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ABSTRACT: Intramolecular hydroarylation of alkenes through hydrogen atom transfer (HAT) represents a robust method to prepare 
benzo-fused heterocycles. However, the reported methods have limitations in a variety of accessible cyclic scaffolds. Here we report 
a dual cobalt- and photoredox-catalyzed HAT hydroarylation of alkenes which is characterized by higher efficiency in the synthesis 
of a δ-lactam compared to established protocols. The proposed mechanism is supported by experiments and DFT calculations. 

The Markovnikov-selective hydrofunctionalization of alkenes 
via metal-catalyzed hydrogen atom transfer (HAT) has emerged 
as a versatile tool for the synthesis of complex molecules.1 
Among its ever-growing array of methodology developments,2 
the intramolecular hydroarylation of unactivated alkenes is rec-
ognized as a versatile method to access synthetically useful 
benzo-fused heterocycles from readily available acyclic starting 
materials.3-5 Unlike classical Friedel–Crafts-type hydroaryla-
tions which require forcing acidic conditions for the activation 
of alkenes, the HAT-mediated hydroarylation proceeds via a 
radical mechanism at neutral pH, and thus tolerates a variety of 
Lewis-basic functional groups. In this context, Shenvi reported 
a pioneering cobalt-catalyzed HAT hydroarylation protocol for 
the isomerization of unactivated alkenes (Scheme 1a, top).3a In 
a typical reaction, the intramolecular hydroarylation of alkenes 
tethered to an aromatic ring proceeds in high yield in the pres-
ence of a cobalt catalyst and a catalytic amount of phenylsilane. 
The robustness of this cobalt-catalyzed method was further val-
idated in aqueous media under highly diluted conditions, while 
the use of stoichiometric quantities of phenylsilane was pre-
ferred in certain cases.3b These cobalt-catalyzed HAT-mediated 
catalytic methods provide access to medicinally important N-
heterocycles including tetrahydroisoquinolines and indolines. 
Interestingly, N-deallylation predominated instead of cycliza-
tion toward a respective δ-lactam when an acyclic N-allyl amide 
was subjected to the relevant reaction conditions (Scheme 1a, 
bottom). As an alternative HAT-mediated hydroarylation ap-
proach, Shigehisa reported an organosilane- and N-fluoro-
pyridinium-salt-mediated hydroarylation of unactivated al-
kenes (Scheme 1b).4 From a mechanistic perspective, the 

generation of a carbocation equivalent via HAT to the alkenes 
followed by one-electron oxidation of the resulting alkyl radical 
was proposed as a key intermediate in the C–C-bond-forming 
step. Shigehisa’s protocol is characterized by access to a variety 
of heterocycles, including tetrahydroquinolines, dihydropy-
ranes, and dihydrothiopyranes. 
Against this background, we were motivated to devise a new 
HAT hydroarylation that facilitates the synthesis of benzo-
fused heterocycles which are not readily accessible using the 
established protocols. Inspired by the recent development of 
metallaphotoredox catalysis,6,7 our group has recently reported 
the hydrogenation of unactivated alkenes using ascorbic acid 
(also known as vitamin C) in combination with cobalt and pho-
toredox catalysis.8 We envisioned that an allied cobalt/photore-
dox catalytic system9 might enable a HAT intramolecular hy-
droarylation of alkenes for the synthesis of benzo-fused hetero-
cycles (Scheme 1c). Our reaction design for the silane-free10 
HAT hydroarylation is described in Scheme 1d. In the initiation 
step, H–CoIII is generated via one-electron reduction of the CoII 
complex by a reduced photoredox catalyst (PC), while ascorbic 
acid serves as the source of one electron and a proton presuma-
bly along with the formation of dehydroascorbic acid. The thus 
formed H–CoIII enters the propagation step. HAT from the co-
balt hydride to an alkene produces an alkyl radical intermediate 
along with the CoII catalyst. Intramolecular radical addition to 
the aromatic ring then affords a cyclohexadienyl radical inter-
mediate. We anticipated that the intramolecular C–C-bond-
forming step should predominate over the intermolecular HAT 
between the alkyl radical and ascorbic acid, and undesired 



 

Scheme 1. Intramolecular Hydroarylation of Alkenes via Metal-
Catalyzed HAT 
a Co/Silane (Shenvi)

b Co/Silane/Oxidant (Shigehisa)
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hydrogenation of an alkene would be circumvented. Hydrogen 
atom transfer between the cyclohexadienyl radical intermediate 
and the CoII provides the cyclized product, and the H–CoIII com-
plex is regenerated. 
Based on the reaction design, we began our investigation with 
the aim of cyclizing allyl amide 1a into 3,4-dihydroisoquinolin-
1(2H)-one 2a via intramolecular hydroarylation. HAT hy-
droarylation of N-allyl amides toward benzo-fused δ-lactams 
has not been addressed in previous studies, and we anticipated 
that studying this transformation should provide new insight 
into HAT chemistry. After several trials, a dual catalytic system 

consisting of Ru(bpy)3Cl2 as a photocatalyst and cobalt salo-
phen complex 3a as a cocatalyst was found to be generally suit-
able for the hydroarylation of alkenes. The results of our inves-
tigations into the reaction conditions for the hydroarylation of 
1a are summarized in Table 1. The hydroarylation took place in 
high yield when a substoichiometric amount of ascorbic acid 
was used (entry 2). This observation is in accordance with the 
reaction design in Scheme 1d, in which a catalytic amount of 
ascorbic acid is sufficient to initiate the catalytic cycle. Product 
2a was still obtained in 71% yield when the amount of the co-
balt catalyst 3a was reduced to 3 mol% (entry 3). It is worth 
noting here that the reaction was almost equally efficient when 
the organophotocatalyst 4CzIPN was used (entry 4), suggesting 
that the reaction can be performed under noble-metal-free con-
ditions. The hydroarylation proceeded in good yield in an aque-
ous medium (entry 5), and this mixed solvent system is suitable 
for the cyclization of some substrates studied in Scheme 2 (vide 
infra). In terms of the photon source, the widely used Kessil 
lamp provided an efficiency that was as high as that of our 
standard LED setup (entry 6). Control experiments revealed 
that the reaction did not occur in the absence of the cobalt cat-
alyst, the photocatalyst, or light (entry 7), demonstrating that all 
these reaction components are of critical importance for this re-
action, as proposed in Scheme 1d. 
With the optimized reaction conditions in hand, the scope of the 
intramolecular hydroarylation was evaluated, and the results are 
summarized in Scheme 2. Intramolecular hydroarylation pro-
ceeded in the presence of the aromatic ring with varying elec-
tronic properties (2a-2i). The cyclization of 1b can be con-
ducted at the 1.0 mmol scale in excellent yield (2b), which 
Table 1. Evaluation of the Reaction Conditions for the Intramo-
lecular Hydroarylation of 1a 

N

Ru(bpy)3Cl2
 (2.0 mol%)

3a (10 mol%)
ascorbic acid (3.0 equiv)

EtOH, 25 °C, 18 h
blue LED

1a

Cl

O

N

2a

Cl

O

H

 
entry deviation from the reaction condi-

tions 
yield (%)a 

1 None 89b 
2 0.5 equiv ascorbic acid instead of 3.0 

equiv 
83 

3 3.0 mol% 3a instead of 10 mol% 71 
4 4CzIPN instead of Ru(bpy)3Cl2 82 
5 tBuOH/H2O instead of EtOH 72 
6 Kessil blue LED as a photon source 

instead of our standard LED setup 
88 

7 without 3a, Ru(bpy)3Cl2 or blue LED < 5 

N N

O O
Co

tBu tBu

tButBu

3a

N
NC CN

N
N

N

4CzIPN  



 

aUnless otherwise noted, determined by 1H NMR analysis. bI-
solated yield. 
Scheme 2. Substrate Scope of the Intramolecular HAT Hydroarylation of Alkenes 
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aReaction conditions (unless otherwise noted): 1 (0.20 mmol), Ru(bpy)3Cl2 (0.0040 mmol, 2.0 mol%), 3a (0.020 mmol, 10 mol%), 
and ascorbic acid (0.60 mmol) in EtOH (3.0 mL) at 25 °C under irradiation from blue LEDs (CCS). Isolated yields are shown. b1.0 
mmol scale. cAt 50 °C for two cycles. d1 (0.20 mmol), [Ru(bpy)3][PF6]2 (0.0040 mmol, 2.0 mol%), 3a (0.020 mmol, 10 mol%), and 
ascorbic acid (0.40 mmol) in tBuOH/H2O (3:1, 3.0 mL) at 25 °C under irradiation from blue LEDs (CCS). e45 h. f1x (0.20 mmol), 
4CzIPN (0.0040 mmol, 2.0 mol%), 3a (0.020 mmol, 10 mol%), and ascorbic acid (0.40 mmol) in tBuOH/H2O (3:1, 6.0 mL) at 40 °C 
for 20 h under irradiation from blue LEDs (Kessil). 
highlights the potential scalability of the reaction. The modest 
regioselectivity of 2i (5-Cl/7-Cl =3:2) is in consistent with the 
insensitivity of the radical intermediate in the cyclization step. 
Several kinds of N-functionalized allyl amides smoothly under-
went the hydroarylation (2j-2m). Hydroarylation of a trisubsti-
tuted alkene was also possible at 50 °C, and 2n was obtained in 
73% yield. Preparation of a γ-lactam, a carbocycle, a δ-sultam 
and a tetrahydroquinoline were also possible (2o-2r). The hy-
droarylation of 4-substituted phenols proceeded smoothly using 
either terminal or internal alkenes under the aqueous conditions 
(2s-2v). The hydroarylation afforded 2w in 74% yield when the 
alkene and the arene were tethered with an imidazole ring. The 
hydroarylation of a simple terminal alkene can be performed in 
58% yield under the relevant reaction conditions (2x). 
Regarding the construction of 3,4-dihydroisoquinolin-1(2H)-
one skeleton,11 several thermally demanding radical reactions 
have afforded the 3,4-dihydroisoquinolones from acyclic N-al-
lyl amides.12 However, the respective hydroarylation via HAT 
has remained elusive. To evaluate the feasibility of the synthesis 

of benzo-fused δ-lactams via metal-mediated HAT, the effi-
ciency of the transformation of 1a using reported protocols for 
intramolecular HAT hydroarylation was compared (Table 2). 
Under the dual cobalt- and photoredox-catalyzed conditions, 2a 
was obtained in 71% yield using 3 mol% of the cobalt catalyst 
3a (entry 1). On the other hand, the reported protocol for the 
phenylsilane-mediated hydroarylation3a resulted in a lower 
yield of 2a and 69% of unreacted 1a was recovered without no-
ticeable byproducts (entry 2). When 1a was subjected to the or-
ganosilane- and N-fluoropyridinium-salt-mediated conditions,4 
2a was obtained in 11% yield within a complex product mixture 
(entry 3). These results suggest that the cobalt/photoredox-cat-
alyzed HAT hydroarylation has an advantage for the prepara-
tion of δ-lactams compared to previous protocols.13,14  
In summary, we have developed an intramolecular hydroaryla-
tion of alkenes using cobalt/photoredox dual catalysis. This sys-
tem is featured by higher efficiency for the synthesis of medic-
inally relevant benzo-fused δ-lactams compared to existing 
metal-catalyzed HAT protocols.15 Further studies of the unique 



 

utility of the cobalt/photoredox system compared to thermal 
HAT reactions as well as applications to other alkene isomeri-
zation reactions are currently under investigation in our group. 
Table 2. Comparison of the Reactivity of Reported Protocols 
for the Intramolecular Hydroarylation of 1a 

N
conditions

18 h

1a

Cl

O

N

2a

Cl

O

H

 
entry conditions yield (%)a 

1 Ru(bpy)3Cl2 (2.0 mol%), 3a (3.0 mol%), ascorbic 
acid (3.0 equiv), EtOH, 25 °C, blue LEDs 

71 

2b 3b (3.0 mol%), PhSiH3 (6.0 mol%), benzene, 22 °C 18 

3c,d 3c (3.0 mol%), N-fluoro-2,4,6-trimethylpyridinium 
triflate (2.0 equiv), (Me2SiH)2O (2.0 equiv), PhCF3, 
rt 

11 

N N

O O
Co

tBu tBu

tButBu

3b:

Y

X
X = Y = Cl

3c: X = Y = none

,

,
 

aDetermined by 1H NMR analysis. bRef. 3a. cRef. 4. d20 h. 
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