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1. Introduction 

Like other economic decisions such as investment and migration, daily travel choices 
are made under uncertainty given random variability in travel times existing at various 
spatial levels including link, route and the entire network (Zang et al., 2022). This is 
more so for the urban road network with challenges on the expected or planned arrival 
time such as varying congestion, the mix of traffic and traffic control (Li & Hensher, 
2020). When making their daily choices, travelers need to assess possible travel time 
outcomes, and this assessment may be associated with vagueness. Evidence suggests 
that, given the same expected utility, individuals’ preferences for choices with 
subjective probabilities (under uncertainty) and objective probabilities (under risk) are 
not consistent (Ellsberg, 1961), and experimental studies have demonstrated the 
prominent role of ambiguity attitudes in decision making under uncertainty (d’Albis et 
al., 2020; Driouchi et al., 2020). For example, ambiguity aversion may drive decision 
makers who are more cautious and discourage them from capturing the best opportunity 
(Driouchi et al., 2021), with a negative influence on the social system (Guillemin, 
2020); while ambiguity seeking would encourage market entry (Gutierrez et al., 2020).   

However, when investigating travel time variability, most experimental studies assume 
that the distribution of travel time occurrences is known in terms of objective 
probabilities, and therefore risk attitudes are the focus of current travel behavior 
research (see Li & Hensher, 2020 for a review). Given that, conventionally, travel time 
is a negative source of utility, a common finding is that travelers are more likely to act 
as risk takers so as to avoid a sure loss, a typical choice behavior in the loss domain. 
However, travelers’ risk attitudes have been largely ignored by traffic simulation 
studies, more so for ambiguity attitudes (see, e.g., Vosough et al., 2022; Yildirimoglu et 
al., 2021; Han et al., 2021). As such there is a dearth of evidence on the interaction 
between travel decision making under uncertainty at the micro-level and traffic 
behavior at the macro-level.  

In this paper, we use both psychological and economic factors including ambiguity/risk 
attitudes and heterogeneity in these constructs, and time-money trade-offs, empirically 
estimated from an earlier study using commuting mode decisions associated with 
subjective probabilities (Li et al., 2022), as inputs of the travel choice problem. For the 
utility function that represents travel choice behavior under uncertainty, the relative 
source preference parameter conditioning on experiential information is embedded in a 
hybrid choice model under RUM and Rank-Dependent Utility Theory (RDUT), while 
accommodating important time-money trade-offs. A behavioral advantage of this rank-
dependent and source-dependent utility approach is that it is capable of accounting for 
the paradoxes of Allais (1953) under risk and Ellsberg (1961) under uncertainty, 
respectively (Wakker, 2010). The contribution of this paper is two-fold: (1) establishing 
the dynamic interplay between commuters’ mode choices under uncertainty and road-
system behavior and (2) demonstrating the aggregated role of individuals’ behavioral 
mechanisms in terms of the impact on road traffic. 

Importantly, by introducing the attitude toward ambiguity in the model system, we find 
that ambiguity seeking acts as an important behavioral driver that shifts commuters 
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from cars to public transport (PT), where car drivers have no or limited information on 
the latter. Their relatively positive attitudes toward this source of uncertainty encourage 
modal-switching behavior. Another novel finding is that our empirical accommodation 
of ambiguity attitudes in traffic simulation within an agent-based modeling framework 
leads to a more-realistic estimation of market share and traffic speed, which 
demonstrates that a more realistic representation of individuals’ choice behavior is 
associated with a gain in aggregating them to the level of system behavior. The 
remainder of the paper is organized as follows. The following section presents a brief 
literature review. Our proposed models are presented in Section 3, which are then 
applied to a Sydney corridor in Section 4. Important conclusions are drawn in the last 
section. 

2. Literature review 

Two main-stream approaches have been extensively used in the traffic simulation 
literature, namely the substantive and procedural bounded rationality models. The 
substantive form focuses on the results of traffic flow, in particular under user 
equilibrium (UE) conditions. Various UE modeling forms are developed by adding in 
bounded rationality factors, such as stochastic-user-equilibration (SUE, Daganzo & 
Sheffi, 1977), boundedly rational user equilibrium (BRUE, Mahmassani & Chang, 
1987), and inertia user equilibrium (IUE, Zhang & Yang, 2015). However, the traffic 
flow in conventional UE studies has been assumed to be in a static-equilibrium state, 
within which it is difficult to capture the dynamic adjustment and to understand the 
variation rules shaped by combined changes of multiple attributes in a complex 
decision-making environment. Over the past  decades, with the aid of information 
systems, modeling the day-to-day evolution of traffic flow with the consideration of 
cognitive adaptation has provoked scholars’ interests, using, for example, dynamic user 
equilibrium (Wang et al, 2019; Ye & Yang, 2017), Markov chains (Zong et al., 2019; 
Wu et al., 2018), evolutionary game theory (Pu et al., 2020; Yang et al., 2018), and 
dynamic traffic assignment (Yu et al., 2018; Batista et al., 2018).  

Unlike the substantive bounded rationality model with a focus on traffic outcomes, the 
procedural bounded rationality model emphasizes individuals’ dynamic cognitive and 
learning processes. It involves numerous choice rules, and allowing for more complex 
simulation procedures with flexible behavioral inputs. One state-of-practice modeling 
framework is the agent-based model, which is capable of accounting for preference 
heterogeneity and dynamic interactions between individuals and the traffic environment 
(Zhang & Vorobeychik, 2019). Zou et al. (2016) established an agent-based model 
(ABM) for evaluating congestion charging policies based on the Bayesian learning 
process. Within the ABM framework, Chen et al. (2017) introduced a belief-desire-
intention (BDI) method to forecast public transport (PT) demand. Table 1 summarizes 
recent agent-based traffic simulation studies, in which all reviewed studies assume that 
travelers are risk neutral and ambiguity neutral. However, recent experimental studies 
have empirically estimated risk-taking attitudes for travelers (Li & Zeng, 2022; Li, 
2018; Dixit et al., 2015) and ambiguity seeking (Li et al., 2022) in the presence of travel 
time variability. As such, travelers’ ‘true’ attitudes need to be embedded in traffic 
simulation studies so that policy implications can be evidence-based.  

http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&excludeEventConfig=ExcludeIfFromFullRecPage&SID=7FjbDQ5UEVmL6uXUIUb&field=TS&value=Dynamic+traffic+assignment&uncondQuotes=true
https://dict.youdao.com/w/lay%20emphasis%20on/#keyfrom=E2Ctranslation
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Table 1 A summary of reviewed simulation studies 

 Simulation platform Application Empirical 
risk 
attitudes 

Empirical 
ambiguity 
attitudes 

Li et al. (2011) Model based on descent 
search solution framework and 
BRP function 

To explore individuals’ adjustment 
process of travel route with different 
information accessibility 

× × 

Cats et al. (2016)  BusMezzo To establish a dynamic congestion 
model  

× × 

Ma et al. (2016) DTALite To build a traffic route optimization 
model with real-time information 

× × 

Axhausen et al. (2016) MATSim To set up an activity-based simulation 
framework for large-scale transportation 
scenarios 

× × 

Zou et al. (2016) Matlab To evaluate congestion charge policies × × 
Chen et al. (2017) AnyLogic 6 professional To forecast public traffic demand × × 
Zhang & Huang (2017) Bottleneck model To understand the impact of network 

information on people’s choice of 
departure time 

× × 

Djavadian & Chow (2017) Matlab To verify the welfare effects of policies × × 
Li et al. (2018)  VISSIM To study the optimal toll rates with the 

aim of maximizing the toll revenue 
while ensuring a minimum desired level 
of service 

× × 

Xiong et al. (2018) DTAlite To predict the dynamic change of 
travelers’ behavior, including mode 
choice, route choice, departure time 
choice 

× × 

Aziz et al. (2018) Repast-HPC To investigate the impact of walk-
bicycle infrastructure on mode choice  

× × 

Yildirimoglu et al. (2021) Macroscopic fundamental 
diagrams 

To work out the optimal work schedule 
problem with the aim of minimizing the 
travel time and preventing schedule 
delay  

× × 

Han et al. (2021) Stochastic bottleneck model To investigate the welfare effects of 
pre-trip information on morning 
commuters 

× × 

Vosough et al. (2022) METROPOLIS To explore the impacts of tolls on urban 
emissions and congestion externalities. 

× × 

3. The interplay between mode choices and traffic flow 

To aggregate individuals’ mode choices under uncertainty to the road system, we 
develop a dynamic traffic simulation in terms of an agent-based model, which consists 
of two sub-models, the traveler’s dynamic mode choice model, and the traffic flow 
simulation model. The mutual effect of these two models simulates the day-to-day 
interaction between travelers’ decisions and traffic flow. For commuters traveling in the 
mode chosen in the mode choice model, their behaviors are summarized in real time by 
the traffic simulation model, which then aggregates individuals’ choice behaviors to a 
dynamic traffic flow. Once their trips end, the traffic simulation model again transfers 
all trip information to the decision module and then commuters make their mode 
choices for the next day. It is this module that allows their future decisions to be affected 
by observed traffic flow, which adds an important feedback loop. Specifically, the 
mode-specific utility functions are influenced by their own experiences and knowledge, 
the values of which are updated on a daily base according to new trip information. Once 
the expected travel times are close enough to the real travel times, the day-to-day 
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interaction between travelers’ choices and traffic flow reaches stability, and, 
consequently, the traffic flow equilibrium can be obtained. Details of the mode choice 
model and traffic flow simulation model are presented as follows.  

3.1 Dynamic mode choice model embedded with risk and ambiguity attitudes 

To accommodate the relative source preference between two distinctive sources of 
uncertainty: bus vs. car, we use Li et al. (2022)’s empirical findings, and the procedure 
applied in our simulation is illustrated as follows. Before undertaking a commuting trip, 
all commuters are assumed to choose a mode on the basis of generalized travel costs. 
Considering the important role of information on travel behavior (Ye et al., 2021; Liu 
et al., 2017; Delle Site, 2018), a person’s perceived travel time is a weighted result of 
their experience and real-time information provided by the ATIS system, which can be 
described as follows: 

𝑡𝑡𝑒𝑒 = 𝛽𝛽𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼 + (1 − 𝛽𝛽𝐼𝐼𝐼𝐼)𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑒𝑒，                  (1) 

where 𝛽𝛽𝐼𝐼𝐼𝐼 indicates an individual’s degree of trust towards provided information; 𝑡𝑡𝐼𝐼𝐼𝐼 
denotes the travel time given by the information system; 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑒𝑒  is the 
individual’s raw perceived travel time according to his/her experience. In a person’s 
mind, for a travel mode with travel time uncertainty, there are m possible outcomes of 
travel time for a trip ranking, from the worst to the best 
( 𝑡𝑡1

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑒𝑒 , 𝑡𝑡2
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑒𝑒 , . . . , 𝑡𝑡𝑚𝑚

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑒𝑒 ) with their corresponding probabilities 
(𝑝𝑝1,𝑝𝑝2, . . . , 𝑝𝑝𝑚𝑚), which satisfy the conditions: 𝑝𝑝𝑘𝑘 ≥ 0,𝑘𝑘 = 1, . . . ,𝑚𝑚,∑ 𝑝𝑝𝑘𝑘𝑚𝑚

𝑘𝑘=1 = 1. The 
total utility of an individuals raw expectation for travel time without an information 
system is a weighted sum of utilities over all possible time outcomes. Embedding risk 
attitudes, the perceived utility of each possible travel time is modeled as a power 
specification under the assumption of constant relative risk aversion (CRRA): 

u(𝑡𝑡𝑘𝑘
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑒𝑒) = (𝑡𝑡𝑘𝑘

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑒𝑒)1−𝛼𝛼

1−𝛼𝛼
, where 1 − 𝛼𝛼  is the risk attitude parameter. The 

weight of the kth travel time outcome is its subjective probability of occurrence, which 
is quantified with the source function: 𝜔𝜔(𝑝𝑝𝑘𝑘) = F[w(𝑝𝑝𝑘𝑘)], 𝑘𝑘 = 1, . . . ,𝑚𝑚, where 𝐹𝐹(·) is 
a transformation function depending on the source of uncertainty. Thus, an individual’s 
raw perceived travel time can be calculated by: 

𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑒𝑒 = ∑ 𝜔𝜔( 𝑝𝑝𝑘𝑘) 𝑡𝑡𝑘𝑘
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑒𝑒1−𝛼𝛼

1−𝛼𝛼
𝑖𝑖
𝑘𝑘=1 .                 (2) 

 
In particular, following Li et al. (2022)1, we embed this source function within a Rank-
Dependent Utility model (Quiggin, 1982) allowing for risk attitudes and beliefs, as 
shown in equation (3). This model form accounts for attitudes toward ambiguity and 
risk, both concepts of uncertainty, while only the former can generate first-order 

 

1 Li et al. (2022) compared different nonlinear probability weighting functions, and this one-parameter function 
delivers the best result. For elicitation of subjective probabilities and decision weights, their sampled respondents 
were asked to three commuting time outcomes and the subjective probability for each outcome to rank their provided 
three outcomes. 
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welfare effects (Ilut & Schneider, 2022). 

�
𝜔𝜔( 𝑝𝑝𝑘𝑘) = [𝑤𝑤( 𝑝𝑝𝑘𝑘 +  𝑝𝑝𝑘𝑘+1+. . . + 𝑝𝑝𝑚𝑚) − 𝑤𝑤( 𝑝𝑝𝑘𝑘+1+. . . + 𝑝𝑝𝑚𝑚)]𝜃𝜃,𝑘𝑘 = 1,2, …𝑚𝑚 − 1

𝜔𝜔(𝑝𝑝𝑚𝑚) = 𝑤𝑤(𝑝𝑝𝑚𝑚)𝜃𝜃
 , 

(3) 

𝑝𝑝𝑘𝑘  is the probability of the kth outcome, which is estimated by the frequency of 

empirical data falling in [ 𝑡𝑡𝑘𝑘−1
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑒𝑒+𝑡𝑡𝑘𝑘

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑒𝑒

2
 ,  𝑡𝑡𝑘𝑘

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑒𝑒+𝑡𝑡𝑘𝑘+1
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑒𝑒

2
)  for k=2,..,m-1, or 

(−∞, 𝑡𝑡1
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑒𝑒)  for k=1, or [ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑒𝑒, +∞)  for k=m; 𝑤𝑤(·)  is the probability 

weighting function (e.g., 𝑤𝑤(𝑝𝑝𝑘𝑘) = 𝑝𝑝𝑘𝑘
𝜓𝜓

[𝑝𝑝𝑘𝑘
𝜓𝜓+(1−𝑝𝑝𝑘𝑘)𝜓𝜓]

1
𝜓𝜓

 proposed by Tversky and Kahneman 

(1992), and is used in our paper). The curvature of probability weighting is determined 
by the parameter estimate of 𝜓𝜓, which transforms the cumulative distribution based on 
the rank of outcome into decision weights (m is the best outcome) with beliefs towards 
probabilities. 𝜃𝜃 is the relative source preference, and the functional form proposed by 
Fox and Tversky (1998) is 𝜔𝜔(p) =(w(𝑝𝑝))𝜃𝜃, where 𝜃𝜃 > 1 is inversely related to the 
attractiveness of the source of uncertainty in a gain domain and vice versa, which is 
also a quantitative indicator of ambiguity attitude (Abdellaoui et al., 2011). In Li et al. 
(2022), the value of 𝜃𝜃 is normalized to be ‘1’ for the car mode’s utility function as the 
base for relative source preference, while 𝜃𝜃 for the bus mode is shown in equation (4): 

𝜃𝜃 = 𝜃𝜃0 + 𝜃𝜃𝑡𝑡𝑡𝑡𝑖𝑖𝑝𝑝 ∗ 𝑖𝑖𝑖𝑖𝑚𝑚𝑏𝑏𝑖𝑖𝑏𝑏,                        (4) 

where 𝑖𝑖𝑖𝑖𝑚𝑚𝑏𝑏𝑖𝑖𝑏𝑏  denotes the number of bus trips during the last two months which 
varies across the sampled commuters, 𝜃𝜃0 and 𝜃𝜃𝑡𝑡𝑡𝑡𝑖𝑖𝑝𝑝 are parameters to be estimated, 
and 𝜃𝜃𝑡𝑡𝑡𝑡𝑖𝑖𝑝𝑝  reflects the corresponding role of experiential information on ambiguity 
attitudes.  

The mode-specific utility function is expressed as equation (5), in terms of a mix of 
RDUT for the uncertain attribute (travel time) and RUM for the deterministic cost 
attribute (e.g., fare). This utility functional form allows time-money trade-offs in travel 
decision making with embedded ambiguity attitudes and risk attitudes and can be 
directly linked to welfare measures. 

𝑈𝑈 = 𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑡𝑡 + 𝛽𝛽𝑡𝑡𝑡𝑡𝑒𝑒 + 𝛽𝛽𝑐𝑐𝑐𝑐𝑏𝑏𝑡𝑡𝑡𝑡𝑐𝑐 + 𝜀𝜀,                    (5) 

where 𝑡𝑡𝑐𝑐 is the monetary cost of a single trip, 𝛽𝛽𝑐𝑐𝑐𝑐𝑏𝑏𝑡𝑡 and 𝛽𝛽𝑡𝑡 are the coefficients of 
monetary cost and travel time, 𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑡𝑡 is the alternative-specific constant, and 𝜀𝜀 is the 
unobserved disturbance term. For a binary logit model, the choice probabilities of the 
two modes are:  

 𝑃𝑃(bus) = 𝑒𝑒𝑒𝑒𝑝𝑝(𝑉𝑉𝑏𝑏𝑖𝑖𝑏𝑏)
𝑒𝑒𝑒𝑒𝑝𝑝(𝑉𝑉𝑏𝑏𝑖𝑖𝑏𝑏)+𝑒𝑒𝑒𝑒𝑝𝑝(𝑉𝑉𝑐𝑐𝑖𝑖𝑐𝑐)  & 𝑃𝑃(car) = 1 − 𝑃𝑃(bus),         (6)                                        

where V indicates the observed utility. 
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3.2 Road traffic flow simulation model  

The traffic flow simulation is an aggregation of all agents’ movements on the road 
network. The main idea of the treatment for a single agent is progressive renewal. To 
be specific, the studied time period and road space are equally divided, with a 
hypothesis that vehicles running on the same subsection have the same speed, and one 
vehicle keeps its speed constant during a sub-time period. Then, given the original state 
of a car driver (with known speed, location and time), the speed is calculated by using 
the modified BPR function or the queueing model. Then, the commuter’s location and 
time can be updated, which are transferred to the next subperiod. This process is 
repeated until the commuter reaches the destination. Then, they will leave the system 
with their travel time recorded. Details of how to calculate different road traffic speeds 
and additional time experienced by bus passengers are illustrated in the remainder of 
the section.  

3.2.1 Speed for road traffic without severe congestion 

The Bureau of Public Roads (BPR) function is one of the most widely used models for 
speed calculation; however, the measurement of variables in its formula is time-
consuming, which is not suitable for the dynamic iterations required in our simulation. 
We modify the traditional BPR function based on Kucharski and Drabicki (2017)’s 
method to calculate the speed of road traffic without severe congestion.  
 
In the traditional BPR function, the length of travel time t is estimated as 
 

𝑡𝑡 = 𝑡𝑡𝑓𝑓𝑡𝑡𝑒𝑒𝑒𝑒[1+𝑖𝑖 �𝑉𝑉
𝐾𝐾
�
𝑏𝑏
]                         (7) 

 
where 𝑡𝑡𝑓𝑓𝑡𝑡𝑒𝑒𝑒𝑒 is the travel time in free flow conditions, V denotes the volume in vehicles 
per hour, 𝐾𝐾 refers to the capacity of the road; 𝑖𝑖 and 𝑏𝑏, two impedance parameters, 
are typically assumed to be 0.15 and 4, respectively. Suppose that the length of a road 
is L, then the average speed of one vehicle traveling on this road is: 
 

𝑖𝑖 = 𝐿𝐿
𝑡𝑡

= 𝑖𝑖𝑓𝑓𝑡𝑡𝑒𝑒𝑒𝑒 ∗
1

[1+𝑖𝑖�𝑉𝑉𝐾𝐾�
𝑏𝑏

]
.                       (8) 

 
Following Kucharski and Drabicki (2017), we divide V and K by the average distance 
of the vehicle traveling in an hour, and the modified BPR function becomes: 

 
𝑖𝑖 = 𝑖𝑖𝑓𝑓𝑡𝑡𝑒𝑒𝑒𝑒 ∗

1

[1+𝑖𝑖�𝜌𝜌
0

𝐾𝐾𝑐𝑐
0�

𝑏𝑏
]
 ,                         (9)  

 
where 𝜌𝜌0 represents the density of the road, and 𝐾𝐾𝑡𝑡0 is the density at capacity. Finally, 
𝜌𝜌0 and 𝐾𝐾𝑡𝑡0 are multiplied by the length of one road segment without congestion to 
obtain the speed traveling on the road segment: 
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𝑖𝑖 = 𝑖𝑖𝑓𝑓𝑡𝑡𝑒𝑒𝑒𝑒 ∗
1

[1+𝑖𝑖� 𝜌𝜌𝐾𝐾𝑐𝑐
�
𝑏𝑏

]
,                         (10) 

 
where 𝜌𝜌 denotes the number of vehicles on the road segment, and 𝐾𝐾𝑡𝑡 is the capacity 
of the road segment. 
 
3.2.2 Speed for hypercongested road traffic 

Assume that the length of each subperiod and each road segment are ∆𝑡𝑡  and ∆𝑖𝑖 
respectively. The state set of a commuter is S={𝑖𝑖, 𝑖𝑖, 𝑡𝑡`, 𝑐𝑐}, where 𝑖𝑖, 𝑖𝑖, 𝑡𝑡`, 𝑐𝑐 denote the 
location, speed, point of time, and segment of the road, respectively. To accommodate 
hypercongestion in some extreme situations, we employ a queueing model. Given the 
congestion period [𝑡𝑡`

0, 𝑡𝑡`
1], the arrival rate at the segment is b(t) and the release rate is 

o; and for a commuter reaching the segment at 𝑡𝑡` ∈ [𝑡𝑡`
0, 𝑡𝑡`

1], the length of the queue 
she has to wait in is 
 

𝐷𝐷(𝑡𝑡`)  = ∫ [𝑏𝑏(𝑡𝑡) − 𝑐𝑐]𝑖𝑖𝑡𝑡𝑡𝑡`

𝑡𝑡`0
,                      (11) 

 
with the corresponding time  

𝑡𝑡ℎ𝑦𝑦𝑝𝑝𝑒𝑒𝑡𝑡 =  𝐷𝐷(𝑡𝑡`)
𝑐𝑐

=
∫ [𝑏𝑏(𝑡𝑡)−𝑐𝑐]𝑖𝑖𝑡𝑡𝑡𝑡`

𝑡𝑡`0
𝑐𝑐

,                   (12)  

where the speed is ‘0’ during [𝑡𝑡`, 𝑡𝑡`+𝑡𝑡ℎ𝑦𝑦𝑝𝑝𝑒𝑒𝑡𝑡]. 

3.2.3 The travel time of a car driver 

The total travel time for a car user consists of the running time and hypercongested 
time, which is estimated with a dynamic iteration model. Ignoring traffic lights and road 
accidents, the travel time driving from zone 𝑐𝑐0 to zone 𝑐𝑐𝑖𝑖 is given as follows: 

Step 1: Assign the initial values: 𝑡𝑡` = 𝑡𝑡`
0, 𝑖𝑖 = 𝑖𝑖0, 𝑐𝑐 = 𝑐𝑐0, 𝑡𝑡`

𝑤𝑤𝑖𝑖𝑖𝑖𝑡𝑡 = 𝑡𝑡`
0. 

Step 2: If the traffic flow on road segment s is larger than the hypercongestion critical 
value, use equation (12) to calculate 𝑡𝑡ℎ𝑦𝑦𝑝𝑝𝑒𝑒𝑡𝑡 . Let the end point of time under 
hypercongestion be: 𝑡𝑡`

𝑤𝑤𝑖𝑖𝑖𝑖𝑡𝑡 =  𝑡𝑡` + 𝑡𝑡ℎ𝑦𝑦𝑝𝑝𝑒𝑒𝑡𝑡. If 𝑡𝑡` ≤ 𝑡𝑡`
𝑤𝑤𝑖𝑖𝑖𝑖𝑡𝑡, then 𝑖𝑖 = 0. Otherwise, go 

to step 3 to obtain the value of speed v. 
Step 3: If the traffic flow of s is smaller than the critical value of hypercongestion or 
𝑡𝑡` > 𝑡𝑡`

𝑤𝑤𝑖𝑖𝑖𝑖𝑡𝑡, apply equation (10) to calculate v. 
Step 4: Update the parameters: 
𝑖𝑖 = 𝑖𝑖 + 𝑖𝑖 ∗ ∆𝑡𝑡, 𝑡𝑡` = 𝑡𝑡` + ∆𝑡𝑡, 𝑐𝑐 = [ 𝑖𝑖

∆𝑖𝑖
], 𝑡𝑡`

𝑤𝑤𝑖𝑖𝑖𝑖𝑡𝑡 = 𝑡𝑡`
0.  

Step 5: Stop condition: If 𝑖𝑖 > 𝑐𝑐𝑖𝑖 ∗ ∆𝑖𝑖, the iteration stops. The total travel time is 𝑡𝑡` −
𝑡𝑡`
0. 

 
3.2.4 The travel time of a bus passenger 

In addition to the running time and hypercongested time, the total travel time of a bus 
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passenger who leaves from station 𝑐𝑐1 to station 𝑐𝑐2 also includes the waiting time for 
bus arrival, delay time of accelerating and decelerating, dwell time at bus stations and 
the walking time spent on the journey from home to the station and from the station to 
the office. 

  The waiting time for the bus arrival 

When a current bus is over-loaded, passengers need to wait for the next bus. The first 
step in calculating a bus passenger’s waiting time is to count the number of extra buses 
someone has to wait for. Suppose that the schedule of bus arrivals at station 𝑐𝑐1  is 
[𝑇𝑇𝑏𝑏1

𝑏𝑏𝑖𝑖𝑏𝑏,1 …𝑇𝑇𝑏𝑏1
𝑏𝑏𝑖𝑖𝑏𝑏,𝑀𝑀−1,𝑇𝑇𝑏𝑏1

𝑏𝑏𝑖𝑖𝑏𝑏,𝑀𝑀], and the length of the queue after bus i leaves station 𝑐𝑐1 is 
given as follows. 
 
If 𝑐𝑐1 > 0, 

𝐻𝐻𝑏𝑏1
𝑏𝑏𝑖𝑖𝑏𝑏,𝑖𝑖 = �

𝑚𝑚𝑖𝑖𝑚𝑚{0,𝑖𝑖𝑏𝑏𝑐𝑐𝑖𝑖𝑡𝑡𝑖𝑖,𝑏𝑏1
𝑏𝑏𝑖𝑖𝑏𝑏,𝑖𝑖 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎ℎ𝑡𝑡,𝑏𝑏1

𝑏𝑏𝑖𝑖𝑏𝑏,𝑖𝑖 − 𝑖𝑖𝑡𝑡𝑒𝑒𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖,𝑏𝑏1−1
𝑏𝑏𝑖𝑖𝑏𝑏,𝑖𝑖 }, 𝑖𝑖 = 1

𝑚𝑚𝑖𝑖𝑚𝑚{0,𝐻𝐻𝑏𝑏1
𝑏𝑏𝑖𝑖𝑏𝑏,𝑖𝑖−1 + 𝑖𝑖𝑏𝑏𝑐𝑐𝑖𝑖𝑡𝑡𝑖𝑖,𝑏𝑏1

𝑏𝑏𝑖𝑖𝑏𝑏,𝑖𝑖 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎ℎ𝑡𝑡,𝑏𝑏1
𝑏𝑏𝑖𝑖𝑏𝑏,𝑖𝑖 − 𝑖𝑖𝑡𝑡𝑒𝑒𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖,𝑏𝑏1−1

𝑏𝑏𝑖𝑖𝑏𝑏,𝑖𝑖 }, 𝑖𝑖 = 2,3, . . .
,(13) 

 

where 𝑖𝑖𝑏𝑏𝑐𝑐𝑖𝑖𝑡𝑡𝑖𝑖,𝑏𝑏1
𝑏𝑏𝑖𝑖𝑏𝑏,𝑖𝑖 = ∫ 𝑏𝑏𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑒𝑒,𝑏𝑏1

𝑏𝑏𝑖𝑖𝑏𝑏 (t)𝑖𝑖𝑡𝑡
𝑇𝑇𝑏𝑏1
𝑏𝑏𝑖𝑖𝑏𝑏,𝑖𝑖

𝑇𝑇𝑏𝑏1
𝑏𝑏𝑖𝑖𝑏𝑏,𝑖𝑖−1  ,  𝑏𝑏𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑒𝑒,𝑏𝑏1

𝑏𝑏𝑖𝑖𝑏𝑏 (𝑡𝑡)  is the arrival rate of 

passengers at stop 𝑐𝑐1 , 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎ℎ𝑡𝑡,𝑏𝑏1
𝑏𝑏𝑖𝑖𝑏𝑏,𝑖𝑖   denotes the number of people getting off bus i at 

station 𝑐𝑐1, and 𝑖𝑖𝑡𝑡𝑒𝑒𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖,𝑏𝑏1
𝑏𝑏𝑖𝑖𝑏𝑏,𝑖𝑖  present the residual capacity of bus i after it leaves station 𝑐𝑐1.  

 
If 𝑐𝑐1 = 0, 

𝐻𝐻𝑏𝑏1
𝑏𝑏𝑖𝑖𝑏𝑏,𝑖𝑖 = �

𝑚𝑚𝑖𝑖𝑚𝑚{0,𝑖𝑖𝑏𝑏𝑐𝑐𝑖𝑖𝑡𝑡𝑖𝑖,𝑏𝑏1
𝑏𝑏𝑖𝑖𝑏𝑏,𝑖𝑖 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎ℎ𝑡𝑡,𝑏𝑏1

𝑏𝑏𝑖𝑖𝑏𝑏,𝑖𝑖 − 𝐶𝐶𝑏𝑏𝑖𝑖𝑏𝑏}, 𝑖𝑖 = 1

𝑚𝑚𝑖𝑖𝑚𝑚{0,𝐻𝐻𝑏𝑏1
𝑏𝑏𝑖𝑖𝑏𝑏,𝑖𝑖−1 + 𝑖𝑖𝑏𝑏𝑐𝑐𝑖𝑖𝑡𝑡𝑖𝑖,𝑏𝑏1

𝑏𝑏𝑖𝑖𝑏𝑏,𝑖𝑖 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎ℎ𝑡𝑡,𝑏𝑏1
𝑏𝑏𝑖𝑖𝑏𝑏,𝑖𝑖 − 𝐶𝐶𝑏𝑏𝑖𝑖𝑏𝑏}, 𝑖𝑖 = 2,3, . . .

,   (14) 

 
 
where 𝐶𝐶𝑏𝑏𝑖𝑖𝑏𝑏 is the bus capacity. 
 
Assume that a passenger arrives at the stop at DEPϵ[𝑇𝑇𝑏𝑏1

𝑏𝑏𝑖𝑖𝑏𝑏,𝑧𝑧−1,𝑇𝑇𝑏𝑏1
𝑏𝑏𝑖𝑖𝑏𝑏,𝑧𝑧]. If 𝐻𝐻𝑏𝑏1

𝑏𝑏𝑖𝑖𝑏𝑏,𝑧𝑧−1 +
∫ 𝑏𝑏𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑒𝑒,𝑏𝑏1

𝑏𝑏𝑖𝑖𝑏𝑏 (𝑡𝑡)𝑖𝑖𝑡𝑡 −𝐷𝐷𝐷𝐷𝐷𝐷
𝑇𝑇𝑏𝑏1
𝑏𝑏𝑖𝑖𝑏𝑏,𝑧𝑧−1 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎ℎ𝑡𝑡,𝑏𝑏1

𝑏𝑏𝑖𝑖𝑏𝑏,𝑧𝑧  is less than the residual capacity of bus z, the 

passenger can use this bus. Otherwise, they have to wait for the next bus. Having 
estimated the total number of buses that a person needs to wait for  (h), the 
corresponding waiting time for a bus service is 
 

𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑒𝑒,𝑏𝑏1
𝑏𝑏𝑖𝑖𝑏𝑏 = 𝑇𝑇𝑏𝑏1

𝑏𝑏𝑖𝑖𝑏𝑏,𝑧𝑧+ℎ − 𝐷𝐷𝐷𝐷𝑃𝑃.                   (15) 
 
 The delay time associated with the accelerating and decelerating of a bus 

The delay time of accelerating and decelerating is another non-negligible time 
component. Referring to Tirachini et al. (2014), the delay time of a bus at speed 𝑖𝑖𝑏𝑏𝑖𝑖𝑏𝑏 
is 
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𝑡𝑡𝑖𝑖𝑐𝑐𝑏𝑏𝑖𝑖𝑏𝑏 = 𝑖𝑖𝑏𝑏𝑖𝑖𝑏𝑏

2
� 1
𝑖𝑖0

+ 1
𝑖𝑖1
� ∗ (𝑐𝑐2 − 𝑐𝑐1 − 1),                (16)  

 
where 𝑖𝑖0  and 𝑖𝑖1  are the acceleration rate and the deceleration rate of the bus, 
respectively.  
 
 The dwell time of a bus 

The relationship between the speed of boarding and alighting the bus and passenger 
density in the bus has been studied empirically (Fernández, 2011), as follows.  
 

𝑖𝑖𝑏𝑏𝑐𝑐𝑖𝑖𝑡𝑡𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧

0.89, 0 ≤ 𝜌𝜌 < 1
1.13, 1 ≤ 𝜌𝜌 < 2
1.37  2 ≤ 𝜌𝜌 < 3
1.67  3 ≤ 𝜌𝜌 < 4
2.03  4 ≤ 𝜌𝜌 < 6

  and       𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎ℎ𝑡𝑡 =

⎩
⎪
⎨

⎪
⎧

0.59, 0 ≤ 𝜌𝜌 < 1
0.92, 1 ≤ 𝜌𝜌 < 2
1.11  2 ≤ 𝜌𝜌 < 3
1.89  3 ≤ 𝜌𝜌 < 4
5.92  4 ≤ 𝜌𝜌 < 6

,            (17)  

 
where 𝜌𝜌 presents the density of standing passengers in the bus, which can be calculated 
by Tirachini’s method (Tirachini et al., 2014). With the obtained 𝑖𝑖𝑏𝑏𝑐𝑐𝑖𝑖𝑡𝑡𝑖𝑖 and  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎ℎ𝑡𝑡, 
the time for passengers who get on and off bus j at station k can be estimated as  
 

𝑡𝑡𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖&𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖,𝑘𝑘
𝑏𝑏𝑖𝑖𝑏𝑏,𝑗𝑗 = 𝑚𝑚𝑖𝑖𝑚𝑚 �

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎ℎ𝑡𝑡,𝑘𝑘
𝑏𝑏𝑖𝑖𝑏𝑏,𝑗𝑗

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎ℎ𝑡𝑡(𝜌𝜌𝑘𝑘−1
𝑏𝑏𝑖𝑖𝑏𝑏,𝑗𝑗)

，
𝑖𝑖𝑏𝑏𝑏𝑏𝑖𝑖𝑐𝑐𝑖𝑖,𝑘𝑘
𝑏𝑏𝑖𝑖𝑏𝑏,𝑗𝑗

𝑖𝑖𝑏𝑏𝑏𝑏𝑖𝑖𝑐𝑐𝑖𝑖(𝜌𝜌𝑘𝑘−1
𝑏𝑏𝑖𝑖𝑏𝑏,𝑗𝑗)

�,        (18) 

 
where 𝜌𝜌𝑘𝑘

𝑏𝑏𝑖𝑖𝑏𝑏,𝑗𝑗 is the density of standing passengers in the bus j after it leaves stop 𝑘𝑘. 
Moreover, the passenger’s total dwell time from stop 𝑐𝑐1 to stop 𝑐𝑐2 is 
 

𝑡𝑡𝑖𝑖𝑤𝑤𝑒𝑒𝑖𝑖𝑖𝑖𝑏𝑏𝑖𝑖𝑏𝑏 = ∑ (𝑡𝑡𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖&𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖,𝑘𝑘
𝑏𝑏𝑖𝑖𝑏𝑏,𝑧𝑧+ℎ𝑏𝑏2−1

𝑘𝑘=𝑏𝑏1 + 𝑐𝑐𝑐𝑐 + 𝑐𝑐𝑐𝑐),               (19) 
 
where 𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐 denote the time for a bus to open and close its doors.  
 
 Walking time 

 
Assuming that individuals walk at a constant speed, the time spent walking during the 
bus journey is  
 

𝑡𝑡𝑤𝑤𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖𝑖𝑖𝑎𝑎𝑏𝑏𝑖𝑖𝑏𝑏 = 𝐿𝐿ℎ𝑏𝑏𝑜𝑜𝑒𝑒,𝑏𝑏𝑡𝑡𝑖𝑖𝑡𝑡𝑖𝑖𝑏𝑏𝑖𝑖
𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖𝑖𝑖𝑎𝑎

+ 𝐿𝐿𝑤𝑤𝑏𝑏𝑐𝑐𝑘𝑘,𝑏𝑏𝑡𝑡𝑖𝑖𝑡𝑡𝑖𝑖𝑏𝑏𝑖𝑖
𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖𝑖𝑖𝑎𝑎

,            (20) 

 
where 𝐿𝐿ℎ𝑐𝑐𝑚𝑚𝑒𝑒,𝑏𝑏𝑡𝑡𝑖𝑖𝑡𝑡𝑖𝑖𝑐𝑐𝑖𝑖 and 𝐿𝐿𝑤𝑤𝑐𝑐𝑡𝑡𝑘𝑘,𝑏𝑏𝑡𝑡𝑖𝑖𝑡𝑡𝑖𝑖𝑐𝑐𝑖𝑖 are the distance from home to the station and 
the distance from work to the station, respectively. 𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖𝑖𝑖𝑎𝑎  is the commuter’s 
walking speed, which is supposed to be constant.  
 
4. Computational experiments 

4.1 Simulation setup 
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As an illustrative case study, the proposed model is applied to a 5-km transport corridor, 
divided into 10 zones, a section of Parramatta Road, Sydney’s Inner West (see Figure 1 
in which the red dots represent the actual bus stops along this corridor), and where the 
travel demand figures are constructed based on real-market evidence of Sydney. 

 

Figure 1. The case corridor 

Given that the majority of walking trips are within the zoom distance defined in 
our simulation (500 meters per zoom), we only consider car and bus for the 
between-zone travel activities. In total, there 8,625 trips during a morning peak 
(7.30 a.m. to 8.30 a.m.), where Zones 3, 6 & 8 are the destination stops for the 
majority of analyzed individuals. We assign each traveler a unique travel trajectory 
in terms of departure time and risk attitude (see Figure 2 for the departure time 
distribution and Table 3 for the risk attitude distribution) using the random 
assignment method. The value of ambiguity seeking for the initial traffic flow 
during the first two months is set to be 3.328, according to the average number of 
bus trips of the sampled commuters in Li et al. (2022). After that, individuals’ 
ambiguity attitudes are updated on a daily basis, depending on their mode choice 
outcomes. With the aid of the morning-peak modal split provided by the Household 
Travel Survey Report, Transport NSW, the numbers of car trips and bus trips on 
the first day of iteration are 7,073 and 1,552, respectively.  
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Figure 2. Departure time distributions across individuals 

Following Tirachini et al. (2014), other settings for bus are provided in Table 2. 
 

Table 2. Bus setups 

Parameter Value 
ℎ𝑏𝑏𝑖𝑖𝑏𝑏 3min 

𝑟𝑟𝑖𝑖𝑡𝑡𝑒𝑒𝑏𝑏𝑒𝑒𝑖𝑖𝑡𝑡𝑏𝑏𝑖𝑖𝑏𝑏  0.6 
𝐴𝐴𝑏𝑏𝑖𝑖𝑏𝑏 25.025𝑚𝑚2 
𝑖𝑖𝑏𝑏𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝑖𝑖𝑏𝑏  0.15𝑚𝑚2 
𝑖𝑖𝑏𝑏𝑒𝑒𝑖𝑖𝑡𝑡𝑏𝑏𝑖𝑖𝑏𝑏  0.5𝑚𝑚2 
𝑐𝑐𝑐𝑐 , 𝑐𝑐𝑐𝑐 1s 
𝑖𝑖0, 𝑖𝑖1 1.2m/𝑐𝑐2 

 
With respect to the monetary costs, the variable cost for car is Au$0.15 per kilometer, 
and the fixed cost is Au$6 for parking. The specific bus fares are formulated as: 
 

𝑓𝑓𝑏𝑏𝑖𝑖𝑏𝑏 = �Au$3.20, distance < 3km  
Au$3.93, distance ≥ 3km .               (21) 

 

As for the behavioral parameters of Sydney commuters, we use the empirical results of 
Model 4 in Li et al. (2022) where a normal distribution is used to represent 
heterogeneous risk attitudes at the individual level, summarized in Table 3. 𝛽𝛽𝐼𝐼𝐼𝐼 is set 
to be 0.5, and the speed of walking is 5km/h. 



12 

 

Table 3 Commuters’ behavioral parameters in the context of mode choice, obtained 
from Li et al. (2022) 

α 𝝍𝝍 𝜽𝜽𝟎𝟎 𝜽𝜽𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒕𝒕𝑪𝑪𝑪𝑪𝒕𝒕 𝜷𝜷𝑪𝑪𝒄𝒄𝒄𝒄𝒕𝒕 𝜷𝜷𝒕𝒕 

N(0.454,0.281) 0.467 1.361 0.281 3.127 -0.303 -0.574 

4.2 Simulation experiment 

To demonstrate the gain of embedding travelers’ behavioral parameters estimated from 
uncertain choices into a traffic simulation, we compare it (Model 1: Full, equation 22) 
with two partial models: Model 2: Assuming ambiguity neutrality while allowing risk 
attitudes (equation 23) and Model 3: Assuming ambiguity neutrality and risk neutrality 
(equation 24). In Sydney, between 7:30 and 8:30, the bus mode accounts for 18.0% of 
road travel demand. According to the Australian Automobile Association (2019), the 
average speed during morning rush hours is 57.0km/h in Sydney. The comparison is 
summarized in Table 4, and an important observation is that the ignorance of ambiguity 
seeking resulted in a biased modal split and average speed at equilibrium; while, 
ignoring both ambiguity and risk attitudes would lead to even worse performance. In 
the loss domain with uncertain travel time outcomes, commuters would prefer 
irregularity of frequencies (Kemel & Paraschiv, 2013; Li et al., 2022), for example, in 
our case the probability distribution associated with bus trips tends to be more volatile 
than that of car travel. In our model specification, it is the relative ambiguity-seeking 
parameter which captures this preference and which exists in the decision-making 
process under uncertainty (Kocher et al., 2018; Xu et al., 2018; Bouchouicha et al., 
2017) but is largely ignored in the transport simulation literature. The improved 
behavioral realism at the micro-level is associated with a gain in describing traffic 
system behavior. This finding can also be linked to the role of ambiguity seeking in 
stimulating market entry (Gutierrez et al., 2020), and this study adds some evidence on 
this important topic from a new perspective, that is, sustainable mobility driven by an 
important behavioral mechanism, namely ambiguity seeking. The iteration paths of the 
three models with regard to modal split are depicted in Figure 3, which draws some 
similar conclusions.   

Model 1 (Full): 

  𝑈𝑈 = 𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑡𝑡 + 𝛽𝛽𝑡𝑡[𝛽𝛽𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼 + (1 − 𝛽𝛽𝐼𝐼𝐼𝐼)∑ 𝜔𝜔( 𝑝𝑝𝑘𝑘)
𝑡𝑡𝑘𝑘
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑒𝑒1−𝛼𝛼

1−𝛼𝛼
𝑖𝑖
𝑘𝑘=1 ] + 𝛽𝛽𝑐𝑐𝑐𝑐𝑏𝑏𝑡𝑡𝑡𝑡𝑐𝑐 + 𝜀𝜀,   (22) 

Model 2 (Ambiguity neutral): 

           𝑈𝑈 = 𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑡𝑡 + 𝛽𝛽𝑡𝑡[𝛽𝛽𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼 + (1 − 𝛽𝛽𝐼𝐼𝐼𝐼) 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑒𝑒
1−𝛼𝛼

1−𝛼𝛼
] + 𝛽𝛽𝑐𝑐𝑐𝑐𝑏𝑏𝑡𝑡𝑡𝑡𝑐𝑐 + 𝜀𝜀,     (23) 

Model 3: (Ambiguity neutral & risk neutral) 
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𝑈𝑈 = 𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑡𝑡 + 𝛽𝛽𝑡𝑡[𝛽𝛽𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼 + (1 − 𝛽𝛽𝐼𝐼𝐼𝐼)𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑒𝑒] + 𝛽𝛽𝑐𝑐𝑐𝑐𝑏𝑏𝑡𝑡𝑡𝑡𝑐𝑐 + 𝜀𝜀.      (24) 

 
Table 4: Model comparison 

 Model 1 Model 2 Model 3 
Bus modal split at equilibrium 17.87% 7.23% 4.84% 

Average speed at equilibrium (km/h) 58.76 51.47 50.08 

 

Figure 3 The iteration paths of the three models 

The evidence presented in the previous paragraph reinforces the rationality of using an 
extended list of behavioral characteristics from both economic and psychological 
perspectives which together characterize the nonlinear utility specification of Model 1, 
where ambiguity seeking plays the most crucial role among them. To further 
demonstrate its significance, a sensitivity test is conducted, and three different values 
representing a growing extent of ambiguity seeking (from ‘2’ to ‘6’) at the beginning 
of iteration are chosen, under which different model outputs are summarized in Table 
5, holding all other factors constant. This test suggests, even under a - utility 
specification that can depict choice behavior under uncertainty, the value of its key 
parameter cannot be simply assumed; otherwise, unrealistic results may be obtained. 
According to our simulation, the average ambiguity attitude is 3.090 at equilibrium (see 
Figure 4), close to our initial average ambiguity attitude being 3.238 based on the 
empirical estimation from commuters’ daily choices in Sydney, under which the outputs 
of Model 1 are credible. This evidence highlights the important role of context-
dependent elicitation using local survey data (Li, 2020; Gangadharan et al., 2019) in 
simulation analysis. Moreover, this study establishes a connection between individual 
choice at the micro-level and system behavior at the macro-level through, primarily, the 
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aggregated role of ambiguity attitudes.      

Table 5: Sensitivity test on ambiguity seeking   

 θ=2 θ=4 θ=6 
Bus modal split at equilibrium 13.20% 19.83% 22.81% 
Average speed at equilibrium (km/h) 54.99 60.10 61.52 

 

Figure 4 The average ambiguity attitude of Model (1) 

In this study, an individual’s perceived travel time is jointly determined by their 
experience and real-time information provided by ATIS as a reference point. The degree 
of trust towards information provision may be influenced by the accuracy of ATIS (Di 
et al. 2022; Ma & Di, 2017), the source of information (Imants et al., 2021) and 
traveler’s inertia (Yu & Gao, 2019). However, the corresponding figure (𝛽𝛽𝐼𝐼𝐼𝐼 ) for 
Sydney’s commuters is not available, and we assume 0.5 for our simulation. As such, 
the robustness of our results may be compromised by this assumption. To test this, the 
outputs of Model 1 under different degrees of trust (𝛽𝛽𝐼𝐼𝐼𝐼=0, …, 1) are identified. As 
shown in Table 6, the bus modal split at equilibrium varies from 23.14% to 14.12%, 
and the average speed varies from 61.99km/h to 55.19km/h. Considering the market 
evidence of 18.0% and 57.0km/h, our findings appear to be robust to alternative values 
of 𝛽𝛽𝐼𝐼𝐼𝐼 , except for some extreme values (e.g., ‘0’, ‘1’). Across all 𝛽𝛽𝐼𝐼𝐼𝐼  values, the 
average bus modal split is 18.08% with a standard deviation being 3.20% and the 
average speed is 58.36km/h with a standard deviation being 2.73, and two means are 
closer to the market evidence, suggesting a better practice is to use a distribution of 𝛽𝛽𝐼𝐼𝐼𝐼, 
when its true value is absent.  
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Table 6: The role of trust towards information provision 

 𝛽𝛽𝐼𝐼𝐼𝐼=0 𝛽𝛽𝐼𝐼𝐼𝐼=0.2 𝛽𝛽𝐼𝐼𝐼𝐼=0.4 𝛽𝛽𝐼𝐼𝐼𝐼=0.5 𝛽𝛽𝐼𝐼𝐼𝐼=0.6 𝛽𝛽𝐼𝐼𝐼𝐼=0.8 𝛽𝛽𝐼𝐼𝐼𝐼=1 
Bus modal split 
at equilibrium 

23.14% 21.01% 18.75% 17.87% 16.52% 15.14% 14.12% 

Average speed at 
equilibrium 
(km/h) 

61.99 61.09 59.710 58.76 56.04 55.79 55.19 

5. Conclusions 

To aggregate individuals’ mode choices in the presence of travel time uncertainty to 
obtain overall traffic behavior, we developed a dynamic traffic simulation, with three 
major improvements designed to increase behavioral realism: (1) A more realistic 
representation of travel choice behavior under travel time uncertainty with the 
consideration of ambiguity attitudes and risk attitudes, (2) an improved way of 
capturing the impact of heterogeneous and evolving choice behaviors across individuals 
and over time on road traffic, and (3) a treatment procedure to account for a feedback 
mechanism into the model in terms of the traffic pattern’s influence on commuters’ 
mode decisions. Moreover, we applied a number of empirical parameters estimated 
from survey data conducted in Sydney to mimic local commuters’ mode choice 
behaviors. The improved behavioral framework and the use of context-dependent 
behavioral parameters led to a better understanding of traffic flow, in terms of a realistic 
modal split and average speed. Among the list of behavioral mechanisms, ambiguity 
seeking, a typical behavior in the loss domain, plays a critical role in capturing mode 
choice and traffic behaviors. Our simulation results show that ambiguity seeking is a 
key behavioral driver that encourages commuters to switch from car to public transport 
and vice versa. Ignoring it or misusing its value would result in biased findings and  
misleading policy implications such as system design and service planning.  

The modeling framework illustrated in this paper can be extended in the following ways. 
Currently, it is applied to a Sydney corridor with two available cross-zone modes: car 
and bus. For future research, additional alternatives can be considered in the mode 
choice model. Moreover, the analysis scope can be extended to a network with the 
consideration of other important service/infrastructure factors such as between-mode 
connectivity and road conditions. Last but not least, heterogeneous behaviors across 
individuals need to be further investigated, so as to design personalized interventions 
to promote sustainable mobility, as called on by Ho et al. (2020): “Individuals are 
heterogeneous, so it is important to develop individual-specific theories of intervention. 
Since people respond to interventions differently, interventions must be customized 
based on individual characteristics” (p. 7).  
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