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Abstract 

The impact of anthropogenic activities on soil has been significant in the last few hundred years, 

surpassing that of natural processes that occurred over thousands of years. Soil organic carbon 

(SOC) is especially vulnerable to anthropogenic forces and is critical to support soil functions 

such as nutrient and water cycling, crop production, and habitat for above- and below-ground 

biodiversity. It is therefore crucial to understand the current SOC status and predict how it has 

changed due to human influences. However, assessing changes in soil is challenging due to the 

various factors involved in soil formation. This thesis investigates the change in SOC in the 

Edgeroi area of New South Wales since European settlement using the pedogenon mapping 

concept. Pedogenon divides a landscape into unique soil entities based on homogeneous soil-

forming factors, distinguishing soils that have been less affected by human activities (genosoil) 

and those that have been intensely affected (phenosoils). The primary hypothesis of this thesis 

is that pedogenon mapping can effectively stratify the landscape and be used to estimate soil 

change. To produce pedogenon classes, a parent material map of the study area was generated 

using interpretation and machine-learning techniques. Unsupervised classification of spatial 

layers representing soil-forming factors was then used to create the pedogenon map. Within 

each pedogenon, genosoil and phenosoil areas were identified using land use data. Multivariate 

data analysis confirmed that each pedogenon has unique soil properties from the surface down 

to 1 m. SOC data from genosoil and phenosoil areas were then compared and mapped to 

investigate soil change. The results showed that the variation of soil properties under phenosoil 

is half that of genosoil due to agricultural practices. Additionally, this approach enables the 

mapping of SOC sequestration potential using mineral-associated OC contents. This thesis 

improves the current digital soil mapping approach for assessing soil change in Australia. 
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1.1. Background 

Soil plays a critical role in the earth's ecosystem, acting as a link between and providing 

feedback responses to other components such as water, atmosphere, and vegetation. It provides 

essential ecosystem services, including food and fibre production, carbon and nutrient cycling, 

climate regulation, and water delivery and purification (Brady et al., 2008, Robinson et al., 

2012). Soil properties change over time due to various physical, chemical, and biological 

processes shaped by natural pedogenesis (Kuzyakov and Zamanian, 2019). 

However, anthropogenic activities have increasingly compromised the sustainable use of soil 

resources, with the demand for food and clean water projected to double and increase by 50%, 

respectively (Banwart et al., 2013). The intensity of human activities over the last few hundred 

years has been significant, resulting in the proposal of a new geological epoch called the 

Anthropocene (Crutzen, 2016). The impact of anthropocene on soil conditions has gained much 

attention, and there is a discussion on its effect on the direction of soil change, which can 

significantly impact ecosystem services. 

To ensure the sustainability of these soil functions, it is crucial to characterise the spatial and 

temporal variability in the chemical, biological, and physical processes that define the present 

state of the soil and evaluate how human activities impact the provision of these services. 

Quantifying soil changes is pivotal to calculating the extent to which anthropogenic factors 

affect the soil condition, predicting the time it takes to obtain full benefit from the soil and 

improving how we manage soil. 
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1.2. Soil change due to natural pedogenesis and anthropogenic 

activities 

Pedology mainly studies soil change under natural pedogenesis. However, as human impact 

has intensified, the change of soil by anthropogenic activities, especially agricultural practices, 

has become a main topic in soil science research. Soil impacted by human activities is totally 

different from the soil formed by natural processes, as the processes occur much faster. 

Richter and Yaalon (2012) revisited the essay “The changing model of soil” written by Cline 

(1961) and re-evaluated the concept from the perspective of the early 21st century. There is an 

ongoing change in the pedogenesis model, which tremendously impacts the future of soil 

science. In particular, Richter and Yaalon (2012) argue that soil has been transformed from a 

natural to a human-natural body. They proposed that studies on soil formation and change have 

been mostly on natural bodies up to the 19th century. However, since the 21st century, natural 

soil bodies have gradually disappeared due to the acceleration of anthropogenic activities. 

Today, human is the largest impacting factor on the change of soil across the diversity of earth’s 

soils, and soil has been converted to the human-natural body. Previously, soil science focused 

on the soil formed under the natural system, but current soil science is changing due to the 

combination of soil and human activities (anthropedogenesis). Richter and Yaalon (2012) 

showed the example of soil organic carbon (SOC) change between natural pedogenesis and 

anthropedogenesis. There is a small variation in SOC carbon change under natural pedogenesis 

as vegetation and SOC pools have reached a steady-state equilibrium. However, under 

anthropedogenesis, SOC change varied up to 300 folds due to land use conversion. Therefore, 

there is a need to understand the interaction between soil and human activities to support 

sustaining soil and humanity.  
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Kuzyakov and Zamanian (2019) further looked at a special case of anthropedogenesis, i.e., 

agropedogenesis, soil formation under agricultural activities, especially on croplands. 

Kuzyakov and Zamanian (2019) mentioned that agropedogenesis and natural pedogenesis 

should be clearly separated because  

1) Human activities have strong dominance of the factors among the other factors of soil 

formation. 

2) Natural pedogenesis does not include new processes induced by humans.  

3) The direction of soil development from agropedogenesis is different from natural 

pedogenesis.  

4) The soil change from agropedogenesis usually shows an opposite trend of natural 

pedogenesis.  

5) The changing intensity is very different between agropedogenesis and natural 

pedogenesis, and agropedogenesis shows a much higher intensity of the change in a 

short period.  

Agropedogenesis results from the need to produce food for the world population. This process 

usually comes with a consequence of declining soil health and quality, reducing or even 

eliminating the effect of natural soil formation. The intensity and period of processes between 

the two pedogenesis are incredibly different. The process of soil formation from natural 

pedogenesis is over many centuries or millennia. According to Stockmann et al. (2014), the 

potential global average weathering rate is 0.1 mm per year and the soil residence time is about 

47,000 years under steady-state conditions of soil formation. This is in contrast with the rate of 

soil erosion under cultivated cropland which is about 1 mm per year (Montgomery, 2007). 

Agropedogenesis can happen almost yearly, depending on different agricultural practices 

(Richter Jr, 2007, Diamond, 2002). Natural pedogenesis leads to the divergence of soil 
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properties, while agropedogenesis leads to convergence or homogenisastion (Kuzyakov and 

Zamanian, 2019). To boost crop production, soil conditions need to be optimised (Richter et 

al., 2015, Richter Jr, 2007). Soil hydrological and physical properties are altered, including 

irrigation, drainage, terracing, removing stone and loosening soil by tillage. Chemical and 

biological conditions in the soil are also modified with fertilisation, desalinisation and liming, 

applying biocides and sowing domesticated plant species. Under natural conditions, diverse 

soils formed in different environmental conditions, but human-modified soil properties to 

maximise crop yield, resulting in homogenised soil. Homogenised soil is easier to manage. If 

the homogenised soil benefits humanity and the soil itself, then it is perfect for humanity and 

the earth. However, homogenised soil increases the risk of soil degradation. It is well known 

that soil degradation can lead to the collapse of a civilisation which can be witnessed in 

Mesopotamia (Diamond, 2002, Weiss et al., 1993).  

Therefore, for producing food and getting other benefits from soil sustainably, it is critical to 

study how much human activities have been affecting the soil so far. With data on soil change 

due to human activities, it is possible to predict how long the soil can produce food sustainably 

without negative effect to the environment.  
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1.3. Mapping soil change using digital soil mapping techniques 

In the past decade, digital soil mapping (DSM) has achieved outstanding results in predicting 

soil properties or classes at local and continental scales. McBratney et al. (2003) established 

the DSM SCORPAN model, which is written as S (soil classes or properties) = f (s, c, o, r, p, 

a, n) where Soil (s), Climate (c), Organisms (o), Topography (r), Parent material (p), Age (a) 

and geographical position (n) factors. It extends Jenny's state equation S = f (cl, o, r, p, t), where 

cl = climate and t = time (Jenny, 1994). Many papers use the SCORPAN framework to map 

different soil attributes (Dharumarajan et al., 2021, Sreenivas et al., 2016, Mitran et al., 2018) 

and soil classes (Shukla et al., 2018, Gomez et al., 2019). It has successfully quantified the 

spatial variation of soil properties at regional, national, and global extents.  

However, most DSM studies only predict static soil properties or assume the properties are 

static in time. However, what makes soil work is that it is dynamic. While some soil properties, 

such as texture, are relatively stable with time, many properties, such as carbon content and pH, 

are dynamics. Current DSM techniques assume that these variables are constant with time. 

Although we know when soil observations were collected, maps produced by DSM rarely show 

the period the soil properties represent. Furthermore, maps are commonly produced using 

legacy soil data derived from different decadal observation periods. These are some unresolved 

issues regarding DSM for mapping dynamic soil properties.  

While simulation modelling can be used to predict change, direct observations of the 

biophysical effects of the environment on soil are required to reduce the uncertainty of the 

model and provide robust evidence.  

Conventionally, soil observations spanning a range of temporal scales are required to detect 

and calculate soil change. Most studies on soil change require resampling, either on the same 
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or new sites using design-based or model-based approaches. Several sampling methods exist 

(Filippi et al., 2016). However, this approach has disadvantages due to the high costs and effort.  

Filippi et al. (2016) concluded that detecting and mapping soil change depends on available 

funding, existing soil data, soil properties of interest, long-term intentions, and extent. In the 

absence of soil monitoring networks or resampling projects, soil change can be detected from 

legacy soil data, space-for-time substitution, chronosequences or paired sites.  

Studies have demonstrated using legacy soil data from soil surveys to study temporal trends at 

regional or national extents (Lindert et al., 1996). Minasny et al. (2011) utilised soil survey 

data collected at various times from Java, Indonesia, to show the dynamics of soil carbon over 

the island over 80 years. The legacy data is characterised by a relatively sparse space and time 

coverage. However, those studies lack a theoretical approach and do not provide any 

confidence in the prediction. In addition, numerous sources of bias and lack of location 

information are negative issues (Saby et al., 2008, Marchant et al., 2012).  

Other studies utilised the change in the environmental factors used in DSM calibration (Gray 

et al., 2016, Yigini and Panagos, 2016) to extrapolate soil condition changes. Yigini and 

Panagos (2016) predicted current soil organic carbon content by using a regression kriging 

model using a set of environmental predictors (including climate and land use) and then 

projecting soil carbon to the near future by changing the climate and land use variables. 

However, such methods have to assume that the stationarity of the current model and other 

environmental factors are constant. This method is sometimes called space-for-time 

extrapolation. Barraclough et al. (2015) concluded that the space-for-time substitution method 

using regression method could be used to predict soil change influenced by different climatic 

conditions with constant soil farming factors and different climatic gradients. However the 

space-for-time extrapolation method relies on the representativeness of the soil samples. For 



26 
 

example, systematic preferential sampling of agricultural lands would make the model invalid 

to predict soil condition under land use change.  

Space-for-time substitution is another method used to infer soil change by comparing natural 

systems and current land use, assuming that the drivers of the spatial patterns also drive 

temporal changes (Blois et al., 2013). Filippi et al. (2016) mentioned that using space-for-time 

substitution to observe soil change can be undoubtedly valuable, mainly when the changing 

time of land use is known. Many studies use this approach to assess how human activities have 

modified soil over time (Cattle et al., 1994, Tye et al., 2013). In the space for time substitution 

technique, soil conditions under the natural vegetation or less disturbed conditions are 

compared with soils under cropping or agricultural activities (Filippi et al., 2016). The space-

for-time substitution model assumes that contemporary spatial phenomena can be used to 

model temporal processes. The main assumption is that drivers of spatial gradients of soil 

properties also drive temporal soil change (Blois et al., 2013). Problems can arise when other 

environmental factors (such as topography and parent materials) that vary spatially have a 

stronger influence on soil properties than time.  

To reduce the effect of soil forming factors on the space for time substitution approach, it is 

important to understand the soil class distribution in the study area. If the soil type is different, 

the result of soil variation can be not only from anthropogenic activities but different soil types.  

Identifying original soil classes can support understanding soil genesis and distribution and 

monitoring and assessing soil change because of the different types of human activities. Many 

studies produce maps of soil classes using machine learning and DSM techniques. Since the 

1990s, two methods have been combined for mapping soil classes (Wadoux et al., 2020). 

Lagacherie and Holmes (1997) show an early example of using DSM to predict soil classes in 

a region. Cialella et al. (1997) predicted soil drainage classes using elevation and remote 
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sensing covariates. Sarmento et al. (2010) also compared four machine learning algorithms for 

DSM and predicted soil orders. Heung et al. (2016) mapped soil great groups and soil order 

using several methods of developing training datasets from the soil survey data.  

However, there are a few drawbacks to predicting soil orders using DSM. Current soil orders 

according to national or international soil classification systems such as the Australian system, 

WRB, or USDA soil taxonomy mostly classify soil based on its currently observed 

morphological attributes, not soil forming factors. Still, the order can also be changed by human 

activities, including the loss of upper horizons due to accelerated erosion rates in farming lands 

and mixing with subsoil horizons using the operation of tillage. These unnatural activities can 

change the original soil order to different orders (Smeck and Balduff, 2002). Kuzyakov and 

Zamanian (2019) noted that soil properties undergo significant changes due to agropedogenesis. 

The human activities can transform a broad range of soil orders into Anthrosols, which are soils 

that have been significantly modified by human activities such as tillage, fertilization, and 

irrigation. 

 

1.3.1. Pedogenon mapping 

Investigating changes in soil properties due to human activities requires accurate soil 

classification that is not affected by those activities. However, current soil classification 

systems rely on soil properties data, which can be significantly modified by agricultural 

practices and may not accurately represent the original soil. Therefore, studying soil 

classification should rely on soil-forming factors that can provide a more representative 

assessment of the soil. By using soil-forming factors, researchers can more accurately classify 

soils and evaluate their properties in a way that is less influenced by human activities.  
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Román Dobarco et al. (2021b) generated soil classes applying unsupervised classification (k-

means) to quantitative variables representing soil-forming or SCORPAN factors (soil, climate, 

organisms, relief, parent material and time) at a reference time. The assumption is that the 

dominant soil-forming processes occurring over pedogenetic time period in a class with 

homogeneous soil-forming factors would be similar, and hence the soil properties within the 

soil class will be similar. Pedogenon is defined as a conceptual soil taxon from a set of 

quantitative state variables to represent the soil-forming factors for a given reference time. The 

idea of the pedogenon is derived from the concept of the genon (Boulaine, 1969). The definition 

of genon is ‘a soil volume comprising all the pedons that have the same structure, the same 

characteristics and result from the same pedogenesis’. The genons can be considered as soil 

mapping units that differ in composition and spatial distribution but are unrelated to any soil 

classification system.  

The genon concept is akin to the US polypedon concept defined by Johnson (1963) as “a soil 

individual (polypedon) is also a real soil body; it is a parcel of contiguous pedons all of which 

have characteristics lying within the defined limits of a single soil series”. Another soil 

mapping unit related to the concepts of polypedon and genon is the pedotop (Haase, 1968). It 

is a cartographic unit with homogenous pedological properties that results from uniform 

combinations of soil forming factors, even though it can be present in transition areas into 

neighbouring units and within unit variation (Campbell and Edmonds, 1984). 

Most of the current soil classification systems define soil class from its current soil properties, 

which can be easily changed by human activities and thus cannot represent the original soil. 

The map pedogenon using soil-forming factor uses the information of soil-forming factors 

which is less impacted by human activities.  
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Pedogenon mapping addresses the current challenge in mapping soil change as soil varies 

according to the factors of soil formation. Pedogenons stratify a landscape into unique soil 

entities of homogeneous soil-forming factors. Within a pedogenon we differentiate soils that 

have been less affected by human activities (called genosoil) and soils that have been 

intensively affected by humans (called phenosoils). Application of the pedogenon mapping in 

NSW resulted in pedogenon classes that can explain 40% of the variation in stable soil 

properties (e.g. texture) (Román Dobarco et al., 2021a). In addition, Román Dobarco et al. 

(2021a) derived over 5000 pedophenons units in NSW that are under grazing and cropping. 

Comparing these pedophenons under agricultural influences and pedogenons that are still under 

native vegetation, they detected trends of soil acidification and organic carbon (OC) losses in 

topsoils. However, the concept of pedogenon has not been investigated locally. The study of 

the pedogenon concept on the local scale can be validated with actual soil data. 
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1.4. Soil security 

The concept of 'Soil Security' was recently proposed for maintaining and strengthening global 

soil resources sustainably for humankind. Furthermore, the crucial point of soil security is 

considering biophysical stocks, functioning and ecosystem services, and economic, social and 

policy aspects. Five dimensions of soil security were defined (Capability, Condition, Capital, 

Connectivity, and Codification).  

The terms genoform and phenoform were initially proposed by (Droogers and Bouma, 1997). 

Rossiter and Bouma (2018) further defined genoform is “soil class as recognised by the soil 

classification system used as the basis for detailed soil mapping in a given area.” and the 

phenoform is “continuous, non-cyclical variations of a soil genoform with sufficient chemical 

or physical differences affect soil function significantly” (Rossiter and Bouma, 2018). Linking 

back to the soil security dimensions, the capability is what soil can do for humans? or how 

much we can produce (food) from soil, which means the expected performance of soil, which 

can be linked to genoform (McBratney et al., 2017). The condition refers to the phenoform 

(current state of the soil), which agricultural practices change. 

This study replaces the conceptual genoform and phenoform with operational genosoil and 

phenosoil (Huang et al., 2018). This study recognises areas of genosoil and phenosoil in every 

pedogenon to infer soil change. Hence, from the soil security point of view, we need to 

understand the capability and the condition of how soil changes to human activities. The ability 

to detect soil change promptly will minimise the risk of soil degradation. In addition, long-term 

data collected from soil change can support a better understanding of sustainable limits for soil 

use productivity. 

 



31 
 

1.5. Aims 

This thesis aims to understand the current status of soil organic carbon (SOC) and predict how 

human activities have changed SOC in the Edgeroi region of NSW, Australia. Measuring and 

modelling anthropogenic signatures are essential to improve our understanding of the human 

impact on soil, quantify the change rate, and manage soil better. Measuring the soil properties 

change over a large area can support understanding current soil stocks and fluxes to provide 

ecosystem function. By understanding how vulnerable and resilient soil is to human-induced 

change, we can take proactive steps to protect and ensure the sustainability of soil functions. 

This thesis will test and improve a novel digital soil mapping using pedogenon approach for 

assessing soil change in Edgeroi, New South Wales. The main hypothesis is that pedogenon is 

an efficient method of stratifying the landscape and can be used to estimate soil organic carbon 

change.  

Following the framework by Román Dobarco et al. (2021b), a pedogenon map is created at the 

local scale to investigate soil change. This new model synthesises national and local soil 

datasets utilising rich spatial datasets. Pedogenons will be derived in the Edgeroi area based on 

a set of quantitative state variables representing the soil forming factors (climate, organisms, 

relief, parent material, time) for a particular reference time. The underlying assumption is that 

these classes result from multimillennial natural soil formation processes and historic 

anthropedogenesis and hence would have developed similar soil properties. Subsequently, 

information on human forcings since the time chosen as a benchmark (drivers of contemporary 

soil change) is incorporated to stratify these pedogenon classes into subclasses (i.e., genosoils 

and phenosoils) with varying degrees degree on human pressure. 
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To achieve this aim, specifically this thesis: 

(1) Optimising spatial layers for creating pedogenon map by creating a realistic parent 

material map as a SCORPAN factor (Chapter 2). 

(2) Creating a pedogenon map and stratified pedophenon classes (genosoils and phenosoils) 

using the data of soil forming factors and land use (Chapter 3). 

(3) Designing a sampling strategy to capture pedogenons and their pedophenon classes. 

And furthermore collecting and analysing field soil samples (0-1 m) to describe the 

pedogenon classes and validate the pedogenon map (Chapter 3). 

(4) Mapping the change of soil organic carbon due to human cultivation using pedogenon 

and pedophenon classes (Chapter 4).  

(5) Investigating SOC sequestration potential in the area by producing maps of MAOC 

(mineral-associated OC) potential and current conditions (Chapter 5). 

(6) Based on the calculated soil change, setting target values of soil organic carbon 

sequestration for supporting further study or making the decision of better agriculture 

management approaches (Chapter 6). 

 

This thesis presents a novel pedogenon mapping utilising rich remote-sensing data in 

combination with field sampling and machine learning models. The model will account for the 

impacts of land use and land management change. More importantly, this thesis aims to derive 

evidence-based information on soil change supporting soil security. 
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Chapter 2.  Creating a soil parent material 
map digitally using a combination of manual 
interpretation and statistical techniques 
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2.1.  Abstract 

In this study, a map of soil parent material is created to support the delineation of soil properties 

and classes of the Narrabri Shire, NSW. Currently, available information in this study area are 

geological and lithological maps at a scale of 1:250 000 to 1: 1 million. These maps are not 

detailed, and the description in some areas is not accurate. Thus, this study created a new parent 

material map using geological and lithology information, barest earth satellite imagery, gamma 

radiometric, topography, prior soil map, and digital soil texture maps (clay and sand content). 

Based on manual interpretation and parent material observations, 18 parent material classes 

were delineated in the area. The 18 classes were then modelled using Linear Discriminant 

Analysis using Digital Elevation Model (DEM), Slope, Topographic Wetness Index (TWI), 

Gamma potassium (K) and Thorium (Th), and Ratio K to Th and soil VIS and NIR (created 

using RGB and Near Infrared (NIR) bands) as covariates. This modelling process was iterated 

50 times, and the most frequently predicted class was assigned to each of the 90 m × 90 m 

pixels throughout the study area. A map of the frequency of the predicted classes was also 

created to assess modelling uncertainty. The new parent material map consists of sedimentary 

residuals (sandstone), volcanic materials (basalt), alluvium, and colluvium. The alluvium can 

be distinguished into six classes according to slope, soil information from satellite images and 

soil texture. The colluvium consists of three classes with a characteristic of high clay content 

(smectitic) and brown in colour (kaolinitic). Using similar approaches, such soil parent material 

or substrate maps could be developed for different regions in Australia. This method generated 

unique soil parent material classes combining stratigraphy, lithology and geomorphology. 
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2.2. Introduction 

Soil-forming factors are critical to understanding soil formation and distribution and, 

consequently, soil mapping. In digital soil mapping, we recognised seven factors that can be 

used as covariates (s: soil, c: climate, o: organisms, r: topography, p: parent material, a: age 

and n: space (McBratney et al., 2003). Among the seven factors, the parent material is a 

significant factor for understanding the history of soil formation and origin of the soil. 

Moreover, there is a close relationship between parent material and soil properties (Ma et al., 

2019). For example, Mora-Vallejo et al. (2008) concluded that using parent material 

information produced a highly accurate prediction of soil clay content. 

The information on soil parent materials can be obtained from digitised geological or 

lithological map or other related information (McBratney et al., 2003). Some datasets of soil 

parent materials are available. For example, in the UK, a patent material map is available at 1 

km × 1 km ground resolution (Lawley, 2014). In New South Wales (NSW), a lithology map 

was made based on a 1:250 000 geological map (Gray et al., 2016).  

In one of the first digital soil mapping studies, Legros and Bonneric (1979) used geological 

and lithological maps as parent material information and consequently used it to derive soil 

classes maps. Legros and Bonneric (1979) also used a geological map to create a map of soil 

classes. 

Several studies used remote sensing images to indicate parent materials. Dobos et al. (2013) 

developed and tested a digital mapping procedure to support SOTER (SOil and TERrain digital 

database (Oldeman and van Engelen, 1993)), requiring parent material and terrain information. 

They created a parent material map using remote sensing images (MODIS and SRTM). 

Boettinger et al. (2008) suggested that shortwave infrared (SWIR) range band can be used for 

the environmental covariates of the parent material. Their study also mentioned that, Landsat 
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spectral band ratios (3/7, and 5/7) (Landsat 7) can detect ferrous iron and hydroxyl radicals 

from the exposed soil and parent material. Moreover, Normalised difference ratios of the 

spectral bands can be indicative of certain parent materials such as gypsic soil (5–7)/(5+7) 

(Landsat 7) and calcareous rocks (5–2)/(5+2) (Landsat 7). 

Other sources of information have also been used as parent material covariate for digital soil 

mapping. Maps of regolith and topography were commonly used to infer parent material 

(Dymond and Luckman, 1994). Many studies in Australia used airborne gamma radiometric 

data as parent material information for digital soil mapping (McKenzie and Ryan, 1999, Ryan 

et al., 2000). Wilford (2012) created a map of weathering intensity of Australian soils using 

gamma radiometric and elevation data. The map indicates the degree of weathering of soils. 

Although parent material data contain very useful information for digital soil mapping, there 

is not much research on creating a parent material map itself. One of few examples is Heung 

et al. (2014), who used a digital elevation model (DEM) to calculate 27 topographical indices. 

They used the indices combined with soil survey data to create a parent material map. The 

results of their study showed a highly accurate prediction. Nevertheless, that study only used 

one type of data (topography). Lacoste et al. (2011) used Multiple Additive and Regression 

Trees to predict soil parent material at 50 m resolution using existing soil observations (20 

classes of soil parent material, 11 were geological bedrock formation, and 9 were superficial 

deposits). The parent materials were predicted from 17 covariates represented by topography, 

gamma radiometric, geological information and remote sensing images. The geological 

information was the most important covariate, and the prediction showed a high accuracy. 

Moreover, a map of parent material in a tropical area was produced by Bonfatti et al. (2020). 

The study used remote sensing images and machine learning methods (decision tree, random 

forest, support vector machine, multinomial logistic regression, K-means, and object-based 

image analysis with maximum) as covariates. A map of parent material from 280 geological 
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observation points was predicted using a digital elevation model and multitemporal Landsat 

images.It appears that there are only a few studies that attempted to create digital parent 

materials map. Parent material maps should be produced at a high resolution using different 

types of covariates (information on topography, gamma radiometric, geological information 

and remote sensing). Thus, this study aims to create a high-resolution parent material map using 

different sources of information in the Edgeroi district of New South Wales (NSW). The 

approach used a combination of manual interpretation and statistical techniques. 

 

2.3. Methods 

2.3.1. Study area 

The study area is the Edgeroi district of NSW, Australia (30.06°S, 149.48E). It covers an area 

of ~1700 km2 (Figure 2-1). The climate is characterised by hot, dry summers and cold winters. 

The mean maximum temperature reaches 30°C in November, and the next 4 months, the 

maximum temperature keeps increasing (up to 40°C or higher) (Ward, 1999). The average 

minimum temperatures are 19°C in January and February and 3°C in July. The average annual 

rainfall is 712 mm, which is highly variable from month to month. Topographically, the west 

side of this study area is very flat, and the east side is a mountainous area. In terms of land use, 

the irrigated cotton industry is situated in the study area, and the main crops (wheat, sorghum 

and sunflower) are produced (McGarry et al., 1989). This study area has been frequently used 

as a basis for developing soil mapping methodologies (Malone et al., 2009, Triantafilis et al., 

2016). Figure 2-2 shows the flowchart of this study in creating a new digital parent material 

map. 
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Figure 2-1. Landsat image of the study area (Edgeroi, New South Wales, Australia). 
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Figure 2-2. Flowchart of the method to create a new digital parent material map. 
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2.3.2. Creating a digital parent material map 

Four types of information were used to create the soil parent material map: soil geological and 

lithological information, an image of the barest state of topsoil, topsoil properties and 

topography. 

 

2.3.2.1. Geological and lithological information 

Four sources of soil parent material are available in this study area (Figure 2-3).  
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Figure 2-3. the map (A) of 1:250 000 Geological Sheet SH-55-12 (Wallis, 2019). There are seven 

classes of the parent material. The image (B) of lithology based on silica index. the image of 

lithology information (C) (8 classes) (From Geoscience Australia). The white parts are removed 

classes due to small areas. The image (D) of soil, parent rocks and sediments information. It was 

digitalised from the paper map (Ward, 1999). The size of the image(D) is small than the study 

area. The A, B and C is the same size as the study area, but the D is smaller than the study area.  
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The Narrabri 1:250 000 Geological Sheet SH-55–12 (Figure 2-3A) (Wallis, 2019) was 

compiled in 1966 using aerial photography. The image showed seven classes of residual and 

transported materials in the study area. The most significant class is alluvium, and there are 

two main areas where sand content is high. The limitation of this image is that it does not 

consider information about topography. In the eastern mountainous area, the image showed no 

relationship between alluvium and elevation. 

A derivation of this image, called the lithology map of NSW was created by Gray et al. (2016). 

There are 12 lithology classes; eight classes were grouped based on the different level of silica 

(silica index). High silica index represents high sand content in the soil, and as the index 

decreases, the content of sand decreases. The other four classes are categorised based on the 

chemical characters: calcareous, evaporite, organic and sesqui-oxide materials. In this study 

area, the lithology information showed six classes of silica index (Figure 2-3B and Table 2-1). 

This image has further information than the geology map (Figure 2-3A), but it is too broad, not 

useful, and does not consider topography. 
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Table 2-1. Lithology class, silica content (%), median value of silica (silica index) and examples. 

Source: Gray et al. (2016) 

Lithology 
class 

Silica, SiO2 
(%) 

Median 
(silica 
index) 

Examples 

Siliceous 
upper 77–85 80 Quartz sandstone, quartz siltstone, unqualified quartzite 

and alluvial sands 

Siliceous mid 70–77 73 Granite, rhyolite and siliceous tuff, arkose sandstone, 
most unqualified sandstone 

Siliceous 
lower 65–70 68 

Adamellite, granodiorite, dacite, monzogranite, 
siliceous/ intermediate tuff, most greywacke & lithic 

sandstone, unqualified siltstone 

Intermediate 
upper 60–65 62 

Syenite, trachyte, most argillaceous rocks (mudstone, 
claystone, shale, slate, phyllite and schist), alluvial 

loams and non-cracking clays 
Intermediate 

lower 52–60 57 Monzonite, trachy-andesite, diorite, andesite, 
intermediate tuff, alluvial cracking clays (not black) 

Mafic 45–52 49 Gabbro, dolerite, basalt, mafic tuff, amphibolite, 
alluvial black cracking clays 
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A lithology map in the study area was retrieved from Geoscience Australia (Raymond et al., 

2014). Th ough there are 10 classes, two classes (‘Deriah Formation’ and ‘Millie Group’) were 

unused due to their small size and location at the edge of the study area. Thus, eight classes 

were relevant to this study. These classes can be grouped as sandstones, colluvium, alluvium, 

sandplain and volcanic. The map is at 1:1 million scale (Figure 2-3C), which is coarser than 

the lithology map mentioned above (1:250 000) (Figure 2-3A), but there is a higher number of 

classes, and this map has more information than other lithology maps which is reflected in the 

topography and gamma radiometrics (Figure 2-3B and C). 

Ward (1999) used soil, parent rocks and sediments information to create a map of parent rock 

and sediments of the Edgeroi area (Figure 2-3D). This map was created from a field survey, 

the type of information (20 classes) suitable for a base map for geological and lithological 

information. Unfortunately, the size of this map is smaller than the study area of this study. 

Therefore, this map is not suitable for use in this study. The 1:1 000 000 lithology map has a 

closer pattern to Ward’s map. Hence, it was decided to use the lithology map (Figure 2-3C) as 

a base map. 

 

2.3.2.2. Maps of the barest ground soil visNIR 

Satellite images (RGB and NIR) can be used to distinguish different soil types. The image of 

the barest state of topsoil of the area was obtained from Geoscience Australia (Roberts et al., 

2019). The map was created from Landsat images which were taken over the last 30 years. All 

the images were combined to remove noises and clouds. The combined images predict the 

barest state of topsoil for the whole of Australia at 25 m × 25 m resolution. The visible and 

NIR bands of the image were used in this study (R, G, B and NIR). 
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Even though the map shows the barest state of topsoil, there were still areas with perennial 

vegetation. Therefore, areas with vegetation were removed based on NDVI (Normalised 

difference vegetation index, NIR – Red / NIR + Red). The range of NDVI in this study area is 

from –0.3 to 0.7. Different values of NDVI were first trialled to determine a threshold to 

exclude the vegetation (i.e. 0.45, 0.35, 0.30, 0.25). The trial showed that a value of 0.3 is 

effective as a threshold to exclude vegetated areas. NDVI values greater than 0.3 did not 

eliminate areas of woodlands and permanent vegetation, while a value less than 0.3 excluded 

soils of cultivated areas. 

The spectral topsoil information (R, G, B and NIR) were then grouped into classes to allow for 

better interpretation of soil visNIR information. The bands were grouped into classes using the 

K-means method in the Google Earth Engine platform. The area was sampled for 50 000 pixels, 

and different numbers of clusters (2 to 8) and different input bands (only RGB, and RGB and 

NIR) were trialled. 

Since soil information (Vis and NIR) on the vegetated area were missing, they were predicted 

using geostatistics. The RGB and NIR bands were interpolated using ordinary kriging with the 

‘gstat’ package (Pebesma, 2004, Pebesma and Heuvelink, 2016). There are several studies 

using ordinary kriging for predicting soil information (Eldeiry and Garcia, 2010, Gia Pham et 

al., 2019). All sample points of non-vegetated areas were used for prediction. Different 

resolutions were trialled to observe the accuracy of the kriging interpolation results. Spatial 

resolution that produced less noise and artefacts, yet still differentiated soil types was used. 

The soil visNIR map of the area is shown in Figure 2-6 as a true colour map. 
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2.3.2.3. Maps of topsoil properties (sand and clay) 

Topsoil properties maps were created using information from 210 soil samples. The samples 

came from the study of McGarry et al. (1989), which collected the samples based on a 

systematic equilateral triangular grid with ~2.8 km spacing between sites. At each sampling 

point, a 3 m length and 0.1 m diameter core was collected and sampled at 0–10, 10–20, 30–40, 

70–80, 120–130 and 250–260 cm for laboratory analysis. In this study, the top 10 cm of sand 

and clay data was used to create digital maps of surface soil texture as they coincide with the 

soil information from the RGB and NIR bands. These surface soil information were also 

captured by airborne gamma radiometric, which typically sensed the soil in the top 20–30 cm 

(Minty et al., 2009). The covariates used for modelling are DEM, Slope, topographic wetness 

index(TWI), Gamma K and Th, Ratio K-Th and Gamma dose (Figure 2-4A-C and Figure 2-5A, 

B, D and G). The modelling was done with the cubist tree model (Padarian et al., 2020) and 

more information about this model can be found in Kuhn et al. (2012) (package in R: Cubist; 

(Kuhn et al., 2020)). 70% of data were used for producing a model, and 30% of data were used 

for validation. The spatial predictions of sand and clay for the study area are at 30 m resolution. 

 

2.3.2.4. Topographic data 

The data on topography (DEM, slope and geomorphon, Figure 2-4) is essential information for 

predicting parent materials. The 30 m DEM was obtained from SRTM, and the slope was 

calculated. The local geomorphological unit was calculated using the geomorphon approach 

on the DEM. Jasiewicz and Stepinski (2013) defined geomorphons (geomorphologic 

phonotype) as ‘a simple ternary pattern that serves as an archetype of a particular terrain 

morphology’. The geomorphon is calculated at each pixel of DEM raster by comparing the 

elevation with the neighbouring pixels. According to this information, different types of 
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geomorphon can be defined: flat, peak, ridge, shoulder, spur, slope, hollow, footslope, valley, 

and pit. The geomorphology of the area can be interpreted with the geomorphon classes. 
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Figure 2-4. Environmental covariates: Terrain information DEM (A), Slope (unit: percentage) 

(B) and TWI (C). The resolution of these maps is 30m. The map (D) of geomorphon at 90m 

resolution. There are ten different types of terrestrial landforms. 
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2.3.3. Creating a provisional parent material map 

Four different types of information (described above) were used to create new parent material 

classes. Based on the geology map, parent material classes were differentiated based on topsoil 

visNIR information, soil texture, gamma radiometric and topographic information. 

 

2.3.4. Creating a new digital parent material map 

A digital map was created based on the interpreted parent material classes (18 classes). For 

creating the new parent material map, the Linear Discriminant Analysis method (Padarian et 

al., 2020) was used with covariates (DEM, Slope, TWI, Gamma K and Th, and Ratio K and 

Th) (Figure 2-4A-C and Figure 2-5A,B and D) and soil visNIR (RGB map: Figure 2-6). Table 

2-2 shows the information on the covariates. 10,000 sample points were selected randomly 

from the initial interpreted parent material map. The result of Linear Discriminant Analysis 

using more than 10 000 sample points shows very similar patterns as using only 10 000 sample 

points. Hence, the 10 000 points were used. 

To avoid biased or random chance in selecting training data, the sampling and modelling 

processes were iterated 50 times, and the most frequently predicted class was assigned to each 

pixel, at a resolution of 90 m × 90 m. In addition, the frequency of that dominant class is also 

recorded to assess the uncertainty of the initial map delineation and modelling process. All 

processes were done using the R software (R Core Team, 2013). After the modelling, artefacts 

were minimised using the majority filter in ArcGIS. 
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Table 2-2. Spatial covariates used in the modelling and mapping analysis. 

Data Type Data Description Access Source Resolution 

Terrain DEM CSIRO Data Access Portal 30m 

 Slope CSIRO Data Access Portal 30m 

 TWI CSIRO Data Access Portal 30m 

Radiometric Potassium GADDS 90m 

 Thorium GADDS 90m 

 Uranium GADDS 90m 

 Dose GADDS 90m 
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Figure 2-5. Environmental covariates: Radiometric information Gamma K (A), Gamma Th (B), 

Gamma U (C), Ratio K/Th (D) Ratio K/U (E), Ratio Th/U (F) and Gamma Dose (G). The 

resolution of these maps is 90m. 
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2.4. Result and discussion 

2.4.1. Different information to create a new digital parent material map 

The following sections present the digital layers that were created to support the development 

of the digital parent material map: existing lithology information, soil colour and soil texture 

maps. 

 

2.4.1.1. Existing lithology information 

There are a few limitations of existing lithology maps. As described in the Methods section, 

we used the 1:1,000,000 geology map as the basis of the parent material map (Figure 2-3C). 

The geology classes described in Table 2-3 are reasonably distinct, except for the colluvium 

and sand plain. Both are the dominant parent material type within their class but can include 

elements of alluvium or interchangeable. The explanation on colluvium is unclear, e.g. ‘may 

include minor alluvial or sand plain deposits, local calcrete and reworked laterite’. The sand 

plain is described as ‘Sand or gravel plains; may include some residual alluvium; quartz sand 

sheets commonly with ferruginous pisoliths or pebbles; local clay, calcrete, laterite, silcrete, 

silt, colluvium’. Furthermore, some classes do not have any information about their origin 

(rock type). For example, Pilliga Sandstone clearly shows a sandstone origin, whereas other 

classes, especially colluvium and alluvium, do not provide information about their lithological 

or stratigraphic origin. 

The other limitation is that the soils within the alluvium and colluvium area differed in colour, 

as seen in the satellite image (Figure 2-1). It means that this lithology map is very broad. 
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Table 2-3. The name and description of classes from the Geosciences Australia lithology map. 

Name of classes Description of classes 

Pilliga Sandstone 

Medium to very coarse-grained, well-sorted, angular to subangular 
quartzose sandstone and conglomerate. Minor interbeds of 

mudstone, siltstone and fine-grained sandstone and coal. Common 
carbonaceous fragments and iron staining. Rare lithic fragments. 

Keelindi Beds 

Off-white, fine to coarse-grained, poorly to well-sorted, quartzose 
sandstone, pebbly sandstone and conglomerate interbedded with 

minor shale, siltstone and coal. Cross-bedded, kaolinitic and iron-
stained. 

Colluvium 38491 
Colluvium and/or residual deposits, sheetwash, talus, scree; boulder, 
gravel, sand; may include minor alluvial or sand plain deposits, local 

calcrete and reworked laterite 

Garrawilla Volcanics Dolerite, basalt, trachyte, tuff, breccia. 

Digby Formation, 
Napper by Formation 

Conglomerate at base, overlain by quartz-lithic sandstone which 
gradually changes into quartzose sandstone unit of cross-bedded 

sandstone with well-rounded quartz pebbles; a siltstone/sandstone 
and grey/purple claystone palaeosol is present on top. 

Alluvium 38485 Channel and flood plain alluvium; gravel, sand, silt, clay; may be 
locally calcreted 

Mafic to Intermediate 
Volcanics 68000 

Hawaiite, trachyandesite, tristanite, trachyte, minor peralkaline 
trachyte, tuff 

Sand plain 38499 
Sand or gravel plains; may include some residual alluvium; quartz 
sand sheets commonly with ferruginous pisoliths or pebbles; local 

clay, calcrete, laterite, silcrete, silt, colluvium 
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2.4.1.2. Maps of the barest ground and soil visNIR 

The map of soil visNIR was created from the near-bareground image. As the image still 

contains vegetation, the vegetated area was removed using NDVI = 0.3 as a threshold (see 

Methods). Loiseau et al. (2019) used a threshold of 0.27 because in cultivated soils in France 

it gave the best trade-offs between the maximum area covered and minimum vegetation effect. 

The optimum threshold will depend on the type of natural vegetation (e.g. herbaceous vs shrubs 

and perennial woody vegetation), the percentage of ground covered by vegetation, the 

proportion of different land uses, and precipitation (Drori et al., 2020). This study area has a 

high proportion of perennial woody vegetation, open woodland and sparse shrubland with 

NDVI values ranging between 0.2 and 0.3. Whereas NDVI ≤ 0.20 is often used to discriminate 

bare soil (Gomez et al., 2016), a more conservative threshold would have excluded some 

cultivated soils and areas with sparse vegetation. Following this exclusion, visible and NIR 

bands (R, G, B, and NIR) of the vegetated area were interpolated using kriging (Figure 2-6). 

As there was a large area with vegetation, kriging can still show some artefacts. 
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Figure 2-6. Soil visNIR (the combination of the map of the barest state of topsoil obtained from 

Geoscience Australia and predicted the topsoil information using ordinary kriging) (300m 

resolution). 
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The R, G, B, and NIR bands of the area were then grouped using K-means clustering to produce 

soil visNIR classes to allow for easier interpretation. Soil visNIR information from 

multispectral data can provide useful soil information. For example, Aldana-Jague et al. (2016) 

used multispectral images to predict soil carbon. 

Six soil visNIR classes were found to be optimum in minimising within class variation. The 

six classes were named according to their dominant colour (Brown, Dark Brown Dark Grey, 

Greyish, Yellow and White) (Figure 2-7A-F respectively). The clustering method separated 

dark and light coloured soils. Moreover, with this information, it is possible to recognise the 

different types of parent materials. 

The dark coloured soils (Brown and Dark brown) (Figure 2-7A and B) corresponded to the 

area of alluvium and colluvium (Figure 2-3C). According to the soil texture map (Figure 2-8), 

these areas had a high clay content. The light coloured soils (Dark Grey, Greyish, Yellow and 

White) (Figure 2-7C, D, E, F and B) corresponded to the area of sand plain or areas where the 

parent materials were sandstone. These areas had high sand content (Figure 2-8). The brighter 

soil colour implied a high sand content. 

There are limitations of using the so-called bare image as some areas with field boundaries are 

visible. Nevertheless, the grouping of soil visNIR provides a pattern of soil types that can help 

in separating parent materials in the broad lithology class. 
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Figure 2-7. Maps of the 6 VisNIR classes generated with the barest state of topsoil imagery (R, G, 

B and NIR) using K-means clustering method. The classes were designated with the dominant 

colour: Brown (A), Dark Brow (B), Dark Grey (C), Greyish (D), Yellow (E) and White (F) (for 

the map of white colour, black is the background colour to show white colour more clearly). 
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2.4.1.3. Map of topsoil texture (sand and clay) 

Both clay and sand maps were predicted using the cubist regression tree model (Figure 2-8). 

The R2 of the model calibration for sand content was 0.70 and decreased to 0.48 for validation 

data. For clay content, R2 was 0.65 for model calibration and 0.43 for validation. Gamma 

radiometric data had more influence on the predicted maps than other covariates. It is because 

gamma radiometric data and soil texture data have a close relationship. Pracilio et al. (2006) 

demonstrate a relationship between gamma and soil texture from predicting clay content using 

high-resolution gamma ray spectrometry. 

According to the lithology map, the main parent material was sandstone on the east side of the 

study area, suggesting there should be higher sand content. The predicted map confirmed the 

high sand content in the east part of the area. The clay map showed the opposite pattern to the 

sand map. On the western side, there are many areas with high clay content. Only some 

volcanic areas on the east side showed very high clay content. 
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Figure 2-8. Maps of topsoil clay (A) and sand (B) content created using the cubist model. The 

resolution of these maps is 30m. 
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2.4.2. Creating a provisional parent material map 

The four sources of information (soil visNIR classes, soil texture (sand and clay content), 

topography data and parent material information) described above were used to create a 

provisional parent material map using manual interpretation (Figure 2-9). 

Existing classes from the geological map were divided based on the soil information. In 

addition, new classes were created because their characteristics are very different from their 

surrounding classes. 

Most areas identified as residual materials were kept, but some areas were changed to 

transported material or become new classes. The classes of transported material were mostly 

separated or replaced with other classes. 

Sand plain 1 was designated as colluvium in the lithology map (Figure 2-3C) but is located in 

flat relief (Figure 2-4D), and greyish area (Figure 2-7C). Moreover, soil texture (Figure 2-8B) 

indicates a high sand content in the area. Therefore, the area was designated as Sand plain 1. 

Sand plain 2 corresponds to Keelindi beds in the lithology map (Figure 2-3C), but the colour 

is different from Keelindi beds (Figure 2-7A and C), and the area is flat (Figure 2-4). Hence, it 

was called the Sand plain 2. 

The classes Alluvium 1 and 2 are located near the river, and the soil colour is bright (Figure 

2-7F). Soil texture map shows a high content of sand (Figure 2-8B), so they were classified as 

alluvium. 

Both Alluvium 3.1 and 3.2 areas were formed in one alluvium area (Figure 2-3C), but they are 

two different visNIR groups (Figure 2-7 A and B). Therefore, it was separated into two classes. 
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Alluvium 4 was called sand plain in the lithology map (Figure 2-3C), but the area is located in 

Alluvium 1.1 (Figure 2-7A). Figure 2-8 A also shows the high clay content in that area, so it 

was called alluvium instead of sand plain. 

Alluvium 5 was designated as colluvium on the lithology map (Figure 2-3C). While this area 

is located at a higher elevation, the soil visNIR class is different from the one located in the 

colluvium area. In addition, the river channel can be observed from the satellite image, so it 

was allocated to Alluvium 5. 

The sand content in classes Sand plain 3 and Sand plain 4 is high (Figure 2-8B), but they 

were separated into two classes due to difference in soil visNIR class (Figure 2-7D and E). 

Hence, they were named Sand plain 3 and 4. 

The classes Colluvium 1.1 and 1.2 belong to the same colluvium class in the lithology map 

(Figure 2-3C). However, they were separated into two classes because of the difference in soil 

visNIR class (Figure 2-7A and B) and clay content (Figure 2-8A). 

Colluvium 2 was kept as described in the lithology map (Figure 2-3C) because it is located at 

a higher elevation and has higher clay content than the alluvium. 

The residual materials maintained the same extension as in the lithology map (Figure 2-3C) 

(Digby Formation, Napperby Formation, Garrawilla Volcanics, Pilliga Sandstone and Keelindi 

Beds) except for Mafic to Intermediate Volcanics. According to Ward (1999), the Pilliga 

Sandstone is also located in the top right of the forest area. Ward (1999) shows, in that forest 

area, there are two types of material. However, the clay content (Figure 2-8A) and soil visNIR 

class (Figure 2-6) show a similar pattern in that area, so it was decided to keep them as one 

class (Figure 2-3C). 

Most areas designated as Keelindi Beds were kept. However, some areas were designated as 

Sand plain 2 due to differences in soil visNIR class (brown and dark grey). The area 
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Garrawilla Volcanics did not change because it has a high clay content (Figure 2-3B) and the 

base lithology map (Figure 2-3C) already shows detailed information. Digby Formation, 

Napperby Formation is the oldest material and there is not enough information from other 

lithology maps (Figure 2-3A, B and D). Therefore, it was kept. However, the information from 

Figure 2-3D and Figure 2-4 shows additional Mafic to Intermediate Volcanics. 

The gamma radiometric data (Figure 2-5) showed the spatial pattern is consistent with the new 

lithology map, supporting that the residual materials were kept unmodified. 
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Figure 2-9. Map with the preliminary new parent material data (18 classes). The order of legend 

represents the age of formation, from oldest to youngest (bottom to top). 
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2.4.3. A new digital parent material map 

Based on the interpreted map, a new digital parent material map (Figure 2-11) was created. The 

provisional map was manually created by interpretation, so it had many unnatural boundaries. 

Whereas some of the provisional map's subjectivity could influence the LDA model, this was 

likely to be refined during the DSM process, under the assumption that the LDA model 

identified the most relevant relationships between the environmental covariates and the defined 

parent material classes. The provisional map was sampled at 10 000 points, and a digital map 

was created using covariates (DEM, Slope, TWI, Gamma K and Th, and Ratio K and Th) and 

soil visNIR. Fifty iterations of sampling and mapping were conducted, and the most frequently 

predicted class for each pixel was assigned as the likely class (Figure 2-11). 

Figure 2-11 shows the final parent material map, and Table 2-4 presents the description of the 

18 classes from the new parent material map. The number of classes in the final parent material 

map increased from eight (lithology map, Figure 2-3C). Increasing the number of classes means 

having more detailed information and complexity. The classes were also ordered based on the 

age of formation (Table 2-4), that support understanding the formation of the parent material. 

The age information was derived from several studies in the area (Young et al., 2002, Raymond 

et al., 2014, Triantafilis et al., 2013). 

Figure 2-10 shows the most predicted class frequency from the 50 modelling iterations. The 

frequency map shows that the LDA method consistently predicts a class across the 50 

iterations. The mean value of accuracy from the 50 modelling iterations is 0.62 (the range of 

accuracy is between 0.60 and 0.63). The mean frequency for the area is close to 1 (= 0.96), 

even though the location of sampling points was different in every modelling iteration. Areas 

with higher uncertainty (lower frequency of occurrence) were located near the boundaries of 

the class. The results imply that the modelling is robust and suitable to use. 
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Figure 2-10. Frequency of the most predicted classes for each pixel calculated from the 50 

iteration modelling results. 
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The final parent material map (Figure 2-11) shows a similar pattern to the provisional lithology 

map (Figure 2-3C). Most classes of the digital map are located at a similar position as the ones 

shown in the lithology map. The reason for the similarity is that the gamma radiometric data 

significantly influenced both maps. The digital map also showed similarity with Ward’s parent 

material map, but there were some differences in the smaller classes (e.g. Alluvium 5). 

Compared to the manual interpreted map, classes such as Alluvium 3.2 and Sand plain 2 were 

much larger according to LDA. However, Keelindi Beds occupied a smaller area according to 

LDA. 

Past papers commonly used only one type of information (Geological and lithological maps, 

gamma spectrometry or topographic area (Young et al., 2002, Raymond et al., 2014, 

Triantafilis et al., 2013). However, this paper integrated information on soil properties and soil 

colour to create a parent material map. It means that the map using different types of data 

encompasses the complexity of the landscape. On the other hand, the map has not been 

validated in the field, and thus a field survey is required. 

There are several sources of uncertainty derived from the successive decisions integrated in 

our modelling approach. The choice of the input variables, number of classes in K-means 

clustering and machine learning algorithms influence the manual interpretation and the output 

map. Improvement of the parent material map could be produced when more diverse and 

accurate field data were included. 

The method proposed in this study can be applied in a different part of Australia. Especially in 

areas where access is limited. It used geological and lithological information, soil visNIR 

information (which can be obtained from barest ground images), soil information (such as 

previous or digital soil maps) and topography (DEM and geomorphons). All this information 

is now available for public use. It combined manual interpretation and statistical techniques. 
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This parent material map can also be used as a layer among soil-forming factors to investigate 

soil distribution and digital soil mapping. 
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Figure 2-11. The map of Linear Discriminant Analysis with the new parent material data (18 

classes). The order of the legend represents the age of formation, from oldest to youngest (bottom 

to top). 
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Table 2-4. The description of 18 classes from the new parent material map. 

Class name Description Period 

Sand plain 1 
White Sand 

A mixture of sand and clay soil, mildly alkaline, quartz and 
kaolinite and white colour. Holocene 

Sand plain 2 
From Keelindi 

beds 
Sandy, mildly alkaline, quartz and white colour. Holocene 

Alluvium 1 
White Sand Sandy, moderately acid, quartz and white colour. Holocene 

Alluvium 2 
Very White Sand Sandy, moderately acid, quartz and very white colour. Holocene 

Alluvium 3.1 
Mixture of Clay 
and Sand, Dark 

Brown 

Clay soil, moderately alkaline, smectite and dark brown colour. Pleistocene 

Alluvium 3.2 
Brown Clay Clay, moderately alkaline, smectite and brown colour. Pleistocene 

Alluvium 4 
Light Brown Clay Clay, moderately alkaline, smectite and light brown colour. Pleistocene 

Alluvium 5 
Red Sand, From 
Digby Formation 

Sandy, neutral, quartz and red colour. Pleistocene 

Sand plain 3 
White Sand 

A mixture of sand and clay soil, neutral, quartz and kaolinite and 
white colour. Neogene 

Sand plain 4 
Red sand Sandy, neutral, quartz and red colour. Neogene 

Mafic to 
Intermediate 

Volcanics Basalt 

Hawaiite, trachyandesite, tristanite, trachyte, minor peralkaline 
trachyte, tuff Neogene 

Colluvium 1.1 
Mixture of Clay 
and Sand, Dark 

Brown 

Clay, moderately alkaline, smectite, dark brown colour. Paleogene 

Colluvium 1.2 
Brown Clay Clay, moderately alkaline, smectite and brown colour. Paleogene 

Colluvium 2 
Light Brown Clay Clay, neutral, illite and smectite and light brown colour. Paleogene 

Keelindi Beds 
Sandstone 

Off-white, fine to coarse-grained, poorly to well-sorted, quartzose 
sandstone, pebbly sandstone and conglomerate interbedded with 

minor shale, siltstone and coal. Cross-bedded, kaolinitic and iron-
stained. 

Cretaceous 
Jurassic 

Pilliga Sandstone 
Medium to very coarse-grained, well-sorted, angular to subangular 

quartzose sandstone and conglomerate. Minor interbeds of 
mudstone, siltstone and fine-grained sandstone and coal. Common 
carbonaceous fragments and iron staining. Rare lithic fragments. 

Jurassic 

Garrawilla 
Volcanics 

Basalt 
Dolerite, basalt, trachyte, tuff, breccia. Jurassic 

Triassic 

Digby Formation, 
Napperby 
Formation 
Sandstone 

Conglomerate at base, overlain by quartz-lithic sandstone which 
gradually changes into quartzose sandstone unit of cross-bedded 

sandstone with well-rounded quartz pebbles; a siltstone/sandstone 
and grey/purple claystone palaeosol is present on top. 

Permian 
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2.5. Conclusions 

A new parent material map was created based on the lithology map at 1:1 000 000 with four 

spatial layers (maps of the barest state of topsoil, topsoil properties, topography, and geology 

map from other sources), which increased parent material classes from 8 to 18. This paper used 

several sources of information to create this new parent material map at 90 m resolution. A 

combination of manual interpretation and digital mapping allows creating a robust map. 

This method can be used in a different parts of Australia, and it is of special interest to areas 

with limited access. Moreover, with the results of this study, it is possible to understand soil 

formation and use this as a covariate in future digital soil mapping studies. 
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3.1. Abstract  

Mapping soil classes can support the understanding of soil origin and development, 

subsequently, the soil classes can be used to support monitoring and assessing soil change due 

to human influence. Pedogenon was proposed as a conceptual soil taxon derived from a set of 

quantitative state variables representing the soil-forming factors for a given reference time. 

This study aims to test the pedogenon concept in the Edgeroi region in New South Wales. This 

paper developed local pedogenons, designed a sampling scheme to capture soil variation under 

natural conditions and under intensive human activities, and tested the hypothesis that 

pedogenon is an efficient method of stratifying the landscape to capture soil variation. This 

study derived the 14 pedogenons by employing layers of soil-forming factors (soil, climate, 

organism, topography, and parent material and age) using an unsupervised classification 

technique (k-means clustering). Within each pedogenon, genosoils were identified based on 

areas with native vegetation, while phenosoils were identified as areas with cropping practises. 

One meter soil cores were collected for each genosoil and phenosoil, and scanned using Vis-

NIR spectrometer for predicting soil properties (clay, sand, cation exchange capacity, pH, and 

organic carbon). Results show that each pedogenon was characterised by a soil type formed 

under a dominant parent material occupying a unique position in the landscape. Redundancy 

discriminant analysis of the soil properties as a function of pedogenon and depth of 

observations show that pedogenon significantly explained the variation in soil properties. 

Variance partitioning analysis confirmed that pedogenon explained a large proportion of the 

variation (49 %) as opposed to landuse (5 %). Principal component analysis of the soil 

properties shows that genosoils had twice the variation of phenosoils. The results indicate that 

agricultural activities homogenised the variation of soil profiles. This study demonstrated that 

pedogenon clasess can effectively characterise soil variation and be used as a benchmark to 

compare how human activities have altered soil conditions.   
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3.2. Introduction  

Accurate spatial soil information is required to address soil security, sustaining soil functions 

to provide planetary services and human wellbeing. Digital maps of soil classes can help with 

the understanding of soil genesis and distribution (Ma et al., 2019). Identifying diverse soil 

classes with soil maps can support monitoring and assessing soil change due to different ways 

humans have impacted via management practices. In recent years, digital soil mapping (DSM) 

techniques have been applied to create quantitative soil and environmental classes that reflect 

soil-forming factors over a sizeable geographical extent (Chen et al., 2022). Digital maps of 

soil class were commonly created based on current soil observations. These soil observations 

are products of pedogenesis processes, including anthropogenic effects (Richter Jr, 2007). 

Román Dobarco et al. (2021b) recently proposed a framework for mapping pedogenon, “a 

conceptual soil taxon defined from a set of quantitative state variables representing the soil-

forming factors for a given reference time”. As the framework has not been tested locally, this 

study aims to test the pedogenon concept in a region in New South Wales. This paper aims to 

derive local pedogenons and design a sampling scheme to capture soil variation under natural 

conditions and under intensive human activities. This information allows us to test if 

pedogenons can capture soil variation effectively and help us understand how human activities 

have altered the soil profiles. 

McBratney et al. (2003) devised the SCORPAN factors as a way to map soil quantitatively, 

which include soil (s), climate (c), organisms (o), topography (R), parent material (p), age (a), 

and geographical position (n) factors, and represented as S (soil classes) = f(s, c, o, r, p, a, n). 

Soil class maps can be created using supervised, unsupervised and knowledge-based 

approaches (Ma et al., 2019). In supervised mapping, DSM is based on field observations 

allocated to an established classification system. For example, Heung et al. (2016) created 

machine learning models to relate soil great groups and orders from a conventional soil survey 
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observation with a suite of environmental covariates representing the topography, climate, and 

vegetation. In unsupervised classification, soil classes can be created using soil-forming factors 

represented as spatial layers using numerical classification techniques. Triantafilis et al. (2013) 

used gamma radiometric data as a proxy of soil-forming factors (parent material) and created 

soil classes using fuzzy k-means clustering of the gamma data. As a result, erosional and 

depositional areas could be better described. Whereas knowledge-based approaches use expert 

knowledge rules involving few covariates (Zhang et al., 2017). 

The advantage of the unsupervised classification approach is that it can be carried out prior to 

the soil survey. Román Dobarco et al. (2021b) created a soil class map following the state-

factor model (Dokuchaev, 1883, Jenny, 1994), in which the soil classes were named 

'pedogenons'. They applied an unsupervised classification method to identify the different types 

of pedogenon in New South Wales (NSW), Australia, using environmental covariates (climate, 

parent material, topography, and organisms). They demonstrated that pedogenons can be 

identified using soil-forming spatial layers. It is beneficial not to use an established 

classification system because the established system is commonly based on soil attributes that 

may result from either natural processes or human activities (Fitzpatrick, 2013).  

Within a pedogenon, Román Dobarco et al. (2021b) also differentiated genosoils and 

phenosoils (the two terms are from Huang et al. (2018)). These terms are derived from 

genoform and phenoform, as proposed by Rossiter and Bouma (2018). Genoforms are defined 

as “soil class as recognised by the soil classification system used as the basis for detailed soil 

mapping in a given area.” While phenoforms are “continuous, non-cyclical variations of a soil 

genoform with sufficient chemical or physical differences affect soil function significantly” 

(Rossiter and Bouma, 2018). Thus, within a pedogenon we can recognise areas that haven’t 

been severely influenced by human activities as genosoil while phenosoils refer to the different 

types and levels of landuse and agricultural practises. The understanding of soil variation 
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within pedogenon can provide insight to better managing agricultural lands, and it is possible 

to identify which management methods maximise yield and make less variation from genosoil. 

The study of Román Dobarco et al. (2021b) was conducted over a large geographical extent 

and was not validated with field data. They also emphasised the need of determining the 

optimal number of clusters for classification and selecting meaningful environmental 

covariates in a local region. Thus this research aims to evaluate the generation of pedogenon 

maps on a local scale. In addition, we will design a sampling scheme to sample the pedogenons 

along with their genosoils and phenosoils. Based on this sampling scheme, we collected the 

samples in the field and characterised soils within each pedogenon. We then investigate the 

effectiveness of pedogenons in capturing soil profile variation and quantify the difference 

between genosoil and phenosoil using multivariate statistical analyses.  

 

3.3. Methods  

3.3.1. Description of the study area 

The study area is the Edgeroi district in New South Wales (NSW), Australia. The site is 

approximately 1700 km2 with a climate that is dry, hot in the summer, and cold in the winter. 

The mean annual precipitation is 712 mm, with significant monthly variations (Ward, 1999). 

The average maximum temperature in November is 30 ℃, and it continues to rise to 40 °C 

until February. In July, the mean minimum temperature is 3°C. Agriculture has been practised 

for about 200 years since European settlers came in the early 1800s (Narrabri Shire Council, 

2021). Because grazing was the predominant agricultural activity in the past, enormous regions 

were used as stock routes. Wheat, sorghum, and irrigated cotton farming were introduced in 

the 1960s (McGarry et al., 1989). Few national parks have remained relatively unaffected by 

human activities for an extended period. This research area has frequently been used as 
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exemplar in developing digital soil mapping methodologies (Minasny et al., 2006, Malone et 

al., 2009, Triantafilis et al., 2016). 

 

3.3.2. Environmental covariates data for creating pedogenons 

Based on the approach of Román Dobarco et al. (2021b), pedogenons were developed using 

covariates that characterise the soil-forming factors in the area. The covariates reflect relatively 

stable variables that would influence the formation of the soils. 

 

3.3.2.1.  Soil  

The gamma radiometric data were used to represent soil mineral information. The gamma data 

have implicit information on soil geochemistry, soil properties, and parent material and were 

used in numerous digital soil mapping studies (Lacoste et al., 2011, Dierke and Werban, 2013, 

Triantafilis et al., 2013). Here we used four gamma radiometric data (gamma K, gamma Th, 

Gamma K/Th and total gamma dose) based on aerial survey conducted by Geoscience Australia 

(Minty et al., 2009). 

 

3.3.2.2.  Climate  

Rainfall and temperature are the most significant factors to consider because they affect soil 

properties directly or indirectly. Precipitation impacts soil properties (level of pH and soil 

salinity, soil texture and structure). Depending on the amount of rainfall, these processes can 

be varied (Sharpley, 1985). Annual precipitation (mm) and average temperature (Annual mean) 

(°C) were used to represent climatic factors. In addition, the Prescott Index (PI) representing 

water balance was utilised. This index was calculated based on long-term average precipitation 
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(P) and potential evaporation (E) as PI = 0.445P / E0.75 (Gallant and Austin, 2015). Prescott 

Index was found to be one of the most effective climate factors representing soil formation in 

Australia (Prescott, 1950). 

As seen in Figure 3-1, the mountain ranges on the eastern part of the study area gradually flatten 

towards the west. Therefore, the spatial climate pattern tends to follow the topography. The 

average annual temperature, precipitation, and PI are 23 °C, 646 mm and 0.62, respectively. 

 

3.3.2.3.  Organisms 

Pedogenon represents a conceptual soil taxon derived from a set of quantitative soil-forming 

factors for a given reference time. Here we define the pedogenon classes at the time of the 

European settlement in New South Wales (Australia) (1788) (Parliament of New South Wales, 

2021). As a proxy for the organisms, we used a pre-European vegetation map in the Namoi 

Catchment (Eco Logical Australia, 2013). 

The pre-European vegetation map only covered half of the study area, and thus we expanded 

it to the whole area using a machine learning model. Three types of covariates (nine climate, 

three topography, and one gamma-ray data) were used. The spatial layers were generated at a 

resolution of 90 m. The mapped area was used as training data and sampled randomly. The 

total number of sampling points was 29,249 (70 percent of data used for training and 30 percent 

for testing). The random forest model (Breiman, 2001)was used to predict vegetation classes 

based on the covariates. After prediction, the final vegetation map (thirteen classes) (Figure 

3-1) was spatially filtered to remove the noise.  

The vegetation class map was then converted to continuous variables for the clustering 

requirement. First, the vegetation classes were converted into binary variables (for each class, 

0=absence and 1 = presence). The vegetation variables were then combined using the Principal 
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Component Analysis (PCA). A grid sample of 1931 sample points was selected for PCA. The 

prcomp function of the MASS package in R was used for PCA (Venables and Ripley, 2002). 

Areas of water (dams or irrigation channels) were removed before PCA. The water area data 

were from the State Vegetation Type Map (SVTM) program's NSW Native Vegetation Extent 

5m Raster v1.2 (Department of Planning Industry and Environment, 2019). 

 

3.3.2.4. Topography  

Three topographical data were derived from the SRTM digital elevation model (DEM). 

Topographical variables of slope, and topographic wetness index (TWI) were calculated. 

Studies on mapping soil properties have extensively used DEM and TWI data (Pei et al., 2010, 

Xue et al., 2018, Filippi et al., 2018b). Slope and soil formation are inextricably linked (Bunting, 

1964). There are many studies using DEM and slope as covariates with Digital soil mapping 

techniques (Carré et al., 2007, Padarian et al., 2019, Vaysse and Lagacherie, 2015). Jones et al. 

(2021) have found DEM and slope to be powerful predictors for soil variables. The majority 

of the study area is flat, while the eastern part (one-fourth of the study area) is occupied by 

mountainous terrain. The DEM is shown in Figure 3-1. 

 

3.3.2.5.  Parent material and Age 

For the parent material map in this study area, we used the map created from Chapter 2 (Figure 

3-1). The map recognised eighteen parent material classes arranged according to the age of 

formation, which aids in comprehending parent material formation history. The parent material 

map is categorical data, so the eighteen classes were converted into binary variables (each 

parent material, 0=absence and 1 = presence). PCA was performed on these binary variables 

using a regular grid sample of 1960 sample points.  
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Figure 3-1. four soil-forming factors – top left: DEM (range: 183–553m), top right: annual 

precipitation (range: 611–800 mm), bottom left: vegetation map (13 vegetations), and bottom 

right: parent material map (18 parent materials) 
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3.3.3. Creation of pedogenons  

Soil, climate, organism, topography, and parent material and age layers were used as soil-

forming factors in creating pedogenons (Table 3-1). Covariates that were not normally 

distributed were log-transformed (annual precipitation, Prescott Index, DEM, and Gamma 

K/Th). All data were then scaled, and water regions were deleted (dams or irrigation channels). 

The scaled data were then decorrelated using the inverse of the Cholesky transformation 

(Wicklin, 2012).  

The study area was sampled with a regular grid of 90 m, resulting in 237390 pixels. K-means 

clustering (Lloyd, 1982, MacQueen, 1967) was used to group the data into clusters. The K-

means was calculated using Euclidean distance on scaled and decorrelated data. We used the 

“elbow method” to determine the optimal number of classes using adjusted R-squared and 

WCSSE (Within cluster sum of squares) measures.  
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Table 3-1. Environmental covariates used for the pedogenon classification. 

Soil-forming factors Covariate name Units Reference 

Soil 

Gamma K  Wilford and Kroll (2020) 

Gamma Th  Wilford and Kroll (2020) 

Gamma K/Th  Wilford and Kroll (2020) 

Gamma dose  Wilford and Kroll (2020) 

Climate 

Mean annual temperature °C Williams et al. (2012) 

Mean total annual precipitation mm Williams et al. (2012) 

Prescott Index   

Organism 
Vegetation  

(5 PCs, explained 91% variation) 
 Eco Logical Australia 

(2013) 

Topography 

Digital elevation model (DEM) m Gallant et al. (2009) 

Slope % Gallant et al. (2009) 

Topographic wetness index (TWI)  Quinn et al. (1991) 

Parent material & 
Age 

Parent material  
(7 PCs, explained 71% variation)  Form Chapter 2 
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3.3.4. Creation of the landuse map for distinguishing genosoils and 

phenosoils 

With the map of pedogenons, genosoils and phenosoils could be distinguished using landuse 

information. To create a landuse map for the area, a supervised classification was conducted in 

the Google Earth Engine. Two hundred fifty polygons (from woodland, pasture and cropping 

areas) were collected by investigating Landsat images and used as training data. The landuse 

map was derived using random forest modelling using chlorophyll index (CI) and the soil 

adjusted vegetation index (SAVI) as predictors. Other detailed types of landuse (irrigated 

cropping, production forest, water and cropping/modified pasture lands) were gathered from 

the Catchment Scale Land Use of Australia map (Department of Agriculture Water and the 

Environment (2019) and added to the map. 
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Figure 3-2. Map of landuse or cover. There are seven broad landuse/cover classes in the area.  
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3.3.5. Soil sampling design 

To validate the pedogenons, we designed a sampling strategy to capture genosoils and 

phenosoils. Within each pedogenon, we first determined the genosoils (remnant genosoil) by 

examining large patches of woodland areas. If there was no woodland, broad grazing fields 

were considered the state between genosoil and phenosoil, which was named phenosoil_1. 

While some of these grazing fields may have native vegetation and overlap with areas that were 

considered as grasslands in the pre-European vegetation map, the intensity and frequency of 

disturbance by human activity differ between the genosoil and phenosoil_1. Compared with 

other landuses, the pasture area is much less disturbed than non-irrigated or irrigated cropping, 

but more disturbed than woodlands (genosoil). The main landuse in the pasture areas are stock 

routes, and thus impacted by the movement of cattle. Three sampling locations were placed on 

the woodlands or pastures randomly to represent remnant genosoil or phenosoil_1, respectively. 

After the remnant genosoil or phenosoil_1 sampling point was fixed, other phenosoils or soils 

under intensive agricultural use were selected, and it was named phenosoil_2. A 1-5 km buffer 

was placed on the remnant genosoil&phenosoil 1 and phenosoil 2 sampling point was 

determined randomly within that buffer according to the land use map. 

 

3.3.6. Soil sampling and VisNIR spectra acquisition 

Sampling locations were determined using a handheld GPS. A drill rig was used to extract two 

soil cores to 1 m depth at each sampling location. The soil cores were transported back to the 

laboratory, where they were split vertically and air-dried for 48 hours. Splitting the core 

produced a relatively flat surface that was free from contamination of falling debris that had 

settled on the external surface of many cores during the extraction process. Diffuse reflectance 

VisNIR spectra (350-2500 nm) were acquired on one of the split surfaces of each core using a 

contact probe attachment connected to an ASD AgriSpec (Malvern Panalytical, Boulder, CO, 
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USA). Spectra were obtained at 5 cm depth intervals with a wavelength range of 350 to 2,500 

nm. Illumination was provided by an inbuilt halogen lamp housed in the contact probe 

attachment. A baseline reading was taken on a Spectralon (Labsphere Inc., North Sutton, NH, 

USA) white panel before scanning each core.  

 

3.3.7. Estimating soil properties using VisNIR spectra 

A regional soil spectral library was used to develop machine learning models to estimate the 

properties of the soil cores utilising the acquired VisNIR spectra. The regional spectral library 

is a composite library containing 3,878 samples, covering an area of ~100,000 km2, 

predominantly from within agricultural regions of New South Wales, Australia. The 

component datasets used to build the library have previously been utilised to successfully 

estimate clay, CEC, pH, OC and sand content (Chen et al., 2021, Filippi et al., 2018a, Ng et al., 

2022, Tang et al., 2019). Samples in the library were collected from various depths from the 

soil surface down to 1.2 m depth and represented both agricultural and native/natural land use 

systems. To develop the spectra predictive models, the VisNIR spectra were first pre-processed 

as follows: the step in the spectra observed at the 1,000 and 1,800 nm detector junctions was 

remove using the splice function from the “spectacles” R package (Roudier, 2020)); the diffuse 

reflectance spectra were then converted to absorbance, A= log(1/R); the spectra were smoothed 

using a Savitzky−Golay filter with a window size of 11 and fitting a second order polynomial; 

wavelengths with a low signal-to-noise ratio were removed to leave only the 500−2450 nm 

wavelength range; a standard normal variate baseline correction was performed; the spectra 

were resampled at 10 nm intervals to reduce the overall data size; and finally principal 

component analysis (PCA) was performed to further reduce the dimensionality of the data, 

with the minimum number of principal components that accounted for more than 95% of the 
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observed variability retained. The principal component scores were then used as input variables 

to develop Cubist models to estimate clay, CEC, pH, OC and sand content (Kuhn et al., 2012).  

Pre-processing spectra from the soil cores proceeded in a similar fashion with the exception 

that the core spectra were projected into the principal component space developed from the 

spectral library. A bootstrapping methodology utilising 100 iterations was used to understand 

the prediction uncertainty, with final estimates representing the mean of the 100 iterations. 

Calibration and 10-fold cross-validation statistics demonstrated that the regional spectral 

library was able to estimate soil properties with a good level of accuracy (cross-validated R2 

from 0.6-0.8, Table 3-2). The developed Cubist models were applied to all spectra from the 

soil cores. After prediction, estimates were averaged into 10 cm depth intervals, and data from 

the two cores were averaged into one profile. 
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Table 3-2. 10-fold cross validation statistics for the estimation of clay (%), CEC (mmol/kg), pH, 

OC (%) and sand (%) from Cubist models developed utilising VisNIR spectral data. 

  R2 concordance RMSE bias RPIQ 

Clay calibrated 0.85 0.92 5.66 0.06 1.50 

 10-fold CV 0.82 0.90 6.11 0.09 1.39 

CEC calibrated 0.77 0.85 64.21 -5.58 1.23 

 10-fold CV 0.68 0.80 73.86 -5.44 1.06 

pH calibrated 0.72 0.82 0.51 0.04 1.36 

 10-fold CV 0.64 0.77 0.58 0.04 1.20 

OC calibrated 0.69 0.80 0.29 -0.03 0.74 

 
10-fold CV 0.60 0.74 0.32  0.66 

Sand calibrated 0.83 0.90 7.10 -0.29 1.18 

 
10-fold CV 0.77 0.87 8.31 -0.33 1.00 
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3.3.8. Statistical analysis of genosoil and phenosoil  

The five soil properties (clay, CEC, pH, OC and sand) predicted using NIR data were used for 

statistical analyses. To investigate the patterns of soil properties variation and the amount of 

variation explained by pedogenon classes and landuse, we utilised principal component 

analysis (PCA), and redundancy analysis (RDA).  

PCA is a statistical technique for investigating the interrelationships among a set of variables 

and determining their underlying structure (Malone et al., 2021). PCA can be a valuable tool 

for soil researchers investigating to link the state of soil function, soil properties and 

agroecosystem management (Islam et al., 2003, Zeraatpisheh et al., 2020). The difference 

between PCA and RDA is that PCA requires only response variables, but both response and 

explanatory variables were needed for RDA (Zuur et al., 2007). This study used soil properties 

as response variables, whereas pedogenon class and depth were used as explanatory variables 

for RDA. The exploratory variables consisted pedogenon classes and 10 depth intervals as 

factor levels. In addition, we performed a variance partitioning of the RDA model using the 

adjusted R2 to differentiate the pure effects of pedogenon class, landuse, and their shared effect 

on the variation of soil properties (Borcard et al., 1992, Legendre and Legendre, 2012). 

 

3.4.  Results  

3.4.1. Deriving pedogenons for the Edgeroi area 

3.4.1.1. Obtaining an optimal number of pedogenon classes 

Román Dobarco et al. (2021b) mentioned that finding an optimal number of classes is essential 

for creating the pedogenon map. This part attempted to find the optimal number and improve 

the classification result. The number of pedogenon classes from clustering depends on 

numerical and knowledge-based criteria. One issue that arose during the clustering process was 
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that one of the classes included both flat and mountainous areas. As a result, several strategies 

were trialled to optimise resulting pedogenons that separated mountain and flat areas. 

The first strategy was increasing the number of pixels for clustering. We initially used 20,000 

pixels for clustering and found that it gave unsatisfactory results. Thus, we trialled and 

increased the number to 230,000 pixels, where a clear separation of pedogenons can be found. 

To obtain an optimal number of clusters, the “elbow method” was used. The elbow method 

(Adjusted R-squared and WCSSE (Within cluster sum of squares)) suggested that the optimal 

number of clusters is between nine and seventeen (Figure 3-3). However, these two clusters 

show one pedogenon located in both flat and mountainous areas. Hence, we qualitatively 

examined pedogenon classes that can separate flat and mountainous areas from nine to 

seventeen. Thus, we determine fourteen classes as an optimum number.  
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Figure 3-3. k-means plot of the adjusted R-squared (left) and the within-cluster sum of squares 

(WCSSE) (right) created for each cluster number. These two graphs recommend that the optimal 

numbers are nine and seventeen. 
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3.4.2. Pedogenon and pedophenon classes 

The resulting pedogenon map is in Figure 3-4. Based on the pedogenon and landuse maps, we 

designed soil sampling that captured remnant genosoils and phenosoils (phenosoil_1 and 

phenosoil_2). Only 13 pedogenons were sampled because one class was located in the 

mountain and occupied a small percentage of the area (approximately 1%). Moreover, the map 

of pedophenon (Figure 3-5) shows no phenosoil 2 in pedogenon N. Román Dobarco et al. 

(2021a) proposed the definition of pedophenons, which are subclasses of pedogenon, created 

with the combination of pedogenon, vegetation and landuse information. In this study, the 

pedophenon map (Figure 3-5) was created using pedogenon and landuse maps together. This 

map clearly shows the distribution of different landuses (remnant genosoil, phenosoil 1, and 2) 

in each pedogenon. The sample locations are given in Figure 3-4 and Figure 3-5.  

The general pattern of the pedogenon map is similar to the map of the parent material (Figure 

3-4). Generally, soil properties were determined by the characteristics of the parent materials. 

Hence, it is reasonable that both pedogenon and parent material maps were similar. Ward (1999) 

also stated that soil variation on the local scale is mainly associated with the parent rock and 

sediment types. Most of the areas were covered by alluvium material on the western part. This 

area is flat, and the pre-European vegetation was Tussock grasslands and eucalyptus woodlands 

(Figure 3-1). At the same time, pedogenons in the eastern part of the study area are heavily 

influenced by topography and climate.  
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Figure 3-4. Fourteen different pedogenons from clustering and sampling points remnant genosoil, 

phenosoil 1 and 2. Soil-forming factors were used for generating the pedogenon maps. There are 

a total of 89 sample points (28 remnant genosoil points, 14 phenosoil 1 and 47 phenosoil 2 points). 
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Figure 3-5. Forty-two different pedophenons from the combination of pedogenon and landuse, 

and sampling points of genosoil (geno) and phenosoil (pheno 1 and 2). There are a total of 89 

sample points (28 remnant genosoil points, 14 phenosoil and 47 phenosoil 2 points). 
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3.4.2.1. Description of the pedogenons 

Based on the soil description and soil-forming factors, we describe the characteristics of each 

pedogenon as follows, including dominant types of parent material and vegetation, the 

topography, phenosoil landuse, genosoil landuse, soil texture, colour and corresponding soil 

class (Australian Soil Classification, ASC, Isbell (2016)). The detail of each pedogenon is 

given in Appendix 3-1 and the soil properties of each pedogenon is also shown in Appendix 3-

2. 

Pedogenon A – The dominant parent material is alluvium, and the current vegetation is native 

grasslands and forested wetlands. The terrain is flat. The phenosoil landuse is irrigated cropping, 

and the genosoil landuse is pasture. The soil texture is heavy clay, and the soil colour is black. 

The ASC soil class is a lack Vertosol. 

Pedogenon B – The dominant parent material is alluvium, and the current vegetation is native 

grasslands. The terrain is flat. The phenosoil landuse is irrigated cropping, and the genosoil 

landuse is woodland. The soil texture is medium clay, and the soil colour is dark brown. The 

ASC soil class is a Dark Brown Vertosol. 

Pedogenon C – The dominant parent material is alluvium, and the current vegetation is native 

grasslands. The terrain is flat. The phenosoil landuse is non-irrigated cropping and irrigated 

cropping, and the genosoil landuse is woodland and pasture. The soil texture is heavy clay, and 

the soil colour is dark brown. The ASC soil class is a Dark Brown Vertosol. 

Pedogenon D – The dominant parent material is alluvium, and the current vegetation is native 

grasslands. The terrain is flat. The phenosoil landuse is irrigated cropping, and the genosoil 

landuse is pasture. The soil texture is heavy clay, and the soil colour is black. The ASC soil 

class is a Black Vertosol. 
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Pedogenon E – The dominant parent material is sand plain, and the current vegetation are 
native grasslands and dry sclerophyll forests (Shrub/grass sub-formation or shrub sub-

formation). The terrain is flat. The phenosoil landuse is irrigated cropping, and the genosoil 

landuse is woodland. The soil texture is sandy clay loam, and the soil colour is red. The ASC 

soil class is a Red Chromosol. 

Pedogenon F – The dominant parent material is sand plain, and the current vegetation is native 

grasslands. The terrain is flat. The phenosoil landuse is non-irrigated cropping, and the genosoil 

landuse is pasture. The soil texture is heavy clay, and the soil colour is black. The ASC soil 

class is a Black Vertosol. 

Pedogenon G – The dominant parent material is alluvium, and the current vegetation is native 

grasslands. The terrain is flat. The phenosoil landuse is non-irrigated cropping, and the genosoil 

landuse is pasture. The soil texture is heavy clay, and the soil colour is black. The ASC soil 

class is a Black Vertosol. 

Pedogenon H – The dominant parent material is colluvium, and the current vegetation is native 

grasslands. The terrain is flat. The phenosoil landuse is non-irrigated cropping, and the genosoil 

landuse is pasture. The soil texture is heavy clay, and the soil colour is dark brown. The ASC 

soil class is a Dark Brown Vertosol. 

Pedogenon I – The dominant parent material is Pilliga Sandstone, and the current vegetation 

is dry sclerophyll forests (Shrub/grass sub-formation or shrub sub-formation). The topography 

is characterised by gentle slopes. The phenosoil landuse is non-irrigated cropping, and the 

genosoil landuse is woodland. The soil texture is sandy clay loam, and the soil colour is dark 

brown. The ASC soil class is a Dark Brown Tenosol. 

Pedogenon J – The dominant parent material is Keelindi beds and sand plain, and the current 

vegetation are native grasslands and western vine thickets. The topography is characterised by 
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gentle slopes. The phenosoil landuse is non-irrigated cropping, and the genosoil landuse is 

pasture. The soil texture is medium-heavy clay, and the soil colour is black. The ASC soil class 

is a Black Vertosol. 

Pedogenon K – The dominant parent material is Keelindi beds, and the current vegetation is 

consists of native grasslands and dry sclerophyll forests (Shrub/grass sub-formation). The 

topography is characterised by gentle slopes. The phenosoil landuse is non-irrigated cropping 

and irrigated cropping, and the genosoil landuse is woodland and pasture. The soil texture is 

medium clay, and the soil colour is brown. The ASC soil class is a Brown Vertosol. 

Pedogenon L – The dominant parent material is colluvium, and the current vegetation is native 

grasslands and dry sclerophyll forests (Shrub/grass sub-formation). The topography is 

characterised by gentle slopes. The phenosoil landuse is non-irrigated cropping, and the 

genosoil landuse is woodland. The soil texture is heavy clay, and the soil colour is black. The 

ASC soil class is a Black Vertosol. 

Pedogenon M – The dominant parent material is Digby formation, Napperby formation – 

sandstone and alluvium, and the current vegetation are native grasslands and western vine 

thickets. The topography is characterised by gentle slopes. The phenosoil landuse is non-

irrigated cropping, and the genosoil landuse is woodland and pasture. The soil texture is light-

medium clay, and the soil colour is dark brown. The ASC soil class is a Dark Brown Vertosol. 

 

3.4.3. Comparing pedogenons with existing soil maps 

The pedogenon map was compared with previous studies conducted in the area. Ward (1999) 

created a geology map of the Edgeroi area using soil survey and fuzzy K-means clustering. 

Their study area was slightly smaller than ours, but the pattern of their result is similar to our 

pedogenon map (especially pedogenon F and K). Triantafilis et al. (2013) used gamma-ray 
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spectrometry data and coupled it with the fuzzy K-means algorithm to identify geological and 

geomorphological units of the area. They identified 11 classes, and some of their results are 

similar to some of our pedogenons. Soils developed over alluvium show a similar pattern. Some 

of their alluvial soils classes corresponded to pedogenon D and G. While one of their class can 

be further differentiated in pedogenons A, B, C and H. Overall, the qualitative comparison 

between soil classes generated by Triantafilis et al. (2013) and pedogenons confirmed that both 

maps had similarities, even though the two maps were created differently.  

 

3.4.4. Statistical analysis of soil properties of pedogenons.  

Soil properties derived from NIR spectra were analysed using multivariate analysis, i.e. PCA 

and RDA to reveal the pattern of pedogenons, genosoil and phenosoil.  

 

3.4.4.1. Principal component analysis  

PCA can be a valuable tool for soil researchers investigating to link the state of soil properties 

and soil classes. Here we combined 5 soil properties which were measured every 10 cm from 

the soil surface to 1 m depth. The first two PCs explained 89.1% of data variance, PC1 

explained 67.8%, and PC2 explained 21.3% of data variance. Figure 3-6 shows that the PC1 

was controlled mainly by clay, CEC, pH and sand, while PC2 was affected by OC. Clay, pH 

and CEC have significant positive loadings on component 1, while sand has large negative 

loadings on component 1. On the other hand, OC has negative loadings on component 2. Figure 

3-6 A shows that most data points of topsoil (0-10 and 10-20 cm) were very close to OC axes, 

while subsoil data were away from the OC axes. This confirmed the observation that OC was 

concentrated in the top layers of soil, and its content decreased with depth.  
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The ellipses of the PCA represent the 95% confidence interval of the data. Figure 3-6 B shows 

the PCA scores of soil properties grouped by pedogenons where we can see two distinct groups. 

Most pedogenons were concentrated on the right side of the graph, which indicated high clay 

content, pH, and CEC values. While the other pedogenons (Pedogenon E, I and K) were located 

on the left side of the PC plot, indicated by high sand content.  

The PC plot indicated that the ellipse representing 95% of remnant genosoil and phenosoil 1 

data was larger than that of phenosoil 2 (Figure 3-6 C). The ellipse area of remnant genosoil 

and phenosoil 1 is twice the size of phenosoil 2. Remnant genosoil and phenosoil (phenosoil 1 

and 2) of a pedogenon were initially assumed to be formed by the same pedogenetic processes. 

However, since human cultivation, phenosoil_1 and phenosoil_2 were affected by 

agropedogenesis (Kuzyakov and Zamanian, 2019), resulting in different variability. Figure 3-6 

D shows the variation of soil properties as a function of land use. It also shows that the variation 

of soils in woodland, represented by the 95% confidence ellipse, was larger than pasture soils, 

followed by non-irrigated cropping soils, and finally, irrigated soils. 

 

  

 

 



104 
 

 

Figure 3-6. a) Scores plot of the first two PC using 89 cores (every 10 cm) from all thirteen 

pedogenons. The different shapes represent the depth in every 10cm (10-100cm), and the colour 

of points represents each pedogenon (Pedogenon A-M). b) Scores plot of the first two PC using 

89 cores (every 10 cm) from all thirteen pedogenons with the ellipse. c) Biplot of the first two PC 

using remnant genosoil (Geno) and phenosoil 1 (Pheno 1) (red circle) and phenosoil 2 (Pheno 2) 

(blue triangle) with 95 % prediction ellipse. The black arrows are the active variables (Clay, CEC, 

pH, OC and Sand) used to build the PCA. d) Scores plot of four types of landuse (C: Nonirrigating 

Cropping, P: Pasture, R: Irrigating cropping and W: Woodland) with the ellipse. 

 

  



105 
 

3.4.4.2. Redundancy discriminant analysis 

To understand the characteristics of each pedogenon, RDA is applied to investigate the 

relationship between each pedogenon and soil properties and the amount of variation explained 

by pedogenons. The first two axes of RDA explained 71.8% of the total variance, leaving 28.2% 

unexplained. The model and axes of individual RDA were statistically significant (P-value: 

0.001). The first and second axes of the RDA explained 57.4 % and 14.4 % of the variation, 

respectively. Based on the direction of the arrows in the RDA biplot, CEC, clay, pH, and sand 

explained a substantial amount of the variance in RDA 1, whereas OC explained the variance 

of RDA 2 (Figure 3-7 III). The length of the arrow indicated the strength of correlation between 

the soil properties and sampling points of pedogenons. The points of each pedogenon 

represented every 10 cm of observation, with the most surface points indicated by a small arrow 

and the name of pedogenon. Based on Figure 3-7, most pedogenons started (from 0-10 cm) 

from the top left of the graph to the bottom right. In addition to that, the OC axes explained this 

trend indicating that OC content decreased with depth across all pedogenons.  

Figure 3-7 shows the difference in soil properties between genosoil&phenosoil 1 and phenosoil 

2. The patterns of soil texture and other properties (pH and CEC) from both 

genosoil&phenosoil 1 and phenosoil 2 (Figure 3-7 I and II) were similar. However, the OC 

content shows a distinct pattern between remnant genosoil&phenosoil 1 and phenosoil 2. The 

topsoil OC of remnant genosoil&phenosoil 1 was larger and gradually decreased as the depth 

increased. However, OC contents in phenosoil 2 were similar throughout the profile. RDA of 

phenosoil 2 profiles tended to cluster together as opposed to genosoil&phenosoil 1. 

The RDA and PCA plots show a similar pattern, where we can distinguish two main groups of 

soils. The first group occupied on the bottom right-hand side of the RDA plot (Figure 3-7), 

where most observations were correlated with clay, pH, and CEC. The second group was 

formed by pedogenon E, I and K, which were correlated with sand content. The soil-forming 
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factors of pedogenon I and K were similar and were located nearby in the pedogenon map 

(Figure 3-4). This means that their soil formation is influenced by similar climate, topography, 

and parent material. Both pedogenons were derived from sandstone, on a gentle slope. The 

range of soil properties from both pedogenons was also similar. In contrast, pedogenon E was 

located in the southwest part of the study area (Figure 3-4). The parent material of this 

pedogenon was a sand plain, and the area is very flat. The soil type is a Chromosol (soil with 

a texture contrast between topsoil and subsoil). This was reflected in the RDA, as depth 

increased, and the observations were moving towards the clay axes (Figure 3-7). Overall the 

sand content in pedogenon E is less than pedogenon I and K.  
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Figure 3-7. Graph I (remnant genosoil and phenosoil 1) and II (phenosoil 2) are the RDA plot 

with pedogenon and soil depth as explanatory variables. The square or triangle points(Graph I) 

and circle(Graph II) with black arrows and the name of pedogenon are 0-10 cm depth, and after 

that point, every 10cm depth is increased until 100 cm. Graph III is the plot with five soil 

properties as response variables (red arrows: CEC, clay, pH, OC and sand). 
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3.4.4.3. Variance partitioning 

The variance partitioning method determined the effect of pedogenon, landuse, and their shared 

effect on RDA. The pure pedogenon effect was 49 % of the variation, and the pure landuse 

effect was 5 %. The shared amount of variation was 20 %, and the residual was 25 % (Figure 

3-8). The results again stressed the success of pedogenons in explaining the variation of soil 

properties. 
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Figure 3-8. Venn diagram of variance partitioning. The explanatory variables are pedogenon and 

landuse, and the numbers in the figure represent the explained variance. The percentage of 

variation can be calculated by dividing the explained variance by total variance (1).  

 

  



110 
 

3.5. Discussion  

Román Dobarco et al. (2021b) identified the different types of pedogenon in NSW with an 

unsupervised classification method. The benefit of this approach is that the pedogenon map 

can be generated without the reliance on legacy soil maps, such as done by Roudier et al. (2022). 

However, due to a large geographical extent, the validation with field data is limited. Therefore, 

this study created a local pedogenon map using the framework proposed by Román Dobarco 

et al. (2021b) and validated it. The resulting map was validated using PCA and RDA with five 

soil properties (clay, CEC, OC, pH and sand) from surface to 1 m. 

The framework using unsupervised classification for creating pedogenons based on local data 

is straightforward. Unsupervised classification has been used for creating soil classes for 

different applications, such as Triantafilis et al. (2013), who focused just on using gamma 

radiometric data. While Roell et al. (2020) used soil, climate and landscape variables to model 

terron classes. In this study, we used layers that represent the scorpan factors. Applying the 

methodology at a local scale allows incorporating more detailed information on soil geology 

and landform. 

Moreover, the produced pedogenons were more compact for the study area than those from the 

classification at the state scale (Román Dobarco et al., 2021b). However, determining the 

number of covariates and an optimal number of pedogenon classes cannot be fully automated 

yet. Manual interpretation of the resulting classes was still required to ensure the pedogenon 

classes were meaningful. The ambiguity or sensitivity of some classes may be caused by the 

less detailed covariates used in this study (at a resolution of 90 m). Future studies should use 

finer resolution covariates. 

The pedogenons also serve as a local soil map equivalent to a soil series. The qualitative 

description of the pedogenons shows that each pedogenon was derived by unique parent 
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material and occupied certain parts of the landscapes and the resulting soil profiles are unique. 

This is further supported by quantitative soil information. The results from redundancy 

discriminant analysis (RDA) proved that the pedogenons effectively explained the variation of 

soil properties from surface to 1 m. Based on variation partitioning analysis, the effect of 

pedogenon is much more significant than landuse (49% compared to 5%). This result explains 

that soil types described by each pedogenon were unique, and landuse explained the variation 

within each pedogenon. 

The variability of soil properties of the phenosoil_2 was reduced to half of the genosoil and 

phenosoil_1. The results indicated that natural pedogenesis created soils with high variability, 

and decades of agricultural practices have modified the soil properties to become less variable. 

Intensive human activities have changed the characteristics of the genosoils into phenosoils. 

The processes in phenosoils tend to make soil homogenised. This homogenisation can also be 

visualised in RDA, where the variation in OC tends to be less in phenosoils compared to 

genosoils. This result agrees with the hypothesis presented by (Kuzyakov and Zamanian, 2019).  

Although the present results clearly support the uniqueness of pedogenons, it is appropriate to 

recognise several potential limitations. First, we assume that the topography and gamma 

radiometric data do not change significantly over the past 200 years. In addition, the pre-

European vegetation maps were modelled. Nevertheless, the resulting pedogenons generally 

agree with past studies that were based on parent material classification (Ward, 1999). This 

study used detailed soil information based on Vis-NIR spectra that were collected every 10 cm 

of the soil cores. While the soil properties predicted by Vis-NIR are subjected to uncertainty, 

many studies have shown the effectiveness of soil specta in inferring soil properties. In addition, 

this method is faster and less laborious than conventional laboratory methods (Jones and 

McBratney, 2016). Still, the pattern of predicted soil properties using NIR spectra is 

interpretable for differentiating pedogenons.  
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In terms of future research, it would be useful to investigate in more detail the difference in 

soil properties between genosoil and phenosoil to understand how the soils have changed due 

to intensive cultivation. These data would have some potential intervention implications. For 

example, the genosoils would also provide a benchmark against the phenosoils on the 

achievable level of soil conditions by changing management practices.  

 

3.6. Conclusion 

Pedogenon map is produced based on soil-forming factors (soil, climate, organism, topography, 

and parent material) informing genosoils. In addition, the information of landuse within each 

pedogenon supports the distribution of phenosoils. Multivariate statistical analyses (PCA, RDA 

and Variance partitioning) of soil profile properties of pedogenons validated the pedogenon 

map. Soils of each pedogenon are unique and the pedogenons characterise the pedodiversity of 

the area. Soil charactersitics derived from genosoils and phenosoils indicate that 

agropedogenesis have modified soil profiles. The variation of soil profile properties of genosoil 

was twice larger than phenosoil. This supports the idea that agropedogenesis reduced the 

variation of natural pedogenesis. The application of pedogenon map as spatial soil information 

can support addressing soil security, sustaining soil functions to provide planetary service and 

human wellbeing. 
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3.8. Appendices 

Appendix 3-1. Soil information for each pedogenon. 
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Appendix 3-2. Line graphs of soil profile properties for each pedogenon. The red lines 

represent mean values for genosoils &Phenosoils1, the blue lines represent phenosoils2. The 

shaded area represents 95% confidence interval of the mean of the data. 
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Chapter 4. Assessing soil organic carbon 
change in the Lower Namoi Valley, Australia 
using pedogenon sampling and digital soil 
mapping techniques 
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4.1. Abstract 

Intensive agricultural activities have caused soil organic carbon (SOC) to decline in many parts 

of the world. However, there is a dearth of approaches that can spatially estimate the change of 

SOC due to land use change at a regional scale. In this study, we used the concept of 

pedogenons as the basis of soil carbon change estimation. Pedogenon is a conceptual soil class 

defined from a set of quantitative state variables representing the soil-forming factors for a 

given reference time. We recognise that pedogenons can be modified by human activities, 

forming phenosoils. This study identifies pedogenons representing SOC under native 

vegetation and the phenosoils representing SOC under intensive human management. We 

surveyed the lower Namoi Valley area, NSW, Australia (1700 km2), comprising 13 pedogenons. 

Within each pedogenon, we sampled regions under native vegetation and areas under cropping. 

Ninety-nine sampling cores were collected from 0-1 m in woodlands and agricultural areas. 

The soil profile cores were scanned in 10 cm depth intervals (to 1 m) using mid-infrared 

spectroscopy to quantify SOC concentration. Using Digital Soil Mapping (DSM) techniques, 

the SOC data were used for mapping SOC every 10 cm down to 1 m using spatial layers (soil, 

organisms, topography and parent material and age). Sampling points under native vegetation 

were used to map SOC under the native state, and all data were used for mapping SOC current 

state. The neural networks model was utilised for making maps at 10 depth intervals 

simultaneously. By comparing the SOC maps at two states (native and current), we assessed 

SOC change from 0-1 m. The results show that the SOC loss in irrigated cropping areas was 

the largest (average: 3.60 t C ha-1, 0-30 cm), followed by non-irrigated cropping (3.32 t C ha-1), 

pasture (1.92 t C ha-1), and woodland (0.81 t C ha-1). Overall the area had a loss of 1,737 Gg C 

due to cropping and pasture establishment. The understanding of SOC change can provide 

information on areas of SOC loss threat. The digital maps could be used to inform farm 

management and environmental planning. 
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4.2. Introduction 

Soil carbon is central to soil functions, influencing crop production, nutrient and water cycles, 

climate, and above- and below-ground biodiversity (McBratney et al., 2014). As the largest 

terrestrial store of carbon, soil has two to three times more carbon than the atmosphere and 

plants. Thus, a slight increase in carbon in the soil could significantly mitigate greenhouse gas 

emissions and enhance ecosystem services (Lal, 2013). It is known that increasing SOC 

improves soil physical, chemical and biological conditions, thus enhancing crop productivity 

(Kopittke et al., 2021). However, intensive agricultural activities have caused SOC decline in 

many parts of the world. Most global soils under agricultural practices are depleted of their 

initial carbon stock by 25%−75%, in the range of 10−30 Mg ha-1 (Lal, 2013). A study by 

Padarian et al. (2022) indicated that global land use change in the past two decades caused an 

annual loss of about 1.9 Pg C per year. In Australia, estimates have shown that areas that have 

been cultivated for more than ten years lose about half of their SOC content (Luo et al., 2010, 

Post and Kwon, 2000).  

This decrease in the amount of carbon in the soil has a direct negative consequence on the 

ability of soils to produce crops, cycle the nutrients, protect the soil biodiversity, regulate water 

and climate and other ecosystem services (Kopittke et al., 2021). The continued cumulative 

effect of soil degradation could have devastating consequences on soil functions (Evans et al., 

2020). Unfortunately, there is a lack of an approach that can quantify and monitor the change 

of SOC at a regional scale. Inherent variation of SOC is a function of soil forming factors, and 

thus there is also a lack of reference SOC content that allows us to quantify how much SOC 

had been lost and how much SOC can be gained through SOC sequestration approaches.  

Monitoring soil change has several ways (Filippi et al., 2016). Most studies on quantifying soil 

change require resampling, meaning a site needs to be revisited after some time. The 
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disadvantage of this approach is the high cost and effort involved. Another commonly used 

approach is the “over the fence” comparison or space-for-time substitution. This approach 

compares soil conditions under natural vegetation or less disturbed conditions with soils under 

cropping or agricultural activities. Filippi et al. (2016) mentioned that using space-for-time 

substitution to observe soil change is useful, especially when the time of land use change is 

known. Many studies use this approach to assess how human activities have modified soil over 

time (Cattle et al., 1994, Tye et al., 2013). However, this method only provides a pairwise 

comparison over a field or limited area and cannot be extended to the mapping of soil change 

over a region.  

To address the spatial limitation of the space-for-time substitution method, this paper uses the 

concept of pedogenons proposed by Román Dobarco et al. (2021) to assess soil change and 

also set a reference state for SOC. The definition of pedogenon is “a conceptual soil taxon 

defined from a set of quantitative state variables representing the soil-forming factors for a 

given reference time”. Within a pedogenon, we can distinguish genosoil and phenosoil 

(adapted from the concept of genoform and phenoform by Rossiter and Bouma (2018)). The 

genosoil is the dominant genetic soil type within a map unit, produced by long-term 

pedogenesis, and the phenosoil is a persistent variant of the genosoil modified by human 

activities (e.g., agricultural, industrial or mining practices). And thus, sampling the remnant 

genosoil and phenosoils of a particular pedogenon will allow us to map and quantify soil 

change. Furthermore, soil change can be quantified based on the type of land use or the intensity 

of anthropogenic disturbance.  

We derived pedogenon maps for the Edgeroi region in New South Wales, Australia from 

Chapter 3 (Figure 4-1). Further, we designed a sampling scheme that captures soil variation 

under natural conditions and intensive agricultural activities. In this paper, we extend the data 
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collected from the pedogenons to quantify and map SOC change over the area. Hence, the aims 

of this study are:  

i) To map SOC content (under natural or less disturbed conditions and the current 

state) using pedogenons and the digital soil mapping approach,  

ii) To calculate how much soil carbon content and stock have changed as a function of 

pedogenon and land use due to agricultural practices.  

iii) To set SOC targets for each of the pedogenons. 

This study will provide a framework to quantify SOC change and also establish a benchmark 

or a reference state for SOC stock. 

 

4.3. Materials and Methods 

We first detail the research area and then describe the methodology of measuring SOC content 

using MIR spectroscopy. Subsequently, we detail the digital techniques for mapping soil under 

native vegetation and current conditions, mapping SOC content and stock followed by SOC 

change.  

 

4.3.1. Description of the study area 

The study area is in the Edgeroi district in New South Wales (NSW), Australia (1700 km2). 

The region's climate contrasts hot and dry in the summer and cold in the winter. During summer, 

the average maximum temperature starts at about 30 °C and peaks at 40 °C. The average 

minimum temperature during winter is 3 °C. The mean annual precipitation is about 712 mm 

(Ward, 1999). The region has been intensively cropped for more than 200 years since European 

settlers came in the early 1800s (Green et al., 2011, Narrabri Shire Council, 2021). Because 
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grazing was the predominant agricultural activity in the past, vast regions were used as stock 

routes. Wheat, sorghum, and irrigated cotton farming were introduced in the 1960s (McGarry 

et al., 1989). Few remaining national parks are relatively unaffected by human activities for an 

extended period. The study area has undergone several land use changes in the last 200 years. 
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Figure 4-1. Left: the map of land use or cover, and there are seven broad land use/cover classes 

in the area. Right: the map of fourteen pedogenons (Pedogenon A to N) and sampling points of 

genosoil and phenosoil. 
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4.3.2. Pedogenon map 

The Pedogenon map of the study area (Figure 4-1) was created from Chapter 3 based on the 

method of Román Dobarco et al. (2021). Fourteen pedogenons were determined in the area 

using an unsupervised classification method, i.e. k -means clustering of soil forming factors 

represented as spatial layers (soil, climate, organisms, topography, parent material and age). 

The resolution of the map is 90 m. The detail of each pedogenon is described in Chapter 3. The 

pedogenon map was validated with the five soil properties of each pedogenon (pH, clay, sand, 

cation exchange capacity, and organic carbon) and multivariate statistical analyses 

(redundancy discriminant analysis (RDA) and variance partitioning). 

 

4.3.3. Soil sampling and MIR spectra acquisition 

Sampling points were designated on the pedogenons based on land use data (Figure 4-1). First, 

for each pedogenon, we located genosoil sampling points in large patches of woodland areas, 

and then phenosoil points were randomly allocated in different types of agricultural lands or 

the land disturbed by anthropogenic activities. In total, soil cores to a depth of 1m were 

collected from 89 sampling points in woodland and farming areas. Extra samples (10 sampling 

points) were collected in the woodland area to ensure an even spatial coverage of the area. One 

pedogenon (pedogenon N, in Chapter 3) only occupied a small area on a high elevation and 

thus could not be sampled. Thus, this study used data from 13 pedogenons. 

Soil samples were air-dried in the laboratory, parted every 10 cm, ground and sieved (< 2 mm). 

The samples for calibration data were sent to an external laboratory for analysis. Total carbon 

was analysed with the combustion method using Elementar analysis, and inorganic carbon 

(calcium carbonate) was analysed using a titration method. SOC was calculated as the 

difference between total and inorganic carbon. 
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The soil samples were scanned using a MIR diffuse reflectance spectrometer. Approximately 

15 g of soil samples were further ground using a ball mill. Two replicates of each sample were 

prepared. The samples were loaded into Al microtiter plates (A752-96, Bruker Optik GmbH, 

Ettlingen, Germany) using a micro spatula to fill the 6 mm diameter wells and level the soil. 

The first two wells of every plate were filled with potassium bromide (KBr) used for the 

standard and blank, respectively, and the first sample was filled from the third well. Demyan 

et al. (2012) and Rasche et al. (2013) recommend maintaining the plate's temperature at 32 ˚C 

overnight to remove moisture in soil samples before scanning using the MIR spectrometer. The 

prepared plates for scanning were stored in a desiccator with dried silica gel for one day 

(humidity inside the desiccator, about 15-20 %). Spectral measurement was conducted using a 

high throughput screening device (HTS-XT) attached to a Tensor 37 spectrometer (Bruker 

Optik GmbH, Ettlingen, Germany). The detector was a mid-band mercury-cadmium-telluride 

detector which was cooled with liquid nitrogen. The wavenumber range of MIR spectra 

measured is 4000–400 cm-1. The average reflectance of 60 scans per soil sample was 

transformed to absorbance and recorded using the Optics software. 

 

4.3.4. Analysing and calibrating the spectra data for SOC prediction 

The MIR spectra were used to predict SOC content. Four pre-processing methods for the 

spectra were used in this study. The first one is trimming. The spectrum edges (<600 and >3995 

cm-1) were excluded due to the high noise-to-signal ratio. After that, the region of atmospheric 

carbon dioxide (CO2) (2300 to 2400 cm-1) was removed because MIR spectroscopy instrument 

is susceptible to the concentration of CO2 inside the instrument (Mirzaeitalarposhti et al., 2017). 

Then, the Savitzky-Golay filtering method was applied to smooth spectra. SNV (Standard 

Normal Variate) was used to normalise the spectra. All processes were conducted in R 

statistical software with the spectroscopy package (Campbell et al., 2016). 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/mercury-cadmium-tellurides
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A total of 151 samples (89 topsoils (0-15 cm) and 62 subsoils (30-40 and 70-80 cm from the 

soil cores)) were used to calibrate a model relating the MIR spectra with SOC content. The 

cubist model was used for modelling, using the package Cubist (Kuhn et al., 2014).  

A 10-fold cross-validation was employed to evaluate the accuracy of the SOC predictions. This 

10-fold cross-validation was repeated 10 times. The order of the data was randomly shuffled 

before creating the folds. The result of validation data from each fold was accumulated and 

plotted for testing the goodness of fit (Figure 4-2). 

 

4.3.5. Creating SOC and SOC change maps using DSM techniques 

The spectral calibration model predicted SOC content at 10 cm intervals from the surface to 1 

m depth for the 99 sampling points. Subsequently, maps of SOC concentration at every 10 cm 

depth interval from surface to 1 m depth were created using the DSM approach. The neural 

networks model was utilised to establish quantitative relationships between the SOC content 

and 13 environmental covariates representing the factors soil (s), organisms (o), relief (r), 

parent material (p) and age (a) from the scorpan model (McBratney et al., 2003) (Table 4-1). 

Non-normally distributed covariates were log-transformed (i.e., DEM and Gamma K/Th). The 

vegetation and parent material maps were converted to continuous variables for the clustering 

requirement. The method of conversion was well explained in Chapter 3. Water areas, 

including irrigation channels or dams, were removed from the map. 

Two soil condition maps were produced: estimated SOC assuming natural vegetation across 

the study area and SOC under the current condition. For SOC under natural vegetation, only 

sampling points from the genosoil areas that were under natural vegetation were used (47 

sampling points) as training data. For mapping the current SOC concentration, all sampling 

points were used.  
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The covariates representing s, r and p factors for both maps were the same except for the 

vegetation (o) covariates. For mapping SOC under natural conditions, the map of vegetation 

pre-European settlement (1788) was used as the covariate in the organism factor. This dataset 

was derived from Eco Logical Australia (2013), representing soil under natural conditions with 

the least human disturbance. 

The map of current SOC content was created using the s, r and p factors and the current 

vegetation data representing o. The current vegetation map was derived from the Department 

of Planning and Environment (2018). The vegetation map contains information about plant 

community types for the Namoi and Border Rivers Gwydir catchments. A hybrid classification 

method (visual interpretation and spatial modelling) was utilised to combine the features and 

produce this map.  

To create the SOC maps of 10 depths simultaneously, we used the neural networks model with 

multiple outputs, called the multilayer perceptron (MLP) model (Manaswi et al., 2018, 

Padarian et al., 2019). The model was implemented in JMP statistical software. As the neural 

network model only accept continuous data, categorical data were first converted to continuous 

data. Then, the categorical data were coded into binary variables (presence/absence for a 

particular class), and the principal component analysis was performed on the coded variables 

to produce continuous data.  

For the modelling, the input layer has 13 nodes corresponding to the 13 environmental 

covariates, one hidden layer, and an output layer has 10 nodes which correspond to the 

prediction of 10 depth intervals (every 10 cm). The optimal number of nodes and hidden layers 

were chosen after trial and error. Here we used one hidden layer and the tanh activation function.  

The neural networks training was executed 50 times using the bootstrapping method to 

calculate the model's validation and prediction uncertainty, resulting in 50 maps per depth. 
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These results were then averaged into one final map. The bootstrap uses sampling with a 

replacement on the data, creating training datasets size n = 47 (under native vegetation) and n 

= 99 (current). The data that were not selected during the sampling (approximately 1/3 of the 

data) were used for validation.  

The change in SOC was calculated using a model-based approach, with the difference between 

the DSM-predicted current SOC (Ccurrent) and SOC under native vegetation (Cnative): 

∆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑆𝑆𝑐𝑐𝑛𝑛𝑐𝑐𝑛𝑛𝑛𝑛𝑐𝑐 

The uncertainty of the prediction was calculated from the variance of the two DSM predictions: 

𝑣𝑣𝑣𝑣𝑣𝑣(𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑆𝑆𝑐𝑐𝑛𝑛𝑐𝑐𝑛𝑛𝑛𝑛𝑐𝑐) =  𝑣𝑣𝑣𝑣𝑣𝑣(𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + 𝑣𝑣𝑣𝑣𝑣𝑣(𝑆𝑆𝑐𝑐𝑛𝑛𝑐𝑐𝑛𝑛𝑛𝑛𝑐𝑐) − 2𝑐𝑐𝑐𝑐𝑣𝑣(𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑆𝑆𝑐𝑐𝑛𝑛𝑐𝑐𝑛𝑛𝑛𝑛𝑐𝑐) 

Where 𝑣𝑣𝑣𝑣𝑣𝑣 is variance, and 𝑐𝑐𝑐𝑐𝑣𝑣 is covariance.  
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Table 4-1. Environmental covariates were used to create both SOC maps (current and before 

intensive agriculture). 

 

 

 

  

Soil-forming factors Covariate name Units Reference 

Soil 

Gamma K  Wilford and Kroll (2020) 

Gamma Th  Wilford and Kroll (2020) 

Gamma K/Th  Wilford and Kroll (2020) 

Gamma dose  Wilford and Kroll (2020) 

Organisms 

Native Vegetation pre-European 
settlement 

(3 PCs, explained 82% variation) 

(For SOC map  

Native intensive agriculture) 

 Eco Logical Australia 
(2013) 

 

Current vegetation 

(3 PCs, explained 82% variation) 

(For current SOC map ) 

 
Department of Planning 

and Environment 

(2018) 

Topography 

Altitude from Digital elevation model 
(DEM) m Gallant et al. (2009) 

Slope % Gallant et al. (2009) 

Topographic wetness index (TWI)  Quinn et al. (1991) 

Parent material 

& age 

Parent material 

(3 PCs, explained 46% variation) 
 From Chapter 2 
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4.3.6. Calculating SOC stock value  

For calculating the SOC stock, bulk density data were used. Bulk density data were measured 

from the soil corer, where the soil was divided every 20 cm. The SOC stock (Mg ha-1 or ton 

ha-1) was calculated using the data of SOC, bulk density and soil thickness:  

SOC stock (Mg ha−1)

=  SOC (kg kg−1) × bulk density (Mg m−3) × soil thickness(m)

× 10,000 (ha m−2) 

As there is a minimal coarse fraction in the study area, there is no need to correct for it. 

 

4.4. Results  

First, we present the result of predicting SOC using MIR spectra, and then the spatial prediction 

of SOC content. Moreover, the three maps of SOC (SOC under natural vegetation, current SOC 

and SOC change) are presented and discussed. We then detailed the spatial pattern of SOC and 

SOC stock change from different land uses. Finally, we calculate total SOC stock change by 

different land uses and discuss the overall trend of SOC change. 

 

4.4.1. Predicting soil organic carbon with MIR spectra and cubist model 

Soil organic carbon was predicted using MIR spectra and the cubist tree model. The results of 

the 10-fold cross-validation (averaged from the 10 repetitions) are shown in Figure 4-2. The 

R2 of the prediction is 0.80, with a root mean squared error (RMSE) of 3.07 g kg-1. The model 

was able to predict SOC accurately and concurred with previous studies, which found that MIR 

spectra can accurately predict SOC (Ng et al., 2019, Santos et al., 2020, Siebielec et al., 2004). 
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The spectral model predicting SOC was applied to the whole dataset (observation at every 10 

cm depth), and the summary statistics of the predicted SOC values are displayed in Table 4-2. 

The average and standard deviation SOC values by thirteen pedogenons (pedogenon A to M) 

and three land uses (woodland, pasture, and non-irrigated and irrigated cropping) were 

calculated. The results show that the SOC content on the topsoil (0-30 cm) was, as expected, 

larger than other depths (30-60 and 60-100 cm). SOC content in the woodland area was highest 

(mean 0-30 cm: 12.47 g kg-1) followed by soils under pasture (mean 0-30 cm: 10.37 g kg-1) and 

the least SOC in irrigated and non-irrigated cropping regions (mean 0-30 cm: 7.46 g kg-1). 

Woodlands in pedogenon M had the highest SOC content for all depth intervals (mean all depth: 

11.46 g kg-1). Pedogenon M is dominated by dark brown vertosol according to the Australian 

Soil Classification, ASC (Isbell, 2016) or vertisol in USDA Soil Taxonomy. The pedogenon 

with the smallest SOC content was pedogenon E (mean all depth: 3.12 g kg-1), where the soil 

was a red chromosol in the ASC or alfisol according to Soil Taxonomy.  

For pasture, the highest SOC content was in pedogenon M (mean all depth: 9.01 g kg-1). In 

contrast, pedogenon K had the lowest SOC content, 4.01 g kg-1 where the soil is a brown 

vertosol.  

The highest SOC in cropping areas (non-irrigated and irrigated cropping areas) was pedogenon 

M (mean all depths: 9.51 g kg-1). Conversely, the SOC content in pedogenon E had the lowest 

value (mean all depth: 2.18 g kg-1), where the soil was a red chromosol. 
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Figure 4-2. Comparing data from the cross-validation statistics and actual data from the 

laboratory. The R2 value is 0.80, and The RMSE value is 3.07 g kg-1. The red line is a trendline. 
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Table 4-2. Mean and standard deviation values of SOC (g kg-1) by thirteen pedogenons 

(pedogenon A to M) and three land uses. The letters (W, P and C) represent woodland, pasture, 

and non-irrigated and irrigated cropping, respectively. 
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Pedogenon Land use 
0-30cm 30-60cm 60-100cm 

Mean SD Mean SD Mean SD 

A C 8.55 2.07 6.11 1.02 5.38 1.41 

A W 14.04 5.17 8.73 1.84 6.88 2.35 

B C 9.73 3.47 6.44 2.41 5.26 2.27 

B W 14.12 6.99 8.87 2.25 6.80 2.97 

C C 6.88 1.57 5.29 1.12 4.44 1.34 

C W 9.49 5.39 5.74 0.72 4.15 0.86 

D C 6.85 1.31 6.46 2.27 4.73 2.02 

D P 11.97 8.71 5.33 0.88 4.85 0.37 

D W 8.86 3.64 6.72 1.90 2.68 2.05 

E C 4.52 2.80 1.08 0.49 0.95 0.60 

E W 6.66 6.26 1.32 0.62 1.39 0.65 

F C 5.29 2.16 3.36 0.79 1.88 0.71 

F P 8.22 3.71 4.57 0.91 3.21 0.68 

G C 5.31 1.26 4.28 1.41 4.07 1.70 

G P 9.11 4.36 5.00 0.31 4.22 0.56 

H C 7.44 2.50 5.91 2.47 5.94 3.97 

H P 10.58 5.30 6.53 0.57 4.38 1.06 

H W 10.17 1.61 6.43 1.12 4.54 0.66 

I C 5.80 2.56 3.30 1.34 2.56 1.78 

I W 20.27 11.16 7.26 5.49 2.97 2.52 

J C 7.96 2.57 5.22 0.72 3.49 0.92 

J P 11.39 4.04 7.00 0.91 4.39 1.95 

J W 14.30 6.94 7.79 3.17 5.35 2.65 

K C 6.41 3.52 2.68 1.75 1.86 1.88 

K P 8.73 3.06 2.50 1.40 0.80 0.14 

K W 9.33 4.99 1.91 0.92 1.52 0.86 

L C 9.68 3.41 8.32 1.24 6.32 1.72 

L W 15.52 6.84 10.00 1.96 7.73 2.30 

M C 12.61 2.94 8.84 1.06 7.08 1.78 
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M P 12.60 2.71 8.90 1.18 5.53 1.43 

M W 14.46 6.41 10.68 2.67 9.25 2.15 
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4.4.2. Maps of SOC content and SOC change  

The SOC contents at 10 cm depth intervals were spatialised using DSM techniques utilising 

the neural networks model. To improve the accuracy of the model, different numbers of hidden 

layers and nodes were trialled using cross-validation and models with the highest R2 values 

across all depths were selected. One hidden layer and three nodes show the highest R2 pattern 

in all depths.  

Models with the optimal hyperparameters were trained to predict SOC under native vegetation 

and current state from 0 – 1 m at 10 cm intervals. Table 4-3 shows the accuracy of the models 

from the bootstrap validation. The average R2 of all depths (under native vegetation and current) 

are 0.31. However, the pattern of R2 is different with different depths. The R2 under native 

vegetation shows more variation than the current one, and the R2 of topsoil under native 

vegetation is generally lower than subsoil). The maximum value of R2 from both SOC maps 

was 0.45, while 0.18 was the minimum value.  
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Table 4-3. the accuracy (R2) of SOC maps (under native vegetation and current condition) using 

multiple outputs neural networks models validated from the our-of-bag bootstrap samples.  

Depth (cm) Under native vegetation Current 

0-10 0.18 0.31 

10-20 0.31 0.42 

20-30 0.19 0.30 

30-40 0.23 0.30 

40-50 0.27 0.30 

50-60 0.34 0.31 

60-70 0.38 0.34 

70-80 0.40 0.27 

80-90 0.45 0.32 

90-100 0.38 0.27 
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Using the calibrated DSM models, maps of SOC content under native vegetation and current 

states were generated. Subsequently, the difference map (SOC current – SOC native) for each 

depth interval was calculated. Figures 3 and 4 show an example of maps of SOC at two depths 

(Figure 4-3: 0-10 cm and Figure 4-4: 30-40 cm), and maps for every 10 cm depth interval 

(down to 1 m) are given in Appendix 4-1.  

The map of SOC under native vegetation estimates the soil condition without intensive 

agricultural practice. As expected, SOC content under native vegetation was higher than the 

current content at all depths. Nevertheless, significant differences in SOC with land uses were 

only observed for depths <30 cm due to intensive cultivation on the topsoil. 

Under native vegetation, the SOC content of the surface soils (0-10 cm) (Figure 4-3) in the 

whole study area was above 10 g kg-1, with a mean of 18.3 g kg-1 (standard deviation (SD) 3.23 

g kg-1) and an interquartile range/IQR (16.05 g kg-1 to 19.10 g kg-1). The map of current SOC 

shows that mean surface soils (0-10 cm) under pasture was 15.27 g kg-1 (IQR = 5.11 g kg-1), 

dryland cropping was 12.39 g kg-1 (IQR = 4.18 g kg-1), while under irrigated cropping dropped 

to 10.17 g kg-1 (IQR = 1.74 g kg-1). As shown in Figure 4-3, many cropping areas had topsoil 

OC content below 10 g kg-1 (about 67 % of the cropping area). The topsoil change map 

(difference in current SOC and under native vegetation) shows that SOC content in most 

cropping areas had decreased by -5.83 g kg-1 (IQR=1.17 g kg-1). 

Figure 4 shows SOC content of the subsoil (30-40 cm). The mean SOC value under native 

vegetation was 6.80 g kg-1 (SD 1.67 g kg-1). In contrast, SOC of the current condition had a 

similar mean of 6.13 g kg-1 (SD 1.82 g kg-1). The mean values of SOC by land use were 7.45, 

6.57, 5.89, 5.51 g kg-1, and SD values were 0.26, 0.16, 0.12 and 0.11 g kg-1 (order of land use: 

woodland, pasture, non-irrigated, cropping and irrigated cropping). Their IQR values were 2.77, 

3.38, 2.83 and 1.07 g kg-1. There was a minimal change of SOC in the subsoil.  
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Figure 4-3. SOC under Native, Current, and Change maps at 0 – 10 cm depth interval. Native: 

the map of SOC content under native vegetation. Current: the map of current SOC content. 

Change: the map of SOC change (Current – Native). 
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Figure 4-4. SOC under Native, Current, and Change maps at 30 – 40 cm depth interval. Native: 

the map of SOC content under native vegetation. Current: the map of current SOC content. 

Change: the map of SOC change (Current – Native).  
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4.4.3. SOC content change 

The mean values of current SOC and SOC change by different land uses were calculated for 

each 10 cm depth interval map. Figure 4-5A shows the mean values of the current SOC contents 

by four land uses. As expected, SOC is highest in woodland, followed by pasture, dryland, and 

irrigated cropping. Figure 4-5B shows the SOC change calculated from the map of soils under 

current conditions and native vegetation. SOC change in woodland was not included because 

the SOC change was insignificant. Overall, as discussed in the previous section, soils under 

irrigated cropping had the most significant SOC loss, with content at 0-10 cm having a decrease 

of 38% (compared to SOC under native vegetation), followed by dryland cropping (30% loss) 

and pasture (19% loss). Additionally, SOC loss was greatest in the surface soils and decreased 

exponentially with depth.  

The loss of SOC in the pasture was mainly in the top 30 cm (average 1.82 g kg-1 or 13% loss 

compared to soils under native vegetation). Under dryland agriculture, the loss of SOC was 

determined down to 50 cm depth (representing a total of 95% loss compared to soils under 

native vegetation). There was an average loss of 2.33 g kg-1, or 18% decrease compared to soils 

under native vegetation (0-50 cm). Under irrigated agriculture, the loss of SOC was also down 

to 50 cm depth (representing 96% total loss compared to soils under native vegetation). There 

was an average loss of 2.49 g kg-1, or 19% decrease compared to soils under native vegetation 

(0-50 cm). 
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Figure 4-5. Current SOC content and SOC change (unit: g kg-1) for every 10 cm depth until 1 m. 

The green, brown, yellow and blue bars represent woodland, pasture, non-irrigated cropping and 

irrigated cropping, respectively. The black lines are standard deviation values. 
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4.4.4. SOC stock change by pedogenon and land use 

To understand the pattern and magnitude of change, SOC stock change was calculated by 

pedogenons and land use by unit area (t C ha-1 ) and for their total area (Gg C). All pedogenons 

show a decrease in SOC stock content with cropping of at least 5 t C ha-1 (Figure 4-6). In 

relative terms, pedogenon A and J had a larger SOC loss compared to other pedogenons under 

agriculture, with values ranging between 17-21 t C ha-1. In contrast, pedogenon M had the 

smallest loss, between 4-6 t C ha-1. The highest SOC stock loss under the pasture area was also 

pedogenon A and J (10.19 and 14.98 t C ha-1, respectively ), while the lowest one was under 

pedogenon B (1.54 t C ha-1). Few pedogenons show a small positive SOC stock change at 

deeper depth. However, the uncertainty of prediction at these depths was quite large.  

Pedogenon A consists of black vertosol, and the main land use in the area was irrigated 

cropping, which produced cotton intensively. Additionally, pasture in pedogenon A showed a 

decline in SOC of approximately 10 t C ha-1. The soil class of Pedogenon J is also a black 

vertosol, and the main land use is non-irrigated cropping. 

Figure 4-6 shows the total SOC stock change (in Gg C) for each land use by pedogenon class. 

Pedogenon G, a black vertosol that occupied a large area of 21,462 ha, showed the largest 

carbon stock loss (-302.86 Gg C (SD: 127.68 Gg C) under irrigated cropping). Although the 

SOC change (in terms of t C ha-1) was relatively significant under irrigated cropping area in 

pedogenon H (-8.38 t C ha-1) and M (-6.00 t C ha-1), due to their relatively small area (< 3 ha), 

the SOC stock change was small. Similarly, some pedogenons with moderate to significant 

SOC loss per unit area under dryland cropping, like pedogenon I (-12.31 t C ha-1) and K (-

13.77 t C ha-1), resulted in small total SOC stock loss. 
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Figure 4-6. A: SOC stock change (t C ha-1) and B: SOC change (Gg C) (SOC stock change (t C/ha) 

multiplied by area (ha)) of pedogenon and land use. The letters (P, C and I) represent pasture, 

non-irrigated, and irrigated cropping, respectively. The depth of the soil profile is every 10 cm 

down to 50 cm.  
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4.4.5. Total SOC loss by land uses. 

Finally, we can calculate the total SOC loss due to different agricultural activities in the Edgeroi 

area, as described in Figure 4-7. 

Non-irrigated cropping area (total area: 79,070 ha) shows the largest carbon stock loss (967.91 

Gg, SD: 169.20 Gg C), and the subsequent largest loss was irrigated cropping (419.83 Gg C, 

SD: 88.62 Gg C ) (35,284 ha). The smallest SOC loss among the three agricultural land uses 

was in the pasture areas (38,989 ha) (238.49 Gg C, SD: 87.42 Gg C). The SOC change in the 

woodland area was negligible, so it is not included in Figure 4-7. 
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Figure 4-7. the overall SOC stock loss (Gg C by land use). The letters (P, C and I) represent 

pasture, non-irrigated, and irrigated cropping, respectively. The depth of the soil profile is 

separated into five depths. 
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4.4.6. SOC targets for each of the pedogenons. 

The amount of SOC that can be regained on cropping soils via improved management practices 

for each pedogenon can be calculated. The SOC stock target for topsoil (0-30 cm) was 

calculated by averaging three datas (0-10, 10-20 and 20–30 cm) and subtracting the current 

SOC stock under cropping (non-irrigated and irrigated cropping areas) from SOC stock in 

native vegetation areas. The results of the average value by each land use and pedogenon is 

given in Appendix 4-2.  

Figure 4-8 shows the SOC stock target for each of the pedogenons, and they can be grouped 

into four groups. The first group included pedogenon J and A, which had a high SOC stock 

loss. The target SOC stock was 5 t C ha-1, where the soil class of both pedogenons is a black 

vertosol and the dominant native vegetation before cropping practice is native grassland.  

The following group (pedogenon G, K, I, E and L) shows the second-highest SOC loss with an 

average SOC target of 4 t C ha-1. These pedogenons are diverse (pedogenon G and L: black 

vertosol, pedogenon K: brown vertosol, pedogenon I: dark brown tenosol and pedogenon E: 

red chromosol), but the native vegetation under all five pedogenons before human activities is 

dry sclerophyll forest except pedogenon G (native grassland). These pedogenons are closely 

located to each other at the top right side of the study area except pedogenon E, located at the 

bottom left side.  

Pedogenon F, D, C and M represent the third group, the third highest SOC loss, with an average 

value was 3 t C ha-1. The soil type of the four pedogenons is vertosol, and all their parent 

material is alluvium, located at the top left side of the study area, except pedogenon M (at the 
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bottom right). The last group explains the lowest SOC loss (pedogenon H and B), averaging 

1.5 t C ha-1. Their main vegetation is native grassland; their soil type is dark brown vertosol. 

With the data on SOC stock change, it is possible to estimate possible SOC target values. 

Improving the farming management approaches where pedogenons A, G, J, K, I, and L should 

be the focus area with a potential of 4-5 t C ha-1. 
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Figure 4-8. SOC stock target (t C ha-1) by pedogenons for cropping soils. 
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4.5. Discussion 

This section discusses the efforts to improve the uncertainties in the steps of modelling and 

mapping. We also discuss SOC change by pedogenons and land use. 

 

4.5.1. Modelling SOC at multiple depths using the neural networks model  

The neural network model was utilised for predicting SOC contents from the soil surface until 

the depth of 1 m at 10 cm intervals. We initially utilised the cubist regression tree models to 

create separate models for each depth interval. However, creating independent models for each 

depth resulted in discontinuity of the prediction as the regression tree models used different 

covariates for each depth interval. For example, gamma data was heavily used in predicting the 

0-10 cm model, while the topography covariates strongly affected the SOC maps of 10-20 cm. 

As we know, SOC content is highest in topsoil and decreases exponentially with depth (Angst 

et al., 2018); creating individual depth maps makes it difficult to observe the SOC trends with 

depth. Thus, a single model predicting SOC at multiple depths is preferable. One option is 

including soil depth as a covariate in the machine learning models (e.g., (Roudier et al., 2020)). 

However, Ma et al. (2021) concluded that care must be taken when using depth as a covariate 

in tree-based models, which could create discontinuous depth trends. As we regularly observed 

SOC every 10 cm depth interval, we used the neural networks model (MLP model) with 

multiple outputs to resolve the problem (Padarian et al., 2019). A single MLP model predicted 

SOC content at 10 different depth intervals and can continuously model the depth trend data.  

An example is shown in Figure 4-9, where the MLP model predicts SOC in woodland and 

cropping areas of pedogenon F. As in all machine learning models, the MLP model requires 

tuning the number of hidden layers and nodes. The tuning needs to ensure that the model does 

not overfit but produces accurate predictions. 
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Figure 4-9. Bar graph of observations with depth and neural network predictions (lines). The 

data of both graphs were derived from pedogenon F. The green bar group (left side of the figure) 

represents the woodland area, while the brown bar graph (right side of the figure) represents the 

cropping area. 
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Here we model SOC under native vegetation and current conditions separately to calculate soil 

change. This approach was based on sampling from each pedogenon, i.e., soil type formed by 

the same soil forming factor for a given reference time. After that, data collected under natural 

vegetation or less disturbed conditions was compared with soils under cropping or agricultural 

activities in each pedogenon with a space-for-time substitution approach as it is often applied 

to investigate soil change during landform development (Li et al., 2022). The pedogenon 

concept supported this study to find similar soil types under the same process of soil formation, 

and the concept of space for time substitution was used to segregate the different types of land 

use based on intensive human activity. Combining the two concepts allowed us to calculate 

SOC content under native vegetation and the current condition.  

We acknowledge the high uncertainty of prediction due to the limited time and resources, 

which limits the number of genosoil samples and also the number of samples for the large area. 

We assume the genosoil samples (under current native vegetation) have not changed since 

European settlement. We know that SOC stock is affected by climate change. In addition, soils 

under native vegetation are also not evenly distributed in the geographical and covariate space, 

hence the high uncertainty in prediction. Nevertheless, the method proposed in this study shows 

the possibility of investigating SOC change to recreate soil conditions under native vegetation. 

This new method addresses the limitation of the current DSM method of space for time 

substitution where a DSM model was created using current observations and to predict soil 

condition under the native condition, only the land use in the calibrated model was substituted 

(e.g. (Li et al., 2022)).  
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4.5.2. SOC change as a function of pedogenons and land use 

Our results show that cropping on all pedogenons resulted in the loss of SOC compared to soils 

under native vegetation. We can derive this conclusion by sampling from pedogenons. The soil 

properties from Chapter 3 were analysed (clay, sand, cation exchange capacity, pH, and organic 

carbon) at every 10 cm depth increment for the pedogenons in this study area. They 

demonstrate that pedogenon significantly explained the variation in soil properties. They also 

show that soil properties on genosoils had twice the variation of phenosoils. The SOC maps 

produced in this study reaffirmed this trend for SOC. Under native vegetation, SOC content of 

the surface soils (0-30 cm) had a mean of 12.10 g kg-1 (variance = 0.81 g2 kg-2). The map of 

current SOC shows that mean surface soils under pasture were 10.76 g kg-1 (variance = 0.57 g2 

kg-2), dryland cropping was 8.93 g kg-1 (variance = 0.44 g2 kg-2), while under irrigated cropping 

dropped to 7.58 g kg-1 (variance = 0.36 g2 kg-2). These results indicate that agricultural activities 

reduced the SOC and homogenised the variation of surface SOC. 

The study area has been converted to agricultural areas since European settlers came in the 

early 1800s. Initially, the area was used for grazing, followed by wheat, sorghum, and irrigated 

cotton farming. Based on the Historical Aerial Photography (from Geoscience Australia), we 

can visually assess the land use and starting cultivation period. This information can be used 

to support and interpret the results of SOC change.  

Figure 4-10 shows some of the pedogenon A and J areas at different periods. Both areas were 

already actively cultivated in the 1950s. Until recently, these areas continuously produced 

wheat and cotton. SOC change (loss) was greatest in irrigated cropping, followed by dryland 

cropping and pasture. This is mainly reflected in pedogenon A, which had the second largest 

SOC content loss among other pedogenons (Figure 4-6). The main land use in pedognon A is 

irrigated cotton, which has been grown for over 60 years (Figure 4-10A and B). The 

modification of SOC content under the cotton crop areas can be attributed to various effects 



164 
 

(soil tillage intensity, the fallow phase period, etc.). The large decrease in SOC in irrigated 

cotton was confirmed by the study of Rabbi et al. (2014), who found that irrigated cotton land 

use in South-eastern Australia showed a negative correlation between SOC content and its 

fractions. Conteh et al. (1997) found that SOC on clay topsoils (vertosols) under irrigated 

cotton in the Namoi valley had decreased by 37-48 % compared to nearby reference sites 

(uncropped).  

The SOC loss in the non-irrigated cropping area (pedogenon J) was high compared to other 

pedogenons. The main crop produced in this area is wheat, and the SOC change can vary 

significantly due to different management of farming practices. The key management factors 

for SOC change in wheat fields are the intensity of tillage, removal of stubbles or plant residues 

and application of nitrogen fertilisers (Wang and Dalal, 2015). So et al. (1999) informed that 

reduced tillage had half the impact on SOC loss than conventional tillage. The management of 

stubble can change SOC loss. Burning stubbles had more SOC loss than retaining stubble, with 

more than two times SOC carbon loss (Chan et al., 1998). The crop rotation can also have a 

significant impact on SOC loss. Continuous cropping (wheat only) shows substantial SOC loss 

compared to rotation cropping (So et al., 1999). The high carbon loss in pedogenon J could be 

due to unsustainable management. Further studies should investigate this pedogenon to 

minimise SOC loss in the cropping area. 

On the other hand, the SOC change of pedogenon M is the smallest. This area is located on 

steep slopes compared to other sites and was not under intensive agricultural practices. 
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Figure 4-10. Aerial imagery from Historical Aerial Photography of NSW and recent satellite 

imageries of the study area. The top two pictures (A and B) are a part of pedogenon A. Picture A 

was taken in 1969, and picture B was taken in 2018. Pictures C and D are part of pedogenon J, 

taken in 1959 and (D) in 2021. Both areas had been used for cropping for more than 60 years. 
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4.6. Conclusion  

This paper investigated SOC change (between the SOC content before intensive agriculture 

and the content of the current stage) using the space for time substitution method and 

pedogenon concept.  

The SOC content at every 10 cm depth interval was predicted using MIR spectra, and the 

content of SOC was mapped using the predicted SOC content and soil forming factors (soil, 

organisms, topography and parent material and age). The results conclude that the highest 

carbon loss was in irrigated cropping areas, followed by non-irrigated cropping, pasture, and 

woodland. Pedogenon A and J show the highest SOC loss, while pedogenon M shows the 

lowest. Based on the SOC stock change result, the possible SOC target value can be calculated. 

In addition, further investigations can be considered to advance the methodology. With the 

result of this research and an extra survey of farming management methods from farmers, it is 

possible to find out which management method can maximise yield and minimise SOC loss. 

Incorporating farmers’ management systems (e.g., the intensity of tillage, the period of fallow, 

crop rotation, the type and amount of fertiliser application, etc.) can elucidate the cause of SOC 

change.  

The change in SOC stock after 200 years (since European settlement) was calculated from this 

study, and with this data, it is possible to provide a warning before reaching the point at which 

yield may rapidly decrease due to soil degradation. 
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4.8. Appendices 

Appendix 4-1. SOC under Native, Current, and Change maps. Native: the map of 

SOC content under native vegetation. Current: the map of current SOC content. Change: 

the map of SOC change (Current – Native).  
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Appendix 4-2. Results of average value by each land use and pedogenon.  
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Pedogenon Depth Native Pasture Irrigated_cropping Non_irrigated_cropping 

A 
10 21.76 17.82 14.13 13.59 
20 13.15 12.36 10.06 9.45 
30 12.17 10.89 9.10 8.51 

B 
10 21.58 20.89 14.88 18.84 
20 13.29 14.51 10.64 13.16 
30 11.47 12.60 9.52 11.44 

C 
10 20.83 18.53 13.51 14.66 
20 11.92 12.71 9.57 10.32 
30 10.40 11.18 8.80 9.43 

D 
10 20.56 16.88 12.87 14.18 
20 11.05 10.80 8.94 8.95 
30 9.52 9.22 8.29 7.45 

E 
10 22.45 18.73 14.53 16.60 
20 12.89 11.39 8.50 9.74 
30 9.16 8.69 6.13 7.12 

F 
10 20.67 16.97 13.65 14.23 
20 11.42 10.55 8.75 8.89 
30 9.24 8.64 7.30 7.24 

G 
10 20.96 15.96 12.57 13.51 
20 11.63 10.47 8.25 9.25 
30 10.15 9.03 7.00 8.16 

H 
10 22.55 20.00 17.35 17.57 
20 14.12 14.11 12.81 12.96 
30 12.63 12.45 11.61 11.77 

I 
10 32.06 25.57  24.63 
20 19.90 16.21  15.77 
30 13.82 12.26  12.12 

J 
10 23.72 19.09  15.94 
20 14.34 12.00  10.00 
30 11.86 9.51  7.84 

K 
10 22.96 18.45 15.60 16.27 
20 13.73 11.45 9.80 10.42 
30 10.43 8.81 7.39 8.19 

L 
10 27.69 23.60  20.36 
20 17.55 16.47  14.48 
30 14.55 14.01  12.67 

M 
10 26.37 23.74 18.86 22.02 
20 17.43 16.79 14.17 15.88 
30 14.57 14.24 12.77 13.71 

N 
10 29.43 27.56  26.67 
20 19.88 19.18  18.71 
30 15.53 15.13  14.91 
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Chapter 5. Assessing the capacity for mineral-
associated organic carbon storage in 
croplands of New South Wales, Australia 
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5.1. Abstract 

Soil carbon sequestration entails the capture of carbon from the atmosphere and storing it in 

the soil in a stable form. Soil organic carbon (SOC) is diverse; thus, investigating SOC fraction 

relevant to climate change mitigation is more important than total SOC. This study quantified 

mineral-associated organic carbon (MAOC) capacity and condition in Edgeroi, New South 

Wales, Australia. The MAOC capacity refers to the maximum OC the soil can hold, while the 

condition refers to the current MAOC content. The difference between MAOC capacity and 

condition is considered as the SOC sequestration potential. The MAOC capacity and condition 

for the study area was mapped using two methods. The first approach is using pedogenon 

mapping, where soil samples in the study area (n = 99) were collected under native vegetation 

(genosoils) and cropping (phenosoils). MAOC capacity was mapped based on genosoil 

samples and MAOC condition was mapped using samples from phenosoils using spatial 

covariates and random forest models. Different land uses impacted MAOC, generally, MAOC 

concentration in genosoils was always higher than in phenosoils. The second approach spatially 

predicted median and upper quantile MAOC content using quantile general additive models 

based on a regional dataset. Mapping results from both methods show that MAOC content was 

higher in the woodland area, whereas MAOC in the agricultural area was decreased. There was 

an inconsistency between the two approaches in the resulting SOC sequestration potential map. 

We conclude that MAOC prediction using the pedogenon mapping with local data produced 

more reliable results. The results of this study can be connected with two dimensions of soil 

security (capacity and condition), and these two dimensions can be supported for decision-

making related to other dimensions (capital, connectivity and codification). 
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5.2. Introduction 

Soil stores the largest amount of carbon in the terrestrial ecosystem. Carbon in a stable form or 

associated with minerals is less likely to be released back into the atmosphere, which helps to 

lower the concentration of atmospheric CO2. By exchanging carbon with the atmosphere 

through processes like plant growth and microbial activities, soil also contributes to the global 

carbon cycle. Understanding and managing these processes makes it possible to influence the 

amount of carbon stored in the soil. Overall, soil carbon is an essential factor in climate change 

mitigation, and there are numerous ways in which soil management practices can be used to 

enhance soil carbon sequestration and storage. In addition, increasing the content of SOC 

improves soil fertility, which supports soil and food security and global mitigation of CO2 

emissions (Paul, 2016, McBratney et al., 2014).  

However, SOC is very heterogeneous in nature, so it is critical to investigate relevant SOC 

fractions rather than bulk SOC (Lehmann and Kleber, 2015). Many papers use different 

fractionation approaches to separate SOC into fractions (Six et al., 2000, Sollins et al., 2006). 

The SOC fractions are characterised by fundamentally different processes of formation, 

stabilisation, chemistry and protection against decomposition (Xiao et al., 2022). In particular, 

the stable form of SOC is more relevant for climate change mitigation than bulk SOC. 

Investigating the distribution of SOC fractions can support monitoring and modelling carbon 

sequestration (Chenu et al., 2019). There are many types of SOC fractions, but in recent years, 

there has been a consensus on two operational fractions: mineral-associated organic carbon 

(MAOC) and particulate organic carbon (POC). MAOC refers to organic carbon associated 

with fine mineral soil particles (silt- and clay-sized minerals) by chemical bonding or physical 

occlusion, which may confer protection from fast decomposition. In contrast, POC is largely 

made up of lightweight fragments that are relatively undecomposed (Lavallee et al., 2020, 

Kleber et al., 2015). The MAOC and POC contents are controlled by several biotic (vegetation 



180 
 

and soil microbial community) (Cotrufo et al., 2019b) and abiotic factors (climate, soil 

physicochemical properties) (Doetterl et al., 2015). In Australia, the pyrogenic OC (PyOC) is 

another form of stable carbon generally found in the landscape due to its long history of burning. 

According to Hassink (1997) and Six et al. (2002), the soil mineral matrix has a maximum 

capacity for protecting SOC through physical and chemical stabilisation mechanisms, i.e., C 

(carbon) saturation, which is often estimated with its texture and dominant mineralogy. MAOC 

corresponds to the SOC fraction that saturates (Lavallee et al., 2020, Cotrufo et al., 2019a), and 

the C saturation concept has been corroborated experimentally (Stewart et al., 2007). 

MAOC can indicate soil capacity for the function of carbon storage, as it can be determined 

from inherent soil properties (e.g., particle size distribution). The soil capacity is represented 

by soil attributes that determine the performance of soil functions but are not readily modified 

by human activities (e.g., soil clay content) (McBratney et al., 2019). Soil capacity is one of 

the biophysical dimensions of soil security together with soil condition. Soil condition refers 

to the current state of the soil and is characterised by soil attributes modified by human 

activities at a temporal scale relevant to management and affecting soil function (McBratney 

et al., 2019). Soil capability is an emerging concept that measures the ability of soil to perform 

a function (e.g., storage of carbon), which is limited by its capacity and modified by its 

condition (capability = capacity + condition). The mean residence time of POC is much shorter 

(from more than 10 years to decades) than MAOC (from decades to centuries) (Keiluweit et 

al., 2015, Kögel‐Knabner et al., 2008, von Lützow et al., 2007), and is more sensitive to 

management than MAOC (Rocci et al., 2021). Therefore, POC has been suggested as an 

indicator of soil condition and to assess the effects of management on soil quality. However, 

the comparison of MAOC levels between different land uses, or MAOC change as a result of 

management, can also be used as an indicator of soil condition. 
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Soil carbon saturation implies a theoretical maximum concentration of SOC attainable by the 

soil. The C saturation can also be referred to as the upper limit of soil carbon stabilisation or 

the protected soil carbon (Baisden et al., 2013). The C saturation can be determined by the fine 

fraction (the clay and silt contents and the different types of mineralogy), climate and land use. 

Many approaches for quantifying the C saturation capacity range from multiple linear 

regression to data-driven models. Hassink (1997) used linear regression methods with data 

from uncultivated grasslands’ soil samples to fit C saturation equations, which were tested in 

different soil types and regions under temperate and tropical climates. Hassink’s equation was 

applied to estimate the C saturation capacity under agricultural soils (Carter et al., 2003, 

Sparrow et al., 2006, Zhao et al., 2006, Wiesmeier et al., 2014). Hassink (1997) also illustrated 

the strong relationship between the maximum carbon and the proportion of silt and clay 

particles (fine fraction). However, SOC measurements in Australia were entirely below the 

values estimated by Hassink’s model. The possible reason for this result is low precipitation 

and high temperatures in dry areas leading to low primary productivity. In addition, Six et al. 

(2002) expanded the analysis of Hassink (1997). They also used linear regression with different 

types of mineralogy (1:1 clays and 2:1 clays) and land use (forest, grassland and cultivated area) 

as predictor variables. Wiesmeier et al. (2015) estimated the C saturation in semi-arid 

grasslands in northern China and estimated the SOC sequestration potential in different land 

uses (grazing land, arable land and eroded areas). SOC sequestration potential was calculated 

by the difference between the SOC saturation and current SOC (Guillaume et al., 2022): 

SOC sequestration potential = 𝑆𝑆Saturation − 𝑆𝑆𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 

Feng et al. (2013) used the boundary line analysis for estimating C saturation. This analysis is 

a regression method that fits a function to the upper portion response of SOC content as a 

function of fine soil fraction (<20 μm). Alvarez and Berhongaray (2021) used a quantile 

regression, which estimates the conditional quantile of the response variable. They set the 0.75 
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quantiles of SOC to estimate the C saturation capacity from clay + silt (<20 μm) content, soil 

depth, land use, mean annual temperature and precipitation. They mentioned that when the 

quantile regression was fitted with only one predictor (i.e. soil fine fraction), using the 0.9 

quantile for the upper boundary of estimates is common. However, for multiple covariates, not 

all can attain their maximum values in the dataset, and the 0.90 quantiles can provide unrealistic 

values of C saturation capacity. Thus, the 0.75 quantiles provided a reasonable estimate of 

saturation capacity. Similarly, Padarian et al. (2022) estimated global SOC sequestration 

potential on croplands by comparing the median and upper quantile prediction (q0.75-q0.50).  

Chen et al. (2018) estimated the SOC sequestration potential in France with Hassink’s equation 

using clay+silt as an explanatory variable (Hassink, 1997). The sequestration potential in 

France was recalculated by Chen et al. (2019) on arable soils using a data-driven approach. 

They first produced carbon-landscape zones by clustering covariates as proxies of the 

environmental control of SOC storage (climatic decomposition index (SOC decomposition), 

soil clay content (SOC protection from decomposition) and net primary production (C input)). 

The maximum SOC stocks of arable soils (top and subsoil) were predicted for each carbon-

landscape zone with four quantiles (0.80, 0.85, 0.90 and 0.95). The difference between the 

current SOC stocks and the SOC storage potential under the four quantiles was calculated. 

Even though SOC associated with the fine fraction does not represent the total SOC, their 

estimate of SOC sequestration potential was close to the result of 0.9 percentile. The study 

concluded that maps of SOC storage potential produced using the data-driven approach show 

better qualitative agreement than the approach using Hassink’s equation. 

These past studies only use SOC concentration or stock to define SOC sequestration potential, 

while as described above, a more relevant measure of carbon storage in soil is the MAOC. 

Thus, this paper aims to map MAOC capacity and condition. We define the difference between 

MAOC capacity and condition as SOC sequestration potential.  
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In addition to the quantile regression approach, this paper proposes a new approach to measure 

SOC sequestration potential using a data-driven approach by comparing genosoils and 

phenosoils within a digital pedogenon map. Pedogenons defined regions of homogeneous soil 

forming factors for a given reference time, assuming that the inherent soil properties of each 

pedogenon were developed similarly (Román Dobarco et al., 2021b). The definition of genosoil 

is the dominant genetic soil type within a map unit created by long-term pedogenesis, and the 

phenosoil is a persistent variant of the genosoil changed by anthropogenic activities (Rossiter 

and Bouma, 2018). Few studies used these concepts to study soil change (Huang et al., 2018, 

Román Dobarco et al., 2021a). Genosoils serve as reference soils to assess changes in condition 

and determine capacity (within a soil class or a soil map unit). 

Similarly, the phenosoils inform on current condition after management or land use change. 

The unique properties in each pedogenon would have a different capacity for soil carbon 

storage. The level of C saturation can be set by pedogenon classes (genosoil). Hence, 

comparing genosoil and phenosoil within a pedogenon class can be used to estimating SOC 

sequestration potential.  

This study aimed to investigate the SOC sequestration potential, or storage deficit in the MAOC 

fraction, with two different approaches: i) using the comparison between genosoil and 

phenosoil for assessing MAOC capacity and condition, and ii) developing a regional C 

saturation model (i.e., the upper limit of the C concentration in the fraction < 53 μm (MAOC)) 

for south-eastern Australia with general additive model quantile regression. We calculated the 

difference between two values (MAOC capacity and current MAOC) to estimate the SOC 

sequestration potential in the fine fraction. We use the concept of SOC sequestration potential 

as an indicator of capacity for the function of carbon storage with the conceptual framework of 

soil security. 
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5.3. Materials and Methods 

5.3.1. Description of the study area 

The study area is in the Edgeroi district in New South Wales (NSW), Australia; the size of the 

area is 1700 km2 (Figure 5-1). The region has been intensively cropped for more than 200 years 

(Green et al., 2011, Narrabri Shire Council, 2021). Extensive expanses were used as pastures 

and stock routes when grazing was the primary agricultural activity. Wheat, sorghum, and 

irrigated cotton were common broadacre crops in the 1960s (McGarry et al., 1989). Soils in 

national parks have been relatively unaffected by human activities. 
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Figure 5-1. Left: the map of land use or cover, and there are seven broad land use/cover classes 

in the area. Right: the map of fourteen pedogenons (Pedogenon A to N) and sampling points of 

genosoil and phenosoil. 
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5.3.2. Pedogenon map 

A pedogenon map was generated, as described in Chapter 3 following the approach of Román 

Dobarco et al. (2021b). Pedogenons are classes defined within areas with homogeneous soil-

forming factors representing soil classes for a given reference time (Román Dobarco et al., 

2021b). Fourteen pedogenons (pedogenons A to N, Figure 4-1) were established in the study 

area using an unsupervised classification method, i.e., k-means clustering of spatial layers 

representing soil forming factors (climate, soil, topography, organisms, parent material and 

age). The characteristics of each pedogenon are explained in Chapter 3. This pedogenon map 

has been validated with five soil attributes of each pedogenon (clay, sand, pH, organic carbon 

and cation exchange capacity) and multivariate statistical analyses (redundancy discriminant 

analysis (RDA) and variance partitioning). With the map of pedogenons, genosoils and 

phenosoils could be distinguished by overlaying land use information. Genosoils are soil 

classes that have resulted from long-term natural pedogenesis, or soil classes used in detailed 

soil mapping (dominant class within a soil map unit or at the level of soil series or equivalent) 

(Huang et al., 2018, Rossiter and Bouma, 2018). In practice, genosoils are found in areas human 

activities have not intensely influenced. On the other hand, phenosoils are soil variants of 

genosoils due to past land use history and management, mainly cropping practices, and have 

seen altered soil functions (Rossiter and Bouma, 2018). Based on the genosoil and phenosoil 

delimitation, the sampling points were decided and collected for further studies (Figure 4-1). 

The criteria for defining genosoil and phenosoil areas is explained in Chapter 3.  

 

5.3.3. Calculating carbon fractions using MIR spectra and mapping 

MAOC change in condition. 

Two datasets were used to map MAOC in our study area: a national dataset and a local dataset. 
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5.3.3.1. National SOC and SOC fractions data  

The national dataset was from the Soil Carbon Research Programme (SCaRP) (Baldock et al., 

2013a) where soil samples from agricultural soils were collected across Australia to assess its 

stock. Topsoil samples (0-30 cm) were collected from 4,526 sampling sites (Baldock et al., 

2013a). Figure 2 shows the soil sampling locations of the SCaRP across Australia. The soil 

samples were allocated to soil order according to the Australian Soil Classification system 

(Isbell, 2002) and were dominated mainly by Chromosols, Dermosols, Sodosols, Tenosols, and 

Vertosols. More information about the SCaRP data can be found in Baldock et al. (2013a). 

Within the ScaRP dataset, a subset of 287 sample points representing the range of SOC content 

was selected and measured for their SOC content and SOC factions (MAOC, POC and 

pyrogenic OC (PyOC)) using the method described in Baldock et al. (2013b). In brief, air-dried 

(≤ 2 mm) soil samples were dispersed and separated into coarse (>50 µm) and fine (<50 µm) 

fractions using wet sieving. The organic C concentrations of the coarse and fine fractions were 

analysed with dry combustion. The PyOC was estimated using solid-state NMR (nuclear 

magnetic resonance spectroscopy). POC and MAOC contents (mg C g soil-1) were calculated 

by subtracting the proportion of PyOC in each fraction (Baldock et al., 2013b). 

The measured C-fraction samples were scanned using a diffuse reflectance mid-infrared (MIR) 

spectrometer. Soil samples were dried, sieved and fine ground. Spectral reflectance of the 

samples was measured using a high throughput screening device (HTS-XT) attached to a 

Tensor 37 spectrometer (Bruker Optik GmbH, Ettlingen, Germany) between 4000–400 cm-1. 

Each soil sample was averaged with 60 times scanned data, and the averaged reflectance 

spectra were converted to absorbance.  

Calibration models were built to predict MAOC concentration and other SOC factions from 

mid-infrared (MIR) spectra of the 287 soil samples. The SOC concentrations data were square-
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root transformed to minimise the generation of negative predicted values and provide the best 

linear relationship (Baldock et al., 2013a). Moreover, the purpose of a square-root 

transformation was to produce normally distributed residuals. 

Partial least squares (PLS) regression was used to produce a spectral model for predicting 

MAOC content. To enhance model performance, several common spectrum pre-processing 

methods were utilised. These include trimming spectral region with a high signal-to-noise ratio 

(<600 nm and >3997 nm) and CO2 peak (2300 nm to 2400 nm). The spectra were then 

smoothed and a standard normal variate transformation (SNV) was applied (Wadoux et al. 

(2021). The optimal number of components of the PLS model was selected using a ten-fold 

cross-validation approach (plsr function in R, (Mevik and Wehrens, 2007)), setting 30 

components as the maximum number of components. To assess the accuracy of the model, the 

spectra data were split randomly into two sets: a training set for calibrating a model (80% of 

all data) and a test set for evaluating the model performance (20%). This process was repeated 

ten times, and the accuracy metrics were averaged. 

 

5.3.3.2. Edgeroi SOC and SOC fractions data  

MIR data of the 99 sites collected in the study area (Edgeroi) were acquired from the surface 

down to 30 cm depth at 10 cm depth intervals. The calibrated PLS model was used to predict 

the MAOC content on these samples. All information regarding the data collection in the field 

and scanning soil samples using MIR spectroscopy is described in Chapter 4. Before the 

prediction, the data was pre-processed with the same techniques applied to the calibration data. 

As no SOC fractions were analysed in Edgeroi, a step for assessing the model accuracy was 

comparing MAOC with organic carbon (SOC) content and POC+MAOC+PyOC with SOC 

content. Baldock et al. (2013a) found a high correlation coefficient between OC and MAOC 
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of 0.98. The SOC content of the Edgeroi dataset was predicted with MIR spectra and locally 

measured OC content using the cubist model as described in Chapter 4.  

 

5.3.4. Creating MAOC capability and condition maps 

Maps of MAOC (averaged for 0-30 cm) for genosoils and phenosoils were created using the 

digital soil mapping (DSM) approach, as detailed in Chapter 4. A machine learning model was 

utilised to establish a quantitative relationship between MAOC and 12 environmental 

covariates representing the factors soil (s), organisms (o), relief (I), parent material (p) and age 

(a) from the SCORPAN model (McBratney et al., 2003). The covariates are listed in Table 5-1. 

The covariate of DEM that was not normally distributed was log-transformed.  

Two soil maps were created: the first one represents MAOC capacity, assuming natural 

vegetation across the study area, i.e., pre-European settlement conditions (genosoil MAOC), 

whereas the second map represents MAOC condition (phenosoil+genosoil MAOC). For 

mapping MAOC capacity, only 47 sampling points located at genosoil areas (currently under 

natural vegetation) were used as training data. For producing the MAOC condition map, all 

sites (99 points) were used. 

The covariates representing s, r and p factors for creating both maps were the same except for 

the vegetation (o) covariate. For mapping MAOC capacity, a map of the estimated vegetation 

pre-European settlement (Eco Logical Australia, 2013) was used as the covariate representing 

the organism factor. The MAOC condition map was produced using the s, r and p factors and 

the current vegetation data representing o. Chapter 4 provides further detailed information 

about two different vegetation maps. The spatial models were fitted with random forest models 

with 500 trees.  
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Table 5-1. Environmental covariates are used to create MAOC maps (MAOC capacity and 

condition). 

Soil-forming 
factors Covariate name Units Reference 

Soil 

Gamma K  Wilford and Kroll 
(2020) 

Gamma Th  Wilford and Kroll 
(2020) 

Gamma dose  Wilford and Kroll 
(2020) 

Sand % From Chapter 2 

Organisms 

Vegetation Native European settlement 
(3 PCs, explained 82% variation) 

(For genosoil MAOC) 
 Eco Logical Australia 

(2013) 

Current vegetation 
(3 PCs, explained 82% variation) 

(For phenosoil MAOC) 
 Department of Planning 

and Environment (2018) 

Topography 

Altitude from Digital elevation model  
(DEM) m Gallant et al. (2009) 

Slope % Gallant et al. (2009) 

Parent material 
& age 

Parent material 
(3 PCs, explained 46%  
of the total variation) 

 From Chapter 2 
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The difference between MAOC capacity and condition maps represents SOC sequestration 

potential: 

∆𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆 = 𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆𝑐𝑐𝑛𝑛𝑐𝑐𝑛𝑛𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐 − 𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐 

 

5.3.5. Mapping regional SOC sequestration potential using quantile 

regression 

The second approach for estimating the capacity and condition for MAOC storage consisted in 

developing a regional model. The capacity was modelled with an upper quartile generalised 

additive model, qgam (Wood and Wood, 2015) and the condition with a generalised additive 

model, gam (Hastie, 2006). 

 

5.3.5.1. Subsetting calibration data from SCaRP dataset 

As described above, soil data from the SCaRP dataset (Baldock et al., 2013a) were extracted 

to create regional MAOC models. A buffer was created in the east of Australia for extracting 

the soil sampling points of the SCaRP dataset with similar land use and pedoclimatic regional 

conditions to the study area. The main land use of the study area is cropping, and the buffer 

area was decided based on the information on the grain growing region in Australia (Armstrong 

et al., 2019, Robertson et al., 2012). Both the study area and the buffer have a similar land use 

history. Figure 5-2 shows the SCaRP data locations extracted within the buffer (1607 sites).  
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Figure 5-2. SCaRp soil points and the selected regional points for the study area. 
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5.3.5.2. Finding gam model structure with manual backward selection 

A generalised additive model (gam) is a flexible nonlinear regression model that can be fitted 

efficiently using the approximate Bayesian methods (Fasiolo et al., 2020, Miller, 2019). gam 

offers a middle ground between a simple model (linear regression) and more complex machine 

learning models (including neural networks) (Brenning, 2008). This model can fit complex, 

nonlinear relationships and make a good prediction. However, unlike black box machine 

learning models, inferential statistics can be done on gam, and the structure of models can be 

interpretable. The data were fitted with smooths, or splines, which are functions that can take 

on a wide variety of shapes. The gam model was fitted using the gam() function from the mgcv 

package (Hastie, 2006). The independent variables were wrapped with s() function, which is a 

smooth function to make a nonlinear regression model. The smoothing basis from the function 

of s() is a form of the thin plate regression spline (Wood, 2017). 

The current MAOC concentration was predicted with the gam model, whereas the upper limit 

or capacity for MAOC was predicted with the upper quartile (q = 0.75) regression using the 

qgam model. The model of qgam was proposed as a novel framework for fitting additive 

quantile regression models by (Fasiolo et al., 2021). This model provided well-calibrated 

inference about the conditional quantile and automatic prediction of smoothing parameters. 

This model maintains equivalent numerical efficiency and stability. Moreover, this method is 

statistically rigorous and computationally efficient (Bissiri et al., 2016) (Wood et al., 2016). 

The optimal predictive variables of the gam and qgam (q = 0.75) models were selected by 

combining several model-building strategies. The initial candidate variables were 103 variables 

representing the SCORPAN factors, including climate, parent material, relief, soil, organisms 

and time. These covariates are available from TERN Landscapes Cloud Optimised Geotiff 

Datastor (Searle et al., 2022). The MAOC data, which was not normally distributed, were log-

transformed. The first step for selecting the model structure was identifying potential variables 
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from each SCORPAN factor using exploratory data analysis. Correlation plots were produced 

by grouping the variables by soil-forming factor. The top three or four variables with the 

highest correlation coefficients with MAOC by soil-forming factors were selected. 

Moreover, the suitability of the potential variables was confirmed with an extra step. A 

univariate gam model was fitted for each predictor variable and compared with the null model 

using AIC (Akaike information criterion). However, there is one fixed variable, that is the 

fine_fraction (% of clay + silt (< 20 μm)). This variable was included following the approach 

from Hassink (1997) and Six et al. (2002). Note that the silt fraction used in Australia is 2-20 

μm.  

Next, a gam model was fitted using all candidate variables selected in the previous step (full 

model). The suitability of the model structure and the accuracy of the model were assessed 

with 10-fold cross-validation. The model performance statistics consisted of the average AIC, 

root mean square error (RMSE), mean error (ME), R2 and concordance correlation coefficient 

(CCC) from 10-fold cross-validation statistics. In addition, the statistics of the gam models 

were also assessed, i.e., normality of residuals and lack of concurvity of predictor variables. 

Concurvity is a measure similar to the concept of collinearity from a linear model. Concurvity 

values are between 0 and 1, with 0 indicating no collinearity and 1 indicating high collinearity. 

If two covariates are highly correlated, it is difficult to fit the model as either one can affect the 

output and result in poorly fitted models with large confidence intervals (He et al., 2006). If 

the necessary conditions of the model were not met, a manual backward selection was 

performed. Several gam (“leave one variable out”) models were built by eliminating each 

potential variable from the full model, and the concurvity was calculated. A threshold 

concurvity value of 0.8 was used to decide if a variable has high collinearity. 
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The full and each of the “leave one variable out” models was compared with cross-validation 

statistics. This step was repeated successively until an optimal gam model was found. The final 

model had lower AIC, higher R2 and lower RMSE compared with models built with fewer 

variables. A qgam model for the 0.75 quantiles was built with the same variable structure as 

the optimal gam model except for the variable describing the soil-forming factor of organisms. 

The vegetation variable was excluded because it is indicative of the current land use and 

management, i.e., the current condition of the soil for storing MAOC. However, we preferred 

to estimate the capacity of the soil to store MAOC based on soil, parent material, and climatic 

factors, as it is outside the scope of this paper to represent or simulate different estates of 

potential land uses and vegetation.  

 

5.3.5.3. Mapping MAOC capacity and condition using the quantile 

regression models 

A second set of MAOC maps (0-30 cm) for the Edgeroi area was created: qgam regional model 

(q = 0.75) represents MAOC capacity, and gam represents MAOC condition. After stacking 

all covariates in the study area, the waterbodies were removed. The prediction of MAOC was 

calculated throughout the study area and back-transformed into the original scale.  
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5.4. Results  

5.4.1. SOC fractions distribution  

5.4.1.1. Assessing the accuracy of the PLS model  

The results of the model accuracy for SOC content (SOC) and each SOC fraction (MAOC, 

POC and PyOC) (R2 and RMSE) from the selected SCaRP dataset are shown in Appendix 5-

1. The PLS model had a high accuracy with R2 = 0.91 and RMSE = 2.49 mg C g soil-1 for 

MAOC and R2 = 0.86 for POC and PyOC.  

To assess the accuracy of the SCaRP PLS model on the Edgeroi dataset, we calculated the 

linear correlation coefficient between predicted MAOC, the sum of predicted total fractions 

(MAOC, POC and PyOC) and measured OC (OC_edgeroi) from Chapter 4 (Figure 5-3). The 

correlation coefficients between OC_edgeroi and MAOC and total fractions were 0.79 and 0.78, 

respectively. The high correlation coefficients suggest that the PLS model predicted the MAOC 

and other fractions quite well. 
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Figure 5-3. the correlation of total SOC content (MAOC+POC+ROC), MAOC and OC_edgeroi 

(from Chapter 4). 

 

  



198 
 

5.4.1.2. MAOC and POC for each land use and pedogenon 

MAOC and POC content for the 99 soil cores was predicted using MIR spectra and the PLS 

model and was summarised by land use and pedogenon class. The study area had seven land 

uses (Figure 4-1), grouped into four major land uses: woodland, pasture, non-irrigated cropping 

and irrigated cropping. Figure 5-4 shows the boxplot of MAOC content by the four land uses. 

The mean value of all MAOC data is 4.52 mg C g soil-1 (standard deviation (SD): 4.21 mg C g 

soil-1), and an interquartile range (IQR) (2.05 mg C g soil-1 to 5.20 mg C g soil-1).  

The result shows that the highest MAOC content was in woodland areas, followed by pasture, 

non-irrigated and irrigated cropping. The mean value of MAOC in woodland was 7.10 mg C g 

soil-1 (SD: 5.68 mg C g soil-1 and IQR: 4.46 mg C g soil-1). Pasture had the second highest 

MAOC content (mean: 3.42 mg C g soil-1, SD: 2.05 mg C g soil-1 and IQR: 2.77 mg C g soil-

1). The next was irrigated cropping (mean: 2.93 mg C g soil-1, SD:1.47 mg C g soil-1 and IQR: 

1.44 mg C g soil-1). The lowest MAOC was in non-irrigated cropping (mean: 2.77 mg C g soil-

1, SD: 1.36 mg C g soil-1 and IQR: 1.86 mg C g soil-1). The highest POC mean value was from 

woodland (1.91 mg C g soil-1), and the mean of the other three land uses was similar (between 

0.26 and 0.31 mg C g soil-1).  

The boxplot of MAOC for each pedogenon is shown in Figure 5-5A. The highest mean value 

of MAOC was found in pedogenon I (mean: 8.59 mg C g soil-1, SD: 7.54 mg C g soil-1, IQR: 

10.10 mg C g soil-1)s. While the lowest one was in pedogenon G (mean: 1.96 mg C g soil-1, 

SD: 0.95 mg C g soil-1, IQR: 1.18 mg C g soil-1). The boxplot of MAOC by genosoil and 

phenosoil for each pedogenon is shown in Figure 5-5B, where G, P1, and P2 represent genosoil, 

phenosoil 1 and phenosoil 2, respectively. The area of genosoil was under the woodland, which 

was not disturbed by human activities. Phenosoil 1 was under the pasture area, while phenosoil 

2 was under intense agricultural practices. Figure 5-5B confirms that MAOC values of genosoil 
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from all pedogenon were higher than the phenosoil. In this case, genosoil and phenosoil values 

are similar (pedogenon F).  

Surprisingly, the POC content from seven pedogenons (pedogenon A, B, C, G, H, L and M) 

had POC content in genosoils that was lower than the phenosoils (Figure 5-6). In contrast, the 

POC content of genosoils from four pedogenons (pedogenon H, I, J and K) was much higher 

than other pedogenons.  
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Figure 5-4. MAOC and POC values are grouped by four land uses, W: woodland, P: pasture, R: 

irrigated cropping and C: non-irrigated cropping. The unit of both fractions is mg C g soil-1. 
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Figure 5-5. (A) MAOC content was grouped by 13 pedogenons (A to M) and (B) MAOC grouped 

by pedogenons and genosoils and phenosoils (G: genosoil, P1: phenosoil 1 and P2: phenosoil 2). 

The unit for MAOC is mg C g soil-1. 
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Figure 5-6. (A) POC by 13 pedogenons (pedogenon A to M) and (B) POC by 13 pedogenons and 

genosoils and phenosoils (G: genosoil, P1: phenosoil 1 and P2: phenosoil 2) (B). The unit of POC 

is mg C g soil-1. 
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5.4.1.3. MAOC capacity and condition using a pedogenon mapping 

approach 

The MAOC (0-30 cm depth) was spatialised using DSM techniques utilising the random forest 

model. The calibrated DSM models produced maps of MAOC capacity, condition, and 

difference. Figure 5-7 shows the three maps of MAOC (0-30 cm). The map of MAOC capacity 

estimates what the MAOC content would have been without intensive agricultural practice. 

The genosoil MAOC (Figure 5-7A) for the whole study area had a mean of 5.00 mg C g soil-1 

(SD: 2.19 mg C g soil-1). The map of the MAOC condition refers to the current MAOC content. 

The mean value of MAOC condition in the whole study area (Figure 5-7B) shows 3.92 mg C 

g soil-1 (SD: 2.12 mg C g soil-1 and IQR: 1.87 mg C g soil-1). The MAOC difference for the 

study area (Figure 5-7C) had a mean of 1.07 mg C g soil-1 and SD of 0.83 mg C g soil-1.  
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Figure 5-7. MAOC capacity (top left: A), MAOC condition (top right: B) and MAOC difference 

(capacity – condition)(bottom middle: C) at 0 - 30 cm produced using the pedogenon mapping 

approach. The unit of MAOC is mg C g soil-1.  
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5.4.2. Mapping SOC sequestration potential using quantile regression 

5.4.2.1. Finding optimal covariates for gam and qgam model structure 

The optimal covariates from predicting MAOC at a regional scale were selected from 103 

covariates representing the SCORPAN factors. Three or four covariates with the highest 

correlation coefficients with MAOC were selected from each soil-forming factor. This results 

in a full model with 11 covariates, including two soil, four climate, one parent material, two 

organisms and two relief covariates. From the full model (11 covariates), the optimal structure 

for gam and qgam model (final model) was found with several iterations of removing 

ineffective variables using cross-validation statistics with a concurvity threshold of 0.8. Table 

3 shows the iterative backward selection of covariates from 11 covariates to the final model 

containing 8 covariates (Table 5-3). 
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Table 5-2. Result of model performance statistics of the gam from the backward selection of 

covariates. 

Model AIC BIC Adjusted R2 

(calibration) ME RMSE R2 CCC 

Full model 7146 7473 0.52 -0.04 2.93 0.53 0.68 

No FC 7144 7462 0.52 -0.04 2.93 0.53 0.69 

No FC and pH 7241 7537 0.49 -0.03 3.01 0.51 0.67 

No FC, pH and TWI 
(Final model) 7238 7517 0.49 -0.03 3.02 0.51 0.66 
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Table 5-3. Optimal covariates for gam and qgam models. 

Soil-forming 
factors Name Explanation 

Soil Fine_fraction Fine fraction (% particles < 20 μm) 

Climate 

Clim_ADM 
Mean annual aridity index  

(precipitation / potential evaporation) 

Clim_EPX Maximum monthly potential evaporation (mm) 

Clim_RSM Short-wave solar radiation - annual mean (SRAD data) 

Clim_TRA Annual temperature range (max - min) (°C) 
Parent Material PM_ratio_Th_K Gamma ray - Thorium to Potassium ratio 

Organisms NDVI_mean_Q2 Landsat 5 long-term average NDVI  
(April-June) 1986-2011 

Relief Relief_roughness Landscape Roughness 
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5.4.2.2. Maps of MAOC using regional quantile regression models 

The MAOC (0-30 cm depth) for the Edgeroi area was spatialised using the regional gam model. 

The map of MAOC using gam represents the mean or current MAOC condition (q = 0.5), while 

the map of MAOC using quantile regression (q=0.75) represents MAOC capacity. With two 

maps, the SOC sequestration potential map was calculated (MAOCq0.5 - MAOCq0.75). All three 

maps are shown in Figure 5-8. 

The map of MAOCq0.5 had a mean value of 5.47 mg C g soil-1 (SD: 0.98 mg C g soil-1 and IQR: 

4.82 mg C g soil-1 to 5.95 mg C g soil-1). The mean value of MAOCq0.75 was 6.98 mg C g soil-

1 (SD: 0.81 mg C g soil-1 and IQR: 1.17 mg C g soil-1). The SOC sequestration potential had a 

mean of 1.51 mg C g soil-1 and SD of 0.93 mg C g soil-1.  
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Figure 5-8. MAOC capacity estimated with qgam (q = 0.75) (top left: A), Current MAOC 

condition predicted using a gam model (top right: B) and SOC sequestration potential maps (0.75 

– 0.50)(bottom middle: C) at 0 - 30 cm. The unit of MAOC is mg C g soil-1.  
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5.5. Discussion 

5.5.1. MAOC capacity and condition using pedogenon mapping approach 

5.5.1.1. MAOC content by land use and pedogenons 

The predicted SOC fraction values were grouped by different land use and pedogenons. The 

results (Figure 5-4) show that MAOC content was much higher than the POC. This is in 

accordance with past studies. Briedis et al. (2012) explained that in agricultural soils of Brazil, 

the dominant SOC fraction found is MAOC. Román Dobarco et al. (2022) found that for soils 

in Australia, the largest contribution of SOC fractions to total SOC is MAOC (59 % ± 17.5 %), 

while the smallest one is POC (13 % ± 11.1 %).  

Figure 5-4 further shows the MAOC and POC values based on four different land use. Both 

SOC fractions under woodland areas were the highest, and the subsequent highest were under 

pasture. MAOC contents under non-irrigated and irrigated cropping areas were similar. Other 

studies also found that the MAOC is much higher in the woodland area than cropping area 

(Sainepo et al., 2018, Toru and Kibret, 2019). Chapter 4 shows that the highest SOC content 

was in woodland, followed by pasture, irrigated cropping, and non-irrigated cropping areas. 

However, this study shows that MAOC and POC were not significantly different between 

irrigated cropping and non-irrigated cropping areas. The main reason for SOC loss by land use 

is the depletion of MAOC fraction, and its content is impacted by root exudates, tillage and 

microbial biomass (Modak et al., 2019, Ramesh et al., 2019, Wuaden et al., 2020). 

The MAOC value under phenosoil was generally lower than genosoil, as land uses highly 

impact MAOC. However, the POC trend was not the same as the MAOC. Some pedogenons 

show that genosoil POC was higher than phenosoil, while other pedogenons showed the 

opposite. POC is dynamic and can rapidly change due to the decomposition of plant debris that 

is plentiful on the surface soil (Cambardella and Elliott, 1992). 
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5.5.2. SOC sequestration potential using SCORPAN factors and quantile 

regression. 

5.5.2.1. The physical interpretation of the covariates  

Eight covariates were selected for the gam and qgam models, including one soil, four climate, 

one parent material, one organism and one relief factors. The fine fraction was included as the 

covariate because it is essential for the physicochemical stabilisation mechanisms of MAOC 

(Alvarez and Berhongaray, 2021, Xiao et al., 2022). Sanderman et al. (2021) mentioned that 

MAOC content is correlated with climate, and the temperature, precipitation and solar radiation 

strongly relate to the MAOC. Moreover, mineralogy and surface geochemistry information is 

useful for predicting MAOC because the concentration and ratios of gamma radiometric 

indicate the lithology and degree of weathering (Román Dobarco et al., 2022). 

Based on the interpretable covariate response function (Appendix 5-2), the spline on the 

response of MAOC to fine fraction shows that the fine fraction increases with increasing 

MAOC content. The response of NDVI (vegetation covariate) shows a similar trend to the fine 

fraction. These trends agree with the common understanding of the relationship between 

MAOC and fine fraction (Paterson et al., 2020) and vegetation (Solomon et al., 2000). In 

constast, climate variables on aridity (ADM), solar radiation (RSM) and annual temperature 

range (TRA) shows a decreasing trend, i.e. increase dryness result in decrease MAOC. Soil 

minerals (Th/K) ratio shows a gradual increase response at small values but constant afterward. 

 

5.5.3. Comparing C sequestration potential maps from two different 

approaches  

Two methods were used to predict MAOC capacity, condition and potential. The first approach 

predicted MAOC content using pedogenon map (genosoil and phenosoil) approach with local 
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data (Figure 5-7). The second approach used regional data with climatic, vegetation, and soil 

physicochemical variables and quantile regression models (Figure 5-8).  

Figure 5-9 shows the distribution of the MAOC values from the maps created by pedogenon 

and regional quantile regression approaches. The MAOC capacity and condition values created 

by the pedogenon approach were lower than the quantile regression approach, with a difference 

of about 1.89 mg C g soil-1 for capacity and 1.54 mg C g soil-1 for condition.  

The C sequestration potential (capacity – condition) values for the quantile regression model 

were higher than the pedogenon map but insignificant. As the regional model does not include 

local data, we can conclude that the quantile regression model overpredicted the MAOC in 

Edgeroi. 
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Figure 5-9. A comparison of pedogenon (pedo) and quantile regression (qgam) approaches in 

predicting MAOC capacity (cap), condition (cond), and difference (dif) in Edgeroi. 
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Figure 5-10 further compares observed MAOC in Edgeroi and their predicted values using the 

regional gam model. The regional model slightly overpredicted the median MAOC in the area 

but had a small range of values, and it also did not predict high values of observed MAOC. It 

is important to note that the SCaRP data were collected from agricultural soils and thus may 

not have the information to predict soils under woodland and native vegetation. 
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Figure 5-10. A comparison of observed MAOC in Edgeroi and regional gam model predicted 

MAOC. 
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5.5.3.1. Comparing the pattern of maps created by two approaches 

The pattern of C sequestration potential created by the two approaches was contrasted. The 

map created by pedogenon model showed that the value of MAOC change was much larger in 

the irrigated area than in the non-irrigated cropping area (Figure 5-7). This result is in line with 

the findings in Chapter 4; irrigated cropping area in Edgeroi shows high carbon loss due to 

intensive agriculture practices, including the short fallow phase and the intensive soil tillage. 

The main crop under the irrigated cropping area is cotton. Rabbi et al. (2014) confirmed that 

the significant decrease in SOC is due to the production of irrigated cotton, and SOC content 

and fractions were correlated negatively with the land use of irrigated cotton. Past studies have 

shown that SOC on clay soil under irrigated cotton in the Namoi Valley had decreased by 37% 

to 48% compared to uncropped areas (Conteh et al., 1997). Hence, the irrigated cropping 

practice impacted the stabilisation of soil C into MAOC. The pedogenon approach also shows 

that MAOC change was highest in pedogenon J (Figure 4-1, pedogenon map). This result is 

also in accordance with Chapter 4, where the loss of SOC content in pedogenon J is the highest 

among other pedogenons. 

However, the regional quantile regression model result shows the opposite pattern. The MAOC 

content in non-irrigated cropping areas was higher than in irrigated cropping areas (Figure 5-8). 

This implies that the regional model did not capture the MAOC distribution correctly.  

The C sequestration potential map generated by the pedogenon approach (Figure 5-7) 

recognises the floodplain areas where the values of MAOC difference were negative, indicating 

SOC sequestration (𝑆𝑆𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑛𝑛𝑒𝑒 >  𝑆𝑆𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑛𝑛𝑒𝑒), while the positive ∆𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆 represents SOC loss 

(𝑆𝑆𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑛𝑛𝑒𝑒 > 𝑆𝑆𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑛𝑛𝑒𝑒). This result indicates that under favourable conditions, MAOC can be 

increased over time. The value of MAOC change in condition can be affected by different 

vegetation densities, structure and composition, and intensity of human activities between the 

cropping area and floodplain area (Dalal et al., 2021).  
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Compared to the pedogenon approach, the map produced by the quantile regression mainly 

shows the pattern of cultivation land. The boundary of farming land can be observed in Figure 

5-8, and the woodland area was clearly separated from other land use areas. This pattern is 

possibly affected by the covariate of the vegetation factor (NDVI Q2), which was included in 

the gam model to estimate current MAOC. 

We concluded that the first approach (pedogenon mapping) produced a more reliable soil C 

sequestration potential map than the regional quantile regression model. There are several 

reasons. The first reason is that the pedogenon approach used local data to create a local DSM 

model, and the quantile regression approach built a regional model and applied it at a local 

scale. Hence the regional model cannot correctly capture the relationships between scorpan 

factors and MAOC content, and the result can have high uncertainty. Moreover, in the first 

approach, MAOC content was estimated from samples collected in the study area even though 

the number of samples was only 99. In contrast, the calibration data of the second approach 

consisted of 1607 sampling points extracted from a regional dataset. However, only 16 sample 

points out of 1607 were located in the study area on agricultural soils and were not evenly 

spread, and these few sampling points could not be representative of the study area. In addition, 

the covariate data on particle size fraction (clay and silt) from the regional model was estimated 

from DSM, not from the direct measurement, which could be a source of uncertainty in the 

model.  

There are a few limitations in this study. In particular, the carbon fractions (MAOC) were 

predicted from a national (SCaRP) soil spectra library, which does not include soils under 

woodland and native vegetation. And as discussed above, the lack of samples in woodland 

areas may have impacted the inaccuracy of the regional model. As in Chapter 3, the maps of 

MAOC capacity are constrained by the limited number of genosoils.  
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5.5.4. Relationship with soil security  

As described in the introduction section, the mapping of MAOC is related to two dimensions 

of soil security (capacity and condition). The capacity is characterised by soil attributes that 

determine the performance of soil functions but are not impacted by human activities. In 

contrast, the condition is the current state of the soil and is represented by soil attributes that 

are changed by human activities. In this study, we are mapping the capacity and condition of 

the soil to store carbon. Several factors can influence the capacity of soil to store carbon, 

including the type of soil, minerals, vegetation and climate. While soil has an inherent capacity 

to store carbon (mineralogy), it is affected by the environment (climate, water availability) and 

the type of vegetation. The two approaches used different methods to calculate the capacity 

and condition of MAOC.  

Most studies on SOC potential mapping only used bulk SOC content, while this study focuses 

on the stable form SOC, which is more representative of stable form C storage in soil. The 

results show that MAOC on cropping soils was generally lower than its counterpart soil under 

woodland and grassland. This suggests that long-term cultivation has resulted in the loss of 

stabilised C and an opportunity to gain a more stable C with improved management. 

Nevertheless, the soil samples collected in this study (genosoils) defined the reference, and we 

term as capacity, and there could be a higher capacity of the soil to store carbon under different 

vegetation or conditions. For example, the MAOC difference map (Condition – Capacity) 

(Figure 5-7) shows positive values in forested and wetland areas, indicating SOC sequestration. 

The data on capacity and condition can be used as an indicator for assessing soil security and 

also applied for measuring the effect of other dimensions (capital, connectivity and 

codification). For example, soil carbon sequestration is an essential aspect of natural capital, 

the value of natural resources and ecosystem services that are provided by nature. Soil carbon 

sequestration is an important ecosystem service because it stores C in the soil and can help in 
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mitigating climate change. Soil carbon is an important factor affecting soil's health and crop 

productivity, which in turn can have important implications for the general public. Maintaining 

healthy soil through SOC sequestration is, therefore, crucial for the well-being of people and 

the environment. Soil carbon connects to the public through its role in crop production and 

mitigating climate change. Maintaining healthy soil and increasing soil carbon levels through 

sustainable land management practices can benefit the public.  

Finally, governments worldwide are now implementing policies that aim to mitigate climate 

change by promoting practices that increase soil carbon sequestration. The Carbon Farming 

Initiative (CFI) programme, launched by the Australian government, attempts to persuade 

farmers and land managers to adopt techniques that boost soil carbon retention and lower 

glasshouse gas emissions. Farmers and land managers who adopt measures that boost soil 

carbon sequestration or lower glasshouse gas emissions from livestock are given financial 

incentives by the CFI. These methods include adopting reduced tillage, crop rotation, rotational 

grazing systems, and restoring degraded ecosystems. Farmers and land managers can produce 

carbon credits by boosting SOC that can be traded on the carbon market. The money from the 

sale of carbon credits can be used to pay for the costs of putting the practices in place and bring 

in extra money for the landowners or farmers. Adopting practices that increase soil carbon 

sequestration and reduce greenhouse gas emissions cannot be applied as a blanket approach. 

This study's capacity and condition maps can help target areas with large sequestration potential 

and reduce investment risk. 
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5.6. Conclusion  

SOC fraction change in south-eastern Australia was investigated with two approaches. The first 

approach compares genosoil and phenosoil for assessing MAOC. The other method developed 

a regional model to predict MAOC capacity and condition using a quantile gam approach. The 

change in MAOC content is heavily affected by land use, especially agricultural activities. The 

MAOC content in each pedogenon has a notable trend, but the MAOC value in genosoil is 

always higher than in phenosoil. The mapping result shows that MAOC was sequestrated in 

the woodland area, and MAOC was decreased in the agriculture area. The results can be linked 

with capacity and condition dimensions from soil security, and the capacity and condition data 

can support calculating the impact of other dimensions (capital, connectivity and codification). 
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5.8. Appendices 

Appendix 5-1. Results of model accuracy for the prediction of SOC content and 

fractions (MAOC, POC and PyOC) using MIR on the SCaRP dataset. 

 R2 RMSE (mg C/g) 

SOC 0.95 4.06 

POC 0.86 1.85 

MAOC 0.91 2.49 

PyOC 0.86 1.46 
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Appendix 5-2. The response surface splines for each variable on the gam prediction of 

MAOC. 
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Chapter 6. Overall Discussion and Conclusions 
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6.1. Soil change 

Humans have impacted the Australian continent and its soil for more than 50,000 years. 

However, the impact from humans has been most significant in the last 200 years, following 

European settlement. These include land use change, agricultural practices, urban development, 

pollution and climate change. As a result, widespread degradation of cropping soils, including 

soil erosion, acidification, SOC decline, and nutrient imbalances, have been reported. We are 

aware that soil has changed considerably, but we have not precisely quantified the extent and 

location of that change. Thus, there is a need for a new way of mapping where and how soil 

has changed and where soil functions have been compromised. This information will allow us 

to identify areas under threat to degradation and understand how soil responds to climate and 

land use changes. Furthermore, this knowledge will allow us to recommend interventions that 

protect our soil resources to maintain the production of food, fibre and fresh water and sustain 

the biodiversity and overall ecosystem protection. 

This thesis addresses this challenge by designing a method to map how much soil has changed 

and applied it in the Edgeroi area of New South Wales.  
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6.2. Pedogenon mapping 

This thesis created a local pedogenon map in Edgeroi, New South Wales, Australia, following 

the framework by Román Dobarco et al. (2021b). Pedogenon mapping was proposed by Román 

Dobarco et al. (2021b) as a way to stratify the landscape into soil units. They created soil groups 

in New South Wales by applying unsupervised classification (k-means) to quantitative 

variables representing soil-forming factors at a reference time. Applying the pedogenon 

mapping in NSW resulted in pedogenon classes that can explain 40% of the variation in stable 

soil properties (e.g. texture). In a subsequent study, Román Dobarco et al. (2021a) estimated 

soil change in NSW with subclasses of the pedogenon map (remnant pedogenon (genosoil) and 

pedophenon (phenosoil)). The subclasses were stratified using the combined information, 

including the condition of the land, current land use and the location of native vegetation. 

Comparing these pedophenons under agricultural influences and pedogenons that are still under 

native vegetation, they detect trends of soil acidification and SOC losses in topsoils.  

This study further expands on the concept by applying it and testing it at a regional scale in 

Edgeroi, New South Wales. Some key findings from this topic include: 

• Generation of optimal covariates representing the scorpan factors which could not be done 

at a state level. In particular, Chapter 2 shows an approach to generating a parent material 

map that contains information on both parent material and the age of the landscape.  

• Creation of local pedogenon classes using statistical approaches. Using local scorpan layers, 

Chapter 3 describes the method for creating pedogenon and identifying the optimal number 

of classes. Based on the land use map, within a pedogenon, genosoils and phenosoils were 

derived.  

• Design of a soil sampling strategy to capture genosoils and phenosoil within a pedogenon. 
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• Soil sampling to collect 1 m soil cores and analysing the soils every 10 cm depth using NIR 

and MIR spectroscopy. This rapid soil analysis technique allows the investigation of soil 

properties up to 1 m.  

• Validation of the pedogenon classes using multivariate statistical analyses (PCA and RDA) 

of soil profile properties (clay, sand, cation exchange capacity, pH, and organic carbon). 

Variance partitioning analysis confirmed that a large proportion of the variation of the data 

is explained by pedogenon (49 %) as opposed to landuse (5 %).  

• Pedogenons act as soil series in a local soil map. The qualitative description of the 

pedogenons demonstrates that each pedogenon originated from distinct parent material, 

occupied specific geographic locations, and produced distinctive soil profiles. 
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6.3. Mapping Soil Change 

This thesis aims to find effective ways to map and quantify soil change over a region using the 

pedogenon mapping approach. Current methods for mapping soil change require repeated 

surveys, which will be costly and time-consuming. The space-for-time substitution method 

offers another estimation of soil change, however the comparison is usually made locally, so-

called “over the fence” approach (Filippi et al., 2016). An extension of this method is called 

the space-for-time extrapolation method. This involves fitting a spatial model using scorpan 

factors on existing soil data. This fitted model can be used for backcasting and forecasting. For 

example, replacing the “o” factor under cropland with native vegetation or woodland would 

allow the calculation of the original SOC content before cultivation. Alternatively, replacing 

the current “c” factor with future climate projection allows forecasting SOC under future 

climate change scenarios. Such an approach has its assumption of immediate equilibrium of all 

factors. It may be valid under certain circumstances if the samples expand all scorpan factors. 

However, if the soil samples collected were collected with a preference in agricultural soils, 

such extrapolation over native vegetation for the whole area is invalid. 

This thesis addresses the current model limitations and fills this knowledge gap by proposing 

pedogenon mapping to sample, estimate and map soil change by spatialising the “space for 

time” idea. Based on the samples collected in Chapter 4, SOC condition maps under native 

vegetation and current conditions was created using the DSM approach. The first map is the 

map of SOC content under native vegetation, produced using only genosoil sampling points, 

and the second map is the current SOC condition map, produced with both genosoil and 

phenosoil points. Thus the difference between the two maps shows the SOC change since 

agricultural establishment in the area.  

Some key findings from this topic include: 
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• Agricultural activities homogenised the variation of soil profiles, especially SOC. Natural 

pedogenesis produced soils with high levels of variability, but decades of agricultural 

methods had changed the soil qualities to make them less variable. The variability of soil 

properties under agriculture was cut in half compared to the soils under native vegetation.  

• Different land uses varied SOC change. The biggest SOC loss was in soils under irrigated 

cropping, with a 38% decrease in content at the 0–10 cm depth (relative to SOC under 

natural vegetation), followed by dryland cropping (30% loss) and pasture (19% loss).  

• SOC loss reduced dramatically with depth and was greatest in the surface soils. Compared 

to soils with natural vegetation, the top 30 cm of pasture experienced the greatest loss of 

SOC. The loss of SOC under dryland and irrigated agriculture was measured to a depth of 

50 cm. 

• SOC change under each pedogenon was variable due to different soil types, the intensity 

of agricultural practices and vegetation types. The highest SOC loss was under pedogenon 

A and J. The soil type under both pedogenons is black vertosol. Pedogenon A, located west 

of the study area, was under irrigated cropping, while pedogenon J, east of the study area, 

was under non-irrigated cropping. The lowest SOC loss was under pedogenon M, located 

in the southeast of the study area. Its soil type is dark brown vertosol, and its landuse is 

non-irrigated cropping.  
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6.4. SOC Sequestration potential  

SOC can be lost or accumulated due to land management and climate change. Soil can be a 

carbon store for climate mitigation purposes, and this thesis demonstrates the use of pedogenon 

mapping created in Chapter 3 for mapping an important soil function: storing carbon.  

Several methods can be used to determine the potential of soil to sequester carbon. Some of 

these methods include: models and simulations such as RothC or Century to estimate the 

potential for carbon sequestration in a given soil type based on factors such as climate, 

vegetation, and land use, field trials to measure carbon sequestration that occurs in a given soil 

under different management practices or conditions, and meta analysis based on published 

results for given soils under different management practices or conditions. 

It is important to consider the specific characteristics of the soil and the local environment in 

order to estimate the potential for carbon sequestration accurately. This study particularly looks 

at the stable form of carbon, mineral-associated organic carbon (MAOC), and organic carbon 

bound to the surfaces of mineral particles. MAOC is typically more stable and resistant to 

decomposition than other forms of organic carbon found in soil. MAOC is a critical component 

of soil, as it can contribute to soil fertility and play a role in the carbon cycle. Several factors 

can influence the amount of MAOC in soil, including the type and composition of the minerals 

present, fine fraction, and soil pH. However, the amount of MAOC in the soil is further limited 

by climate and vegetation and can be affected by human activities, such as land use and 

management practices. 

This thesis used the pedogenon mapping concept to predict MAOC potential and condition. 

MAOC capacity was mapped based on genosoil samples and MAOC condition was mapped 

using samples from phenosoils using spatial covariates and random forest models. Different 

land uses impacted MAOC; generally, MAOC concentration in genosoils was always higher 
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than in phenosoils. The results show the potential of SOC sequestration on cropping soils of 

Edgeroi. 
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6.5. Relationship with Soil Security 

Soil security is concerned with the maintenance and improvement of the global soil resource 

to produce food, fibre and fresh water, contribute to energy and climate sustainability, and 

maintain the biodiversity and the overall protection of the ecosystem (McBratney et al., 2014). 

Soil security has five dimensions: capability, condition, capital, connectivity & codification. 

The pedogenon classes measure soil capacity and conditions, two biophysical measures of soil 

security dimensions (Román Dobarco et al., 2021b, Román Dobarco et al., 2021a). The 

capacity of soils is a measure of soil properties that determine the performance of soil function 

but are not modified by anthropogenic activities. The soil condition is the current soil state and 

corresponds to soil properties, which are changed by anthropogenic activities. 

The concept of capacity and conditions represented by genosoils and phenosoils allow us to 

quantify soil security. Previous concepts, such as soil quality, usually measure the quality of 

soil to perform a function based on a standard set of criteria. However, soils have different 

capacities to perform functions. Thus, setting the genosoil as a reference for a soil type 

(pedogenon) will allow a better comparison. 

Additionally, the capacity and condition can improve soil connectivity to the public in several 

ways, such as agricultural productivity, climate change mitigation and human health. 

Soil carbon is an essential component of natural capital, the stock of natural resources and 

ecosystem services that provide value to society, as soil carbon provides a range of ecosystem 

services that provide value to the community.  

Finally, soil carbon is a fundamental component of the Carbon Farming Initiative (CFI), a 

program in Australia that aims to promote the adoption of practices that can reduce greenhouse 

gas emissions and sequester carbon in the landscape. The CFI is governed by the Carbon 
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Credits (Carbon Farming Initiative) Act 2011 and the Carbon Credits (Carbon Farming 

Initiative) Regulations 2011.  
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6.6. Assumptions and Limitations 

6.6.1. Assumption  

This study has a few assumptions about using pedogenons for investigating soil change. The 

first assumption is that other soil forming factors, except organism factors, have not changed 

significantly over the past 200 years. Most area in the study area is flat except for the west of 

the study area (mountain area), so there may be no topography change over the years. However, 

agricultural activities may cause soil water and wind erosion and change the soil and landscape. 

Indeed data from Chapter 3 shows that topsoil clay content in phenosoils was consistently 

higher compared to genosoils. This implies that the original topsoil under cropping may have 

been eroded; thus, the current topsoil would have higher clay content.  

The second assumption is that climate change does not affect SOC content. The same climate 

factor was applied to both SOC content under native vegetation and current SOC content. In 

this study, the intensity of agropedogenesis is much higher than natural pedogenesis. While 

climate change impacts SOC, its impact could be small compared to human activities (Brevik, 

2013, Kuzyakov and Zamanian, 2019). 

The last assumption is that the genosoil samples (under current native vegetation) have not 

changed since European settlement. However, collecting land history data in the area for the 

past 100-200 years is impossible. Current land use in most genosoil areas is densely packed 

woodland, implying that land use has not changed for at least 100 years (Chapter 3). It is also 

known that some areas may have been replanted.  

 

6.6.2. Limitations 

There are a few limitations in this study. The first limitation is that the pre-European vegetation 

map was created with modelling approaches (Eco Logical Australia, 2013), so the prediction 
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result is highly uncertain and can be biased. Fortunately, the pedogenon map produced using 

the vegetation map showed meaningful information and supported the study of soil change. 

However, when covariates are created by modelling, it is imperative to calculate the model 

accuracy and understand the covariate uncertainty effects (Gu et al., 2010).  

The other limitation is that the number of genosoil is limited, with only 47 sample points. The 

location of sampling points was decided based on the genosoil and phenosoil or map of land 

use. Hence, this sampling is not optimal for mapping as genosoil sampling points do not cover 

the whole study area. Moreover, the number of sampling points is small due to limited time 

and resources. These two limitations impacted the mapping result, which has high prediction 

uncertainty.  

The selection of remnant genosoil sites could be biased and not representative of the remnant 

pedogenon. It is known that land managers selected the best soil for agricultural lands, and thus, 

not all pedogenons may have remnant genosoils, or the soils under woodland may not be 

representative of the area. To accurately study soil changes resulting from human activities, it 

is recommended to select study areas that have limited or absent remnant genosoil areas, such 

as woodlands. Instead, areas that have been less disturbed by agricultural practices should be 

classified as phenosoil 1. This classification will distinguish them from remnant genosoil 

(woodlands) and phenosoil 2 (agricultural land) in the area. Calculating soil changes can be 

achieved by determining the difference between phenosoil 1 and phenosoil 2. This approach 

can help researchers more accurately quantify the impact of human activities on soil properties 

and develop appropriate soil management strategies to ensure sustainable land use. 
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6.7. Recommendation to improve the method of the thesis for future 

works 

The combined approaches from this thesis can be further developed for assessing soil change 

which can be implemented from regional to continental scales. For future works, a few 

recommendations exist to produce a more robust pedogenon map at different scales and better 

investigate soil change. 

The first recommendation is selecting optimal environmental covariates. More diverse and 

relevant covariates based on the soil forming factors will produce more accurate and robust 

pedogenon maps. The large number and types of covariates could positively affect the creation 

of a calibration model for mapping due to the high probability of selecting the best covariates, 

but there is also a problem of redundancy and irrelevant covariates. Hence, selecting the 

covariates requires specific soil science knowledge and statistical approaches. Several 

statistical methods are already used to find optimal covariates for producing accurate soil maps. 

For example, Poggio et al. (2013) implemented two approaches (general additive models and 

regression trees) to select a subset of the covariates providing a calibration model which shows 

high performance. 

Moreover, specific machine learning methods have been designed to find optimal covariates. 

Many studies have made efforts to find optimal covariates for soil mapping (Zeraatpisheh et 

al., 2022, Behrens et al., 2010, Lacoste et al., 2016). Hence, creating a better pedogenon map 

requires the selection of optimal covariates. 

The second recommendation is on the sampling design and the number and location of soil 

sampling points. Soil samples should cover the whole area, and the limitation of the current 

design is that the sampling points did not cover the whole study area. Hence, the design of the 

sampling point with the information of the pedogenon classes and land use should be 
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considered carefully due to the high cost of each soil sampling trip. Many papers also explained 

and concluded that the design of a soil survey scheme is critical in the first step of the digital 

soil mapping technique (Domburg et al., 1994, De Gruijter et al., 2006). However, in the field, 

one could be challenged with restricted access to specific sites, and thus the issue of sample 

alternatives should be considered.  

The third recommendation is to collect information on land use history. The limitation of using 

satellite time series information is that the human-induced land degradation might have taken 

place prior to the availability of remote sensing imagery. When available, historical land use 

maps and aerial photographs will inform on land use changes that might have taken place 

before the availability of remote sensing imagery. The history of land use, crop types, and how 

long and often they were cultivated are essential to consider when mapping such diverse areas. 

This information with the land use data can support deciding the soil sampling points in each 

pedogenon class. The decision of sampling points in this study was based only pedogenon and 

land use data. With extra information on land use history, more areas of phenosoils can be 

stratified and represent different degrees of human influences. Moreover, the information on 

land use history can be essential data for data interpretation. For example, Chapter 3 shows that 

certain pedogenons have large SOC change, but without detailed land use history data, it is 

challenging to find the specific reason.  

The fourth recommendation is the combination of pedogenon mapping and process-based 

modelling for soil function evaluation. Process-based models can be utilised to capture the 

unique interactions among climate, soil, and land management and their impacts on soil 

functions, thus helping to quantify the value of soils. Scenario modelling can also be used to 

forecast soil functions under different cropping systems, management, and climates across 

pedogenons.  
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