AgroDuos”. J. Crop. Improv. 31, 356–378 (2017).

36. P. Guan et al., Global QTL analysis identifies genomic regions on chromosomes 4A and 4B harboring 
stable loci for yield-related traits across different environments in wheat (Triticum aestivum L.). 
Front. Plant Sci. 9, 529 (2018).

37. D. K. Saini, P. Srivastava, N. Pal, P. K. Gupta, Meta-QTLs, ortho-meta-QTLs and candidate genes 
for grain yield and associated traits in wheat (Triticum aestivum L.). Theor. Appl. Genet. 135, 
1049–1081 (2022).

38. M. Maccaferri et al., Durum wheat genome highlights past domestication signatures and future 
improvement targets. Nat. Genet. 51, 885–895 (2019).

39. C. Uauy, Wheat genomics comes of age. Curr. Opin. Plant Biol. 36, 142–148 (2017).
40. K. V. Krasileva et al., Uncovering hidden variation in polyploid wheat. Proc. Natl. Acad. Sci. U.S.A. 

114, E913–E921 (2017).
41. N. M. Adamski et al., A roadmap for gene functional characterisation in crops with large genomes: 

Lessons from polyploid wheat. Elife 9, e55646 (2020).
42. J. Steinke, J. van Etten, P. M. Zelan, The accuracy of farmer-generated data in an agricultural citizen 

science methodology. Agron. Sustain. Dev. 37, 1–12 (2017).
43. J. Van Etten et al., First experiences with a novel farmer citizen science approach: Crowdsourcing 

participatory variety selection through on-farm triadic comparison of techonologies (Tricot). Exp. 
Agric. 55, 275–296 (2019).

44. L. Bizikova et al., A scoping review of the contributions of farmers’ organizations to smallholder 
agriculture. Nat. Food 1, 620–630 (2020).

45. C. O’Brien et al., Gender as a cross-cutting issue in food security: The NuME project and quality 
protein maize in Ethiopia. World Med. Health Policy 8, 263–286 (2016).

46. M. F. Scott et al., Multi-parent populations in crops: A toolbox integrating genomics and genetic 
mapping with breeding. Heredity (Edinb) 125, 396–416 (2020).

47. D. P. Hodson, Ethiopia’s transforming wheat landscape: Tracking variety use through DNA 
fingerprinting. Sci. Rep. 10, 18532 (2020).

48. T. S. Walker, J. Alwang, Crop Improvement, Adoption, and Impact of Improved Varieties in Food 
Crops in Sub-Saharan Africa Consortium of International Agricultural Research Centers and CAB 
International (2015). 

49. R. Lunduka, M. Fisher, S. Snapp, Could farmer interest in a diversity of seed attributes explain 
adoption plateaus for modern maize varieties in Malawi? Food Policy 37, 504–510 (2012).

50. S. Wang et al., Characterization of polyploid wheat genomic diversity using a high-density 90,000 
single nucleotide polymorphism array. Plant Biotechnol. J. 12, 787–796 (2014).

51. R Core Team, R: A language and environment for statistical computing (Version 4.2.1, R Foundation 
for Statistical Computing, Vienna, Austria, 2018).

52. A. R. Gilmour, B. J. Gogel, B. R. Cullis, S. J. Welham, R. Thompson, ASReml User Guide Release 4.1 
Functional Specification (VSN International Ltd, Hemel Hempstead, HP1 1ES, UK, 2014), www.vsni.co.uk.

53. T. Olivoto, A. D. C. Lúcio, J. A. G. da Silva, B. G. Sari, M. I. Diel, Mean performance and stability in 
multi-environment trials II: Selection based on multiple traits. Agron. J. 111, 2961–2969 (2019).

54. T. Olivoto, A. D. C. Lúcio, metan: An R package for multi-environment trial analysis. Methods Ecol. 
Evol. 11, 783–789 (2020).

55. G. K. Shukla, Some statistical aspects of partitioning genotype-environmental components of 
variability. Heredity (Edinb) 29, 237–245 (1972).

56. 2002 Annicchiarico, Cultivar adaptation and recommendation from alfalfa trials in northern Italy. J. 
Genet. Breed. 46, 269–278 (1992).

57. J. B. Endelman, Ridge regression and other kernels for genomic selection with R package rrBLUP. 
Plant Genome. 4, 250–255 (2011).

58. H. Li, R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform. 
Bioinformatics 25, 1754–1760 (2009).

59. H. Li et al., The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
60. J. Wang, Z. Zhang, GAPIT Version 3: Boosting power and accuracy for genomic association and 

prediction. Genomics Proteomics Bioinformatics 19, 629–640 (2021).
61. M. Huang, X. Liu, Y. Zhou, R. M. Summers, Z. Zhang, BLINK: A package for the next level of genome-

wide association studies with both individuals and markers in the millions. Gigascience 8, giy154 
(2019).

62. J.D. Storey, R. Tibshirani, Tibshirani, Statistical significance for genomewide studies. Proc. Natl. Acad. 
Sci. U.S.A 100, 9440–9445 (2003).

63. J. W. Van Ooijen, JoinMap® 4 Software for the Calculation of Genetic Linkage Maps in Experimental 
Populations (JoinMap, Kyazma BV, Wageningen, Netherlands, 2006).

64. G. A. Churchill et al., The Collaborative Cross, a community resource for the genetic analysis of 
complex traits. Nat. Genet. 36, 1133–1137 (2004).

65. H. Wickham et al., Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).
66. R. Bivand et al., package ‘rgdal’. R package version 1.5-32 (2015).
67. H. Wickham, W. Chang, M.H. Wickham, package ‘ggplot2’. Create elegant data visualisations using 

the grammar of graphics. R package version 3.3.6 (2016)
68. R. Hijmans, J. van Etten, raster: Geographic analysis and modeling with raster data. R package 

version 2.0-12 (2012).
69. T. L. Pedersen, patchwork: The composer of plots. R package version 1.0.0 (2019).

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 1
72

.2
26

.2
6.

11
 o

n 
M

ar
ch

 2
7,

 2
02

3 
fr

om
 I

P 
ad

dr
es

s 
17

2.
22

6.
26

.1
1.

https://doi.org/10.1177/00307270211054111
https://doi.org/10.1038/s42003-021-02463-w
https://www.vsni.co.uk

	Genomics-driven breeding for local adaptation of durum wheat is enhanced by farmers’ traditional knowledge
	Significance
	Results and Discussion
	Agronomic Performance of Ethiopian Durum Wheat.
	Farmers’ Preference is a Quantitative Trait.
	Characterization of Farmers’ Choice for Breeding Applications.
	GS Using Farmers’ Traditional Knowledge.
	Genetic Targets for Wheat Prebreeding.
	Implications for Breeding Programs.

	Conclusions
	Materials and Methods
	Plant Materials.
	Field Trials and Measurement of Agronomic Traits.
	Participatory Variety Selection.
	Phenotypic Data Analysis and Breakdown of Farmers’ Preference Choice Processes.
	GS Model.
	Forward Genetics and Genetic Map Construction.

	Data, Materials, and Software Availability
	ACKNOWLEDGMENTS
	Supporting Information
	Anchor 28



