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Abstract: Seasonal forecasts coupled with crop models
can potentially enhance decision-making in smallholder
farming in Africa. The study sought to inform future
research through identifying and critiquing crop and cli-
mate models, and techniques for integrating seasonal
forecast information and crop models. Peer-reviewed arti-
cles related to crop modelling and seasonal forecasting
were sourced from Google Scholar, Web of Science,
AGRIS, and JSTOR. Nineteen articles were selected from
a search outcome of 530. About 74% of the studies used
mechanistic models, which are favored for climate risk
management research as they account for crop manage-
ment practices. European Centre for Medium-RangeWeather
Forecasts and European Centre for Medium-Range Weather
Forecasts, Hamburg, are the predominant global climate
models (GCMs) used across Africa. A range of approaches
have been assessed to improve the effectiveness of the con-
nection between seasonal forecast information and mechan-
istic crop models, which include GCMs, analogue, stochastic
disaggregation, and statistical prediction through converting
seasonal weather summaries into the daily weather. GCM
outputs are produced in a format compatible with mechan-
istic crop models. Such outputs are critical for researchers
to have information on the merits and demerits of tools
and approaches on integrating seasonal forecast and crop

models. There is however need to widen such research to
other regions in Africa, crop, farming systems, and policy.

Keywords: seasonal forecast, cropmodel, small scale farmer,
climate risk management, farm management practice

1 Introduction

Smallholder farming produces at least 75–90% of food
in Africa [1]. It is however characterised by low input and
capital investment, limited farming knowledge and trans-
port costs, poor market access, and low crop and livestock
productivity. As a result, at least 20% of smallholder farmers
in the region experience low crop productivity, leading to
perennial physical and dietary food insecurity [2]. Most
smallholder farmers practice rain-fed farming and have
highlighted seasonal climate and weather variability as the
greatest threat to their livelihood [3].

Sub-Saharan Africa experiences high seasonal rain-
fall variability [4,5]. The rainfall coefficient of variation of
ranges from 20 to 45% across sub-humid to semi-arid
agro-ecologies [6,7]. As a consequence, rain-fed crop
yields range from 15 to 60% relative to mean yield [8].
Crop yield variability has an impact on food security, with
impacts being severe amongst resource-constrained and
rain-fed-dependent smallholder farming households [3,9].

Seasonal forecast information has the potential to
improve farmers’ preparedness to seasonal weather varia-
bility. This could enhance seasonal and operational deci-
sion-making amongst farmers [10–12]. Seasonal forecasts
provide information on the magnitude and direction of
weather parameters at specific temporal and spatial scales
[13], with rainfall and temperature being the key para-
meters. These parameters are the most significant for
agricultural productivity with smallholder farmers being
more vulnerable. Using seasonal forecasts, farmers can
make seasonal and operational farm management deci-
sions affecting crop and cultivar selection, soil water
conservation, planting time, fertiliser application, and har-
vesting. Despite this potential, the uptake of seasonal fore-
cast information is lower amongst smallholder farmers
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compared to commercial farmers [14]. One of the key rea-
sons being that farmers do not commonly receive timely
and location-specific information, which is relevant to
their farming conditions [15]. Seasonal forecasts have rela-
tively low accuracy at longer lead time except in El Niño
and La Niña seasons. On the contrary, forecasts at shorter
lead time have relatively high accuracy. Communication
of seasonal forecasts in probabilistic terms especially for
forecasts at longer lead times also decreases the uptake
amongst users [16]. Facilitating and demonstrating the use-
fulness of coupling seasonal forecasts with crop impact
models can support the creation of location-specific, timely
and relevant information, thereby increasing the value and
chances of uptake by farmers [17,18].

Crop models provide means of conducting quantita-
tive ex ante evaluation of cropping systems’ outputs to
given seasonal information [19]. They provide alternate
off-field, cost-effective, less complex and less risky means
of assessing crop yields and farmmanagement in response
to seasonal forecast information [20]. Crop models have
been widely used in yield prediction, coupled with sea-
sonal forecast information in the United States of America
[21], Europe [22], Australia [23], and east Africa [24]. There
is, however, limited research on the use of crop models
with seasonal forecasts in Africa [25]. Part of the reason
is that coupling seasonal forecast information and crop
models can present a variety of complexities. For instance,
seasonal forecasts are issued as spatial and temporal sum-
maries over a season and are reported in probabilistic
terms [26], whilst most mechanistic crop models require
weather data on a daily step [20,27]. This reduces the
compatibility between seasonal forecast and crop models
for use in crop and climate variability research.

It is important to understand the nature and scope of
studies undertaken in Africa, which apply coupled cli-
mate forecast information and crop modelling, to better
understand the potential for the usefulness of such inte-
grated approaches albeit the inherent challenges and
opportunities in enhancing decision-making related to
climate variability management. This study reviews pre-
vious studies, which integrate seasonal forecast informa-
tion with crop models for all aspects related to climate
risk management. Through the exploration of these pub-
lished works, the study aims to (1) identify and critique
the crop and climate models and the techniques used to
integrate seasonal forecast information into crop models
in studies related to crop management practices. This will
inform future research on the most commonly used tools
and approaches and advantages of using such. Future

studies on aspects related to seasonal forecasting and
crop models will be able to easily identify the most appro-
priate tools and approaches suitable for African condi-
tions. (2) The study also aims to evaluate changes in crop
productivity attributed to the use of seasonal forecast
information and crop models in African farming systems.

2 Methodology

2.1 Systematic literature review

The study used the systematic review approach to explore
the scope and state of integrated seasonal forecasting
and crop modelling for enhanced decision-making in
African smallholder farming systems. The systematic review
approach was used as it methodically and critically evalu-
ates literature with the aim of answering certain specific
research questions. Traditional literature review is highly
vulnerable to personal bias due to pre-conceived knowl-
edge. In contrast, systematic review undertakes a critical
review of the studies based on empirical evidence. It is
also hinged on planning; undertaking, and reporting of
the review outputs and follows a clearly defined compre-
hensive and repeatable protocol [28].

2.1.1 Research themes

The review was conducted along the following questions:
1. What is the geographical distribution of peer-reviewed

research on integration of seasonal forecast informa-
tion and crop models within Africa?

2. What are the most common sources of seasonal fore-
cast information in Africa?

3. What are the most used crop models in Africa for inte-
gration with seasonal forecasts?

4. What techniques are more appropriate for integrating
seasonal information and crop models in Africa?

5. What is the intended application of studies integrating
seasonal forecast and crop models?

6. What are the subject crops in research involving inte-
grating seasonal forecasts and crop models?

7. What are the range of farmmanagement decisions that
are covered by studies integrating seasonal forecast
information and crop models?

8. What are the changes in productivity attributed to use
of seasonal forecast information?
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2.2 The systematic review process

The study used peer-reviewed articles, books, and book
chapters covering a 15-year period, dating 1 January 2007
to 30 May 2022. The study did not consider grey literature
as they were deemed less robust in comparison, due to
combined crop and seasonal forecast technical com-
plexity of integration. The original set of peer-reviewed
articles was sourced from Google Scholar, Web of Science,
JSTOR, and AGRIS online databases and portals, which
were found to be exhaustive. These were selected as they
have a large reputable database of peer-reviewed litera-
ture. The study used specific key words to select articles
from the various databases and portals, as shown below.

Google Scholar: “seasonal forecast” AND “crop models”
in “Africa.”

Web of Science: seasonal forecast and crop models in
Africa.

JSTOR: seasonal forecast and crop models in Africa.
AGRIS: “seasonal forecast”AND “cropmodels” in “Africa.”
Use of a range of different key words and Boolean

symbols was important as search engines and portals
are sensitive to the order of search key words and Boolean
symbols. The technique has been found to be effective and
exhaustive in searching for articles in various databases and
portals [29].

The initial database search yielded 530 articles across
all the four databases (Figure 1):

JSTOR: 314;
Google Scholar: 132;
Web of Science: 52; and
AGRIS: 32.
The review process excluded articles, books, and

book chapters that (1) are not based on the African con-
text, (2) do not have an explicit methodology that couple
seasonal forecasts and crop models for repeatability and
(3) do not provide a quantitative analysis of yield responses,
and (4) were not carried out over the selected period
(2007–2022). The period was considered after 2007 as a
new generation of models generating seasonal forecasts
came into operation hence the specific period. The articles
were then screened through elimination steps by assessing
suitability for the study based on title, abstract, and the full
reading of the article. Duplicates were removed in the pro-
cess, so the study finally retained 19 articles after the pro-
cess (Figure 1). Whilst this number is low, it is a considerate
representation of the limited studies, which have been car-
ried out on the continent on the subject, and this number
was considered sufficient to review the scope, tools, and
approaches used in Africa. Some review studies have used
articles as few as six [30]. References outside the range and
scope of the study were included to enable understanding
of concepts despite being published outside the spatial and
temporal boundaries of this study.

2.3 Seasonal forecasting

Seasonal forecasts are predictions of the average seasonal
conditions across a region and over months ahead due to
slowly changing parts of the climate system, e.g., about 3
months. Such predictions are difficult except under El
Niño events, where accuracy levels are relatively high.
They are often presented as tercile probabilities. The
major determinant of empirical forecasts is the interac-
tion between sea surface temperatures and atmospheric
conditions. Also, seasonal forecasts use climate models
to predict the size and magnitude of weather parameters.
Sub-seasonal forecasts are weather predictions from 2
weeks to about 3 months. Seasonal forecasts are divided
into statistical and dynamic forecasts [31].

Statistical forecasts are hinged on the mathematical rela-
tionship between historical, current, or expected values of
predictor and the predictand. Statistical models can be
grouped into analogues and stochastic disaggregation
methods. Regression approach is the most common statistical
forecasting technique [32]. The skill of statistically generated
seasonal forecasts is relatively higher under the El Niño phase
of the el niño-southern oscillation (ENSO) compared to the La

Studies from database search=530

Studies remaining after removing 

duplicates 

Studies remaining after 

screening of titles

Studies remaining after 

screening of abstracts 

Studies remaining after screening 

of full article

Studies finally considered=19

26

93

217

19

Figure 1: Thematic presentation of the systematic literature review
process.
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Niña or neutral conditions. The ENSO-neutral phase is char-
acterised by non-significant increase in sea surface tempera-
tures (SST), which are not easily detected compared to usually
more extreme warming and cooling characterising El Niño
and La Niña seasons, respectively [32,33]. In circumstances
where it is possible to account for all the predictors, statistical
models require rigorous testing to ensure operational relia-
bility. This can be improved through addition of atmospheric
predictors in the statistical model [34].

Historical analogue-based forecasts are based on cate-
gorising historical climate predictors and identifying the
future climate predictors class within historical categories.
This approach is suitable when historical data are suffi-
ciently available. Limited historical weather data reduce
sample size, and the categories will not be well defined,
thus compromising the methodology and forecast quality.
Where there is high confidence in the predictor values
resembling a specific historical season, the probability-weighted
historic analogue approach is preferred. Probability-weighted
historic analogue-based forecasts combine the analogue and
regression approach [35]. To further improve the accuracy and
efficiency of the analogue approach, the analogue can be com-
bined with the GCM approach [36].

Stochastic disaggregation: Forecasts are often issued
in the form of temporal summaries. To connect this infor-
mation to mechanistic crop models, forecast summaries
can be disaggregated into daily weather data. Stochastic
weather generators create a series of synthetic daily
weather data with statistical characteristics similar to
the expected climate. Stochastic disaggregation captures
the high frequency variability of specific weather para-
meters whilst reproducing the low frequency of highly
variable weather events. This can be undertaken through
(1) calibration of a stochastic weather generator or (2)
restriction of the simulated daily weather data para-
meters to those of the expected forecast [37].

Dynamic forecasting utilises global climate models
(GCMs) and regional climate models (RCMs) that mimic
the land–ocean–atmosphere systems to predict weather.
Notable examples include climate forecast system version 2
(CFSv2) [38], SEAS5 [39], hadley centre global environ-
mental model [40], European centre for medium-range
weather forecasts, Hamburg (ECHAM) [41]. and geophysical
fluid dynamics laboratory [42]. Dynamic forecasting
accounts for a wide range of land, sea, and atmospheric
variables; thus, there is greater confidence in the predic-
tions compared to statistical climate forecasting [43,44].
GCM-based forecasts are relatively more accurate at
large scale (250 and 600 km) but have poor resolution
at smaller scale (10 km) [45]. Parameterisation of ocean
and atmospheric thermodynamics is however complex

and demands more computational resources to account
for numerous parameters, such as temperature and
pressure [46].

Consensus forecasts are forecasts, which result from
merger or integration of two or more forecast outputs
producing a single representative forecast. Most opera-
tional forecasts especially those officially issued by gov-
ernments in SSA are based on consensus from two or
more forecasts. These are developed in regional climate
outlook forums, where representatives of national meteor-
ological organisations synthesise a wide variety of forecast
information (local statistical forecasts, analogue analysis,
dynamic forecasts, and local experience) to agree on a
forecast for the season for temperature and rainfall condi-
tions [31].

2.4 Crop models

Statistical models use mathematical relationship between
predictor values such as climate summaries and out-
comes of interest such as crop yield. Similarly, they pro-
duce outputs at a coarse summary scale, e.g., monthly or
3-monthly time step [47]. The reduced data requirements
for model set up and simulation are an incentive to use
statistical models, but this also limits assessment of some
important aspects such as crop management (crop variety,
irrigation, and mulching) [48]. Statistical crop models have
limited capability to simulate plant phenology, water bal-
ance, or pest dynamics. They are relatively easier to calibrate
but the set relationships become highly arguable under con-
ditions, which they were not parameterised for ref. [49].

Ricardian model involves coupling statistical crop
models with additional tools such as socio-economic
models allowing for reporting crop yield changes in eco-
nomic terms, which improve their usefulness in climate
change and variability impact management [50]. Net
farm revenues are regressed on independent variables
affecting crop production, such as market price, input
costs, market access, water flow, rainfall, and tempera-
ture [51]. The approach assumes that farm management
decisions in climate change and variability are based on
the profitability of the strategy. Decision-making in small-
holder farming systems is however based on many socio-
economic and bio-physical aspects some of which cannot
be accounted for by Ricardian models [52]. Land valuation
is challenging in smallholder farming systems of Southern
Africa since most of the land is state owned; hence, there
may be inconsistences. The Ricardian approach assumes
that land value is indirectly derived from commodity
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prices. Use of the approach in Africa is consequently
further limited by unregulated and weak land markets.

Mechanistic models determine crop productivity through
mathematical relationships between plant physiological pro-
cesses (e.g., photosynthesis, transpiration) and environmental
conditions (e.g., soil, climate).Mechanistic cropmodelsmimic
plant phenological and physiological processes [53]. Complex
cropping systems can be modelled, and the reliability
increases with the availability of high-quality experi-
mental data for calibration. Manymechanistic cropmodels
simulate multiple crop management aspects, such as crop
rotation, intercropping, cropping calendar, different crop
types and varieties, fertility, irrigation, mulching, or tillage.
The complexity of mechanistic models requires extensive
data sets for parameterisation and calibration, which occurs
inconsistently with African agricultural systems due to
limited research skill or financial resources [20,27].

3 Results

3.1 Integrating seasonal forecasts into crop
models

3.1.1 Evolution of studies

The frequency of publications involving seasonal forecasts
and cropmodels in Africa gradually increases over time. At
some point, however, the pattern of the frequency of pub-
lications fluctuates irregularly due to a drop in the fre-
quency of publications in 2016. The highest number of
publications on the subject in question was recorded in
year 2015. In years 2012, 2019, and 2021, no studies were
identified that were related to integration of seasonal fore-
casts into crop models from our search (Table 1).

3.1.2 Spatial distribution of studies

Almost the entire African continent has been covered by
research involving different aspects of integration of crop
model and seasonal forecasts. Table 1 and Figure 2 pro-
vide a general overview of the reviewed studies in terms
of geographical distribution, sources of seasonal forecast
information, crop models, and techniques used to inte-
grate seasonal forecast and crop models in the region
(Table 1, Figure 2). Most of the studies are concentrated
in west Africa (58%) (11). Most of these were in the arid to
semi-arid Sahel region. Limited research was undertaken

in eastern and southern Africa in proportions of 16% (4)
and 18% (3), respectively. No studies were undertaken in
central and north Africa during the period under consid-
eration (Table 1 and Figure 2).

3.1.3 Crops covered

Studies that integrate seasonal forecasts and crop models
covered a wide range of crops. Maize, a common staple
food crop for Southern Africa and parts of East Africa,
was the most common crop across all the studies in
Africa (Table 1). Most of the crops covered by studies on
the integration of seasonal forecast information and crop
models were cereals (78%) and were distributed in all of
Africa except north Africa. Maize crop was generally dis-
tributed across all regions of Africa except North Africa.
Drought-tolerant crops such as sorghum or pearl millet
were also the subject of research (27%), largely in the
west African region but with no research being undertaken
in other parts of Africa. In addition, there was limited
research involving peanuts (11%) and it was only limited
to west Africa. All the other crops were represented in very
low proportions. Beans, cotton, groundnuts, manioc, rice,
wheat, and yams are also studied in a few instances, pre-
dominantly in West Africa (Table 1) [54,55].

3.1.4 Application of research outputs

Application of research outputs is strategic, tactical and
operational representing long-term and inter- and intra-
seasonal temporal spans [56]. At least 60% (11) of the
studies were utilised for tactical and operational deci-
sion-making with [57] being a notable example [54],
focused on tactical decision-making only, for example,
improved cropping technology such as hybrid seeds com-
pared to current and traditional seeds. At least 74% (14) of
the studies focused on yield prediction, but it was either
under tactical or operational decision-making not just sole
yield prediction under seasonal forecast information
scenarios with [54,58 Q1] being the most notable. Only
two studies [59,60] interpreted results in a policy dis-
cussion towards enhanced food security (Table 2).

3.1.5 Farm management practices

Most studies (58%) in the region involved assessment of
farm management practices using seasonal forecast and
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crop models. There was a higher density of farm manage-
ment practices in west Africa as most of the studies were
based in the sub-region (Table 2 and Figure 3). Planting
dates were the most common practice in west Africa.
They were also less distributed in other regions such as
east and southern Africa. Similarly, fertiliser use was
more dominant in west Africa compared to other regions.

Change in choice of cultivar was evenly distributed across
all regions except regions where no research on inte-
grating seasonal forecast and crop models was undertaken
(Figure 3).

Most of these studies (Figure 3) assessed the impacts
of a range of planting dates on crop yields given certain
specific weather information [61]. Some studies assessed

Figure 2: Spatial distribution of studies on integration of seasonal forecasts and crop models in smallholder farming systems in Africa for
the period, 2007–2022.

Table 2: Application of research integrating seasonal forecast information into crop models

Author(s) Yield projection Operational decision Seasonal decision support Policy

Mishra et al. (2008) ✓ ✓ ✓
Ogutu et al. (2018) ✓ ✓
Sultan et al. (2010) ✓ ✓
MacCarthy et al. (2017) ✓ ✓ ✓
Asfaw et al. (2018) ✓ ✓ ✓
Muswera (2015) ✓
Ramarohetra et al. (2015) ✓ ✓
Takale (2017) ✓ ✓ ✓
Gommes (2013) ✓ ✓ ✓
Garcia-Carreras et al. (2015) ✓ ✓
Paeth et al. (2016) ✓ ✓ ✓
Roudier et al. (2016) ✓
Zinyengere et al. (2011) ✓ ✓ ✓
Hansen et al. (2009) ✓ ✓ ✓
Roudier et al. (2011) ✓ ✓
Laudien et al. (2020) ✓ ✓
Badmus and Ariyo (2011) ✓ ✓ ✓
Malherbe et al. (2014) ✓
Oettli et al. (2011) ✓
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single farm management practice [62] whereas others
assessed a combination of management practices [63,64].
A notable proportion of studies assessed productivity from
different crop types, such as maize, peanut, millet, and
sorghum [55], as shown in Figure 3, which also included
the assessment of different varieties, such as early and late
maturing maize varieties [62]. Some studies evaluated fer-
tility through organic and inorganic fertilisers, such as
manure under seasonal forecasts [63]. A few studies only
assessed shifts in cropping locations to manage climate
risk and this involved evaluating the changes in soil type
in the different agro-ecologies [64] as seen in Figure 3.

3.2 Tools for integrating seasonal forecasts
and crop models in Africa

3.2.1 Seasonal forecast information

The sources of seasonal forecast information used in past
studies were diverse. At least 70% of the studies derived
forecasts from GCMs, with European Centre for Medium-
RangeWeather Forecasts (ECMWF) and ECHAM being the
most common. About 11% of the studies were related to
the ENSO cycle (Table 1), which is a major climate driver
over Africa [65,Q2 66] (Table 1).

Most of the forecasts across the studies were derived
from the ECMWF (System 4) model (Table 1), which is
developed and run by European-based forecasters [67].
Most of the research in Africa was spearheaded by Eur-
opean-based researchers who were also working with the

ECMWF model, hence the increased frequency of use of
the model. Only about 18% (3) of such studies used the
ECHAM model. ECHAM is a GCM developed by the Max
Planck Institute for Meteorology [43,54,68]. Some other
sources of seasonal forecast data included the CFSv2 and
CNRM GCMs, which were used in about 12% (2) of the
studies. CSFv2 is a coupled ocean‐atmosphere‐land model
that was developed by the National Centers for Environ-
mental Prediction (National centre for environmental pre-
diction/NOAA) [69] whilst CNRM was developed by the
National Centre for Meteorological Research [70]. About
6% (1) of the studies used Climate Hazards Group Infra-
Red Precipitation with Station, which is satellite data
aggregated and maintained by the United States Geolo-
gical Survey and Climate Hazards Center [71]. About 12%
(2) of the studies used RCM as a source of seasonal forecast
information [72]. One of the studies evaluates nine RCMs
(HIRHAM, CLM, HadRM3P, RegCM, RACMO, REMO, RCA,
PROMES, and IRAJ) for accuracy and feasibility in pre-
dicting crop yields [73]. Many of the above studies also
explicitly considered ENSO conditions (i.e., El Niño, neu-
tral, and La Niña) as driver of the produced seasonal fore-
casts [63] (Table 1).

3.2.2 Crop models

The reviewed studies show a wide range of crop models
being utilised in research involving the integration of
crop models and seasonal forecasts. At least 74% (14) of
the studies used mechanistic models whilst 16% (3) used

Figure 3: Range of farm management practices assessed using integrated seasonal forecast information and crop models.
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statistical models and the other 5% (1) also used the
Ricardian approach (Table 1).

The most widely used mechanistic models in Africa
were Decision Support System for Agrotechnology Transfer
(DSSAT) [20], SARRA-H [74], GLAM [61], WOFOST [75], and
APSIM [27] in about 21% (4), 21% (4), 12% (2), 6% (1), and
6% (1), respectively (Table 1). Both APSIM and DSSAT
models have been widely used across the continent, mostly
in Southern Africa, and to a lesser extent in East Africa [43].
The SARRA-Hmodel is mostly widely used in west Africa as
it is effective in simulating crop yields under tropical con-
ditions prevalent in the region [64]. WOFOST is a single
location model effective under homogeneous conditions,
which has been recently adopted for regional-based simu-
lations, for instance in East Africa [75]. GLAM is a statistical
crop model well suited for large area assessments of
regional agricultural yields. Statistical models include
model output statistics, such as used by ref. [60] to
simulate crop yields under climate variability in West
Africa. The Ricardian approach was utilised in the form
of GAMS, a bio-economic model that was utilised to assess
the economic benefits of farmer’s decision-making given
priori seasonal forecast information. Some statistical
models such as ARIMA were used in a single study [59]
as indicated in Table 1.

3.3 Integrating seasonal forecast and crop
models in Africa

3.3.1 Approaches for linking seasonal forecast and crop
models

The study identified three techniques that have been uti-
lised to integrate seasonal forecasts and crop models
(Table 1). About 83% of the integration techniques are
based on historical analogues with a notable proportion
based on GCM data conditioned on historical SST and
other atmospheric conditions. A notable proportion (20%)
of analogue techniques were based on the ENSO phases. An
example of the research by ref. [63], where seasonal forecast
information was derived from hindcast use of ENSO-based
phases, integrated with the DSSATmodel to assess optimum
sowing dates when subjected to different crop management
practices. About 11% of the integration techniques were
directly fed into the crop model without prior conditioning.
This involved extraction of seasonal forecast data for a
specific location. For instance, ref. [61] used the GCM-
based ECMWF directly with large area models, such as
GLAM. About 5% of the techniques used the statistical

yield prediction technique and these however only utilised
RCMs as the source of seasonal forecast data. This
involved the use of REMO, an RCM [60], as shown in
Table 1.

3.3.1.1 GCMs
GCM output from the ECHAM v4.5 has been used as inputs
to the SARRA-H crop model for sorghum yield predic-
tion under a range of crop management practices and sea-
sonal forecasts in West Africa [54]. Similarly, ref. [76] used
CFSv2 forecasts to predict maize for food security for plan-
ning purposes in Ethiopia, using the DSSAT crop model.
In this approach, GCM data are conditioned based on sta-
tistical parameters of the historical measured data.

Statistical yield prediction was undertaken in about
6% (1) of the studies. For instance, this was utilised by ref.
[60] where MOS, a statistical model, was coupled with
REMO, an RCM to evaluate the sensitivity of various crops
(e.g., peanuts, yam, maize, millet, rice, soybeans, and sor-
ghum) to climate change (Table 1).

3.4 Changes in productivity due to the use of
integrated seasonal forecast and crop
models

Yield changes from seasonal forecasts and crop models
were consolidated in horizontal histograms. Some stu-
dies did not provide the actual numeric changes but
rather showed them in spatial format; hence, fewer stu-
dies were used in the analysis. Decision-making under
seasonal forecast led to the highest crop yield increase
of 76% for sorghum. Similarly, maize also had notable
increases in yields (12–24%) given seasonal forecast infor-
mation. Millet also responded favourably to decision-
making under seasonal forecast with the yield increases
of 11% (Figure 4).

4 Discussion

4.1 Use of crop models for assessing climate
variability management

One of the main aims of the study was to identify and
critique the tools used to integrate seasonal forecasting
and crop models. With regard to crop models, most of
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them require calibration with historical data prior to yield
prediction [20,27]. The accuracy of simulations is highly
dependent on proper calibration, which in turn hinges on
the quantity and quality of calibration data. Statistical
crop models do not need detailed calibration such as in
mechanistic crop models, as they require fewer input
data such as historical weather data (rainfall and tem-
perature) and crop yields for model parameterisation and
calibration. Statistical crop models may be more suitable
to African agricultural research where there is limited
data collection due to limited research skill and financial
constraints, to support agricultural research [77]. Statis-
tical models can therefore be used in yield simulations
as they simulate yields with limited data for calibration
[78]. Statistical models are mostly limited for use in yield
prediction. They are based on the direct relationship
between climate and yields. Yield prediction is therefore
of limited accuracy as they do not account for most of the
factors that determine crop growth and development.

Statistical crop models account for seasonal forecasts
as climate summaries to determine the relationships
between climate and crop. They are therefore compatible
with seasonal forecast information, which is mostly issued
as temporal and spatial summaries. They however cannot
be used for predicting location-specific crop yields due
to the coarse spatial resolution [37]. Mechanistic models
are not directly compatible with some seasonal forecast

information, which is issued out in temporal and spatial
summary formats [24]. Advances in climate science have
improved seasonal forecasting and their processing.
Seasonal forecast data need to be downscaled to a daily
time step to be usable by mechanistic crop models. Sta-
tistical and dynamic downscaling are the most common
downscaling techniques. Downscaling however reduces
the accuracy of forecasts compared to forecasts at the
summary scale [79]. Processing of seasonal forecasts
can lead to disaggregation of the forecast summaries
to a daily time step (Section 3.2) [35]. Such information
can therefore be linked with process-based models
requiring weather input at a daily time step. The accuracy
of such disaggregated forecast data is however limited
[25]. Despite such challenges, the study realised that use
of statistical models and the Ricardian approach still lags
behind mechanistic models (Table 1). This is attributed to
the fact that most of the research integrating crop models
and seasonal forecasts evaluates farm management prac-
tices and climate variability options (Table 1). Mechanistic
crop models have higher accuracy in the simulation of crop
growth and development as well as simulation of cropman-
agement aspects compared to statistical models.

Despite the huge data requirements, mechanistic
models, especially DSSAT and APSIM, are still the most
widely used models in the region. This is mostly attrib-
uted to pre-project commencement bias, where models

Figure 4: Projected changes in crop yields from seasonal forecast information integrated with crop models in Africa (2007–2022).
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for use in certain specific projects are decided based on the
project members’ experience and knowledge of suchmodels.
There is greater support on models such as DSSAT, where
organisations such as the DSSAT foundation regularly
undertake trainings in Africa. Most Australian centre for
international agricultural research-funded projects involve
a modelling component and they also provide the neces-
sary training and support on the use of models such as
APSIM [80,81]. The cycle therefore continues where bene-
ficiaries of such projects and training will also use similar
models in future research; hence, the use of such models
(DSSAT and APSIM)) is predominant [82]. There is limited
capacity building and support involving somemodels such
as AQUACROP, despite the tool requiring less data and less
calibration efforts than APSIM or DSSAT crop models.

Mechanistic models allow simulations of conditions
that are not restricted to historical conditions. They can
therefore reliably simulate crop yields under projected
climate variability conditions. Mechanistic models utilise
a wide range of data for parameterisation and calibration.
This also includes different aspects of weather. This
allows for yield predictions under non-previously experi-
enced weather phenomena. Suchmodels can therefore be
utilised in climate variability adaptation research [25]. On
the contrary, statistical and Ricardian models cannot
account for climate variability with high confidence. Sta-
tistical models are mostly based on the direct mathema-
tical relationship between yield and yield determinants.
The direct relationship therefore makes it difficult to account
for other changes introduced under climate change. Ricar-
dian models do not account for other parameters as they are
mainly based on the land value. Mechanistic models are
therefore the only type of models that can account for cli-
mate variability.

Mechanistic models also mimic the normal plant bio-
physical and physiological processes, such as photo-
synthesis and respiration. They can thus accurately be
used to simulate different aspects of crop growth and
development under climate variability. Mechanistic models
also account for crop management aspects, such as mulch,
variety, fertiliser, tillage, and soil information. These are
also some of the management practices altered by farmers
in climate variability adaptation [20,27]. They cannot
account for daily farm management practices, such as
mulching, fertiliser application, and irrigation; hence,
their use is limited in the region. Their use is likely to
be reduced in the future as climate change adaptation
research increases. There is an increased need for the
assessment of climate variability adaptation in the region,
which increases the need for the use of mechanistic crop
models compared to statistical models.

The Ricardian approach is advantageous in regions
or countries with functional land markets. In Africa, use
of this approach is limited by unregulated and weak land
markets. Land valuation is a challenge in smallholder
farming systems in Africa since most of the land is state
owned; hence, there may be inconsistences in pricing.
The prices attached to the commodities are constant
whereas in reality, prices fluctuate, leading to under-
and over-estimation of gains and losses, respectively.
The approach has limited use in the region as it mostly
dwells on the economic impacts of a range of farm man-
agement decisions. The approach can potentially be more
useful in the future where there is an increasing need for
assessing the economic impacts of climate change. The
model however relates to statistical models, as there is
limited flexibility in accounting for farm management
decisions. Some models such as CLEM can therefore be
used as they account for farm management practices as
well as economic impacts.

4.2 Linking seasonal forecast information to
crop models

There is a need to identify and critique the range of
approaches used to link crop models and seasonal fore-
casts. This is important to identify themost ideal approaches
in different conditions for agricultural research in Africa. The
review realised threemajor techniques that can be utilised to
integrate seasonal forecast information into crop models.
These are statistical yield prediction, analogue approach,
and use of GCM outputs. The techniques are used to produce
seasonal forecasts in a format suitable for linking seasonal
forecast with models. Process-based models, which are the
most appropriate for use in climate change adaptation
research, require input forecast data at a daily time step
[20,27]. Hence, there is need for the assessment of the
most appropriate seasonal forecast production technique,
whose forecast output is more compatible with the input
requirement of process-based crop models.

The analogue-based seasonal forecast generation
approach is built on historical weather data whose para-
meters are similar to those of the forecasted conditions for
specific localities. The approach therefore makes it easier
to couple seasonal forecasts and process-based crop
models. In addition, the analogue approach is advanta-
geous when utilised at the spatial and temporal scales at
which the historical weather data are available [35]. The
approach requires high-quality and quantity climate data.
In Africa, challenges in skill, financial resources, and
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management of weather data collection pose complica-
tions for obtaining the requisite climate data. Furthermore,
weather data collection is dominant and of highest quality
and quantity in urban areas, research sites, and locations
of special interest. These areas are not always where the
smallholder farming systems are dominant. This could
be the reason why a lot of the studies are mostly for
research purposes and not directly focussed on application
in smallholder farming systems or policy. Increased cli-
mate variability reduces the confidence in the analogue
approach, as anthropogenic factors influence immediate
future weather. There is greater confidence in the use of
historical analogues when the season under consideration
is characterised by higher probability of the occurrence of
phenomena such as La Niña or El Niño [83].

The GCM-based seasonal forecasting generation
approach involves direct linking of GCM output data and
crop models with limited processing. This reduces the
need for technical expertise and errors in converting fore-
casts into the daily weather format compatible with crop
models. The GCM output datamay need further processing
to improve accuracy [35]. The statistical yield prediction
approach has limited compatibility with seasonal forecasts
as it predicts crop yields based on predictor variables
through repeated conditioning of the cropmodel yield out-
puts. This minimises technical demands as well as com-
pounding of errors associated with downscaling seasonal
forecasts into the daily weather format and interaction
with process-based crop models. The GCM approach pro-
duces relatively credible crop yield forecasts, although
accuracy can be improved. Despite the compatibility
with crop models, the coarse resolution associated with
GCM outputs presents challenges leading to the prediction
of erroneous yields, which do not account for local cli-
matic variations. Accounting for local climatic variations
is important for capturing location-specific climate risk.
Advances in atmospheric science have increased spatial
resolution of GCM outputs, but there are chances of dis-
torting daily rainfall. There is therefore need for further
attempts tominimise the yield prediction bias to effectively
apply this approach [25].

With regard to statistical yield prediction, the yield
outputs are not very accurate as the process is not repre-
sentative of normal crop growth and development. The
approach assumes a direct linear relationship between
the predictor and crop yields, which is not characteristic
of normal crop growth and development. Such an approach
cannot account for in-season changes in weather and man-
agement; hence, it may not be appropriate for the assess-
ment of performance of farming practices given specific
seasonal forecast information.

With regard to stochastic disaggregation, especially
the parametric approach, there is greater confidence in
the daily sequence outputs since they are based on historical
weather patterns. The approaches, however, cannot produce
out-of-parameterised events such as non-previously experi-
enced extreme rainfall, temperature, dry, and heat spell [84].
However, there are however greater chances of predicting
parameters of extreme variability (e.g., extreme rainfall and
temperatures) using the non-parametric based mode of the
stochastic disaggregation approach, since it is not based on
historical climate data [35]. This is best suited to the African
context where the region is experiencing increased fre-
quency of climate variability.

The review did not consider studies that use sto-
chastic disaggregation in integrating seasonal forecasts
and crop models. The approach has been highlighted as
one of the major techniques to integrate seasonal fore-
casts and crop models [35], yet has not been applied by
studies in Africa. This is potentially attributed to the
greater technical demands as well as the heavy com-
puting demand.

The few studies reviewed in the study are a sign of
fewer studies integrating seasonal forecasts and crop
models in Africa. This is in comparison to other studies,
which have reviewed 19 studies [85,86] and at least 35
articles [29]. The limited research is attributed to rela-
tively high technical demands. Capacity building through
grants, workshops, and trainings may potentially improve
the ability of researchers to undertake such research with
limited difficulties. Such capacity building is relatively
greater in West Africa as realised by the greater number
of research consortia such as the West African Science
Centre on Climate Change and Adapted land Use under-
taking seasonal forecast-related research in the regions.
This contrasts with Southern Africa and east Africa, where
there are few research consortia focused on coupled sea-
sonal forecasting and crop modelling as signified by the
fewer studies in recent years. The limited studies in East
Africa might be attributed to the presence of two cropping
seasons. This therefore challenges accuracy of seasonal
forecasts, thus potentially limiting the number of studies
combining seasonal forecast information and crop model-
ling in this area.

4.3 Opportunities in integrating seasonal
forecast information and crop models

In addition to the key lessons on critiquing tools and
methods utilised to integrate seasonal forecasts and crop
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models, those like GCM-based approaches are more effi-
cient at integrating crop models and seasonal forecasts.
The review identified key lessons and opportunities and
additional lessons. These are as follows: (1) there are very
few studies undertaken in Africa to inform decision-
making based on integrated seasonal forecasts and crop
modelling; (2) few crops are covered with maize and other
staples; (3) integrated modelling is mostly used to inform
yield prediction and operational decision-making with
limited studies being on policy; and (4) the predominant
farm management practices evaluated in studies on inte-
grating seasonal forecast and crop models were planting
date, fertiliser, and crop varieties.

Despite notable research integrating seasonal fore-
casts and crop models, application of seasonal forecast
information in smallholder agriculture in Africa is lim-
ited. The application is limited to the provision of weather
information to enhance operational decision-making. To
widen research into the use of seasonal forecasts and
crop models, further opportunities exist for enhancing
the quality of outputs from integrating seasonal forecasts
and crop models.

Most of the studies focused on the maize crop since it
is a staple food crop for most households in Africa [87].
The crop is also a source of raw materials for the feed and
many agro-related industries [88]. It is therefore impor-
tant to assess the response of such a crop to seasonal
forecast predictions as well as develop tools for sustain-
able production under climate change. Focus on the
maize crop might be attributed to the increased body of
knowledge onmodel calibration of the crop as most of the
research on crops in Africa is biased towards maize
[89–91]. This also highlights the need for research on
other crops of economic interest and neglected crops
such as bambara nut and mung bean [92]. Cassava has
not been the focus of such studies, but it is one of the
most important crops for food, feed, and industrial use on
the continent. Drought-tolerant crops, such as sorghum,
millet, and cowpeas, that could minimise the impacts of
climate variability can also be the subject of research
given the increased climate risk.

The review realised that there is a “blindspot” in the
regions and countries undertaking research on integrated
seasonal forecast and crop models to enhance decision-
making in Africa. Such research has not been undertaken
in North, Central, and Western Southern Africa. There
is therefore need to undertake such research in these
regions to enhance farmer decision-making. Such efforts
also come with other benefits such as improved skill on
seasonal forecasts in these areas. The other reason for the
limited studies of seasonal forecasts and crop models in

central Africa is attributed to the limited climate risk due
to predominantly high rainfall. The value of investing in
forecasts is therefore relatively low. On the contrary,
Western Southern Africa and North Africa have high cli-
mate risk due to predominantly high temperatures and
low rainfall. It is therefore needful for investment in
research on seasonal forecast and crop models, as this
has a higher value to farmers in the region.

Future research involving seasonal forecast informa-
tion in Africa can utilise seasonal forecast downscaling
techniques. Spatial downscaling allows for extrapolation
of location-specific seasonal forecast data. Recommendation
and decision-making based on seasonal forecast from spe-
cific sites can therefore have more value compared to fore-
casts at greater spatial scale. The use of downscaled data can
improve the effectiveness of the corresponding recommen-
dations. Such downscaling techniques can be either sta-
tistical or dynamical [93]. Future research should also
focus on areas where there are farming activities. There
are however challenges associated with the limited avail-
ability of measured weather data as well as research sta-
tions in those areas. Use of local weather and atmospheric
data can potentially improve the quality of the downscaled
forecasts.

There are multiple types of crop and climate models
that can be utilised in studies integrating seasonal fore-
cast information and crop models. Different types of
models have different strengths and weaknesses. There
are a range of climate models with differences in the
drivers and function. As a result, there is greater uncer-
tainty in seasonal forecasts, which translates to uncer-
tainty in crop yield forecasts. The accuracy and reliability
of climate forecasts can be enhanced through the use of
climate forecasts from multiple climate models, which
can be both dynamic and statistical. This enhances accu-
racy and reliability through drawing from the strengths
and compensating on the weaknesses from each model.
This has been successfully undertaken in research under
the development of a european multimodel ensemble
system for seasonal to inTERannual prediction project
where an operational seasonal forecasting system was
designed using multiple coupled models, leading to
reduced forecasting error [94]. The use of ensemble
means from multiple forecasts, which have been found
to be more skilful compared to outputs from single
model forecasts. The use of multiple models can poten-
tially minimise errors resulting from individual seasonal
forecasting models [95]. Most of the uncertainty in
seasonal forecast prediction is attributed to dynamics
of initial conditions and model structure. This is man-
aged by averaging data from different initial conditions
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within the same model, and model uncertainty is mini-
mised by averaging outputs from different models [96].
The agricultural model intercomparison and improve-
ment project initiative compared and aggregated crop
model inputs and outputs [97]. Such an approach is cri-
tical in increasing the confidence in localised simulation
outputs and recommendations. Crop models are unable to
completely mimic crop growth and development; hence,
they have different specialties. For instance, mechanistic
models such as DSSAT [20] can account for daily pheno-
logical and physiological crop growth and development,
whereas AQUACROPmainly focuses on soil water dynamics.
Integrating and aggregating mechanistic, dynamic, determi-
nistic, and stochastic crop models minimises errors and
complements shortcomings of other models [97]. The
review assessed a range of crop models (Figure 4). Inte-
grated use of multiple crop models and different seasonal
forecast information outputs from different models could
improve decision-making, through the use of a wide range
of model outputs, which can reduce uncertainty. Such can
be useful when focusing on localised recommendations
whose accuracy can be limited through downscaling,
where downscaling can minimise the accuracy of pro-
jected forecasts.

Integrating seasonal forecasts and crop models adds
value through providing a platform for assessing the var-
ious management decisions under projected forecasts.
The review realised a limited assessment of such farm
practices. This falls short of the amount and type of prac-
tices utilised by farmers in managing climate variability
[98]. Farmers utilise a wide range of management prac-
tices; there is therefore need for the assessment of a wide
range of practices. In addition, farmers utilise farm man-
agement practices as a combination of practices as com-
pared to individual practices as highlighted in the review.
There is therefore the need to evaluate the farm manage-
ment practices as combinations of practices to mimic
small holder’s farmers actual management. Evaluations
can therefore be undertaken on a combined set of prac-
tices, under smallholder farmer conditions using inte-
grated seasonal forecasts and crop models. Process-based
mechanistic crop models are capable of directly and indir-
ectly simulating combined set of practices as they can
account for key farm management practices.

The review realised that integrated modelling is mostly
used to inform yield prediction and operational decision-
making with limited studies focusing on policy (Table 2).
There is therefore the need to bridge the gap between sea-
sonal forecasting and crop modelling with policy. Such a

link would be essential in ensuring that the outcomes from
research can be recommended to farmers by the govern-
ment. This can potentially lead to increased use of forecast
information to enhance decision-making in farming. One of
the challenges of using forecasts has been the limited fore-
casting skill, which reduces uptake of seasonal forecasts
amongst farmers. Hence, there is an increasing need
for advancement in climate science to improve forecast
skill [99]. Such increased confidence in forecast skill
will increase the confidence of such policies by the gov-
ernment for use by the farmers.

Most of the research work in operational seasonal
forecasting in Africa has been undertaken by researchers
in universities and established research institutions. The
technique of integrating seasonal forecast information
and process-based crop models to enable improved farm
management decision-making is not compatible with the
literacy levels of most smallholder farmers. The informa-
tion is however important in farmer decision-making to
improve productivity under climate variability conditions.
Extension services can potentially contribute to the proper
communication of outputs from the scientific community
to local farmers. Government agricultural extension
workers interact with farmers on a regular basis and
have relatively high literacy. They can thus undergo
training to acquire knowledge on the theory and appli-
cation of integrating seasonal forecast into crop models.
They can therefore be a bridging gap between researchers
and farmers, through provision of recommendations from
integrating seasonal forecasts and crop models. Such an
initiative enhances formulation and implementation of
policy related to the use of integrated modelling in deci-
sion-making [100].

Seasonal forecast information has been beneficial to
some smallholder farmers in Southern Africa specifically
in the North-Western province of South Africa. During
the 1997/1998 season, there was an intensive awareness
campaign on the impending El Niño and its corresponding
impacts on crops. Smallholder farmers responded through
making corresponding farm management decisions (e.g.,
reduction in land area, increased moisture conservation,
off farm activities) [101]. This proves that given seasonal
forecast information, smallholder farmers can make the
appropriate tactical farm management decisions. Some
of these climate variability management decisions can
be simulated using process-based models, such as crop-
ping system, alternate seed varieties, water harvesting,
conservation agriculture, irrigation, and nutrient effi-
ciency [20,27].
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4.4 Changes in crop productivity attributed
to the use of seasonal forecasts and
crop models

From the study, there is evidence of increased yield pro-
ductivity attributed to the use of seasonal forecast-based
predictions compared to the default practices (Figure 4).
The increased productivity is attributed to the informed
decision-making on the use of seasonal forecasts com-
pared to default practices. For example, the use of sea-
sonal forecasts potentially leads to the determination of
sowing at optimal time, which could lead to higher yields
[102]. On the contrary, currently practices are based
on farmer experiences or instinct; hence, they may lead
to sowing during non-optimal time periods, which may
lead to poor productivity. The use of default practices
thus increases the chances of sensitive crop phenology
stages coinciding with unconducive conditions such as
dry spells, which leads to reduction in yields. In some
cases, use of such practices have proved to be valuable
as farmers use long time experience and indigenous
knowledge. The use of such practices are increasingly
unreliable due to climate change and cultural loss. The
use of seasonal forecasts and crop models therefore offers
alternative forms of decision-making, as this leads to
increased productivity.

The systematic literature review considered 19 stu-
dies, but 4 studies displayed actual yield figures with

the rest showing spatial maps where figures cannot be
extracted. This highlights the limited research on inte-
grating seasonal forecast information and crop models
in Africa. There is therefore an increasing need for such
research to increase knowledge on the different approaches
that can be used to predict yields and enhance decision-
making under seasonal forecasting. Systematic reviews
using more studies could therefore give greater confidence
in the outputs of such reviews.

4.5 Conceptual framework

For effective and sustainable use and application of sea-
sonal forecast information, there is need for a clearly
defined pathway (Figure 5). Seasonal forecast informa-
tion can be developed and disseminated by the research
institutions and government meteorological agencies. In
most cases, governments use consensus forecasts. These
are usually broadcasted via radio, TV, and newspapers.
The medium-to-long-term forecasts are usually coarse
and probabilistic and are useful for strategic crop man-
agement and short-term forecasts, which are much more
granular and accurate, are useful for operational deci-
sion-making (e.g., fertiliser timing).

For the effective use of seasonal forecast information,
researchers can integrate forecast information with crop
models. Beforehand, there is need for efforts to

Figure 5: Conceptual framework highlighting the “seasonal forecast value chain,” potential value and application of integrating seasonal
forecast information and crop model in Africa.
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understand the sources of seasonal forecasts and choice
of crop models. This is undertaken potentially through
systematic literature review. There are various types and
sources of seasonal forecast information with GCMs and
historical analogue data being the most predominant.
The choice of crop model needs to be determined based
on the target aim of the research such as recommenda-
tion of appropriate crop management practices.

The outputs from integrating seasonal forecast and
crop models can potentially be utilised by the government
for policy formulation. Government extension agents par-
tially implement the policy through disseminating the
research recommendations to farmers. Such recommenda-
tions can potentially lead to enhanced decision-making
through use of the optimum planting time, appropriate
crop type, and variety as well as optimum fertiliser type,
amount, and timing.

5 Conclusion

The review consolidates lessons from previous research
on the tools, approaches, and application by researchers
who couple seasonal forecast information with crop models,
as an approach to enhance climate variability management
in smallholder farming systems in Africa. The review shows
that most recent work on the integration of seasonal forecast
into crop models has been predominantly over West and
Eastern Africa, with limitedwork being done in other regions
of Africa. Specifically, there is need for more research in
central and north and south-western Africa, where no stu-
dies have been recorded in recent times. Maize crop dom-
inates research on the integration of seasonal forecasts and
crop models, but this provides a foundation to focus
research on other crops of economic interest. This also
includes increased focus on drought-tolerant crops as
well as widening cropping systems, with emphasis on
planting dates and fertiliser application. The study realised
limited research related to integrating seasonal forecasts
into crop models for policy development. Widening of the
interdisciplinary nature and scope of the studies through
involvement of social scientists, as well as agricultural
economists, will improve the scope and aim of such stu-
dies to policymaking. Application of research towards pol-
icymaking is critical for governments to steer human and
financial resources towards application of integrated crop
and seasonal forecast information. This can be beneficial
in smallholder farming systems, which are the most vul-
nerable to climate fluctuations.

In comparison to statistical crop models, mechanistic
crop models such as DSSAT are mostly used because

they predict outputs of interest to both researchers
and farmers within reasonable means and account for
most farm management practices that can be used in
climate variability management. Unsurprisingly, the
use of GCM and statistical approaches such as ana-
logue techniques are the most common in studies
because they are more feasible and effective in linking
seasonal forecasts and crop models compared to sto-
chastic disaggregation.

Research on the integration of seasonal forecast and
crop models potentially allows for the preliminary assess-
ment of climate risks to farmers, prior to the beginning of
the farming seasons and for equipping farmers with tools
and knowledge to make key decisions for their farm man-
agement, given certain specific seasonal forecast infor-
mation. Variation in seasonal forecast data as well as
differences in specialities of crop models warrants the
use of multiple seasonal forecast and crop models to
enhance reliability of the outputs. Assessments can be
undertaken under smallholder farming conditions who
can potentially benefit more from enhanced decision-
making to manage climate variability. Local agricultural
extension workers can be the bridge between researchers
and farmers to improve the understanding and dissemi-
nation of research outputs.

In conclusion, the most appropriate approach of inte-
grating seasonal forecasts into cropmodels differs depending
on the aim of the end user. If, for example, the aim is to yield
prediction at the seasonal scale, all models are suitable, and
statistical models would prove easier and often sufficiently
competent under historical conditions. Conversely, if the aim
is to assess different conditions such as different practices,
varieties, or climate regimes, mechanistic crop models such
as DSSAT are preferred. The crop model selection will also
constrain the need for – and consequent choice of – seasonal
forecasts’ temporal and spatial resolution, and often the sea-
sonal forecast approach will be used. Accessibility and other
technical characteristics (e.g., temporal and spatial horizons)
will be considered in selecting a source of seasonal forecast.
In all cases, seasonal forecast skill is known to vary with
location.
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