
Edith Cowan University Edith Cowan University 

Research Online Research Online 

Research outputs 2022 to 2026 

2-1-2023 

A computational offloading optimization scheme based on deep A computational offloading optimization scheme based on deep 

reinforcement learning in perceptual network reinforcement learning in perceptual network 

Yongli Xing 

Tao Ye 

Sami Ullah 

Muhammad Waqas 
Edith Cowan University 

Hisham Alasmary 

See next page for additional authors 

Follow this and additional works at: https://ro.ecu.edu.au/ecuworks2022-2026 

 Part of the Electrical and Computer Engineering Commons 

10.1371/journal.pone.0280468 
Xing, Y., Ye, T., Ullah, S., Waqas, M., Alasmary, H., & Liu, Z. (2023). A computational offloading optimization scheme 
based on deep reinforcement learning in perceptual network. Plos One, 18(2), Article e0280468. https://doi.org/
10.1371/journal.pone.0280468 
This Journal Article is posted at Research Online. 
https://ro.ecu.edu.au/ecuworks2022-2026/2119 

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworks2022-2026
https://ro.ecu.edu.au/ecuworks2022-2026?utm_source=ro.ecu.edu.au%2Fecuworks2022-2026%2F2119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=ro.ecu.edu.au%2Fecuworks2022-2026%2F2119&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1371/journal.pone.0280468
https://doi.org/10.1371/journal.pone.0280468
https://doi.org/10.1371/journal.pone.0280468


Authors Authors 
Yongli Xing, Tao Ye, Sami Ullah, Muhammad Waqas, Hisham Alasmary, and Zihui Liu 

This journal article is available at Research Online: https://ro.ecu.edu.au/ecuworks2022-2026/2119 

https://ro.ecu.edu.au/ecuworks2022-2026/2119


RESEARCH ARTICLE

A computational offloading optimization

scheme based on deep reinforcement

learning in perceptual network

Yongli Xing1, Tao Ye2, Sami Ullah3, Muhammad WaqasID
4*, Hisham Alasmary5, Zihui Liu1

1 School of Sciences, China University of Geosciences, Beijing, China, 2 Faculty of Information Technology,

Beijing University of Technology, Beijing, China, 3 Department of Computer Science, Shaheed Benazir

Bhutto University, Sheringal, Dir, Pakistan, 4 Department of Computer Engineering, College of Information

Technology, University of Bahrain, Al Janabiyah, Bahrain, and also with the School of Engineering, Edith

Cowan University, Perth, WA, Australia, 5 Department of Computer Science, College of Computer Science,

King Khalid University, Abha, Kingdom of Saudi Arabia

* engr.waqas2079@gmail.com

Abstract

Currently, the deep integration of the Internet of Things (IoT) and edge computing has

improved the computing capability of the IoT perception layer. Existing offloading tech-

niques for edge computing suffer from the single problem of solidifying offloading policies.

Based on this, combined with the characteristics of deep reinforcement learning, this paper

investigates a computation offloading optimization scheme for the perception layer. The

algorithm can adaptively adjust the computational task offloading policy of IoT terminals

according to the network changes in the perception layer. Experiments show that the algo-

rithm effectively improves the operational efficiency of the IoT perceptual layer and reduces

the average task delay compared with other offloading algorithms.

1. Introduction

The Internet of Things (IoT) has very significant advantages over traditional communication

technologies. However, IoT devices have limited resources [1, 2], Therefore, we need an alter-

native unit to perform tasks from end devices and return results in many IoT applications and

devices. Generally speaking, limited resources are solved by shifting the computational work-

load to other devices with better resources and offloading computation [3–5]. With the deep

integration of IoTs and edge computing. The original networking mode of IoTs, which focuses

on optimizing transmission and saving energy, is increasingly difficult to apply to IoT develop-

ment. On the other hand, the extensive distribution of edge computing nodes and the powerful

offloading capability [6–9] greatly facilitate the task computing and data transmission of IoTs

terminals. Therefore, it is essential to study edge computing offloading methods suitable for

IoTs.

In IoT edge computing, since the task generation process is highly dynamic, statistics are

difficult to obtain or accurately predict [10, 11]. Chen et al. [12] proposed a dynamic computa-

tion offloading algorithm based on stochastic optimization. It decomposes the optimization

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0280468 February 24, 2023 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Xing Y, Ye T, Ullah S, Waqas M, Alasmary

H, Liu Z (2023) A computational offloading

optimization scheme based on deep reinforcement

learning in perceptual network. PLoS ONE 18(2):

e0280468. https://doi.org/10.1371/journal.

pone.0280468

Editor: Mahdi Abbasi, Bu-Ali Sina University: Bu Ali

Sina University, IRAN, ISLAMIC REPUBLIC OF

Received: May 3, 2022

Accepted: December 31, 2022

Published: February 24, 2023

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0280468

Copyright: © 2023 Xing et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data is available

with the link https://github.com/Xing-upup/

Unloading-optimization.

https://orcid.org/0000-0003-0814-7544
https://doi.org/10.1371/journal.pone.0280468
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0280468&domain=pdf&date_stamp=2023-02-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0280468&domain=pdf&date_stamp=2023-02-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0280468&domain=pdf&date_stamp=2023-02-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0280468&domain=pdf&date_stamp=2023-02-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0280468&domain=pdf&date_stamp=2023-02-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0280468&domain=pdf&date_stamp=2023-02-24
https://doi.org/10.1371/journal.pone.0280468
https://doi.org/10.1371/journal.pone.0280468
https://doi.org/10.1371/journal.pone.0280468
http://creativecommons.org/licenses/by/4.0/
https://github.com/Xing-upup/Unloading-optimization
https://github.com/Xing-upup/Unloading-optimization


problem into a series of sub-problems and realizes the trade-off between offloading cost and

performance. In addition, Zhang et al. [13] proposed a heterogeneous multi-layer mobile edge

computing. To support low-latency services, they built a reinforcement learning-based frame-

work to adapt to unstable wireless environments and each edge device’s dynamically changing

data generation speed. To study a multi-user mobile edge computing network, Li et al. [14]

designed an offload strategy based on Deep Q Network (DQN), where users can dynamically

adjust the offload ratio to reduce system delay. However, the action space of the algorithm can

only be discrete values, and it is not suitable for the continuous action space, which has signifi-

cant limitations. Therefore, Xu et al. [15] proposed to use the Asynchronous Advantage Actor-

Critic (A3C) to solve the computational task offloading model and effectively proved that the

algorithm can have unique advantages and achieve convergence quickly. Based on this, this

paper proposes the Deep Deterministic Strategy Gradient (DDPG) with the same dual network

structure to solve the optimization problem of computational offloading in the perception

layer network. According to the network changes of the perception layer, the computing task

offloading strategy of the IoT terminal is adaptively adjusted, and the task delay is minimized

based on ensuring the task completion rate. Finally, this paper compares the algorithm with

DQN, A3C and other advanced algorithms from many aspects and proves the superiority of

the algorithm.

The remaining paper is organized as follows. Section 2 mainly introduces related work,

including the structure and offloading decision of Mobile Edge Computing (MEC). Section 3

proposes an IoT-oriented MEC offloading algorithm. Simulation experiments and results

analysis are given in Section 4. Finally, Section 5 presents the conclusion.

2. Related work

2.1 MEC infrastructure

The composition of MEC usually includes three parts: IoT terminal layer, edge server layer

and cloud data center layer [16]. As shown in Fig 1, the terminal layer of the IoTs has smart

cars, smartphones, and various types of sensors with specific processing performance; the edge

server layer is divided according to relative distance, and each area is divided Contains an edge

server with moderate performance; unlike edge servers, the cloud data center layer contains

many high-efficiency physical servers, which are gathered to form a cluster to provide services

for users [17]. When the task from the IoTs terminal needs to be uninstalled, first divide the

entire mobile application into subtasks that have data interaction with each other but can be

executed independently by a particular sorting algorithm. Because when dealing with these

tasks, some sub-tasks can only be executed locally. Others are tasks that can be offloaded,

usually data processing tasks with a large amount of calculation. In this architecture, the net-

working scenarios where IoT devices are located: for example, wired and wireless network

scenarios, are different; the characteristics of the tasks to be performed on the device (such as

traffic characteristics and time delay characteristics) are also different; users pass Various IoT

devices connect to the network in different ways. These devices generate tasks to which they

are connected and send requests to edge subnets. The agent of the autonomous edge subnet

will obtain the network status of other subnets through the distributed file system. After receiv-

ing the task request from the IoTs device, the agent makes calculation and offloading decisions

based on the characteristics of the request. After training, computationally intensive tasks are

often executed on cloud servers, while time-sensitive tasks are usually performed on local and

edge servers.

PLOS ONE A computational offloading optimization scheme based on deep reinforcement learning in perceptual network

PLOS ONE | https://doi.org/10.1371/journal.pone.0280468 February 24, 2023 2 / 19

Funding: The authors extend their appreciation to

the Deanship of Scientific Research at King Khalid

University for funding this work through large

groups project under grant number RGP.2/201/43.

The funder provides the funding of this paper as

well as the preparation of this paper. None of the

authors receive any salary from the funder.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0280468


2.2 Offloading decisions in MEC

The uninstallation decision means that our user terminal decides whether to uninstall, how

much to uninstall and what to uninstall. Generally, the results of the uninstallation decision

made by the user terminal are divided into three situations, namely, local execution, full unin-

stallation and partial uninstallation [18–21]. As shown in the Fig 2.

1. Local execution: As shown in the smart Device 1 in Fig 2, when the overhead of offloading

the task to the MEC server is too large, or the MEC server has no available resources. The

entire task calculation process can only be executed locally;

2. Full uninstallation: As shown in the smart Device 2 in Fig 2, complete uninstallation means

that all tasks are uninstalled to MEC for calculation;

Fig 1. MEC three-layer architecture.

https://doi.org/10.1371/journal.pone.0280468.g001

PLOS ONE A computational offloading optimization scheme based on deep reinforcement learning in perceptual network

PLOS ONE | https://doi.org/10.1371/journal.pone.0280468 February 24, 2023 3 / 19

https://doi.org/10.1371/journal.pone.0280468.g001
https://doi.org/10.1371/journal.pone.0280468


3. Partial uninstallation: As shown in the smart Device 3 in Fig 2, when the computing task

can be split, part of the task can be calculated locally as needed, and the remaining part can

be uninstalled to the MEC server for calculation.

3. IoT-oriented offload architecture and algorithms for edge

computing

There are generally multiple heterogeneous wireless sensor networks in the perception layer of

the IoT to meet the needs of different monitoring tasks. Each IoT device can join the appropri-

ate wireless sensor network according to task attributes. Moreover, mobile IoT devices can

choose a suitable wireless sensor network according to their location. Based on edge comput-

ing, a wireless sensor network can be regarded as an edge subnet in the IoT. The MEC in the

edge subnet accepts the offloading request of the IoT terminal in the network, makes an off-

loading decision, and coordinates the calculation of the resources of the subnet and other sub-

nets to maximize the computing resources of the perception layer network [22–27].

As shown in Fig 3, for the edge computing-oriented perception layer network, this paper

proposes a computing offloading decision based on Deep Reinforcement Learning (DRL),

which explicitly includes information input flow and decision output flow. The information

input flow is the information flow from the edge network to the decision optimization engine

based on DRL. The decision output flow is the decision control flow from the decision optimi-

zation engine to the edge network entity.

IoT devices access the edge network through different access methods and request tasks to

be offloaded upwards. At this time, MEC extracts the feature information of the task, extracts

an abstract security descriptor suitable for the task feature of the decision engine, and outputs

it to the decision optimization engine [28–30]. When the IoT device generates a task and sends

a service request to the network, the request composed of the feature vector of the task will be

captured by the agent in the subnet. In the IoT-oriented edge computing offload architecture

proposed in this paper, the coordination between edge servers is realized through a distributed

file system. The agents of each edge subnet can obtain real-time network status through the

distributed file system [31]. Therefore, the agent can make correct decisions for computing off-

loading. Agents in the edge network offload tasks to appropriate locations in the network for

processing, thereby achieving overall performance optimization. After obtaining the network

Fig 2. Offloading decision.

https://doi.org/10.1371/journal.pone.0280468.g002

PLOS ONE A computational offloading optimization scheme based on deep reinforcement learning in perceptual network

PLOS ONE | https://doi.org/10.1371/journal.pone.0280468 February 24, 2023 4 / 19

https://doi.org/10.1371/journal.pone.0280468.g002
https://doi.org/10.1371/journal.pone.0280468


state matrix and task feature vector, the decision-making optimization engine decides on com-

puting offloading and deploys the physical instance through the edge network agent [32].

3.1 Formal descriptions

This paper aims to find a computation offloading strategy that expects minimum task delay

while guaranteeing task load factor, where the task delay depends on the greater local execu-

tion and offloading of the computation. Table 1 gives a description of the parameters used in

this paper.

3.1.1 Characteristics of edge network. The edge network is composed of IoT devices ND,

and each device is connected to a different MEC according to its communication characteris-

tics. It is an excellent choice to offload tasks to the edge server reasonably. In this process, each

MEC will perform many tasks from IoT devices. We set the task waiting for the queue of the

edge server, qei
, which indicates that there is a task i with time t that needs to be processed.

Here, e is the edge server. If qei
of the MEC is very long, it means that the MEC is overloaded,

and the task will be offloaded to the cloud server for processing [33, 34].

This framework assigns tasks to local, edge and cloud servers based on policies. For

example, the Access Edge Computing Server (aECS) assigns tasks to the Neighboring Edge

Computing Server (nECS) for collaborative processing based on the network state and task

characteristics. When nECS completes the task, the task will be returned to aECS, and aECS

will be integrated and returned to the IoT device.

The state of each level can be expressed as a state set S(SE, Td, Sd, LE!E), which is explained

as follows. SErepresents the state set of the edge server, SE ¼ fSj ¼ ðqej
; fejÞjj ¼ 1; 2; . . . ;mg.

Here, qej
is the task queue duration of the computing server j, fej is the frequency of the CPU in

Fig 3. Procedural flowchart of the offloading decision.

https://doi.org/10.1371/journal.pone.0280468.g003

PLOS ONE A computational offloading optimization scheme based on deep reinforcement learning in perceptual network

PLOS ONE | https://doi.org/10.1371/journal.pone.0280468 February 24, 2023 5 / 19

https://doi.org/10.1371/journal.pone.0280468.g003
https://doi.org/10.1371/journal.pone.0280468


the edge computing server j, where qej
is given as follows.

qej
¼
XN

i¼1

ci � ad!e
i

fej
ð1Þ

Td represents the feature set of the task, Td ¼ fci; tdi
; sui ; s

d
i ji ¼ 1; 2; . . . ;Ng, ci represents the

calculation period required to process task i, tdi
represents the deadline of task i, and sti is the

size of task i.
Sd represents the status and characteristics of the IoT devices,

Sd ¼ fSj ¼ ðqdj
; fdj
Þjj ¼ 1; 2; . . . ; ng, qdj

is the task queue duration of the IoT device dj, fdj
is the

frequency of the edge computing server djCPU, where qdj
is given as follows:

qdj
¼
XN

i¼1

ci � ad
i

fdj

ð2Þ

LE!E represents the communication link bandwidth between nodes.

3.1.2 Offloading action. The task offloading operation includes three parts: from the IoT

device to aECS, from aECS to nECS, and from aECS to cloud server [35]. Unloaded tasks

include task execution code and task data. It has been found that the unloading ratio of the

computing cycle is roughly equal to the total amount of task unloading, so we merge the two

sub-actions of IoT device unloading into aECS. Then a set of calculation actions in each epi-

sode can be expressed as AðAd!ê ;Aê!e;Aê!�eÞ, as follows:

Table 1. A description of the parameters.

Parameters Description

SE The state set of the edge server

Td The feature set of the task

Sd The status and characteristics of the IoT devices

LE!E The communication link bandwidth between nodes

qe Task queue duration of MEC

qd Task queue duration of IoT devices

ci Calculation cycle

ti Task completion time

E Expected delay

n Total number of task

M Total number of MECs

Mi set of available MECs for task ni

Mij Task ni is executed on MEC Mj

Bij Task execution time of task ni on MEC Mj

R Reward

G Total reward

πθ(s) Strategy function

Q(s, a) Value function

ϕ(S) The current state vector

η Noise

θ Actor network parameter

ω Critic network parameter

https://doi.org/10.1371/journal.pone.0280468.t001

PLOS ONE A computational offloading optimization scheme based on deep reinforcement learning in perceptual network

PLOS ONE | https://doi.org/10.1371/journal.pone.0280468 February 24, 2023 6 / 19

https://doi.org/10.1371/journal.pone.0280468.t001
https://doi.org/10.1371/journal.pone.0280468


Ad!ê represents the proportion of task calculation, or data volume offloaded from IoT devices

to aECS.

Aê!e represents the proportion of task calculation or data volume offloaded from aECS to

cECS.

Aê!e represents the proportion of task calculation or data volume offloaded from aECS to the

cloud server.

3.1.3 Calculation model.

1. Local execution

The local computing time consists of two parts: the local execution time and the local task

queue waiting time. The total completion time of the local calculation task is calculated by

the following formula:

tlocal ¼ ad
i �

ci

fdj

þ qdj ð3Þ

2. Service execution

If all tasks are performed locally, the computing power of the IoT device is insufficient to

complete the task within the deadline, so the IoT device needs to offload part of the task to

the edge server [36]. Calculating the time spent on unloading includes task queuing time,

task execution time, and task transmission time. For example, the following formula calcu-

lates edge calculation time + queuing time.

tcalþque
i ¼ maxðad!ê

i �
ci

f ê þ qê; aê!ej
i �

ci

fej
þ qej

; aê!e
i �

ci

fej
þ qêjj 2 f1; 2; . . . ;m � 2gÞ ð4Þ

The calculation formula of task transmission delay is as follows:

ttransi ¼ maxðad!ê
i �

St

ld!ê
; aê!ej

i �
St

lê!ej
; aê!e

i �
St

lê!e
þ qê jj 2 f1; 2; . . . ;m � 1gÞ ð5Þ

3. Optimization goals

Our optimization goal considers the expected task delay and the task completion rate

(TCR). According to the above formula, the task completion time is:

ti ¼ maxðtlocali ; ðtcalþquei þ ttransi ÞÞ ð6Þ

In addition, we need to consider some constraints when calculating. n represents the total

number of tasks, and M represents the total number of MECs. i represents the task index,

and j represents the MEC index. Mi denotes the MEC-available set of task ni, and Mij

denotes that task ni is executed on MEC Mj. ti represents the task completion time of task

ni. Bij represents the task execution time of task ni on MEC Mj.

Xij ¼
1; if task ni is executed on MEC Mj

0; others

(

ð7Þ

X

j2Mj

Xij ¼ 1;8i; j
ð8Þ

PLOS ONE A computational offloading optimization scheme based on deep reinforcement learning in perceptual network

PLOS ONE | https://doi.org/10.1371/journal.pone.0280468 February 24, 2023 7 / 19

https://doi.org/10.1371/journal.pone.0280468


Bij � ti ð9Þ

Bij � 0; ti � 0 ð10Þ

Among them, constraint (8) indicates that one MEC can be selected from the set of optional

MECs for each task ni for execution, but each task can only be executed on one MEC. Con-

straint (9) restricts that the task execution time of each task ni on MEC Mj cannot exceed

its task completion time. constraint (10) qualifies the non-negativity of all parameters.

Assuming that there are P tasks in total, the expected delay of all tasks (which can also be

understood as the average task completion time of P tasks) can be expressed as

Et ¼

PP
i¼1

ti
P

ð11Þ

Assuming that there are C tasks completed within the deadline, the task completion rate of

all tasks can be expressed as:

TCR ¼
C
P
� 100% ð12Þ

This paper aims to maximize the TCR while making the task waiting time as small as possible.

Therefore, when the task is not completed within the deadline, a negative reward is given, and

when the task is completed within the deadline, a high positive reward is given. We set the

reward as:

Ri ¼

� ti; ti > tdi

log0:995ð1 �
1

e
ffiffi
ti
p Þ; ti < tdi

8
><

>:
ð13Þ

Where tdi
represents the task deadline.

To explain the role of rewards more clearly, we assumed that the deadline of a task ni is

9ms, and the execution time of a task in one training is 10ms. Hence, the reward generated by

this state is -10. In the next iterative training, the execution time of task ni is 8 ms, so the state

reward is 12.15. After this iteration, the DRL agent finds that the total return of the second iter-

ation is greater than the previous iteration, and the neural network will remember the actions

in this iteration. In another iteration of training, the execution time of task ni is 6ms, and the

reward for this state is 18.01, which is greater than the previous two iterations. Through con-

tinuous training, the overall computational load of the decision-making agent will perform

better.

3.2 Offloading algorithms for IoT-oriented edge computing

In this section, we abstract the offloading of complex calculations as Markov Decision Pro-

cesses (MDPs) [37, 38]. Reinforcement Learning (RL) is an algorithm for sequential decision-

making. It continuously conducts trial and error learning in the target environment and con-

tinuously changes the strategy through the feedback of environmental information, seeking

the greatest reward under this strategy. However, it has many advantages, yet is challenging to

expand and suitable for relatively low-dimensional problems. Therefore, to solve this problem,

DRL is considered. DRL combines the advantages of deep learning and RL to solve the prob-

lem of high-dimensional state space and action space [39–42]. In this paper, by abstracting

the complex IoT computational offloading problem into a Markovian decision process and

PLOS ONE A computational offloading optimization scheme based on deep reinforcement learning in perceptual network

PLOS ONE | https://doi.org/10.1371/journal.pone.0280468 February 24, 2023 8 / 19

https://doi.org/10.1371/journal.pone.0280468


combining multi-intelligent DRL algorithms, a collaborative environment based on IoT-ori-

ented multi-intelligents is constructed to solve the edge server offloading problem for IoT

terminals.

3.2.1 Markov decision process. The optimization goal is a single time slot object, which

only depends on the current state [43]. However, the state of the network environment is

dynamic, so the past network state is also an important reference factor for calculating offload-

ing actions [44, 45]. If only the current state is used to make a decision, the decision-making

behavior of the agent will lack further vision.

RL is a method of optimizing problems in a dynamic environment. We first formulate the

problem as an MDPs, represented by a four-tuple {S, A, P, R}, where S is the state space of the

model, A is the action space of the model, P is the state transition probability of the model, and

R is the reward function of the model [46–48]. The description of each element is as follows:

1. State-space: The state space is defined as the state of each server and task in the edge net-

work. The server set is S = {s1, s2, . . .sn}, where n is the number of servers in the edge net-

work. The server status includes the length of the task waiting for a queue. The task set is A,

where v is the total number of tasks. Task status SM = {m1, m2, . . .mv}, qi 2 [0, 1],
Pn

i¼1
qi ¼

1 represents the percentage of tasks allocated by the server at each location.

2. Action space: At each moment, after considering the length of the task waiting for the

queue of each node and the deadline of the task itself, the agent must make an action to allo-

cate the task to each server for processing. We define the action space as

AðAd!ê ;Aê!e;Aê!eÞ ð14Þ

The constraints are as follows.

Ad!ê þ Aê!e þ Aê!e ¼ 1 ð15Þ

The meanings of the letters have been explained in the previous section.

3. Reward function: Whenever an agent makes an action, the environment will automatically

give a reward: here we define the reward value as formula (8), hence, the total reward is

G ¼
PT

t¼1
Rðs0t; a

0
t; stþ1Þ, and our final goal is to maximize the total reward.

In addition to the above four elements, a hyperparameter γ, γ is the future reward weight,

and the value range is [0, 1]. When γ tends to 0, the value function focuses on the current

reward. And if γ tends to 1, the value function will consider more rewards from subsequent

steps. In other words, γ makes decisions that favor short-term or long-term returns.

3.2.2 Dynamic resource optimization algorithm based on DRL. In resource allocation

decision-making, we need to interact with the environment to obtain samples directly. The

ultimate goal of the sample estimated value function is to find the optimal strategy π
�

. The net-

work model’s state and action space proposed in this paper are high-dimensional, dynamic

and non-discrete. Therefore, they need to be optimized in the sequence generation process.

We choose the DDPG method based on the above factors to optimize our decision-making

algorithm. DDPG is derived from an improved version of the actor-critic and strategy gradient

algorithm and draws on the dual network structure of Double Deep Q Network (DDQN) [49].

As shown in Fig 3, the deployment of DRL consists of two parts: the network environment

and the agent. The network environment comprises network nodes (IoT nodes and cloud

nodes), network monitors and users. The network node receives the user’s task offloading

request. The network monitor collects the information in the network in real-time and inter-

acts with the agent information to respond to the state changes in the network.

PLOS ONE A computational offloading optimization scheme based on deep reinforcement learning in perceptual network

PLOS ONE | https://doi.org/10.1371/journal.pone.0280468 February 24, 2023 9 / 19

https://doi.org/10.1371/journal.pone.0280468


DDPG uses a strategy function πθ(s) to make decisions. It explicitly maps a state to a specific

action. This can greatly improve the convergence of training. In the actor-critic model, the

agent uses the strategy gradient method to enhance the gradient and selects the operation in

the current state with the highest probability through the strategy function πθ(s). Correspond-

ingly, the critic network evaluates the current decision based on the time error between the

value function and the current reward and evaluates the actor’s behavior. The formula for cal-

culating the deterministic policy gradient is:

ryJðpyÞ ¼ Es�rp ½rypyðsÞraQpðs; aÞja ¼ pyðsÞ� ð16Þ

As shown in Fig 3, the distributed dynamic resource optimization algorithm based on DRL

consists of four parts: edge network environment, experience replay pool, dual actor-network,

and dual critic network, of which two networks of actors and two networks of critics have the

same structure. The network control node interacts with the edge network environment to

obtain the current network state and stores the current state vector ϕ(S), action vector A,

reward R and the next state vector �ðS0 Þ of the experience pool. To explore the action space

more extensively, we add some noise to the actions chosen by the actors. Then, after accumu-

lating a certain amount of data in the experience pool, take out the small batch size data block

and input it into the estimated neural network to obtain the action-value function. The loss

function is calculated together with the action-value function of the target value network, and

the gradient is reversed. Transmit to update all the parameters ω of the current network,

where the loss value function can be expressed as:

1

m

Xm

j¼1

ðyj � Qð�ðSjÞ; aj;oÞÞ
2

ð17Þ

We define the current target Q value, which is used to calculate the expected reward value

of the action in the current state. We define how to update the actor-critic neural network

parameters:

yj ¼ Rj þ gQtargetð�ðs0jÞ; py0 ðpðs
0
jÞÞ;o

0Þ ð18Þ

This represents the weighted expectations of the current reward status and possible future

rewards and is used to evaluate the value of the current status. We define how to update the

actor-critic neural network parameters:

o
0

 toþ ð1 � tÞo
0

y
0

 tyþ ð1 � tÞ�y
0

8
<

:
ð19Þ

This algorithm does not directly copy the parameters of the target network to the evaluation

network. Still, it uses a gradual update method, and only a small amount of each parameter is

updated. At the same time, to increase the randomness of the learning process and better

explore the entire solution space, we added some noise to the learning process. The action

selection expression is defined as follows:

A ¼ pyðSÞ þ Z ð20Þ

where η is noise. Next, we define the loss functions of the critic and actor networks. The loss

PLOS ONE A computational offloading optimization scheme based on deep reinforcement learning in perceptual network

PLOS ONE | https://doi.org/10.1371/journal.pone.0280468 February 24, 2023 10 / 19

https://doi.org/10.1371/journal.pone.0280468


function of the critic network is defined as follows.

JðoÞ ¼
1

m

Xm

j¼1

ðyj � Qð�ðSjÞ; aj;oÞÞ
2

ð21Þ

Refer to (21) for the loss function of the actor-network. The defined loss gradient is as follows.

ryJðpyÞ ¼ Es�rp ½raQ�ðs; aÞjs¼si;a¼pyðsÞj
rypyjs¼si

� ð22Þ

The computational offloading algorithm based on DDPG is as described in Algorithm 1. It

consists of two parts: the initialization of the network environment and the DRL algorithm in

the agent. Initially, the decision made by the agent is close to a random algorithm. However,

with the learning process of the computational offloading algorithm based on DDPG, the

resulting offloading strategy is getting closer and closer to the optimal algorithm. After the

learning iteration is over, the learned DDPG neural network parameters are obtained.

From the pseudo-code of Algorithm 1, it can be seen that the time complexity of this algo-

rithm is related to the size of the episode and the size of the time step in each episode. Line 2

takes an average of t11 time to run once, and runs N times repeatedly, so the running time is

t11N. Assume that running 4 to 13 rows in each time step takes an average of t12 time. Running

T times consumes an average of t12T time and then repeats the operation N times. So the run-

ning time is t12TN. So the total time to run is t11N + t12TN. When the values of N and T are rel-

atively large, the coefficients of t11N and t12TN are negligible, so the time complexity is O(N +

NT). Because NT grows much faster than N, the time complexity of this algorithm is O(NT).

Algorithm 1 Edge Offloading Computing Based on DDPG
Input: environmental parameters;
Initialization: The parameters of the actor online strategy network
and the target strategy network are respectively ω, ω0; the parameters
of the actor online strategy network and the target strategy network
are respectively and θ, θ0;
1: for episode = 1, N do
2: Initialize the edge state and task queue
3: for t = 1, T do
4: Obtain the current state St from the edge network environment
and convert it into a vector �(St)
5: Unload tasks according to the strategy πθ(�(s)) in the actor-
network
6: Calculate the reward according to the formula (13)
7: Get the next state s(t+1)
8: Store (�(st), at, rt, �(st+1)) in the experience replay pool
9: Calculate the Q value of yi by formula (18)
10: Use the formula (22) to update the actor strategy
11: Use the formula (19) to update the actor target network
12: Use the formula (19) to update the critics’ target network
13: Let t = t + 1
14: end for
15: end for
Output: Current optimal actor network parameter θ, critic network
parameter ω

4 Simulation experiments

4.1 Heterogeneous perception layer network

In this section, the DDPG-based uninstall strategy algorithm will be evaluated in the MEC task

uninstall scenario of multiple edge servers, scenarios, and IoT terminals. The experiments in

PLOS ONE A computational offloading optimization scheme based on deep reinforcement learning in perceptual network

PLOS ONE | https://doi.org/10.1371/journal.pone.0280468 February 24, 2023 11 / 19

https://doi.org/10.1371/journal.pone.0280468


this paper are all implemented based on Python 3.8 programming under the Windows 10

system, and the DDPG algorithm is implemented based on the TensorFlow framework pro-

gramming. The MEC server is equipped with an Intel Core i7-7700 CPU. In the standard con-

figuration, 30 IoT devices are connected in each case. In the wireless access scenario, as shown

in Fig 4, we divide the scenarios into two categories: a wireless smart terminal and a vehicle-

mounted IoT device. Pedestrians are driving in a low-speed environment, and vehicles are

driving at a constant speed (0-50m/s) in a fixed direction at high-speed [50].

4.2 Simulation settings

The simulated environment is a three-layer edge network, including the IoT terminal layer,

edge server layer, and cloud data center layer described above. There are 2-8 wireless edge

servers at the edge server layer. The service range of each wireless AP is 50×50m, and the speed

of each wireless mobile IoT device is randomly 0-40m/s. Initially, there are IoT devices within

the service range of each AP, and the probability of each IoT device generating unloading

requests in batches at each time satisfies the Poisson distribution [51, 11].

Both the actor-network and the critic network of DDPG have a three-layer structure, and

the second layer of the fully connected layer has 200 neurons. The input state vector is normal-

ized in the first layer. The relevant parameters in the experiment are shown in Table 2.

4.3 Algorithm comparison

Four settings were changed in this experiment to study the factors affecting the algorithm’s

performance. In addition, four other offloading algorithms are compared with the proposed

algorithm in each scenario, as follows:

1. DQN-based offloading algorithm [14]

Since the action space of DQN can only be discrete values, we set the action in each dimen-

sion of DQN to 0.2. The IoT device requests the execution of computational offloading for

each task according to the decisions given by the well-trained DQN network. Moreover, to

change the number of columns, select the Columns icon from the MS Word Standard tool-

bar and select the correct number of columns from the selection palette.

Fig 4. Simulation of different access scenarios.

https://doi.org/10.1371/journal.pone.0280468.g004

PLOS ONE A computational offloading optimization scheme based on deep reinforcement learning in perceptual network

PLOS ONE | https://doi.org/10.1371/journal.pone.0280468 February 24, 2023 12 / 19

https://doi.org/10.1371/journal.pone.0280468.g004
https://doi.org/10.1371/journal.pone.0280468


2. A3C-based offloading algorithm [15]

Both A3C and DDPG are actor-critic improved algorithms. It has unique advantages, such

as the convergence of algorithm training. This algorithm has recently been applied in many

studies, which is why we choose this algorithm as an experimental comparison algorithm.

3. Edge server computing

The IoT terminal ignores the burden of the edge server and always offloads tasks to the

edge server for calculation.

4. Local computing

The IoT terminal puts all computing work locally and does not request that the computing

be offloaded to the edge network.

4.4 Simulation result

In this section, we compare the performance of this algorithm with other algorithms in hetero-

geneous network scenarios. As shown in Figs 5 and 6, the proposed algorithm is compared

with other algorithms in different settings of the edge network environment. The CPU capac-

ity is changed in Fig 5, and the number of MECs is changed in Fig 6. We can see that the per-

formance of the proposed algorithm and the A3C-based algorithm is significantly better than

the other algorithms. Since both DDPG and A3C algorithms belong to the actor-critic model,

they perform very close in each scenario. We set the capacity of each edge server to 2GHZ,

3GHZ, 4GHZ, 5GHZ, and 6GHZ. As the number of edge servers increases from 3 to 12,

the average task delay of the computation methods other than local computation gradually

decreases. After the number of servers is increased to 6, increasing the number of edge servers

does not significantly improve the results. It can be seen that the average task delay decreases

as the CPU capacity of the edge servers increases. But this improvement is not significant com-

pared to the increase in CPU capacity. The task delay is limited by the network bandwidth and

the endpoint’s CPU capacity, and there is a theoretical limit. In addition, st represents the data

Table 2. Parameters setting of simulation experiment.

Parameters Description Value

st Data size of task 100KB-2MB

td Deadline of task 5ms-50ms

c CPU calculation cycle of the task 0.1

fd CPU frequency of IoT devices 0.5GHZ

fe CPU frequency of MEC 3-5GHZ

M Large amounts of MEC 3-12

ND Number of IoT devices 6

Ld ! e Bandwidth from IoT device 50MB/s

LE!e Bandwidth between MECs 300MB/s

Le!�e Bandwidth from MEC to cloud server 200MB/s

episode Number of iterations 6000

aA Actor network learning rate 1 × 10−3

aC Critic network learning rate 2 × 10−3

Mem Experience pool size 10000

Batch Small batch size 64

γ Reward discount rate 0.9

https://doi.org/10.1371/journal.pone.0280468.t002

PLOS ONE A computational offloading optimization scheme based on deep reinforcement learning in perceptual network

PLOS ONE | https://doi.org/10.1371/journal.pone.0280468 February 24, 2023 13 / 19

https://doi.org/10.1371/journal.pone.0280468.t002
https://doi.org/10.1371/journal.pone.0280468


Fig 5. Impact of edge servers with different CPU capacity on task average delay.

https://doi.org/10.1371/journal.pone.0280468.g005

Fig 6. Impact of different number of edge servers on average task delay.

https://doi.org/10.1371/journal.pone.0280468.g006

PLOS ONE A computational offloading optimization scheme based on deep reinforcement learning in perceptual network

PLOS ONE | https://doi.org/10.1371/journal.pone.0280468 February 24, 2023 14 / 19

https://doi.org/10.1371/journal.pone.0280468.g005
https://doi.org/10.1371/journal.pone.0280468.g006
https://doi.org/10.1371/journal.pone.0280468


size of the offloaded task. The set data size is within the acceptable calculation range of the

mobile edge server. When the task is offloaded, it can adaptively find a suitable edge server for

calculation. It won’t affect the average delay too much.

In the MEC scenario, IoT terminals move from the service area of one access point to the

service area of another. Due to migration, the speed of movement of mobile IoT devices also

affects the performance in this scenario. According to Fig 7, in addition to the local execution

of IoT devices, task wait times are expected to increase as IoT devices move faster. Under low-

speed conditions, the performance of the DDPG-based algorithm is significantly better than

the other offloading modes. As the speed increases to 40m/s, the performance of the DDPG-

based algorithm is only slightly better than that of DQN and A3C.

The impact on the total IoT terminal service delay expectation is shown in Fig 8. It can be

seen that the DDPG-based algorithm performs optimally and increases the task delay expecta-

tion as the number of IoT terminals increases. In the mobile edge computing scenario, the

increase in the number of IoT terminals leads to an increase in the number of task requests in

the time slot, which increases the burden on the edge server.

The experiments in this paper mainly compare the edge network environments with dif-

ferent settings. As a result, it is verified that the DDPG algorithm can effectively reduce the

task delay from multiple perspectives, such as different computing capabilities of edge serv-

ers, different numbers of edge servers, IoT devices at different speeds, and different num-

bers of IoT devices. Furthermore, it has been proved that the algorithm can effectively

solve the optimization offloading of computing tasks of IoT terminals compared with other

algorithms.

Fig 7. Impact of mobile IoT devices at different speeds on average task delay.

https://doi.org/10.1371/journal.pone.0280468.g007

PLOS ONE A computational offloading optimization scheme based on deep reinforcement learning in perceptual network

PLOS ONE | https://doi.org/10.1371/journal.pone.0280468 February 24, 2023 15 / 19

https://doi.org/10.1371/journal.pone.0280468.g007
https://doi.org/10.1371/journal.pone.0280468


5 Conclusions

The extensive distribution mode and powerful offloading capability of edge computing nodes

greatly facilitate the task computation and data transmission of IoT terminals. In this paper,

the DDPG algorithm is proposed to solve the computational offloading problem of IoT termi-

nals for perception layer networks. Experiments show that the DDPG algorithm proposed in

this paper can effectively improve the operational efficiency of perception layer networks and

reduce the average delay of tasks.

Author Contributions

Conceptualization: Yongli Xing, Muhammad Waqas, Hisham Alasmary.

Data curation: Yongli Xing.

Formal analysis: Yongli Xing, Sami Ullah, Muhammad Waqas.

Investigation: Yongli Xing, Muhammad Waqas.

Methodology: Yongli Xing, Sami Ullah, Muhammad Waqas.

Project administration: Muhammad Waqas.

Resources: Tao Ye, Sami Ullah, Muhammad Waqas, Hisham Alasmary.

Supervision: Tao Ye, Muhammad Waqas, Zihui Liu.

Validation: Tao Ye, Sami Ullah, Muhammad Waqas, Hisham Alasmary, Zihui Liu.

Visualization: Tao Ye, Sami Ullah, Muhammad Waqas, Zihui Liu.

Writing – original draft: Yongli Xing, Sami Ullah.

Fig 8. Impact of different number of IoT devices on average task delay.

https://doi.org/10.1371/journal.pone.0280468.g008

PLOS ONE A computational offloading optimization scheme based on deep reinforcement learning in perceptual network

PLOS ONE | https://doi.org/10.1371/journal.pone.0280468 February 24, 2023 16 / 19

https://doi.org/10.1371/journal.pone.0280468.g008
https://doi.org/10.1371/journal.pone.0280468


Writing – review & editing: Tao Ye, Sami Ullah, Muhammad Waqas, Hisham Alasmary,

Zihui Liu.

References
1. Mourad A, Tout H, Wahab OA, Otrok H, Dbouk T. Ad hoc vehicular fog enabling cooperative low-latency

intrusion detection. IEEE Internet of Things Journal. 2020; 8(2): 829–843. https://doi.org/10.1109/JIOT.

2020.3008488

2. Zeng M, Li Y, Zhang K, Waqas M, Jin D. Incentive Mechanism Design for Computation Offloading in

Heterogeneous Fog Computing: A Contract-Based Approach. In:; 2018: 1–6.

3. Heidari A, Jabraeil Jamali MA, Jafari Navimipour N. Internet of things offloading: Ongoing issues, oppor-

tunities, and future challenges. International Journal of Communication Systems. 2021; 33(14):

e4474.1–e4474.26.

4. Miao Y, Wu G, Li M, Ghoneim A, Al-Rakhami M, Hossain MS. Intelligent task prediction and computa-

tion offloading based on mobile-edge cloud computing. Future Generation Computer Systems. 2020;

102: 925–931. https://doi.org/10.1016/j.future.2019.09.035

5. Chen W, Wang D, Li K. Multi-user multi-task computation offloading in green mobile edge cloud com-

puting. IEEE Transactions on Services Computing. 2018; 12(5): 726–738. https://doi.org/10.1109/

TSC.2018.2826544

6. Roman R, Lopez J, Mambo M. Mobile edge computing, fog et. al.: A survey and analysis of security

threats and challenges. Future Generation Computer Systems. 2018; 78: 680–698. https://doi.org/10.

1016/j.future.2016.11.009

7. Ning Z, Dong P, Kong X. A cooperative partial computation offloading scheme for mobile edge comput-

ing enabled Internet of Things. IEEE Internet of Things Journal. 2018; 6(3): 4804–4814. https://doi.org/

10.1109/JIOT.2018.2868616

8. Mustafa E, Shuja J, Jehangiri AI, et al. Joint wireless power transfer and task offloading in mobile edge

computing: a survey. Cluster Computing. 2021: 1–20.

9. Rjoub G, Abdel Wahab O, Bentahar J, Bataineh A. A trust and energy-aware double deep reinforce-

ment learning scheduling strategy for federated learning on IoT devices. In: Springer.; 2020: 319–333.

10. Abbas G, Tanveer M, Abbas ZH, Waqas M, Baker T, Al-Jumeily OBE D. A secure remote user authenti-

cation scheme for 6LoWPAN-based Internet of Things. PloS one. 2021; 16(11): e0258279. https://doi.

org/10.1371/journal.pone.0258279 PMID: 34748568

11. Waqas M, Ahmed M, Zhang J, Li Y. Confidential Information Ensurance through Physical Layer Secu-

rity in Device-to-Device Communication. In:; 2018: 1–7.

12. Chen Y, Zhang N, Zhang Y. Dynamic computation offloading in edge computing for internet of things.

IEEE Internet of Things Journal. 2018; 6(3): 4242–4251. https://doi.org/10.1109/JIOT.2018.2875715

13. Zhang Y, Di B, Wang P. HetMEC: Heterogeneous multi-layer mobile edge computing in the 6 G era.

IEEE Transactions on Vehicular Technology. 2020; 69(4): 4388–4400. https://doi.org/10.1109/TVT.

2020.2975559

14. Li C, Xia J, Liu F. Dynamic offloading for multiuser muti-CAP MEC networks: A deep reinforcement

learning approach. IEEE Transactions on Vehicular Technology. 2021; 70(3): 2922–2927. https://doi.

org/10.1109/TVT.2021.3058995

15. Xu S, Liao B, Yang C. Deep reinforcement learning assisted edge-terminal collaborative offloading algo-

rithm of blockchain computing tasks for energy Internet. International Journal of Electrical Power &

Energy Systems. 2021; 131: 107022. https://doi.org/10.1016/j.ijepes.2021.107022

16. Yu H, Yang Z, Waqas M, et al. Efficient dynamic multi-replica auditing for the cloud with geographic

location. Future Generation Computer Systems. 2021; 125: 285–298. https://doi.org/10.1016/j.future.

2021.05.039

17. Li OKDM. Learning IoT in edge: Deep learning for the Internet of Things with edge computing. IEEE

Network. 2018; 32(1): 96–101. https://doi.org/10.1109/MNET.2018.1700202

18. Mach BZ. Mobile edge computing: A survey on architecture and computation offloading. IEEE Commu-

nications Surveys & Tutorials. 2017; 19(3): 1628–1656. https://doi.org/10.1109/COMST.2017.2682318

19. Khoobkar H, Dehghan Takht Fooladi M, Rezvani H. Partial offloading with stable equilibrium in fog-

cloud environments using replicator dynamics of evolutionary game theory. Cluster Computing. 2022:

1–28.

20. Truong PNTVNW. Partial computation offloading in NOMA-assisted mobile-edge computing systems

using deep reinforcement learning. IEEE Internet of Things Journal. 2021; 8(17): 13196–13208. https://

doi.org/10.1109/JIOT.2021.3064995

PLOS ONE A computational offloading optimization scheme based on deep reinforcement learning in perceptual network

PLOS ONE | https://doi.org/10.1371/journal.pone.0280468 February 24, 2023 17 / 19

https://doi.org/10.1109/JIOT.2020.3008488
https://doi.org/10.1109/JIOT.2020.3008488
https://doi.org/10.1016/j.future.2019.09.035
https://doi.org/10.1109/TSC.2018.2826544
https://doi.org/10.1109/TSC.2018.2826544
https://doi.org/10.1016/j.future.2016.11.009
https://doi.org/10.1016/j.future.2016.11.009
https://doi.org/10.1109/JIOT.2018.2868616
https://doi.org/10.1109/JIOT.2018.2868616
https://doi.org/10.1371/journal.pone.0258279
https://doi.org/10.1371/journal.pone.0258279
http://www.ncbi.nlm.nih.gov/pubmed/34748568
https://doi.org/10.1109/JIOT.2018.2875715
https://doi.org/10.1109/TVT.2020.2975559
https://doi.org/10.1109/TVT.2020.2975559
https://doi.org/10.1109/TVT.2021.3058995
https://doi.org/10.1109/TVT.2021.3058995
https://doi.org/10.1016/j.ijepes.2021.107022
https://doi.org/10.1016/j.future.2021.05.039
https://doi.org/10.1016/j.future.2021.05.039
https://doi.org/10.1109/MNET.2018.1700202
https://doi.org/10.1109/COMST.2017.2682318
https://doi.org/10.1109/JIOT.2021.3064995
https://doi.org/10.1109/JIOT.2021.3064995
https://doi.org/10.1371/journal.pone.0280468


21. Elgendy AZWTYC. Resource allocation and computation offloading with data security for mobile edge

computing. Future Generation Computer Systems. 2019; 100: 531–541. https://doi.org/10.1016/j.

future.2019.05.037

22. Apostolopoulos ATEEPS. Cognitive data offloading in mobile edge computing for internet of things.

IEEE Access. 2020; 8: 55736–55749. https://doi.org/10.1109/ACCESS.2020.2981837

23. Huang M, Liu W, Wang T. A cloud–MEC collaborative task offloading scheme with service orchestra-

tion. IEEE Internet of Things Journal. 2019; 7(7): 5792–5805. https://doi.org/10.1109/JIOT.2019.

2952767

24. Xia YZLY. Online distributed offloading and computing resource management with energy harvesting

for heterogeneous MEC-enabled IoT. IEEE Transactions on Wireless Communications. 2021; 20(10):

6743–6757. https://doi.org/10.1109/TWC.2021.3076201

25. Liao Z, Peng J, Huang J. Distributed probabilistic offloading in edge computing for 6G-enabled massive

internet of things. IEEE Internet of Things Journal. 2020; 8(7): 5298–5308. https://doi.org/10.1109/

JIOT.2020.3033298

26. Chen X, Chen S, Ma Y. An adaptive offloading framework for android applications in mobile edge com-

puting. Science China Information Sciences. 2019; 62(8): 110–126. https://doi.org/10.1007/s11432-

018-9749-8

27. Sufyan F, Banerjee A. Computation offloading for distributed mobile edge computing network: A multi-

objective approach. IEEE Access. 2020; 8: 149915–149930. https://doi.org/10.1109/ACCESS.2020.

3016046

28. Waqas M, Tu S, Halim Z, Rehman SU, Abbas G, Abbas ZH. The role of artificial intelligence and

machine learning in wireless networks security: principle, practice and challenges. Artificial Intelligence

Review. 2022: 1–47.

29. Tanveer M, Abbas G, Abbas ZH, Waqas M, Muhammad F, Kim S. S6AE: Securing 6LoWPAN using

authenticated encryption scheme. Sensors. 2020; 20(9): 2707. https://doi.org/10.3390/s20092707

PMID: 32397469

30. Waqas M, Ahmed M, Li Y, Jin D, Chen S. Social-Aware Secret Key Generation for Secure Device-to-

Device Communication via Trusted and Non-Trusted Relays. IEEE Transactions on Wireless Commu-

nications. 2018; 17(6): 3918–3930. https://doi.org/10.1109/TWC.2018.2817607

31. Tu S, Waqas M, Rehman SU, et al. Reinforcement Learning Assisted Impersonation Attack Detection

in Device-to-Device Communications. IEEE Transactions on Vehicular Technology. 2021; 70(2):

1474–1479. https://doi.org/10.1109/TVT.2021.3053015

32. Tu S, Waqas M, Rehman SU, Mir T, Halim Z, Ahmad I. Social Phenomena and Fog Computing Net-

works: A Novel Perspective for Future Networks. IEEE Transactions on Computational Social Systems.

2022; 9(1): 32–44. https://doi.org/10.1109/TCSS.2021.3082022

33. Wan J, Waqas M, Tu S, et al. An “Efficient Impersonation Attack Detection Method in Fog Computing,”.

CMC-Comput Mater Cont. 2021; 68(1): 267–281.

34. Tu S, Waqas M, Meng Y, et al. Mobile fog computing security: A user-oriented smart attack defense

strategy based on DQL. Computer Communications. 2020; 160: 790–798. https://doi.org/10.1016/j.

comcom.2020.06.019

35. Badshah A, Waqas M, Muhammad F, Abbas G, Abbas ZH. A Novel Framework for Smart Systems

Using Blockchain-Enabled Internet of Things. IT Professional. 2022; 24(3): 73–80. https://doi.org/10.

1109/MITP.2022.3143658

36. Waqas M, Tu S, Rehman SU, et al. Authentication of vehicles and road side units in intelligent transpor-

tation system. CMC-COMPUTERS MATERIALS & CONTINUA. 2020; 64(1): 359–371. https://doi.org/

10.32604/cmc.2020.09821

37. B Z, G Z, W S. Task offloading with power control for mobile edge computing using reinforcement learn-

ing-based markov decision process. Mobile Information Systems. 2020: 1–6.

38. Chen X, Zhang H, Wu C. Optimized computation offloading performance in virtual edge computing sys-

tems via deep reinforcement learning. IEEE Internet of Things Journal. 2018; 6(3): 4005–4018. https://

doi.org/10.1109/JIOT.2018.2876279

39. Li Y, Qi F, Wang Z. Distributed edge computing offloading algorithm based on deep reinforcement

learning. IEEE Access. 2020; 8: 85204–85215. https://doi.org/10.1109/ACCESS.2020.2991773

40. Qiu X, Zhang W, Chen W. Distributed and collective deep reinforcement learning for computation off-

loading: A practical perspective. IEEE Transactions on Parallel and Distributed Systems. 2020; 32(5):

1085–1101. https://doi.org/10.1109/TPDS.2020.3042599

41. Ale L, Zhang N, Fang X. Delay-aware and energy-efficient computation offloading in mobile-edge com-

puting using deep reinforcement learning. IEEE Transactions on Cognitive Communications and Net-

working. 2021; 7(3): 881–892. https://doi.org/10.1109/TCCN.2021.3066619

PLOS ONE A computational offloading optimization scheme based on deep reinforcement learning in perceptual network

PLOS ONE | https://doi.org/10.1371/journal.pone.0280468 February 24, 2023 18 / 19

https://doi.org/10.1016/j.future.2019.05.037
https://doi.org/10.1016/j.future.2019.05.037
https://doi.org/10.1109/ACCESS.2020.2981837
https://doi.org/10.1109/JIOT.2019.2952767
https://doi.org/10.1109/JIOT.2019.2952767
https://doi.org/10.1109/TWC.2021.3076201
https://doi.org/10.1109/JIOT.2020.3033298
https://doi.org/10.1109/JIOT.2020.3033298
https://doi.org/10.1007/s11432-018-9749-8
https://doi.org/10.1007/s11432-018-9749-8
https://doi.org/10.1109/ACCESS.2020.3016046
https://doi.org/10.1109/ACCESS.2020.3016046
https://doi.org/10.3390/s20092707
http://www.ncbi.nlm.nih.gov/pubmed/32397469
https://doi.org/10.1109/TWC.2018.2817607
https://doi.org/10.1109/TVT.2021.3053015
https://doi.org/10.1109/TCSS.2021.3082022
https://doi.org/10.1016/j.comcom.2020.06.019
https://doi.org/10.1016/j.comcom.2020.06.019
https://doi.org/10.1109/MITP.2022.3143658
https://doi.org/10.1109/MITP.2022.3143658
https://doi.org/10.32604/cmc.2020.09821
https://doi.org/10.32604/cmc.2020.09821
https://doi.org/10.1109/JIOT.2018.2876279
https://doi.org/10.1109/JIOT.2018.2876279
https://doi.org/10.1109/ACCESS.2020.2991773
https://doi.org/10.1109/TPDS.2020.3042599
https://doi.org/10.1109/TCCN.2021.3066619
https://doi.org/10.1371/journal.pone.0280468


42. Qu G, Wu H, Li R, Jiao P. Dmro: A deep meta reinforcement learning-based task offloading framework

for edge-cloud computing. IEEE Transactions on Network and Service Management. 2021; 18(3):

3448–3459. https://doi.org/10.1109/TNSM.2021.3087258

43. Min M, Xiao L, Chen Y, Cheng P, Wu D, Zhuang W. Learning-based computation offloading for IoT

devices with energy harvesting. IEEE Transactions on Vehicular Technology. 2019; 68(2): 1930–1941.

https://doi.org/10.1109/TVT.2018.2890685

44. Waqas M, Niu Y, Ahmed M, Li Y, Jin D, Han Z. Mobility-Aware Fog Computing in Dynamic Environ-

ments: Understandings and Implementation. IEEE Access. 2019; 7: 38867–38879. https://doi.org/10.

1109/ACCESS.2018.2883662

45. Waqas M, Zeng M, Li Y, Jin D, Han Z. Mobility Assisted Content Transmission For Device-to-Device

Communication Underlaying Cellular Networks. IEEE Transactions on Vehicular Technology. 2018; 67

(7): 6410–6423. https://doi.org/10.1109/TVT.2018.2802448

46. Luo J, Yu R, Chen Q. Adaptive video streaming with edge caching and video transcoding over soft-

ware-defined mobile networks: A deep reinforcement learning approach. IEEE Transactions on Wire-

less Communications. 2019; 19(3): 1577–1592. https://doi.org/10.1109/TWC.2019.2955129

47. Li X. A computing offloading resource allocation scheme using deep reinforcement learning in mobile

edge computing systems. Journal of Grid Computing. 2021; 19(3): 1–12. https://doi.org/10.1007/

s10723-021-09568-w

48. Tong Z, Deng X, Ye F. Adaptive computation offloading and resource allocation strategy in a mobile

edge computing environment. Information Sciences. 2020; 537: 116–131. https://doi.org/10.1016/j.ins.

2020.05.057

49. Lillicrap TP, Hunt JJ, Pritzel A, et al. Continuous control with deep reinforcement learning. arXiv preprint

arXiv:1509.02971. 2015.

50. Waqas M, Niu Y, Li Y, et al. A Comprehensive Survey on Mobility-Aware D2D Communications: Princi-

ples, Practice and Challenges. IEEE Communications Surveys & Tutorials. 2020; 22(3): 1863–1886.

https://doi.org/10.1109/COMST.2019.2923708

51. Tu S, Waqas M, Rehman SU, et al. Security in Fog Computing: A Novel Technique to Tackle an Imper-

sonation Attack. IEEE Access. 2018; 6: 74993–75001. https://doi.org/10.1109/ACCESS.2018.

2884672

PLOS ONE A computational offloading optimization scheme based on deep reinforcement learning in perceptual network

PLOS ONE | https://doi.org/10.1371/journal.pone.0280468 February 24, 2023 19 / 19

https://doi.org/10.1109/TNSM.2021.3087258
https://doi.org/10.1109/TVT.2018.2890685
https://doi.org/10.1109/ACCESS.2018.2883662
https://doi.org/10.1109/ACCESS.2018.2883662
https://doi.org/10.1109/TVT.2018.2802448
https://doi.org/10.1109/TWC.2019.2955129
https://doi.org/10.1007/s10723-021-09568-w
https://doi.org/10.1007/s10723-021-09568-w
https://doi.org/10.1016/j.ins.2020.05.057
https://doi.org/10.1016/j.ins.2020.05.057
https://doi.org/10.1109/COMST.2019.2923708
https://doi.org/10.1109/ACCESS.2018.2884672
https://doi.org/10.1109/ACCESS.2018.2884672
https://doi.org/10.1371/journal.pone.0280468

	A computational offloading optimization scheme based on deep reinforcement learning in perceptual network
	Authors

	A computational offloading optimization scheme based on deep reinforcement learning in perceptual network

