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Abstract

Federated learning is an emerging distributed machine learning framework that jointly

trains a global model via a large number of local devices with data privacy protections.

Its performance suffers from the non-vanishing biases introduced by the local inconsistent

optimal and the rugged client-drifts by the local over-fitting. In this thesis, we propose two

novel and practical methods, FedSpeed and its variant FedSpeed-Ing, to alleviate the negative

impacts posed by these problems. Concretely, FedSpeed applies the prox-correction term

on the current local updates to efficiently reduce the biases introduced by the prox-term, a

necessary regularizer to maintain strong local consistency. Furthermore, FedSpeed merges the

vanilla stochastic gradient with a perturbation computed from an extra gradient ascent step

in the neighborhood, thereby alleviating the issue of local over-fitting. Then, we introduce

two inertial momenta on the global update as the FedSpeed-Ing method, which could further

improve the optimization speed. Our theoretical analysis indicates that the convergence rate

is related to both the communication rounds 𝑇 and local intervals 𝐾 with an upper bound

O(1/𝑇) if setting a proper local interval. Moreover, we conduct extensive experiments on the

real-world dataset to demonstrate the efficiency of the proposed FedSpeed, which performs

significantly faster and achieves the state-of-the-art (SOTA) performance on the general FL

experimental settings than several baselines including FedAvg, FedProx, FedCM, FedAdam,

SCAFFOLD, FedDyn, FedADMM, etc.
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CHAPTER 1

Introduction

1.1 Background

Since the introduction of deep neural networks in 2006, coupled with the considerable

improvement in algorithms and computing power in recent years, and the massive amount

of information data under the big data cloud model, artificial intelligence has ushered in a

very golden period of improvement. For example, in alpha-go, the model used a total of 0.3

million game records as training data, successfully learned the characteristics and skills of

Go, and then defeated the ranked No.1 human players in the world. We can see the great

potential of artificial intelligence in the field of deep learning, and we are yearning for artificial

intelligence technology to be applied to serve our lives.

The great success of alpha-go makes people naturally hope that this kind of big data-driven

artificial intelligence can blossom and bear in all walks of daily life. But the current overall

situation is not as optimistic as expected in our view. Except for a limited number of industries,

such as computer vision, natural language process, and voice signal processing, there is a

tough problem of poor data quality in other fields, e.g. for the radioactive medical data

for the specific malignant disease and the structure and properties handled by some rare

chemical elements. Data constraints the further development of deep learning. Therefore,

most industries still cannot get the wide support of artificial intelligence. The data of most

applications still require extensive manual annotation, and the fault tolerance is very high.

Because the contents of the data samples are so difficult, empiricism often cannot guarantee

the reliability of this kind of dataset. And people who can provide such data annotations are

very unique, and there is even a high probability that they need to be the best in the industry
1



2 1 INTRODUCTION

for decades. Including various topics of the medical team, most people can’t serve this kind

of difficult dataset. At the same time, the data format varies in some fields. A special learning

theory is needed to deal with the problems that arise in the specific field.

On the other hand, with the further development of big data, emphasis on data privacy and

security has become a worldwide trend. Every leak of public data will cause a huge or even

catastrophic information collapse. At present, all walks of life are strengthening protection

measures for data security. Studies have shown that data breaches usually do not occur on

the client side of data usage. Because before using the window, the data has gone through a

lot of unprotected interactions and communications. This unreliable path brings huge holes

in the dataset. This has a major impact on the reliability of artificial intelligence. If data

privacy cannot be guaranteed, it means that much private data cannot be applied with these

technologies. Therefore, in the process of data exchange with the third-party, how to achieve

privacy protection and deal with data loss and theft attacks has become a technology that must

be considered in AI.

To solve the big data dilemma, the bottleneck has appeared only by traditional methods.

Firstly, the user is the owner of the original data, and the data cannot be exchanged between

companies without the user’s approval. Secondly, the purpose of data modeling cannot be

changed until the user agrees to it. Therefore, the data storage model should be a closed

system, and the right of the interaction process should be entrusted to the user to execute.

However, users cannot give instructions for use all the time, because the speed of data

interaction is much higher than our imagination. Therefore, under this premise, the interaction

with the data gradually transforms into the interaction with the upper model. If the two data

can be mutually assisted, then the interaction between the model is established to improve

the performance of the joint data, and its efficiency is higher than the transmission of the

original data. At the same time, the model has a certain degree of concealment. In general,

we cannot pass the model directly or the original data. It can also be simply understood that

the model parameter dimension is generally much lower than the data parameter dimension,

so the model is more similar to the embedding of a data feature rather than the data itself.
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1.2 Federated Learning (FL)

1.2.1 Framework

How to design a machine learning framework under the premise of meeting data privacy,

security, and regulatory requirements, so that artificial intelligence can work together with

local private data to solve a public problem more efficiently and accurately is an important

topic in the current development of artificial intelligence. To shift the focus of research to

how to solve the problem of data islands, we explored a feasible solution that satisfies privacy

protection and data security, that is, federated learning. It has the following characteristics:

• 1) Local private data are kept without sharing, and no privacy has been disclosed

neither in-laws nor in regulations, which are always violated.

• 2) A system in which multiple participants jointly establish a virtual shared model

and obtain benefits together, which is the single target for local clients.

• 3) Ultimate goals and training effects are aligned with distributed training, which

means the separate dataset training and concentrated data training should be consist-

ent in performance and efficiency.

• 4) Without mutual local data access rights, only information fusion is achieved at

the model level or other privacy protection level.

As the underlying technology of AI development, federated learning will continue to promote

innovation and leaps in global AI technology by relying on safe and reliable data protection

measures.

With the increase of data privatization and localization requirements in practical applications,

the implementation of Federated Learning (FL) has gradually become one of the most

economic and efficient methods to protect local privacy without accessing root among the

edge devices. It is a distributed approach for collaboratively training the global server model
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with the decentralized dataset located on the local clients. The global server will handle the

training process by communicating with the local nodes to optimize the joint ultimate target.

FL uses the computing power of edge nodes to improve the overall training efficiency. In this

setting, the communication efficiency, the data heterogeneity drifts, and the compatibility with

privacy are the three main issues that limit the development of FL, especially in large-scale

training frameworks. In addition, in real-world scenarios, people also should pay more

attention to many systemic issues, requirements, and other constraints that are missed in

theoretical analysis.

Since (McMahan et al. 2017b) proposed federated learning (FL), it has gradually evolved into

an efficient paradigm for large-scale distributed training. Different from the traditional deep

learning methods, FL allows multi-local clients to jointly train a single global model without

data sharing. Generally, the size of a local client’s cluster is hundreds or even thousands.

As a distributed data crossing-silo framework, the most important concern is to reduce the

communication costs in the training process, which is traced to communication efficiency.

However, FL is far from its maturity, as it still suffers from considerable performance

degradation over the heterogeneously distributed data, a very common setting in the practical

application of FL.

1.2.2 Main Challenges

We recognize the main culprit leading to the performance degradation of FL as local incon-

sistency and local heterogeneous over-fitting. Specifically, for canonical local-SGD-based

FL method, e.g., FedAvg, the non-vanishing biases introduced by the local updates may

eventually lead to an inconsistent local solution. Then, the rugged client drifts resulting

from the local over-fitting into inconsistent local solutions may make the obtained global

model degrade into the average of the client’s local parameters. The non-vanishing biases

have been studied by several previous works (Charles and Konečny 2021; Malinovskiy et al.

2020) in different forms. The inconsistency due to the local heterogeneous data will com-

promise the global convergence during the training process. Eventually, it leads to serious

client-drifts which can be formulated as x∗ ≠
∑
𝑖∈[𝑚] x∗

𝑖
/𝑚. Larger data heterogeneity may
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enlarge the drifts, thereby degrading the practical training convergence rate and generalization

performance.

Here we further explain the terms local inconsistency and local heterogeneous over-fitting.

local inconsistency measures the distance between the global model and local models. If the

distance is too large, the performance of the average in FL will become very weak. It could

be bounded by the variance of the local models to measure the level of inconsistency. local

heterogeneous over-fitting measure the level of local training. It is usually highly related to

the length of the local interval. If we select a large local interval, the local client may overfit

on its own dataset which will dramatically affect the global performance.

Though adaptive optimizers on the FL system exhibit amazing performance and excellent

potential in practical FL applications, there are still daunting challenges in training practical

non-convex deep network scenarios. Our experiments indicate that the global adaptive

optimizer harms convergence speed, which is much slower than SGD-based algorithms.

Inaccurate gradient estimation from local clients’ differences introduces a larger variance

in the calculation of second-order momenta and leads to instability of the training process.

Local adaptive optimizer that effectively improves the convergence speed suffers from the

negative implication of significant over-fitting. A heterogeneous dataset yields huge gaps

between aggregated local optimum and global optimum as the client drifts. Therefore, the

local heterogeneous dataset causes the unsatisfactory performance of the global model. In

federated deep model training, we empirically reveal the lower generalization problem caused

by local over-fitting of directly applying the local adaptive optimizer compared to SGD-based

algorithms. Furthermore, we introduce two inertial momenta on the global update as the

FedSpeed-Ing method, which could further improve the optimization speed.

1.3 Contributions

To strengthen the local consistency during the local training process, and avoid the client

drifts resulting from the local over-fitting, we propose a novel and practical algorithm, dubbed

as FedSpeed, and an efficient variant FedSpeed-Ing. Notably, FedSpeed incorporates two
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novel components to achieve SOTA performance. i) Firstly, FedSpeed inherits a penalized

prox-term to force the local offset to be closer to the initial point at each communication

round. However, recognized from (Hanzely and Richtárik 2020; Khaled et al. 2019) that the

prox-term between global and local solutions may introduce undesirable local training bias,

we propose and utilize a prox-correction term to counteract the adverse impact. Indeed, in

our theoretical analysis, the implication of the prox-correction term could be considered as a

momentum-based term of the weighted local gradients. Via utilizing the historical gradient

information, the bias brought by the prox-term can be effectively corrected. ii) Secondly, to

avoid the rugged local over-fitting, FedSpeed incorporates a local gradient perturbation by

merging the vanilla stochastic gradient with an extra gradient, which can be viewed as taking

an extra gradient ascent step for each local update. Based on the analysis in (Zhao et al. 2022;

Hoeven 2020), we demonstrate that the gradient perturbation term could be approximated

as adding a penalized squared 𝐿2-norm of the stochastic gradients to the original objective

function, which can efficiently search for the flatten local minima (Andriushchenko and

Flammarion 2021) to prevent the local over-fitting problems.

We also provide the theoretical analysis of the proposed FedSpeed and further demonstrate

that its convergence rate could be accelerated by setting an appropriate large local interval

𝐾. Explicitly, under the non-convex and smooth cases, FedSpeed with an extra gradient

perturbation could achieve the fast convergence rate of O(1/𝑇), which indicates that FedSpeed

achieves a tighter upper bound with a proper local interval 𝐾 to converge, without applying a

specific global learning rate or assuming the precision for the local solutions (Acar et al. 2021;

Wang et al. 2022). Extensive experiments are tested on CIFAR-10/100 and TinyImagenet

dataset with a standard ResNet-18-GN network under the different heterogeneous settings,

which shows that our proposed FedSpeed is significantly better than several baselines, e.g. for

FedAvg, FedProx, FedCM, FedPD, SCAFFOLD, FedDyn, on both the stability to enlarge the

local interval 𝐾 and the test generalization performance in the actual training.

In the end, we summarize the main contributions as follows:

• We propose two novel and practical federated optimization algorithms, FedSpeed

and FedSpeed-Ing, which apply a prox-correction term to significantly reduce the
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bias due to the local updates of the prox-term, and an extra gradient perturbation

to efficiently avoid the local over-fitting. FedSpeed achieves a fast convergence

with large local steps and simultaneously maintains high generalization performance.

FedSpeed-Ing further uses two inertial momenta to accelerate the optimization

speed and achieves higher training efficiency.

• We provide the convergence rate upper bound under the non-convex and smooth

cases and prove that FedSpeed could achieve a fast convergence rate of O(1/𝑇) via

enlarging the local training interval 𝐾 = O(𝑇) without any other harsh assumptions

or the specific conditions required.

• Extensive experiments are conducted on the CIFAR-10/100 and TinyImagenet data-

set to verify the performance of our proposed FedSpeed. To the best of our interests,

both convergence speed and generalization performance could achieve the SOTA res-

ults under the general federated settings. FedSpeed could outperform other baselines

and be more robust in the case of enlarging the local interval.



CHAPTER 2

Literature review

2.1 Federated Learning Framework

Since (McMahan et al. 2017a) firstly propose the federated framework – FedAvg algorithm, to

further address the major challenges in the communication costs and the local heterogeneity

on the dataset with the fully theoretical analysis (Yang et al. 2021a; Li et al. 2020d; Lin

et al. 2020) on the proof of linear speedup property with the large scaled cluster. Several

stochastic gradient descent based methods are proposed to implement the federated training

process. (Li et al. 2020c) introduce the FedProx algorithm to tackle the local heterogeneity

through adopting a proximal term to handle the difference in the local training. Inspired by the

excellent effects of variance reduction techniques in stochastic optimization, (Karimireddy et

al. 2020b) propose a VR-type method which applies the SVRG (Johnson and Zhang 2013) to

alleviate the local client drifts. (Zhang et al. 2021) incorporate the Primal-Dual based method

in the training to fix different levels of local heterogeneity and achieve the true global optimal.

FedNova (Wang et al. 2020b) perform different local steps on asynchronous aggregation

settings and averages the normalized local offset to merge the scaled parameters. (Acar et al.

2021) pay attention on the local consistency and propose the FedDyn method which forces

the local objective optimal close to the global optimal. (Yu et al. 2019a) propose to improve

the local efficiency of the parallel restarted momentum at the first iteration during each epoch.

(Wang et al. 2020a) introduce the Slow-Mo method, which applies the global momentum

update to yield smaller gaps between the optimization and generalization performance. (Xu

et al. 2021; Ozfatura et al. 2021) both apply the averaged quasi global gradient as a client-level

momentum term to approach better performance. Usually the general federated optimization
8
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involves a local client training stage and a global server aggregation step (Asad et al. 2020)

and it has been proved to achieve the linear speedup property in (Yang et al. 2021b) even under

the partial participation case. With the fast development of the federated learning framework,

a series of powerful methods are adopt in the both local and global nodes. Both (Li et al.

2020b) and (Kairouz et al. 2021) draw a detailed overview in this field. However, there are

still many problems to be solved in the real-world scenarios and limitations in the federated

learning system (Li et al. 2020a; Yang et al. 2019; Konečny et al. 2016; Liu et al. 2022).

2.2 Optimizer Development in FL

Adaptive Optimizer. Adaptive methods in FL greatly benefit from the adaptivity on the

heterogeneous dataset. (Duchi et al. 2011; McMahan and Streeter 2010; Kingma and Ba

2015; Li and Orabona 2019; Wu et al. 2019) study several adaptive methods on non-FL

settings. A lot of powerful variants are proposed including Adagrad (Duchi et al. 2011),

Adadelta (Zeiler 2012), Adam (Kingma and Ba 2015), Amsgrad (Reddi et al. 2018) and

Nadam, etc. To be adapted to different tasks. adaptive methods have achieved more excellent

empirical performance than SGD. (Reddi et al. 2021) incorporate adaptive optimizer on the

global server in FL framework to accelerate the convergence speed in deep network training.

(Xie et al. 2019) apply the AdaAlter optimizer on the local clients with the lazily updated

denominators. (Chen et al. 2020a) indicate the second-order momenta of local Amsgrad

must be averaged to avoid divergence in training process. (Wang et al. 2021b) prove the

inconsistency leads to non-vanishing gaps in a toy quadratic example and update the global

model by averaging the inverse of the local pre-conditioner matrices. Compared with these

works, our proposed method benefits from the fast convergence speed of local adaptive

optimizer and takes advantage of local amended technique to mitigate over-fitting on non-𝑖𝑖𝑑

dataset.

Regularized Term. An efficient way is to adopt the regularization term on the local training

process to correct the local objective function, which can achieve the global optimal via a

two-staged optimization. (Li et al. 2020c) employs a local proxy function in the training
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process and averaged aggregation on the global server. (Pham et al. 2021) introduce the

FedDR method with a Douglas-Rachford splitting way to alleviate the drift. (Zhang et al.

2021) use the primal-dual algorithm in the federated system, and (Acar et al. 2021) make a

progress on the FedPD to improve a partial merged parameters method with the full merged

dual variables in the global server, named FedDyn, which achieves the SOTA results in the

regularization baselines. (Wang et al. 2022; Gong et al. 2022) use the alternating direction

method of multipliers in the total training process as a extension of the federated primal-dual

methods. (Fallah et al. 2020) put forward a personalized federated learning (pFL) framework

with the regularization to achieve a better generalization performance. (T Dinh et al. 2020)

incorporate the Moreau-Envelope technique in the local training with a stage-wised proxy

function to update. (Huang et al. 2021) propose an adaptive parameters for the regularization

term to encourage the local devices to aggregate more within the similar neighbourhoods.

The efficient regularization-based methods are very important and efficient in the FL field,

which allows the faster convergence rate than SGD-based methods.

Momentum-based Term. Inspired by the success of the global correction technique, the

exponential moving average term is introduced to federated learning framework to correct the

local training. (Liu et al. 2020) adopts the momentum-SGD to the local clients to improve

the generalization performance with a convergence analysis. (Wang et al. 2020a) proposes a

global momentum method to further improve the stability in the server side. (Xu et al. 2021)

incorporate the global offset to the local client as a client-level momentum to correct the

heterogeneous drifts. (Ozfatura et al. 2021) combine the global and local momentum update

and propose the FedADC algorithm to avoid the local over-fitting. (Reddi et al. 2021) sets

a global ADAM optimizer with the momentum update and propose the adaptive federated

optimizer in the FL. (Wang et al. 2021a) corrects the pre-conditioner in the global server.

Though momentum terms are the biased estimation of global information, they still contribute

a lot to the federated frameworks in practical empirical experiments.

VR-based Term. Motivated by the success of VR-techniques in the stochastic local training,

several methods are proposed to reduce the heterogeneous inconsistency, which efficiently

avoid the local client-drift theoretically. (Karimireddy et al. 2020b) use the SVRG control
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variants to correct the heterogeneous offset in the local updates. (Karimireddy et al. 2020a)

implement a combination of the local controller and global correction optimizer in each

communication round to ensure the local model mimics a centralized or distributed method.

(Mitra et al. 2021) propose a global gradient correction term in the local training steps which

exploits much of memory in the practical applications. (Murata and Suzuki 2021) incorporate

the small second-order heterogeneity of local objectives and suggests randomly picking up one

of the local models instead of taking the average of them when clients are synchronized, which

can improve the efficiency and reduce the communication costs. (Zhao et al. 2021a) applies

the vanilla local SGD update with a little correction with a sampling probability defined

manually. (Zhao et al. 2021b) addresses the compression by proposing the compressed VR

methods with a error feedback variant.

2.3 Main Challenges in Optimization

Local consistency. (Li et al. 2020c) study the non-vanishing biases of the inconsistent solution

in the experiments and apply a prox-term regularization, an extra penalized 𝐿2-norm term

on local updates to force the local solution be close to the initial point at round 𝑡. FedProx

utilizes the bounded local updates by penalizing parameters to provide a good guarantee

of consistency. (Charles and Konečny 2021; Malinovskiy et al. 2020) show that the local

learning rate decay can balance the trade-off between the convergence rate and the local

inconsistency with the rate of O(𝜂𝑙 (𝐾 − 1)). Furthermore, (Wang et al. 2021a; Wang et al.

2020c) through a simple counterexample to show that using adaptive optimizer or different

hyper-parameters on local clients leads to an additional gaps. They propose a local correction

technique to alleviate the biases. (Wang et al. 2020b; Tan et al. 2022) consider the different

local settings and prove that in the case of asynchronous aggregation, the inconsistency bias

will no longer be eliminated by local learning rate decay. They propose a novel aggregation

method FedNova to weighted each local offset instead of the model parameters. (Zhang

et al. 2021) apply the primal dual method instead of the primal method to solve a series of

sub-problems on the local clients and alternately updates the primal and dual variables which

can achieve the fast convergence rate of O( 1
𝑇
) with the local solution precision assumption.
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Based on FedPD, (Acar et al. 2021) propose FedDyn as a variants via averaging all the dual

variables (the average quantity can then be viewed as the global gradient) under the partial

participation settings, which can also achieve the same O( 1
𝑇
) under the assumption that exact

local solution can be found by the local optimizer. (Wang et al. 2022; Gong et al. 2022)

propose two other variants to apply different dual variable aggregation strategies under partial

participation settings. These methods benefit from applying the prox-term (Li et al. 2019;

Chen and Chao 2020) or higher efficient optimization methods (Bischoff et al. 2021; Yang

et al. 2022) to control the local consistency.

Client-drifts. (Karimireddy et al. 2020b) firstly demonstrate the client-drifts for federated

learning framework to indicate the negative impact on the global model when each local

client over-fits to the local heterogeneous dataset. They propose SCAFFOLD via a variance

reduction technique to mitigate this drifts. (Yu et al. 2019b) and (Wang et al. 2020a) introduce

the momentum instead of the gradient to the local and global update respectively to improve

the generalization performance. To maintain the property of consistency, (Xu et al. 2021)

propose a novel client-level momentum term to improve the local training process. (Ozfatura

et al. 2021) incorporate the client-level momentum with local momentum to further control

the biases. In recent (Gao et al. 2022; Kim et al. 2022), they propose a drift correction term as

a penalized loss on the original local objective functions with a global gradient estimation.

(Chen et al. 2020b) and (Chen et al. 2021) focus on the adaptive method to alleviate the biases

and improve the efficiency.



CHAPTER 3

Methods

In this section, we will introduce the proposed methods in details. We firstly define the

problem setups and preliminaries in the next part. In section 3.2, we will introduce the

baseline of FedAvg framework. In section 3.3, we will introduce the design of our proposed

FedSpeed and its variant FedSpeed-Ing method in details, including the motivation, the

insights and the improvement of different modules designed. We will reveal the connection

with the previous proposed method and analyze their difference compared with the baselines.

In section 3.4, we discuss the insights of the proposed FedSpeed and its improvement in

details. In section 3.5, we provide the theoretical analysis of the proposed FedSpeed, and

more details can be referred to the Appendix.

3.1 Problem Setups and Preliminary

We consider the most common and fundamental non-convex minimization problem which is

widely used in the practical applications. We consider that the non-convex objective 𝐹 is a

finite-sum problem with several local objective function 𝐹𝑖 as the follows:

𝐹 (x) B E𝑖∼P [𝐹𝑖 (x)], (3.1)

𝐹𝑖 (x) B E𝜉∼D𝑖
[𝐹𝑖 (𝑥, 𝜉)] (3.2)

where 𝑥 ∈ R𝑑 represents for the global parameters, 𝐹 : R𝑑 → R denotes the global objective

function consisting of a bunch of sub-objective function 𝐹𝑖, 𝑖 denotes the index of the client

devices participating in the optimization and P denotes a distribution on the population of

clients set, 𝐹𝑖 : R𝑑 → R denotes the sub-objective function which can be applied as a local
13
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loss function 𝐹𝑖 and they are often the same across all the clients, 𝜉 denotes the training dataset

with the specific distribution D𝑖, usually in FL problems we consider the data heterogeneity.

Due to the physical limitation in the federated framework, the designed algorithms can

not directly compute 𝐹 (x) or ∇𝐹 (x) on one local client without the full communication

connection to the other nodes. It set a leader/central client to exchange the information to the

other clients by all-accessing network. This paradigm build a huge community through the

central node, which possesses strong performance and convergence guarantee. However, by

the centralized processing of large amounts of data, the central node will naturally be tired

with greater pressure when calculating or communicating. To overcome this, compressing

the transferring information and reducing the communication rounds is one of the important

target in FL, which greatly reduces the data pressure of a single node and provides a more

flexible and efficient solution.

In practical application, for higher efficiency the clients are usually accessed in a random

sample S in each communication round. The objective function 𝐹 (x) can be analyzed as a

mathematical object and such algorithms are even numerically calculated as part of empirical

evaluation in simulations procedures. If the total dataset are fixed in the whole optimization,

to approximate the population risk in (3.1), the selection of S in each round generates errors.

On the condition of blind view to the local dataset, local training gaps between clients in S are

unpredictable. Usually if we ignore the potential error, we often use a weighted sum function

to approximate. In this "cross-silo" setting, the objective function can take the form of the

empirical risk minimization(ERM) with finite clients and each client has finite local data,

𝐹 (x) B
𝑀∑︁
𝑖=1

𝑝𝑖𝐹𝑖 (x) (3.3)

𝐹𝑖 (x) B
1
|D𝑖 |

∑︁
𝜉∈Di

𝐹𝑖 (𝑥, 𝜉) (3.4)

where 𝑀 is the number of clients and 𝑝𝑖 is the weight of client 𝑖. Usually we consider the

weight as 𝑝𝑖 = |D𝑖 |/
∑𝑀
𝑖=1 |D𝑖 |, where D𝑖 denotes the local dataset in client 𝑖 and |D𝑖 | denotes

the number of the local dataset. It is equal to Equation (3.1) in expectation with a randomly

sampled clients set with the union of the dataset of the selected devices.
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3.2 FedAvg Method

Algorithm 1 FedAvg Algorithm
Input: Initial x0, local learning rate 𝜂𝑡 , global learning rate 𝜂𝑔, round 𝑇 , local iteration 𝐾
Output: x𝑇

1: for t ∈ {0, 1, 2, · · · , 𝑇 − 1} do
2: for client i in S (𝑡) parallel do
3: communicate x𝑡 to client i and set x𝑡

𝑖,0 = x𝑡
4: for 𝑘 ∈ {0, 1, 2, · · · , 𝐾 − 1} do
5: compute local stochastic gradient g𝑡

𝑖,𝑘

6: x𝑡
𝑖,𝑘+1 = x𝑡

𝑖,𝑘
− 𝜂𝑡g𝑡𝑖,𝑘

7: end for
8: communicate Δ𝑡

𝑖
= x𝑡

𝑖,𝐾
− x𝑡

𝑖,0 to the server
9: end for

10: Δ𝑡 = 1
𝐾𝜂𝑡

∑
𝑖∈S (𝑡) 𝑝𝑖Δ

𝑡
𝑖

11: x𝑡+1 = x𝑡 − 𝜂𝑔Δ𝑡
12: end for

Based on local-SGD algorithms, the basic method in FL problems is directly to apply the

local-SGD with partial participation strategy — FedAvg(McMahan et al. 2017b). It is a rough

estimate baseline which divides the training into two stages, local training and aggregation.

At the first stage in round 𝑡, it randomly select the active devices set S (𝑡) , the central server

broadcasts the current global model parameters x(𝑡) to users in S (𝑡) . Each active user sets

x𝑡
𝑖,0 = x(𝑡) as initial point for training. After 𝑘 local SGD updates, local user sends the x𝑡

𝑖,𝑘
back

to the server. The second stage is to aggregate the parameters. According to the definition in

Equation (3.3), ignoring the local training gaps, the server can aggregated the parameters as:

x𝑡+1 =

∑
𝑖∈S (𝑡) 𝑝𝑖x𝑡𝑖,𝑘∑
𝑖∈S (𝑡) 𝑝𝑖

(3.5)

Another description on some recent works will consider the two stage as two separate

optimizers — Client-Opt and Server-Opt. They transfer the model parameters as initial point

to each other, and finish the training stage alternately. It should be clear that there are no

dataset on the server node. Server training often use the minus mean average of the local

change as a virtual gradient (some called pseudo-gradient) : g B −∑
𝑖∈S (𝑡) 𝑝𝑖Δ

𝑡
𝑖
/𝑘𝜂𝑡 , where

Δ𝑡
𝑖
= x𝑡

𝑖,𝑘
− x𝑡

𝑖,0. Thus, they are equivalent when setting 𝜂𝑔 = 𝐾𝜂𝑡 .
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The main researches focus on the problems mentioned above. Usually the topic includes

"Fast, More precise and Minimum cost". FL could be applied to solve a lot of cooperative

learning problems. In practical applications, we need to make reasonable assumptions for

different settings. Due to the privacy limitation we always do not expect that the local client

maintain high frequency of interactions. Sometimes it is also thought of as a resources

limitations. It is hard for a huge system to ask all the clients to participate in training stage.

At the same time, we expect less history information when aggregating. Historical redundant

information does not effectively help server for training, even sometimes it causes gradient

confusion. It is difficult to guarantee convergence when models in different training stages

are aggregating. This will also cause time series problems. In practice, for example, there are

physical differences between machines and some clients are powerful calculating but some

are "tiny" machine. Some works also call it a asynchronous updating. Thus, when we try to

optimize a big model with a large number of local users and their larger local dataset, it is

core to reduce the costs as possible as we can. It can be thought of a trade-off in accuracy and

training costs.

Communication Efficiency To reduce costs in FL training, practical FL focus on how to

reduce the communication. The communication cost usually involves the frequency, the

matrix information. After total 𝑇 iterations, if the local stage is 𝐾, we have the relation of

round 𝑟 = 𝑇/𝐾. A measure of the communication cost of an algorithm could be defined as

𝑉 ∗ 𝑟 , where 𝑉 is the total numbers of the parameters. The key to reduce costs is to enlarge 𝐾

and compress 𝑉 as possible as it can.

Increasing the local interval 𝐾 , which means a longer local training stage will be applied in

local clients. This introduces error to optimal. Even some extremely strict works indicate that

one-step FL will converge in some specific settings. However, facing to the most tasks, it is

nearly impossible to approach the global optimal through one local training stage. Some recent

studies show that there is an additional noise term in the optimizing process. Although it can

be ignored when using a decay schedule on step size. It is usually a constant item controlled

by 𝜂. While the performance will be improved, it can make the analysis on convergence much

more difficult. Considering the heterogeneity of the dataset, many works indicate that the
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error usually erupts and sometimes it could be a constant error which can not be ameliorated

without some new techniques. Thus, it is a trade-off between error and communication costs

and convergence rate. When using a larger 𝑘 , r could be reduced and error will increase as

growing. In practical, best local intervals could be thought of as a optional parameters.

Another method is to enlarge the batchsize. Many works has focused on the researches

whether local or mini-batch algorithms contribute more for FL optimizations(Woodworth

et al. 2020b)(Woodworth et al. 2020a)(Stich 2018). The current experimental results cannot

give an absolutely affirmative answer. Although we will not strictly discuss the relationship

between these in the training processes, they do have a certain similarity.

3.3 FedSpeed and FedSpeed-Ing Methods

3.3.1 FedSpeed

In this part, we will introduce our proposed method to alleviate the negative impact of the

heterogeneous data and reduces the communication rounds. We are inspired by the dynamic

regularization (Acar et al. 2021) for the local updates to eliminate the client drifts when 𝑇

approaches infinite.

Our proposed FedSpeed is shown in Algorithm 2. At the beginning of each round 𝑡, a subset

of clients S𝑡 are required to participate in the current training process. The global server will

communicate the parameters x𝑡 to the active clients for local training. Each active local client

performs three stages: (1) computing the unbiased stochastic gradient g𝑡
𝑖,𝑘,1 = ∇𝐹𝑖 (x𝑡𝑖,𝑘 ; 𝜀

𝑡
𝑖,𝑘
)

with a randomly sampled mini-batch data 𝜀𝑡
𝑖,𝑘

and executing a gradient ascent step in the

neighbourhood to approach x̆𝑡
𝑖,𝑘

; (2) computing the unbiased stochastic gradient g𝑡
𝑖,𝑘,2 with the

same sampled mini-batch data in (1) at the x̆𝑡
𝑖,𝑘

and merging the g𝑡
𝑖,𝑘,1 with g𝑡

𝑖,𝑘,2 to introduce

a basic perturbation to the vanilla descent direction; (3) executing the gradient descent step

with the merged quasi-gradient g̃𝑡
𝑖,𝑘

, the prox-term ∥x𝑡
𝑖,𝑘

− x𝑡 ∥2 and the local prox-correction

term ĝ𝑡−1
𝑖

. After 𝐾 iterations local training, prox-correction term ĝ𝑡−1
𝑖

will be updated as the

weighted sum of the current local offset (x𝑡
𝑖,𝐾

− x𝑡
𝑖,0) and the historical offsets momentum.
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Algorithm 2 FedSpeed Algorithm

Input: model parameters x0, total communication rounds 𝑇 , local gradient controller ĝ−1
𝑖

= 0,
penalized weight 𝜆.

Output: model parameters x𝑇 .
1: for 𝑡 = 0, 1, 2, · · · , 𝑇 − 1 do
2: select active clients-set S𝑡 at round 𝑡
3: for client 𝑖 ∈ S𝑡 parallel do
4: communicate x𝑡 to local client 𝑖 and set x𝑡

𝑖,0 = x𝑡
5: for 𝑘 = 0, 1, 2, · · · , 𝐾 − 1 do
6: sample a minibatch 𝜀𝑡

𝑖,𝑘
and do

7: compute unbiased stochastic gradient: g𝑡
𝑖,𝑘,1 = ∇𝐹𝑖 (x𝑡𝑖,𝑘 ; 𝜀

𝑡
𝑖,𝑘
)

8: update the extra step: x̆𝑡
𝑖,𝑘

= x𝑡
𝑖,𝑘

+ 𝜌g𝑡
𝑖,𝑘,1

9: compute unbiased stochastic gradient: g𝑡
𝑖,𝑘,2 = ∇𝐹𝑖 (x̆𝑡𝑖,𝑘 ; 𝜀

𝑡
𝑖,𝑘
)

10: compute quasi-gradient: g̃𝑡
𝑖,𝑘

= (1 − 𝛼)g𝑡
𝑖,𝑘,1 + 𝛼g𝑡

𝑖,𝑘,2
11: update the gradient descent step: x𝑡

𝑖,𝑘+1 = x𝑡
𝑖,𝑘

− 𝜂𝑙
(
g̃𝑡
𝑖,𝑘

− ĝ𝑡−1
𝑖

+ 1
𝜆
(x𝑡
𝑖,𝑘

− x𝑡)
)

12: end for
13: ĝ𝑡

𝑖
= ĝ𝑡−1

𝑖
− 1
𝜆
(x𝑡
𝑖,𝐾

− x𝑡)
14: communicate x̂𝑡

𝑖
= x𝑡

𝑖,𝐾
− 𝜆ĝ𝑡

𝑖
to the global server

15: end for
16: x𝑡+1 = 1

𝑆

∑
𝑖∈S𝑡 x̂𝑡

𝑖

17: end for

Then we communicate the amended model parameters x̂𝑡
𝑖
= x𝑡

𝑖,𝐾
− 𝜆ĝ𝑡

𝑖
to the global server for

aggregation. On the global server, a simple average aggregation is applied to generate the

current global model parameters x𝑡+1 at round 𝑡.

Prox term. In vanilla Fedavg and some other 𝑆𝐺𝐷-based algorithms, on the local client

we perform many steps of local update at each round. The theoretical analysis shows the

clear relationship of the longer local steps are, the greater the impact of heterogeneity is.

While more local iterations will reduce the communication costs, it is still a trade-off between

performance and efficiency. It always incur some extra errors at each aggregation stages

compared with the vanilla 𝑆𝐺𝐷. At the same, more local steps will force the local client

converge to the local optimal of the local objectives, which is always far away from the

global optimal. In order to avoid the client drifts, a naturally idea is to penalize the local

models that are not far away from the global models parameters by a regularization item

between local and global parameters. The prox term ∥x𝑡
𝑖,𝑘

− x𝑡 ∥2 is designed to reduce the

local client drifts caused by the different local optimal in the FedProx, which is a federated
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optimization algorithm that addresses the challenges of heterogeneity dataset both theoretically

and empirically. The key inspiration in developing FedProx is that an interplay exists between

systems and statistical heterogeneity in federated learning. It approximates the global optimal

by approximate a 𝛾-inexact solution of the prox function 𝐹̂𝑖 (x). For a function 𝐹̂𝑖 (x), it is

said that x̂∗ is a 𝛾-inexact solution if | |∇𝐹̂𝑖 (x̂∗, x0) | | ≤ 𝛾 | |∇𝐹𝑖 (x0, x0) | | for the proxy. It can

be used for measuring the amount of local computation of each local iterations at each round.

Thus, the federated learning problems are divided into different sub-problems in each client.

Some early works indicate that it is important to apply a changeable 𝛾 with the number of

iterations and local conditions. In the optimization theory, the 𝛾 will vanish to zero if the 𝐹̂

satisfy some conditions. The proximal point optimization will bring some new features if we

select a good weight 𝜆. It shares a connection with the averaged 𝑆𝐺𝐷, the method to train

the deep networks in the data center setting and use a similar proximal term in its objective.

Also it needs the bounded dissimilarity assumption in the theoretical analysis. It makes local

updates not too far away from the initial global model, and reduce the impact of non-𝑖𝑖𝑑 while

tolerating system heterogeneity. At the same time, the inexact solution is defined, through

the inaccurate solution of the local function, the number of local iterations is dynamically

adjusted to ensure the accuracy of heterogeneous systems.

Prox-correction term. In the general optimization, the prox-term ∥x𝑡
𝑖,𝑘

− x𝑡 ∥2 is a penalized

term for solving the non-smooth problems and it contributes to strengthen the local consistency

in the FL framework by introducing a penalized direction in the local updates as proposed in

(Li et al. 2020c). However, as discussed in (Hanzely and Richtárik 2020), it simply performs

as a balance between the local and global solutions, and there still exists the non-vanishing

inconsistent biases among the local solutions, i.e., the local solutions are still largely deviated

from each other, implying that local inconsistency is still not eliminated, which limits the

efficiency of the federated learning framework. From the optimization perspective of view, the

prox function do approach the optimal after a very long training process with a requirement of

exact solution of the local functions. However, in the practical applications, we can not finish

the enough guarantees on this condition. With a few updates, the local clients will approach a

mixed solution between local and global optimal which will play a negative impact on the

convergence.
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To further strengthen the local consistency, we utilize a prox-correction term ĝ𝑡
𝑖

which could be

considered as a previous local offset momentum. According to the local update, we combine

the x𝑡
𝑖,𝑘−1 term in the prox term and the local state, setting the weight as (1 − 𝜂𝑙

𝜆
) multiplied to

the basic local state. As shown in the local update in Algorithm 2 (Line.11), for ∀ x ∈ R𝑑 we

have:

x𝑡𝑖,𝐾 − x𝑡 = −𝛾𝜆
𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
g̃𝑡𝑖,𝑘 + 𝛾𝜆ĝ𝑡−1

𝑖 , (3.6)

where
∑𝐾−1
𝑘=0 𝛾𝑘 =

∑𝐾−1
𝑘=0

𝜂𝑙
𝜆

(
1 − 𝜂𝑙

𝜆

)𝐾−1−𝑘
= 𝛾.

Firstly let ĝ−1
𝑖

= 0, Equation (3.6) indicates that the local offset will be transferred to a

exponential average of previous local gradients when applying the prox-term, and the updated

formation of the local offset is independent of the local learning rate 𝜂𝑙 . This is different from

the vanilla SGD-based methods, e.g. FedAvg, which treats all local updates fairly. 𝛾𝑘 changes

the importance of the historical gradients. As 𝐾 increases, previous updates will be weakened

by exponential decay significantly for 𝜂𝑙 < 𝜆. Thus, we apply the prox-correction term to

balance the local offset. According to the iterative formula for ĝ𝑡
𝑖

(Line.13 in Algorithm 2)

and the equation (3.6), we can rewrite this update as:

ĝ𝑡𝑖 = (1 − 𝛾)ĝ𝑡−1
𝑖 + 𝛾

(𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
g̃𝑡𝑖,𝑘

)
, (3.7)

where 𝛾 and 𝛾𝑘 is defined the same as in Equation (3.6).

Note that ĝ𝑡
𝑖

performs as a momentum term of the historical local updates before round 𝑡,

which can be considered as a estimation of the local offset at round 𝑡. At each local iteration

𝑘 of round 𝑡, ĝ𝑡−1
𝑖

provides a correction for the local update to balance the impact of the

prox-term to enhance the contribution of those descent steps executed firstly at each local

stages. It should be noted that ĝ𝑡−1
𝑖

is different from the global momentum term mentioned in

(Wang et al. 2020a) which aggregates the average local updates to improve the generalization

performance. After the local training, it updates the current information. Then we subtract the

current ĝ𝑡
𝑖

from the local models x𝑡
𝑖,𝐾

to counteract the influence in the local stages. Finally it

sends the post-processed parameters x̂𝑡
𝑖,𝐾

to the global server.
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Gradient perturbation. Gradient perturbations significantly improves generalization for deep

models. An extra gradient ascent in the neighbourhood can effectively express the curvature

near the current parameters. Referring to the analysis in (Zhao et al. 2022), we show that the

quasi-gradient g̃, which merges the extra ascent step gradient and the vanilla gradient, could

be approximated as penalizing a square term of the 𝐿2-norm of the gradient on the original

function. On each local client to solve the stationary point of minx{𝐹𝑖 (x) + 𝛽∥∇𝐹𝑖 (x)∥2} can

search for a flat minima. Flatten loss landscapes will further mitigate the local inconsistency

due to the averaging aggregation on the global server on heterogeneous dataset.

We propose the gradient perturbation in the local training stage instead of the traditional

stochastic gradient, which merges an extra gradient ascent step to the vanilla gradient by

a hyper-parameter 𝛼. While its ascent step usually approximates the worst point in the

neighbourhood. This has been studied in many previous works, e.g. for the form of extra

gradient and the sharpness aware minimization. In our studies, we perform the extra gradient

ascent step instead of the descent step in extra gradient method. It also could be considered as

a variant of the sharpness aware minimization method via weighted averaging the ascent step

gradient and the vanilla gradient, instead of the normalized gradient. Here we illustrate the

implicit of this quasi-gradient g̃ in our proposed FedSpeed and explain the positive efficiency

for the local training from the perspective of objective functions.

Firstly we consider to minimize the non-convex problem 𝐿𝑝 (x). To approach the stationary

point of 𝐿𝑝, we can simply introduce a penalized gradient term as a extra loss in 𝐿𝑝, which

is to solve the problem minx{𝐿 (x) ≜ 𝐿𝑝 (x) + 𝛽

2 ∥∇𝐿𝑝 (x)∥
2}. The final optimization target

is consistent with the vanilla target, while penalizing gradient term can approach a flatten

minimal empirically. We compute the gradient form as follows:

∇𝐿 (x) = ∇𝐿𝑝 (x) +
𝛽

2
∇∥∇𝐿𝑝 (x)∥2 = ∇𝐿𝑝 (x) + 𝛽∇2𝐿𝑝 (x) · ∇𝐿𝑝 (x). (3.8)

The update in Equation (3.8) contains second-order Hessian information, which involves a

huge amount of parameters for calculation. To further simplify the updates, we consider an
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approximation for the gradient form. We expand the function 𝐿𝑝 via Taylor expansion as:

𝐿𝑝 (x + Δ) = 𝐿𝑝 (x) + ∇𝐿𝑝 (x)Δ + 1
2
Δ𝑇∇2𝐿𝑝 (x)Δ + RΔ, (3.9)

where RΔ = O(∥Δ∥2) is the infinitesimal to ∥Δ∥2, which is directly omitted in our approxim-

ation.

Thus we have the gradient form on Δ as:

∇𝐿𝑝 (x + Δ) ≈ ∇𝐿𝑝 (x) + ∇2𝐿𝑝 (x)Δ. (3.10)

RΔ is relevant to Δ. We set the Δ = 𝜌∇𝐿𝑝 (x) and then we have:

∇2𝐿𝑝 (x)∇𝐿𝑝 (x) ≈
1
𝜌

(
∇𝐿𝑝

(
x + 𝜌∇𝐿𝑝 (x)

)
− ∇𝐿𝑝 (x)

)
. (3.11)

Thus we connect Equation (3.8) and Equation (3.11), we have:

∇𝐿 (x) = ∇𝐿𝑝 (x) + 𝛽∇2𝐿𝑝 (x) · ∇𝐿𝑝 (x)

≈ ∇𝐿𝑝 (x) +
𝛽

𝜌

(
∇𝐿𝑝

(
x + 𝜌∇𝐿𝑝 (x)

)
− ∇𝐿𝑝 (x)

)
=

(
1 − 𝛽

𝜌

)
∇𝐿𝑝 (x) +

𝛽

𝜌
∇𝐿𝑝

(
x + 𝜌∇𝐿𝑝 (x)

)
= (1 − 𝛼)∇𝐿𝑝 (x) + 𝛼∇𝐿𝑝

(
x + 𝜌∇𝐿𝑝 (x)

)
.

Here we can see that the balance weight 𝛼 in our proposed method is actually the ratio

of the gradient penalized weight 𝛽 and the gradient ascent step size 𝜌. To fix the step size

𝜌, increasing 𝛼 means increasing the gradient penalized weight 𝛽, which facilitates searching

for a flatten stationary point to improve the generalization performance. While the second

term of ∇𝐿 (x) can not be directly computed for its nested form, we approximate the second

term with the chain rule as follows:

∇𝐿𝑝
(
x + 𝜌∇𝐿𝑝 (x)

)
≈ ∇𝐿𝑝 (𝜃) |𝜃=x+𝜌∇𝐿𝑝 (x) .

Finally we have:

∇𝐿 (x) ≈ (1 − 𝛼)∇𝐿𝑝 (x) + 𝛼∇𝐿𝑝 (𝜃) |𝜃=x+𝜌∇𝐿𝑝 (x) . (3.12)
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The Equation (3.12) provides an understanding for the weighted quasi gradient g̃ on the local

training stage in our proposed FedSpeed. We select an appropriate 0 ≤ 𝛽 ≤ 𝜌 to satisfy the

update of perturbation gradient. It executes a gradient ascent step firstly with the step size 𝜌 to

x̆. Then it generates the stochastic gradient by the same sampled mini-batch data as the ascent

step at x̆. The quasi-gradient is merged as Equation (3.12) to execute the gradient descent

step.

This is just a simple approximation for the gradient perturbation to help for understanding

the implicit of the quasi-gradient and its performance in the training stage. Actually the

error of the approximation depends a lot on 𝜌. The smaller 𝜌, the higher the accuracy of this

estimation, but the smaller 𝜌, the less efficient the optimizer performs.

3.3.2 FedSpeed-Ing Variant

Here we introduce a variant of FedSpeed, which enjoys the both prox-term and prox-correction

term and further employs the inertial momentum on the global state and correction term as

dual variable in the primal problem.

We highlight the improvements as the blue part, which are two Inertial-gradient terms on

the global state and the prox-correction term. We call it FedSpeed-Ing method. The same as

FedSpeed, it adopts a prox term and prox-correction term to perform the local update, which

means it can inherent the faster and better performance. The difference is, i) in the global

server when it update the global model x𝑡 , it firstly aggregate the corrected local model as

the same as FedSpeed, then it performs a step of inertial momentum at the current state with

one-step historical state. This is similar with the look ahead method, which try to predict the

next global state and set the prediction state as the proxy target. ii) in the local client, we also

do a prediction on the prox-correction term to match the prox-term.

Combining the two stages of training, we can see how it works. First, local client subtracts

the historic gradient of the previous round 𝑡 − 1 and in the server node, the average of all

local gradients is used as the global gradient to re-compensate to the global model parameters

during the aggregation. Obviously, this process is very similar to the application of variance
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Algorithm 3 FedSpeed-Ing Variant Algorithm

Input: model parameters x0, total communication rounds 𝑇 , local gradient controller ĝ−1
𝑖

= 0,
penalized weight 𝜆.

Output: model parameters x𝑇 .
1: for 𝑡 = 0, 1, 2, · · · , 𝑇 − 1 do
2: select active clients-set S𝑡 at round 𝑡
3: for client 𝑖 ∈ S𝑡 parallel do
4: communicate x̀𝑡 to local client 𝑖 and set x𝑡

𝑖,0 = x̀𝑡
5: for 𝑘 = 0, 1, 2, · · · , 𝐾 − 1 do
6: sample a minibatch 𝜀𝑡

𝑖,𝑘
and do

7: compute unbiased stochastic gradient: g𝑡
𝑖,𝑘,1 = ∇𝐹𝑖 (x𝑡𝑖,𝑘 ; 𝜀

𝑡
𝑖,𝑘
)

8: update the extra step: x̆𝑡
𝑖,𝑘

= x𝑡
𝑖,𝑘

+ 𝜌g𝑡
𝑖,𝑘,1

9: compute unbiased stochastic gradient: g𝑡
𝑖,𝑘,2 = ∇𝐹𝑖 (x̆𝑡𝑖,𝑘 ; 𝜀

𝑡
𝑖,𝑘
)

10: compute quasi-gradient: g̃𝑡
𝑖,𝑘

= (1 − 𝛼)g𝑡
𝑖,𝑘,1 + 𝛼g𝑡

𝑖,𝑘,2
11: update the gradient descent step: x𝑡

𝑖,𝑘+1 = x𝑡
𝑖,𝑘

− 𝜂𝑙
(
g̃𝑡
𝑖,𝑘

− g̀𝑡−1
𝑖

+ 1
𝜆
(x𝑡
𝑖,𝑘

− x̀𝑡)
)

12: end for
13: ĝ𝑡

𝑖
= ĝ𝑡−1

𝑖
− 1
𝜆
(x𝑡
𝑖,𝐾

− x𝑡)
14: g̀𝑡

𝑖
= ĝ𝑡

𝑖
+ 𝜁𝑡 (ĝ𝑡𝑖 − ĝ𝑡−1

𝑖
)

15: communicate x̂𝑡
𝑖
= x𝑡

𝑖,𝐾
− 𝜆ĝ𝑡

𝑖
to the global server

16: end for
17: x𝑡+1 = 1

𝑆

∑
𝑖∈S𝑡 x̂𝑡

𝑖

18: x̀𝑡+1 = x𝑡+1 + 𝜁𝑡 (x𝑡+1 − x𝑡)
19: end for

reduction techniques such as SCAFFOLD and FedDANE. The key problem is how large the

gap between the global gradient estimate h and the global gradient will be. At the same time,

we also need to think about the impact of this separation form on local updates. When the

local gradient correction term is introduced, we consider the final state of convergence. When

the local most convergent point is approached, we usually consider : xt = x𝑡−1, which means

that at the optimal we have ∇𝐹𝑖 (x𝑡) = ∇𝐹𝑖 (x𝑡−1). FedAvg does not have such an equation

relationship. In traditional algorithms, this is the condition of the local optimal point. We have

discussed the relationship between the local optimal and the global optimal before. In non-𝑖𝑖𝑑

dataset, there is usually no deterministic connection between them. Moreover, generally

speaking, when global optimal is achieved in FedAvg, there is often no such relationship

between local gradients. However, the local training of FedDyn can offset this part of the

error very well. At any convergence point, local training can achieve the above conditions, or

in other words, only when the above conditions are met, the global model will converge to
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a stable optimal point. Therefore, we can understand that all local training will eventually

achieve the same solution condition as the global model, in another words, the same stable

optimal. This is a very good property. This shows that our local results are consistent.

As long as the algorithm can be guaranteed to converge normally, then in the local optimization

process, an approximate estimation of the gradient can be achieved, which is:

1
𝑀

∑︁
𝑖∈M

∇𝐹𝑖 (x𝑡) ≈
1
𝑀

∑︁
𝑖∈M

∇𝐹𝑖 (x𝑡𝑖,𝑘 ) (3.13)

where local optimal is close to the global optimal gradually. Therefore, in the later of the

optimization process, we can consider the FedDyn as a algorithm similar to using variance

reduction techniques. The estimation of h finally converges on the true global gradients. In the

global aggregation, the correction term can be regarded as a compensation. This also illustrates

the cleverness of the dynamic regularization. Without the participation of all customers, at

final convergence, the global optimal can achieve convergence rate similar to SCAFFOLD. In

the theoretical convergence rate of FedDyn, the convergence rate of 𝑂 ( 1
𝑇
) can be achieved,

which also illustrates the effect of the algorithm. In the experiments, FedDyn can maintain

training with a larger learning rate, which means that its convergence speed will be faster in

general. In general, it implements the constraint training of dynamic regularization terms, and

provides an application of variance reduction techniques for prox-based algorithms. Moreover,

it does not need to transmit the estimation of the global gradient back to each clients, which

reduce the pressure of communication efficiency. This is actually a very important progress,

an acceleration method to achieve zero extra communication. To balance communication

efficiency and convergence, it is a very good application and powerful algorithm.

The optimization of the regularization is actually a trade-off. At the same time there is a more

intuitive advantage — it can bring additional mathematical properties to the original objective

function, such as smoothness or convexity, etc. Generally speaking, mathematical properties

often lead to better results and more universal application algorithms. Therefore, this type of

algorithm is very representative in solving federated learning problems. In this part, we only

introduced three recent works, which does not mean that the other works are unimportant.

Many solid researches have been published in the view of the optimization methods. These
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three tasks represent the main development of this type of algorithm in recent years. Next we

will introduce another technology.

3.4 Understanding of FedSpeed

To express the essential insights in the updates of the Algorithm 2, we introduce two aux-

iliary sequences. From the different perspective of views, we can clearly demonstrate the

performance of each modules and their inner-connections in the total optimization.

Firstly considering the u𝑡 = 1
𝑚

∑
𝑖∈[𝑚] x𝑡

𝑖,𝐾
as the mean averaged parameters of the last

iterations in the local training among the local clients at the last iteration, we have the total

update offset as:

u𝑡+1 − u𝑡 =
1
𝑚

∑︁
𝑖∈[𝑚]

(x𝑡𝑖,𝐾 − x𝑡−1
𝑖,𝐾 )

=
1
𝑚

∑︁
𝑖∈[𝑚]

(x𝑡𝑖,𝐾 − x𝑡𝑖,0 − 𝜆ĝ𝑡−1
𝑖 )

=
1
𝑚

∑︁
𝑖∈[𝑚]

(−𝜆𝛾
𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
g̃𝑡𝑖,𝑘 + 𝜆𝛾ĝ𝑡𝑖 − 𝜆ĝ𝑡−1

𝑖 )

= −𝜆 1
𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾

(
𝛾g̃𝑡𝑖,𝑘 + (1 − 𝛾)ĝ𝑡−1

𝑖

)
.

We introduce 𝐾 virtual states u𝑡
𝑖,𝑘

, it could be considered as a momentum-based update of

the prox-correction term ĝ𝑡−1
𝑖

with the coefficient 𝛾. And the prox-correction term ĝ𝑡
𝑖
=

− 1
𝜆

(
u𝑡
𝑖,𝐾

− u𝑡
𝑖,0

)
, which implies the global update direction in the local training process. From

the perspective of federated local update, we can construct the update of u𝑡
𝑖,𝑘

as

u𝑡𝑖,𝑘+1 = u𝑡𝑖,𝑘 −
𝜆𝛾𝑘

𝛾
(𝛾g̃𝑡𝑖,𝑘 + (1 − 𝛾)ĝ𝑡−1

𝑖 ). (3.14)

Here, we see that the Equation (3.14) indicates the variable u updates as a client-level

momentum method with a quasi exponential decay learning rate, whose initial value is 𝜆. 𝛾 is

a constant when 𝐾 is fixed, which plays a role as the coefficient of the linear combinations.
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The term ĝ is the local averaged offset, which matches the client-level momentum in the

FedCM method (Xu et al. 2021). It should be noticed that the stochastic gradient is calculated

at the raw x, and the virtual local update only reveals the insights of the FedSpeed. In the

original FedCM method, the local learning rate 𝜂𝑙 is a fixed value in the total local training

process and decayed per round. Here we can find their difference: FedSpeed adopts a decayed

local learning rate 𝛾𝑘 at 𝑘-th iteration. This provides the different importance for the local

update, which handles the local momentum term method.

Based on the definition of {u𝑡}, we introduce the second auxiliary sequences {z𝑡 = u𝑡 +
1−𝛾
𝛾
(u𝑡 − u𝑡−1)}𝑡>0. According to the analysis above, we also introduce 𝐾 virtual states {z𝑡

𝑖,𝑘
}.

This is a very common transformation which is widely used in the local momentum methods.

It could be considered as a inner-momentum on the raw states, which is a "look-ahead" step to

the current state. From this point, we can further indicate the local update as a vanilla FedAvg

method which can be easy to understand. After mapping x𝑡 to u𝑡 , the local update could be

considered as a client momentum-like method with a normalized weight parameterized by 𝛾𝑘 .

Further, after mapping u𝑡 to z𝑡 , the entire update process will be simplified to a SGD-type

method with the quasi-gradients g̃. z𝑡 contains the penalized prox-term in the total local

training stage. Though a prox-correction term is applied to eliminate the local biases, x𝑡

maintains to be beneficial from the update of penalizing the prox-term. The prox-correction

term plays the role as exponential average of the global offset.

we expand the the auxiliary sequence z𝑡 as:

z𝑡+1 − z𝑡 = (u𝑡+1 − u𝑡) + 1 − 𝛾
𝛾

(u𝑡+1 − u𝑡) − 1 − 𝛾
𝛾

(u𝑡 − u𝑡−1)

=
1
𝛾
(u𝑡+1 − u𝑡) − 1 − 𝛾

𝛾
(u𝑡 − u𝑡−1)

= −𝜆 1
𝑚

∑︁
𝑖∈[𝑚]

((𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
g̃𝑡𝑖,𝑘

)
+ 1 − 𝛾

𝛾
ĝ𝑡−1
𝑖

)
− 1 − 𝛾

𝛾
(u𝑡 − u𝑡−1)

= −𝜆 1
𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
g̃𝑡𝑖,𝑘 −

1 − 𝛾
𝛾

1
𝑚

∑︁
𝑖∈[𝑚]

𝜆ĝ𝑡−1
𝑖 − 1 − 𝛾

𝛾
(u𝑡 − u𝑡−1)
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= −𝜆 1
𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
g̃𝑡𝑖,𝑘 −

1 − 𝛾
𝛾

1
𝑚

∑︁
𝑖∈[𝑚]

(u𝑡 − u𝑡−1 + 𝜆ĝ𝑡−1
𝑖 )

= −𝜆 1
𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
g̃𝑡𝑖,𝑘 −

1 − 𝛾
𝛾

1
𝑚

∑︁
𝑖∈[𝑚]

(x𝑡−1
𝑖,𝐾 − x𝑡−2

𝑖,𝐾 + 𝜆ĝ𝑡−1
𝑖 )

= −𝜆 1
𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
g̃𝑡𝑖,𝑘 −

1 − 𝛾
𝛾

1
𝑚

∑︁
𝑖∈[𝑚]

(x𝑡−1
𝑖,𝐾 − x𝑡−1

𝑖,0 + 𝜆ĝ𝑡−1
𝑖 − 𝜆ĝ𝑡−2

𝑖 )

= −𝜆 1
𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
g̃𝑡𝑖,𝑘 .

The same as u, we can construct the local update of z𝑡
𝑖,𝑘

as:

z𝑡𝑖,𝑘+1 = z𝑡𝑖,𝑘 −
𝜆𝛾𝑘

𝛾
g̃𝑡𝑖,𝑘 . (3.15)

This also indicates the advantage of the proposed FedSpeed, which shows the higher efficiency

with a decayed momentum-based local learning rate.

3.5 Convergence Analysis

In this section, we will provide the theoretical analysis on the FedSpeed method. In the

section 3.5.1, we show some usual assumptions on the function 𝐹 to prepare for the proof,

which are common assumptions in the federated and stochastic cases. In the section 3.5.2,

we will introduce some important lemmas and theoretical conclusions we prove in this part.

In the section 3.5.3, we will provide the detailed theorem on the convergence of FedSpeed,

including some important discussions on the hyper-parameters and selections of the fixed

weights. More detailed proofs can be referred to the Appendix.

3.5.1 Assumptions

In this section, we will introduce the assumptions we use in our proof. We will discuss

the problems more generally through the analysis of the heterogeneity and local updates to
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present the current progress in this field and many problems we still face to. Here are some

basic assumptions and preliminaries.

• 1) In each round 𝑡, each active client will take a local training with 𝑘 steps on local

private dataset. Usually the parameters such as learning rate 𝜂𝑡 and 𝑘 is a given

constant or determined variable.

• 2) It must be aggregated on the server client or some group of leader, even each

client in decentralized setting.

• 3) There are finite clients to participate in the training process. Therefore, we con-

sider the problem definition as 1
𝑀

∑
𝑖∈[𝑀] 𝐹𝑖 (𝑥).

• 4) It will be selected a part of clients to be active for training, which is to reduce the

communicate efficiency. This is called partial participation and we denote the active

set as S (𝑡) .

• 5) Special properties of functions 𝐹. Usually the deep neural network is considered

as a universal fitter to fit a specific function. We often solve temporarily simplified

problems, step by step. Function properties usually include 𝐿-smooth, convex and

strong convex, etc.

• 6) Gradient bound. This prat contains three main types of assumptions. Firstly,

usually we need a bounded gradient, which is:

| |∇𝐹 (x) | |2 ≤ 𝐺2. (3.16)

This is a conventional assumption. Usually we will assume a initial point in the

convex optimization process. The initial point usually retains a relatively large

gradient value and the optimal point holds zero. In non-convex optimization, we

usually use 𝐿-smooth assumptions to ensure that this.
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Secondly, the stochastic gradients bound is needed in analysis. We often have

the assumptions as:

E[g𝑖 (x𝑡𝑖,𝑘 ) |x
𝑡
𝑖,𝑘 ] = ∇𝐹 (x𝑡𝑖,𝑘 ), (3.17)

E[| |g𝑖 (x𝑡𝑖,𝑘 ) − ∇𝐹 (x𝑡𝑖,𝑘 ) | |
2 |x𝑡𝑖,𝑘 ] ≤ 𝜎

2. (3.18)

The purpose of this assumption is to ensure the stability of the stochastic gradient.

This is also one of the very common assumptions in many other optimization

methods.

Thirdly, we often call it dissimilarity of each clients. In the FL problem, this

assumption is necessary. Assuming that the local data is completely differentiated, in

fact, we cannot guarantee that local training is reasonable. In the data space, we even

need to assume that the distance between each local optimal is so large that their

local convergence rate will have nothing to do with global convergence. Therefore,

we need to use assumptions to ensure that each local dataset has a certain similarity

but not exactly the same. The most common form of hypothesis is as follows :

1
𝑀

∑︁
𝑖∈[𝑀]

| |∇𝐹𝑖 (x) − ∇ 𝑓 (x) | |2 ≤ 𝜎2
𝑔 . (3.19)

This directly bounds the gradient difference between global and local loss function,

which is widely used to measure the heterogeneity of the local dataset in FL problems.

There is also another assumption form to measure this distance:

1
𝑀

∑︁
𝑖∈[𝑀]

| |∇𝐹𝑖 (x) | |2 ≤ G2 + 𝐵2 | |∇𝐹 (x) | |2. (3.20)

This is mentioned in SCAFFOLD which give a new analysis framework with the

new assumption. Moreover, a supplementary assumption is also given in the original

text:

| |∇2𝐹𝑖 (x) − ∇2𝐹 (x) | |2 ≤ 𝛿. (3.21)

At present, these kinds of gradient bounded assumptions are more common in the

theoretical analysis. Some works use bounded L1 norm of the gradients, which is the
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same as L2 norm essentially. In the federated learning problems, we have multiple

local iterates on clients and we want to ensure all of them are approaching the global

optimal. To handle iterates from multiple clients, the upper bound of the gradient is

very important.

In this thesis, we main select the following as the based assumptions:

ASSUMPTION 3.5.1. For the non-convex function 𝐹𝑖 holds the property of smoothness for all

𝑖 ∈ [𝑚], i.e., ∥∇𝐹𝑖 (x) − ∇𝐹𝑖 (y)∥ ≤ 𝐿∥x − y∥, for all x, y ∈ R𝑑 .

ASSUMPTION 3.5.2. The stochastic gradient g𝑡
𝑖,𝑘

= ∇𝐹𝑖 (x𝑡𝑖,𝑘 , 𝜀
𝑡
𝑖,𝑘
) with the randomly sampled

data 𝜀𝑡
𝑖,𝑘

on the local client 𝑖 is an unbiased estimator of ∇𝐹𝑖 with bounded variance, i.e.,

E[g𝑡
𝑖,𝑘
] = ∇𝐹𝑖 (x𝑡𝑖,𝑘 ) and E∥g𝑡

𝑖,𝑘
− ∇𝐹𝑖 (x𝑡𝑖,𝑘 )∥

2 ≤ 𝜎2
𝑙

, for all x𝑡
𝑖,𝑘

∈ R𝑑 .

ASSUMPTION 3.5.3. The dissimilarity of the dataset among the local clients is bounded by

the local and global gradients, i.e., E∥∇𝐹𝑖 (x) − ∇𝐹 (x)∥2 ≤ 𝜎2
𝑔 , for all x ∈ R𝑑 .

Assumption 3.5.1 guarantees a Lipschitz continuity and Assumption 3.5.2 guarantees the

stochastic gradient is bounded by zero mean and constant variance. Assumption 3.5.3 is the

heterogeneity bound for the non-iid dataset, which is widely used in many previous works

(Reddi et al. 2021; Yang et al. 2021b; Xu et al. 2021; Wang et al. 2021a). Our theoretical

analysis depends on the above assumptions to explore the comprehensive properties in the

local training process.

3.5.2 Important Lemmas

In this part, we will introduce some important lemmas firstly, which are the main technique

contributions in this paper and some basic proofs of the final convergence analysis.
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LEMMA 1. For ∀ x𝑡
𝑖,𝑘

∈ R𝑑 and 𝑖 ∈ S𝑡 , we denote 𝛿𝑡
𝑖,𝑘

= x𝑡
𝑖,𝑘

− x𝑡
𝑖,𝑘−1 with setting 𝛿𝑡

𝑖,0 = 0, and

Δ𝑡
𝑖,𝐾

=
∑𝐾
𝑘=0 𝛿

𝑡
𝑖,𝑘

= x𝑡
𝑖,𝐾

− x𝑡
𝑖,0, under the update rule in Algorithm 2, we have:

Δ𝑡𝑖,𝐾 = −𝜆𝛾
𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
g̃𝑡𝑖,𝑘 + 𝛾𝜆ĝ𝑡−1

𝑖 , (3.22)

where
∑𝐾−1
𝑘=0 𝛾𝑘 =

∑𝐾−1
𝑘=0

𝜂𝑙
𝜆

(
1 − 𝜂𝑙

𝜆

)𝐾−1−𝑘
= 𝛾 = 1 − (1 − 𝜂𝑙

𝜆
)𝐾 .

PROOF. According to the update rule of Line.11 in Algorithm Algorithm 1, we have:

𝛿𝑘 = Δ𝑡𝑖,𝑘 − Δ𝑡𝑖,𝑘−1 = x𝑡𝑖,𝑘 − x𝑡𝑖,𝑘−1

= −𝜂𝑙
(
g̃𝑡𝑖,𝑘−1 − ĝ𝑡−1

𝑖 + 1
𝜆
(x𝑡𝑖,𝑘−1 − x𝑡𝑖,0)

)
= −𝜂𝑙 (g̃𝑡𝑖,𝑘−1 − ĝ𝑡−1

𝑖 + 1
𝜆
Δ𝑡𝑖,𝑘−1).

Then We can formulate the iterative relationship of Δ𝑡
𝑖,𝑘

as:

Δ𝑡𝑖,𝑘 = Δ𝑡𝑖,𝑘−1 − 𝜂𝑙 (g̃
𝑡
𝑖,𝑘−1 − ĝ𝑡−1

𝑖 + 1
𝜆
Δ𝑡𝑖,𝑘−1) = (1 − 𝜂𝑙

𝜆
)Δ𝑡𝑖,𝑘−1 − 𝜂𝑙 (g̃

𝑡
𝑖,𝑘−1 − ĝ𝑡−1

𝑖 ).

Taking the iteration on 𝑘 and we have:

x𝑡𝑖,𝐾 − x𝑡𝑖,0 = Δ𝑡𝑖,𝐾 = (1 − 𝜂𝑙
𝜆
)𝐾Δ𝑡𝑖,0 − 𝜂𝑙

𝐾−1∑︁
𝑘=0

(1 − 𝜂𝑙
𝜆
)𝐾−1−𝑘 (g̃𝑡𝑖,𝑘 − ĝ𝑡−1

𝑖 )

(𝑎)
= −𝜂𝑙

𝐾−1∑︁
𝑘=0

(1 − 𝜂𝑙
𝜆
)𝐾−1−𝑘 (g̃𝑡𝑖,𝑘 − ĝ𝑡−1

𝑖 )

= −𝜆
𝐾−1∑︁
𝑘=0

𝜂𝑙

𝜆
(1 − 𝜂𝑙

𝜆
)𝐾−1−𝑘 (g̃𝑡𝑖,𝑘 − ĝ𝑡−1

𝑖 )

= −𝜆
𝐾−1∑︁
𝑘=0

𝜂𝑙

𝜆
(1 − 𝜂𝑙

𝜆
)𝐾−1−𝑘 g̃𝑡𝑖,𝑘 +

(
1 − (1 − 𝜂𝑙

𝜆
)𝐾

)
𝜆ĝ𝑡−1

𝑖

= −𝜆𝛾
𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
g̃𝑡𝑖,𝑘 + 𝛾𝜆ĝ𝑡−1

𝑖 .

(a) applies Δ𝑡
𝑖,0 = 𝛿𝑡

𝑖,0 = 0.

□
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This lemma indicate the very important properties in the prox-based method, which is, the

local update could be transferred to a SGD-type update with a decayed local learning rate

𝛾𝑘 , which focuses on the importance of the related gradient information. If we ignore the

prox-correction term, FedSpeed performs as the momentum-based method with a exponential

moving averaged aggregation.

LEMMA 2. Under the update rule in Algorithm Algorithm 1, we have:

ĝ𝑡𝑖 = (1 − 𝛾)ĝ𝑡−1
𝑖 + 𝛾

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
g̃𝑡𝑖,𝑘 . (3.23)

where
∑𝐾−1
𝑘=0 𝛾𝑘 =

∑𝐾−1
𝑘=0

𝜂𝑙
𝜆

(
1 − 𝜂𝑙

𝜆

)𝐾−1−𝑘
= 𝛾 = 1 − (1 − 𝜂𝑙

𝜆
)𝐾 .

PROOF. According to the update rule of Line.13 in Algorithm Algorithm 1, we have:

ĝ𝑡𝑖 = ĝ𝑡−1
𝑖 − 1

𝜆
(x𝑡𝑖,𝐾 − x𝑡𝑖,0)

(𝑎)
= ĝ𝑡−1

𝑖 + 𝜂𝑙
𝜆

𝐾−1∑︁
𝑘=0

(
1 − 𝜂𝑙

𝜆

)𝐾−1−𝑘 (g̃𝑡𝑖,𝑘 − ĝ𝑡−1
𝑖 )

= ĝ𝑡−1
𝑖 + 𝜂𝑙

𝜆

𝐾−1∑︁
𝑘=0

(
1 − 𝜂𝑙

𝜆

)𝐾−1−𝑘 g̃𝑡𝑖,𝑘 −
𝜂𝑙

𝜆

(𝐾−1∑︁
𝑘=0

(
1 − 𝜂𝑙

𝜆

)𝐾−1−𝑘
)
ĝ𝑡−1
𝑖

= ĝ𝑡−1
𝑖 + 𝜂𝑙

𝜆

𝐾−1∑︁
𝑘=0

(
1 − 𝜂𝑙

𝜆

)𝐾−1−𝑘 g̃𝑡𝑖,𝑘 −
𝜂𝑙

𝜆

1 − (1 − 𝜂𝑙
𝜆
)𝐾

𝜂𝑙
𝜆

ĝ𝑡−1
𝑖

= (1 − 𝜂𝑙
𝜆
)𝐾 ĝ𝑡−1

𝑖 + 𝜂𝑙
𝜆

𝐾−1∑︁
𝑘=0

(
1 − 𝜂𝑙

𝜆

)𝐾−1−𝑘 g̃𝑡𝑖,𝑘

= (1 − 𝛾)ĝ𝑡−1
𝑖 + 𝛾

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
g̃𝑡𝑖,𝑘 .

(a) applies Lemma 1. □

This shows the update rule of the correction term via the combination of the local quasi-

gradient g̃. The correction term is updated as a momentum term with the coefficient 𝛾 (𝛾 < 1).

The second term is the averaged local quasi-gradient weighted by 𝛾, which implicates the
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local offset as the update information. Here, the correction term is to adjust the local update

towards to the global optimal.

3.5.3 Convergence Analysis

Based on the assumptions above, we prove that the convergence of the non-convex smooth

function 𝐹 holds:

THEOREM 3.5.4. Under the Assumptions 3.5.1-3.5.3, when the perturbation learning rate

satisfies 𝜌 ≤ 1√
6𝛼𝐿

, and the local learning rate satisfies 𝜂𝑙 ≤ min{ 1
32

√
3𝐾𝐿

, 2𝜆}, and the local

interval satisfies 𝐾 ≥ 𝜆/𝜂𝑙 , let 𝜅 = 1
2 − 3𝛼2𝐿2𝜌2 − 1536𝜂2

𝑙
𝐿2𝐾 is a positive constant with

selecting the proper 𝜂𝑙 and 𝜌, the auxiliary sequence z𝑡 generated by executing the Algorithm

2 satisfies:

1
𝑇

𝑇−1∑︁
𝑡=1
E∥∇𝐹 (z𝑡)∥2 ≤ 2(𝐹 (z1) − 𝐹∗)

𝜆𝜅𝑇
+ 64𝜂𝑙𝐿2𝐾

𝜅𝑚𝑇

∑︁
𝑖∈[𝑚]
E∥ĝ0

𝑖 ∥2 + 32𝜆2𝐿2

𝜅𝑇
E𝑡 ∥

1
𝑚

∑︁
𝑖∈[𝑚]

ĝ0
𝑖 ∥2 +Φ,

(3.24)

where 𝐹 is a non-convex objective function 𝐹∗ is the optimal of 𝐹. The term Φ is:

Φ =
1
𝜅

(
32𝜆𝜂2

𝑙 𝐿
2𝐾 (16𝜎2

𝑔 + 𝜎2
𝑙 ) + 𝜆𝛼

2𝐿2𝜌2(3𝜎2
𝑔 + 𝜎2

𝑙 )
)
, (3.25)

where 𝛼 is the perturbation weight. More proof details can be referred to the Appendix.

COROLLARY 3.5.5. Let 𝜌 = O(1/
√
𝑇) with the upper bound of 𝜌 ≤ 1/

√
6𝛼𝐿, and let

𝜂𝑙 = O(1/𝐾) with the lower bound of 𝜂𝑙 ≥ 𝜆/𝐾, when the local interval 𝐾 is long enough

with 𝐾 = O(𝑇), the proposed FedSpeed achieves a fast convergence rate of O(1/𝑇).

REMARK 3.5.6. Compared with the other prox-based works, e.g. for (Acar et al. 2021; Wang

et al. 2022; Gong et al. 2022), their proofs rely on the harsh assumption that local client

must approach an exact stationary point or 𝜖-inexact stationary point in the local training per

round. It cannot be strictly satisfied in the practical federated learning framework with the

current theoretical analysis of the last iteration point on the non-convex case. We relax this

assumption through enlarging the local interval and prove that federated prox-based methods

can also achieve the convergence of O(1/𝑇).
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TABLE 3.1: Convergence rate for non-convex smooth cases in some baselines
and the proposed FedSpeed.

Method Convergence Assumption

FedAvg O
(

1√
𝑚𝐾𝑇

+ 𝑚𝐾
𝑇

)
-

FedAdam O
(

1√
𝑚𝐾𝑇

+ 1
𝐾𝑇

+
√
𝑚√
𝐾𝑇3

)
specific 𝜂𝑔

SCAFFOLD O
(

1√
𝑚𝐾𝑇

+ 1
𝑇

)
specific 𝜂𝑔

FedCM O
(√︃

1
𝑚𝑇

+ 1
𝑚𝐾𝑇

+ 3
√︃

1
𝑇2 + 1

𝑚𝑇2 + 1
𝑚𝐾𝑇2

)
specific 𝜂𝑔

FedProx O( 1
𝑇
) local exact solution

FedPD O
(

1
𝑇
+ 𝜖

)
local 𝜖-stationarity2

FedDyn O
(

1
𝑇

)
local exact solution

FedADMM O
(

1
𝑇
+ 1
𝑚𝑇

∑
𝑖

∑
𝑡 𝜖

2
𝑖,𝑡

)
local 𝜖𝑖,𝑡-close solution3

FedSpeed O
(

1
𝑇
+ 1
𝐾

)
-

1 m : the number of clients, 𝐾 : the local interval, 𝑇 : the communication
round.

2 solve the local sub-problem 𝐹𝑖 (x) to satisfy ∥∇𝐹𝑖 (x𝑡)∥2 ≤ 𝜖 .
3 solve the local sub-problem 𝐹𝑖 (x) to satisfy ∥𝐹𝑖 (x𝑡) − 𝐹∗

𝑖
∥ ≤ 𝜖𝑖,𝑡 .

REMARK 3.5.7. Compared with the other current methods, FedSpeed can improve the

convergence rate by increasing the local interval 𝐾 , which is a good property for the practical

federated learning framework. For the analysis of FedAvg (Yang et al. 2021b), under the same

assumptions, it achieves O(1/
√
𝑆𝐾𝑇 + 𝐾/𝑇) which restricts the value of 𝐾 to not exceed the

order of 𝑇 . (Karimireddy et al. 2020b) contribute the convergence as O(1/
√
𝑆𝐾𝑇) under

the constant local interval, and (Reddi et al. 2021) proves the same convergence under the

strict coordinated bounded variance assumption for the global full gradient in the FedAdam.

Our experiments also verify this characteristic in Section 4.3. Most current algorithms are

affected by increasing 𝐾 in the training while FedSpeed shows the good stability under the

enlarged local intervals and shrunk communication rounds.

We provide the theoretical analysis of our proposed FedSpeed and further demonstrate

that its convergence rate could be accelerated by setting an appropriate large local interval

𝐾. Explicitly, under the non-convex and smooth cases, FedSpeed with an extra gradient
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perturbation achieves the fast convergence rate of O( 1
𝑇
) when local interval setting 𝐾 = O(𝑇).

Generally, the dominate term of the convergence rate achieves max{O( 1
𝑇
),O( 1

𝐾
)}. We

summarize the convergence rate of FedSpeed and some baselines in the Table 3.1, which

indicates that FedSpeed achieves a tighter upper bound on local interval 𝐾 to converge without

applying a specific global learning rate or assuming the precision for the local solutions.



CHAPTER 4

Results

In this part, we will introduce our experimental setups, including dataset, hyper-parameters

selection and implementation details firstly. In section 4.1, we introduce the basic setups

including the dataset, deep model, hyper-parameters selections, heterogeneity introduction,

and other empirical settings. We present the convergence and generalization performance in

Section 4.2, and study the hyper-parameter sensitivity and ablation experiments in Section 4.3.

4.1 Setups

4.1.1 Dataset and backbones.

We test the experiments on CIFAR-10, CIFAR-100 (Krizhevsky, Hinton et al. 2009) and

TinyImagenet. We follow the (Hsu et al. 2019) to introduce the heterogeneity via splitting the

total dataset by sampling the label ratios from the Dirichlet distribution. We train and test the

performance on the standard ResNet-18 (He et al. 2016) backbone with the 7×7 filter size in

the first convolution layer with BN-layers replaced by GN (Hsieh et al. 2020) to avoid the

invalid aggregation.

TABLE 4.1: Dataset introductions.

Dataset Training Data Test Data Class Size

CIFAR-10 50,000 10,000 10 3×32×32
CIFAR-100 50,000 10,000 100 3×32×32

TinyImagenet 100,000 10,000 200 3×64×64

37
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(a) CIFAR-10.
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FIGURE 4.1: Heat maps for different dataset under heterogeneity weight
equals to 0.6 for Dirichlet distribution.

Dataset and Backbones. Extensive experiments are tested on CIFAR-10/100 dataset. We

test on the two different settings as 10% participation of total 100 clients and 2% participation

of total 500 clients. CIFAR-10 dataset contains 50,000 training data and 10,000 test data in

10 classes. Each data sample is a 3×32×32 color image. CIFAR-100 (Krizhevsky, Hinton

et al. 2009) includes 50,000 training data and 10,000 test data in 100 classes as 500 training

samples per class. TinyImagenet involves 100,000 training images and 10,000 test images in

200 classes for 3×64×64 color images, as shown in Table 4.1. To fairly compare with the

other baselines, we train and test the performance on the standard ResNet-18 (He et al. 2016)

backbone with the 7×7 filter size in the first convolution layer as implemented in the previous

works, e.g. for (Karimireddy et al. 2020b; Acar et al. 2021; Xu et al. 2021). We follow

the (Hsieh et al. 2020) to replace the batch normalization layer with group normalization

layer, which can be aggregated directly by averaging. These are all common setups in many

previous works.

Dataset Partitions. To fairly compare with the other baselines, we follow the (Hsu et al.

2019) to introduce the heterogeneity via splitting the total dataset by sampling the label

ratios from the Dirichlet distribution. An additional parameter is used to control the level
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of the heterogeneity of the entire data partition. In order to visualize the distribution of

heterogeneous data, we make the heat maps of the label distribution in different dataset, as

shown in Figure 4.1. Since the heat map of 500 clients cannot be displayed normally, we

show 100 clients case. It could be seen that for heterogeneity weight equals to 0.6, about 10%

to 20% of the categories dominate on each client, which is white block in the Figure 4.1. The

IID dataset is totally averaged in each client.

Implementation details. We select each hyper-parameters within the appropriate range

and present the combinations under the best performance. To fairly compare these baseline

methods, we fix the most hyper-parameters for all methods under the same setting. For the

10% participation of total 100 clients training, we set the local learning rate as 0.1 initially and

set the global learning rate as 1.0 for all methods except for FedAdam which applies 0.1 on

global server. The learning rate decay is set as multiplying 0.998 per communication round

except for FedDyn, FedADMM and FedSpeed which apply 0.9995. Each active local client

trains 5 epochs with batchsize 50. Weight decay is set as 1𝑒-3 for all methods. The weight

for the prox-term in FedProx, FedDyn, FedADMM and FedSpeed is set as 0.1. For the 2%

participation, the learning rate decay is adjusted to 0.9998 for FedDyn and FedSpeed. Each

active client trains 2 epochs with batchsize 20. The weight for the prox-term is set as 0.001.

4.2 Experiments

CIFAR-10. Our proposed FedSpeed is robust to different participation cases. Figure 4.2

(a) shows the results of 10% participation of total 100 clients. For the IID splits, FedSpeed

achieves 6.1% ahead of FedAvg as 88.5%. FedDyn suffers the instability when learning

rate is small, which is the similar phenomenon as mentioned in (Xu et al. 2021). When

introducing the heterogeneity, FedAdam suffers from the increasing variance obviously

with the accuracy dropping from 85.7% to 83.2%. Figure 4.2 (b) shows the impact from

reducing the participation. FedAdam is lightly affected by this change while the performance

degradation of SCAFFOLD is significant which drops from 85.3% to 80.1%.
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(a) 10% participation of 100 clients on CIFAR-10.
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(b) 2% participation of 500 clients on CIFAR-10.
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(c) 2% participation of 500 clients on CIFAR-100.
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(d) 2% participation of 500 clients on TinyImagenet.

FIGURE 4.2: The top-1 accuracy in communication rounds of all compared
methods on CIFAR-10/100 and TinyImagenet. Communication rounds are set
as 1500 for CIFAR-10/100, 3000 for TinyImagenet. In each group, the left
shows the performance on IID dataset while the right shows the performance
on the non-IID dataset, which are split by setting heterogeneity weight of the
Dirichlet as 0.6.

CIFAR-100 and TinyImagenet. As shown in Figure 4.2 (c) and (d), the performance of

FedSpeed on the CIFAR-100 and TinyImagenet with low participating setting performs

robustly and achieves approximately 1.6% and 1.8% improvement ahead of the FedCM

respectively. As the participation is too low, the impact from the heterogeneous data becomes

weak gradually with a similar test accuracy. SCAFFOLD is still greatly affected by a low

participation ratio, which drops about 3.3% lower than FedAdam. FedCM converges fast at

the beginning of the training stage due to the benefits from strong consistency limitations.

FedSpeed adopts to update the prox-correction term and converges faster with its estimation

within several rounds and then FedSpeed outperforms other methods.

Table 4.2 shows the accuracy under the low participation ratio equals to 2%. Our proposed

FedSpeed outperforms on each dataset on both IID and non-IID settings. Table 4.2 shows the

accuracy under the low participation ratio equals to 2%. Our proposed FedSpeed outperforms

on each dataset on both IID and non-IID settings. We observe the similar results as mentioned

in (Reddi et al. 2021; Xu et al. 2021). FedAdam and FedCM could maintain the low
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TABLE 4.2: Test accuracy (%) on the CIFAR-10/100 and TinyImagenet under
the 2% participation of 500 clients with IID and non-IID dataset. The hetero-
geneity is applied as Dirichlet-0.6 (DIR.).

Method CIFAR-10 CIFAR-100 TinyImagenet

IID. DIR. IID. DIR. IID. DIR.

FedAvg 77.01 75.21 40.68 39.33 33.58 32.71
FedProx 77.68 75.97 41.29 39.69 33.71 32.78

FedAdam 82.92 80.55 51.65 49.29 40.85 39.71
SCAFFOLD 80.11 77.71 47.38 46.33 38.03 37.54

FedCM 84.20 83.48 52.35 50.98 41.90 41.67
FedDyn 83.36 80.57 46.18 46.60 34.69 33.92

FedADMM 81.29 79.71 45.51 46.65 36.03 33.83
FedSpeed 85.80 84.79 53.93 52.88 43.38 42.75

consistency in the local training stage with a robust results to achieve better performance than

others. While FedDyn is affected greatly by the number of training samples in the dataset,

which is sensitive to the partial participation ratios.

Large local interval for the prox-term.

From the IID case to the non-IID case, the heterogeneous dataset introduces the local incon-

sistency and leads to the severe client-drifts problem. Almost all the baselines suffer from

the performance degradation. High local consistency usually supports for a large interval

as for their bounded updates and limited offsets. Applying prox-term guarantees the local

consistency, but it also has an negative impact on the local training towards the target of

weighted local optimal and global server model. FedDyn and FedADMM succeed to apply

the primal-dual method to alleviate this influence as they change the local objective function

whose target is reformed by a dual variable. These method can mitigate the local offsets caused

by the prox-term and they improve about 3% ahead of the FedProx on CIFAR-10. However,

the primal-dual method requires a local 𝜖-close solution. In the non-convex optimization it is

difficult to determine the selection of local training interval 𝐾 under this requirement. Though

(Acar et al. 2021) claim that 5 local epochs are approximately enough for the 𝜖-close solution,

there is still an unpredictable local biases.
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TABLE 4.3: Training wall-clock time.

Times (s/Round) Rounds Total (s) Cost Ratio

FedAvg 10.44 - - -
FedProx 11.33 - - -

FedAdam 14.74 1343 19795.8 4.31×
SCAFFOLD 14.34 654 9378.3 2.03×

FedCM 13.22 622 8222.8 1.78×
FedDyn 14.11 400 5644.0 1.22×

FedSpeed 16.42 281 4614.0 1×
FedSpeed-Ing 16.48 266 4383.7 0.95×

FedSpeed directly applies a prox-correction term to update 𝐾 epochs and avoids the require-

ment for the precision of local solution. This ensures that the local optimization stage does not

introduce the bias due to the error of the inexact solution. Moreover, the extra ascent step can

efficiently improve the performance of local model parameters. Thus, the proposed FedSpeed

can improve 3% than FedDyn and FedADMM and achieve the comparable performance as

training on the IID dataset.

An interesting experimental phenomenon is that the performance of SCAFFOLD gradually

degrades under the low participation ratio. It should be noticed that under the 10% participa-

tion case, SCAFFOLD performs as well as the FedCM. It benefits from applying a global

gradient estimation to correct the local updates, which can weaken the client-drifts by a quasi

gradient towards to the global optimal. Actually the estimation variance is related to the

participation ratio, which means that their efficiencies rely on the enough number of clients.

When the participation ratio decreases to be extremely low, their performance will also be

greatly affected by the huge biases in the local training.

Training Speed.

Table 4.4 shows the communication rounds required to achieve the target test accuracy. At the

beginning of training, FedCM performs faster than others and usually achieve a high accuracy

finally. FedSpeed is faster in the middle and late stages of training. We bold the data for the

top-2 in each test and generally FedCM and FedSpeed significantly performs well on the

training speed.
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TABLE 4.4: Communication rounds required to achieve the target accuracy.
On CIFAR-10/100 it trains 1,500 rounds and on TinyImagenet it trains 3,000
rounds. "-" means the test accuracy can not achieve the target accuracy within
the fixed training rounds. DIR represents for the Dirichlet distribution with the
heterogeneity weight equal to 0.6. Local interval 𝐾 is set as 5 on CIFAR-10
(100-10%) and 2 on others. Other hyper-parameters are introduced above.

Dataset CIFAR-10 (100-10%) CIFAR-10 (500-2%)

Heterogeneity IID. DIR. IID. DIR.

Target Acc. (%) 80.0 85.0 80.0 85.0 75.0 82.5 75.0 82.5

FedAvg 344 - 472 - 772 - 1357 -

FedProx 338 - 465 - 720 - 1151 -

FedAdam 324 1343 689 - 613 1476 878 -

SCAFFOLD 207 654 272 - 628 - 967 -

FedCM 109 620 192 1092 325 1160 449 1399

FedDyn 121 400 166 - 547 - 673 -

FedADMM 169 917 174 756 505 1440 687 -

FedSpeed 136 280 169 380 495 926 662 1148

Dataset CIFAR-100 (500-2%) TinyImagenet (500-2%)

Heterogeneity IID. DIR. IID. DIR.

Target Acc. 40.0 50.0 40.0 50.0 33.0 40.0 33.0 40.0

FedAvg 1013 - - - 1615 - - -

FedProx 957 - - - 1588 - - -

FedAdam 614 1277 847 - 1151 2495 1584 -

SCAFFOLD 720 - 784 - 949 - 1187 -

FedCM 505 1150 526 1336 661 1360 817 1843

FedDyn 661 - 703 - 1419 - 2559 -

FedADMM 687 - 715 - 921 - 2711 -

FedSpeed 522 973 541 1038 684 1373 962 1885

We test the time on the A100-SXM4-40GB GPU and show the performance in the Table 4.2.

Experimental setups are the same as the CIFAR-10 10% participation among total 100 clients
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TABLE 4.5: Comparison on different heterogeneous dataset.

𝛼1 IID Dir-0.6 Dir-0.3 Drops (i.i.d. > Dir-0.6) Drops (Dir-0.6 > Dir-0.3)

FedAvg 77.01 75.21 71.96 1.80 3.25
FedAdam 82.92 80.55 76.87 2.37 3.68

SCAFFOLD 80.11 77.71 74.34 2.40 3.37
FedCM 84.20 83.48 81.02 0.72 2.46
FedDyn 83.36 80.57 77.33 2.79 3.24

FedSpeed 85.80 84.79 82.68 1.01 2.11

on the DIR-0.6 dataset. The rounds in the table are the communication rounds required that

the test accuracy achieves accuracy 85%. "-" means it can not achieve the target accuracy.

FedSpeed is slower due to the requirement of computing an extra gradient. So it gets slower

in one single update, approximately 1.57× wall-clock time costs than FedAvg. But its

convergence process is very fast. For the final convergence speed, FedSpeed still has a

considerable advantage over other algorithms. The issue is possibly one of the improvements

for FedSpeed in the future. For example, introduces a single-call gradient method to save half

the costs during backpropagation. We are also currently trying to introduce new module to

save the cost.

4.3 Ablation Study

Different heterogeneity. We test on the Dir-0.3 setups on CIFAR-10 and show the results

as Table 4.3, the other settings are the same as the test in the text. The (i.i.d. > Dir-0.6) is

the difference between the IID dataset and the Dir-0.6 dataset and (Dir-0.6 > Dir-0.3) is the

difference between the Dir-0.6 dataset and the DIR-0.3 dataset. FedSpeed can outperform

the others on the Dir-0.3 setups whose heterogeneity is much stronger than Dir-0.6 setups.

the heterogeneity becomes stronger, FedSpeed can still maintain a stable generalization

performance. The correction term helps to correct the biases during the local training, while

the gradient perturbation term helps to resist the local over-fitting on the heterogeneous dataset.

FedSpeed can benefit from avoiding falling into the biased optima.
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TABLE 4.6: Comparison of different modules.

Prox-term Prox-correction term Gradient perturbation Accuracy (%)

- - - 81.92√ - - 82.24
√ √ - 83.94
√ - √ 83.88
√ √ √ 85.70

Improvements of Different Modules. From the practical training point of view, compared

with the vanilla FedAvg, FedSpeed adds three main modules: (1) prox-term, (2) prox-

correction term, and (3) gradient perturbation. We test the performance of 500 communication

rounds of the different combination of the modules above on the CIFAR-10 with the settings

of 10% participating ratio of total 100 clients. The Table4.3 shows their performance.

From the table above, we can clearly see the performance of different modules. The prox-term

is proposed by the FedProx. But due to some issues we point out in this thesis, this term has

also a negative impact on the performance in FL. When the prox-correction term is introduced

in, it improves the performance from 82.24% to 83.94%. When the gradient perturbation is

introduced in, it improves the performance from 82.24% to 83.88%. While FedSpeed applies

them together and achieves a 3.46% improvement.

Different performance of these modules:

As introduced in this thesis, the prox-term simply performs as a balance between the local

and global solutions, and there still exists the non-vanishing inconsistent biases among the

local solutions, i.e., the local solutions are still largely deviated from each other, implying

that local inconsistency is still not eliminated. Thus we utilize the prox-correction term

to correct the inconsistent biases during the local training. About the function of gradient

perturbation, we refer to a theoretical explanation in the main text, and its proof is provided in

the supplementary material due to the space limitations. This perturbation is similar to utilize

a penalized gradient term to the objective function during local optimization process. The

additional penalty will bring better properties to the local state, e.g. for flattened minimal and

smoothness. For federated learning, the smoother the local minima is, the more flatness the
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(b) FedCM.
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(c) SCAFFOLD.
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(d) FedSpeed.

FIGURE 4.3: Performance of FedAdam, FedCM, SCAFFOLD and FedSpeed
with local epochs 𝐸 = 1, 2, 5, 10, 20 on the 10% participation case of total 100
clients on CIFAR-10. We fix 𝑇 ×𝐸 = 2500 as the equaled total training epochs
to illustrate the performance of increasing 𝐸 and decreasing 𝑇 .

model merged on the server will be. FedSpeed benefits from these two modules to improve

the performance and achieves the SOTA results.

Local interval 𝐾 . To explore the acceleration on 𝑇 by applying a large interval 𝐾 , we fix the

total training epochs 𝐸 . It should be noted that 𝐾 represents for the iteration and 𝐸 represents

for the epoch. A larger local interval can be applied to accelerate the convergence in many

previous works theoretically, e.g. for SCAFFOLD and FedAdam, while empirical studies

are usually unsatisfactory. As shown in Figure 4.3, in the FedAdam and FedCM, when 𝐾

increases from 1 to 20, the accuracy drops about 13.7% and 10.6% respectively. SCAFFOLD

is affected lightly while its performance is much lower. In Figure 4.3 (d), FedSpeed applies the

larger 𝐸 to accelerate the communication rounds 𝑇 both on theoretical proofs and empirical

results, which stabilizes to swing within 3.8% lightly.

TABLE 4.7: Performance

of different 𝜌0 with 𝛼 = 1.

𝜌0 0 0.01 0.05 0.1 0.2

Acc. 83.97 84.6 85.38 85.72 84.35

Learning rate 𝜌 for gradient perturbation. In

the simple analysis, 𝜌 can be selected as a proper

value which has no impact on the convergence

complexity. By noticing that if 𝛼 ≠ 0, 𝜌 could

be selected irrelevant to 𝜂𝑙 . To achieve a better

performance, we apply the ascent learning rate 𝜌 = 𝜌0/∥∇𝐹𝑖∥ to in the experiments, where

𝜌0 is a constant value selected from the Table 4.7. 𝜌 is consistent with the sharpness aware

minimization (Foret et al. 2020) which can search for a flat local minimal. Table 4.7 shows
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FIGURE 4.5: Performance of
different 𝜌0.

the performance of utilizing the different 𝜌0 on CIFAR-10 by 500 communication rounds

under the 10% participation of total 100 clients setting.

TABLE 4.8: Performance of dif-

ferent 𝛼 with 𝜌0 = 0.1.

𝛼 0 0.5 0.75 0.875 0.9375 1.0

Acc. 83.97 84.36 84.91 85.46 85.74 85.72

Perturbation weight 𝛼. 𝛼 determines the

degree of influence of the perturbation

gradient term to the vanilla stochastic

gradient on the local training stage. It is

a trade-off to balance the ratio of the per-

turbation term. We select the 𝛼 from 0 to

1 and find FedSpeed can converge with any 𝛼 ∈ [0, 1]. Though the theoretical analysis

demonstrates that by applying a 𝛼 > 0 in the term Φ will not increase the extra orders. And

the experimental results shown in Table 4.8, indicate that the generalization performance

improves by increasing 𝛼.
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Conclusion

In this thesis, we propose a novel and practical federated method FedSpeed which applies a

prox-correction term to neutralize the bias due to prox-term in each local training stage and

utilizes a perturbation gradient weighted by an extra gradient ascent step to improve the local

generalization performance. We provide the theoretical analysis to guarantee its convergence

and prove that FedSpeed benefits from a larger local interval 𝐾 to achieve a fast convergence

rate of O(1/𝑇) without any other harsh assumptions. We also conduct extensive experiments

to highlight the significant improvement and efficiency of our proposed FedSpeed, which is

consistent with the properties of our analysis. This work inspires the FL framework design to

focus on the local consistency and local higher generalization performance to implement the

high-efficient method to federated learning.

Summary and Future

In recent years, the distribution of clients-silo and the strengthening of the supervision of data

privacy are becoming important challenges in the next stage of artificial intelligence. The

emergence of federated learning breaks the data barrier and further provides development

ideas for artificial intelligence. It enables multiple data owners to jointly establish a common

model under the premise of protecting local data, thereby achieving mutual benefit under

the premise of protecting privacy and data security. This chapter briefly introduces the basic

concepts, architecture and technical principles of federated learning. At the same time,

it introduces many technological development routes and development directions from a

theoretical perspective. It is expected that in the future, federated learning can break down

data barriers in various fields and industries and provide stronger information benefits for

different participants while protecting privacy and data security.

48
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In the future, federated learning face many challenges. Its safety is still one of our main

concerns. For those who have administrator access to the client device, malicious attacks

can be carried out by controlling the client. Maliciously manipulated clients can check all

communication information during their participation in the iteration process, and even tamper

with the exchange data to achieve the purpose of destruction. Clients that remain neutral

will indirectly lead to training failure due to attacks. Malicious attacks on the server side are

more serious. A maliciously manipulated server will disrupt interactive communications and

cause the entire network to be paralyzed. At the same time, in the process of model output

and deployment, it may also be subject to malicious attacks. How to ensure privacy in this

situation is a great challenge.

The value of federated learning lies in breaking the data silos. By encouraging nodes with

the same data structure or different to participate in the training together and improve the

overall effect of the training. The related technologies and developments introduced in this

chapter are also important researches in the future. The most important of these is the study

of non-iid dataset. In practical scenarios, data inconsistencies are widespread. Since the

virtual training process only occurs in the local stage, data processing and data enhancement

in the traditional sense are biased. The exploration of data heterogeneity still requires a lot

of theoretical researches. In addition, techniques such as fine-tuning, transfer learning, and

meta learning are also being continuously introduced into federated learning to explore how

to solve the impact of non-iid dataset.

Another concern is the aggregation method. In federated learning, in addition to dealing

with parameters similar to traditional deep learning or traditional machine learning (such as

learning rate, batch size, regularization, etc.), the aggregation rules need to be considered.

Especially in practice when many assumptions cannot be met, how to achieve reasonable

model aggregation has become an important research topic. Many model search algorithms

are also difficult to implement due to the independence settings of federated learning, such as

AutoML and NAS.

Limited bandwidth communication and equipment unreliability is also a research direction.

The content of this part cannot be regarded as a bottleneck in the practical application now.
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Because the existing large-scale equipment and frameworks are usually physically connected

(such as large server clusters, etc.), communication delays are usually not observed. However,

in the future, federated learning will eventually become widely used, so the connection

between different devices and the stability of the device must be considered as one of the

most important conditions. It is not clear about the application of low-efficiency equipment,

but the scene of local training of different performance devices has appeared widely. Many

compression and quantization techniques have been used in federated learning algorithms,

which has been proved by practical experiments that the wall-clock time can be effectively

reduced while training.
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1 Appendix A Proof Details

In this part we will demonstrate the proofs of all formula mentioned in this thesis. Each

formula is presented in the form of a lemma.

Firstly we state some important lemmas applied in the proof.

LEMMA 3. (Bounded global update) The global update 1
𝑚

∑
𝑖∈[𝑚] ĝ𝑡

𝑖
holds the upper bound
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PROOF. According to the lemma 2,we have:
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Take the L2-norm and we have:
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Thus we have the following recursion,
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□

LEMMA 4. (Bounded local update) The local update ĝ𝑡
𝑖

holds the upper bound of:

1
𝑚

∑︁
𝑖∈[𝑚]
E𝑡 ∥ĝ𝑡−1

𝑖 ∥2 ≤ 𝑃
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1
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where 1
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𝛾2 .

PROOF. According to the lemma2, we have:
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(a) and (b) apply the Jensen inequality.

Thus we have the following recursion:
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Here we provide a loose upper bound as a constant for the quasi-stochastic gradient:

1
𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
E𝑡 ∥g̃𝑡𝑖,𝑘 ∥

2

=
1
𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
E𝑡 ∥(1 − 𝛼)g𝑡𝑖,𝑘,1 + 𝛼g𝑡𝑖,𝑘,2∥

2

=
1
𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
E𝑡 ∥g𝑡𝑖,𝑘,1 + 𝛼(g

𝑡
𝑖,𝑘,2 − g𝑡𝑖,𝑘,1)∥

2

≤ 2
𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾

(
E𝑡 ∥∇𝐹𝑖 (x𝑡𝑖,𝑘 )∥

2 + 𝛼2E𝑡 ∥∇𝐹𝑖 (x̆𝑡𝑖,𝑘 ) − ∇𝐹𝑖 (x𝑡𝑖,𝑘 )∥
2
)
+ 𝜎2

𝑙

≤ 2
𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾

(
E𝑡 ∥∇𝐹𝑖 (x𝑡𝑖,𝑘 )∥

2 + 𝛼2𝐿2𝜌2E𝑡 ∥∇𝐹𝑖 (x𝑡𝑖,𝑘 )∥
2
)
+ 𝜎2

𝑙

≤ 4
𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
E𝑡 ∥∇𝐹𝑖 (x𝑡𝑖,𝑘 ) − ∇𝐹𝑖 (z𝑡) + ∇𝐹𝑖 (z𝑡) − ∇𝐹 (z𝑡) + ∇𝐹 (z𝑡)∥2 + 𝜎2

𝑙

≤ 12𝐿2

𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
E𝑡 ∥x𝑡𝑖,𝑘 − z𝑡 ∥2 + 12E𝑡 ∥∇𝐹 (z𝑡)∥2 + (12𝜎2

𝑔 + 𝜎2
𝑙 )

≤ 12𝐿2

𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
E𝑡 ∥x𝑡𝑖,𝑘 − x𝑡 + x𝑡 − u𝑡 + u𝑡 − z𝑡 ∥2

+ 12E𝑡 ∥∇𝐹 (z𝑡)∥2 + (12𝜎2
𝑔 + 𝜎2

𝑙 )

≤ 24𝐿2

𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
E𝑡 ∥x𝑡𝑖,𝑘 − x𝑡 ∥2 + 24𝐿2∥x𝑡 − u𝑡 + u𝑡 − z𝑡 ∥2 + (12𝜎2

𝑔 + 𝜎2
𝑙 )

+ 12E𝑡 ∥∇𝐹 (z𝑡)∥2

≤ 24𝐿2

𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
E𝑡 ∥x𝑡𝑖,𝑘 − x𝑡 ∥2 + 24𝐿2𝜆2(1 − 2𝛾)2

𝛾2
1
𝑚

∑︁
𝑖

E𝑡 ∥ĝ𝑡−1
𝑖 ∥2

+ 12E𝑡 ∥∇𝐹 (z𝑡)∥2 + (12𝜎2
𝑔 + 𝜎2

𝑙 ).

We applies the Jensen inequality, the basic inequality ∥∑𝑛
𝑖=1 a𝑖∥2 ≤ 𝑛

∑𝑛
𝑖=1 ∥a𝑖∥2, and the

upper bound of 𝜌 ≤ 1
𝛼𝐿

. Combining the above inequalities, let 1
𝑃
= 1 − 24𝐿2𝜆2 (1−2𝛾2)

𝛾2 is the
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constant, we have:

1
𝑚

∑︁
𝑖∈[𝑚]
E𝑡 ∥ĝ𝑡−1

𝑖 ∥2 ≤ 𝑃

𝛾

1
𝑚

∑︁
𝑖∈[𝑚]

(
E𝑡 ∥ĝ𝑡−1

𝑖 ∥2 − E𝑡 ∥ĝ𝑡𝑖 ∥2
)
+ 24𝑃𝐿2

𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
E𝑡 ∥x𝑡𝑖,𝑘 − x𝑡 ∥2

+ 12𝑃E𝑡 ∥∇𝐹 (z𝑡)∥2 + 𝑃(12𝜎2
𝑔 + 𝜎2

𝑙 ).

□

L-smoothness of the Function 𝐹

For the general non-convex case, according to the Assumptions and the smoothness of 𝐹, we

take the conditional expectation at round 𝑡 + 1 and expand the 𝐹 (z𝑡+1) as:

E𝑡 [𝐹 (z𝑡+1)] ≤ 𝐹 (z𝑡) + E𝑡 ⟨∇𝐹 (z𝑡), z𝑡+1 − z𝑡⟩ + 𝐿
2
E𝑡 ∥z𝑡+1 − z𝑡 ∥2

= 𝐹 (z𝑡) + ⟨∇𝐹 (z𝑡),E𝑡 [z𝑡+1] − z𝑡⟩ + 𝐿
2
E𝑡 ∥z𝑡+1 − z𝑡 ∥2

= 𝐹 (z𝑡) + E𝑡 ⟨∇𝐹 (z𝑡),−𝜆
1
𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
g̃𝑡𝑖,𝑘⟩ +

𝐿

2
E𝑡 ∥z𝑡+1 − z𝑡 ∥2

= 𝐹 (z𝑡) − 𝜆E𝑡 ⟨∇𝐹 (z𝑡),
1
𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
g̃𝑡𝑖,𝑘 − ∇𝐹 (z𝑡) + ∇𝐹 (z𝑡)⟩

+ 𝐿
2
E𝑡 ∥z𝑡+1 − z𝑡 ∥2

= 𝐹 (z𝑡) − 𝜆∥∇𝐹 (z𝑡)∥2 −𝜆E𝑡 ⟨∇𝐹 (z𝑡),
1
𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
g̃𝑡𝑖,𝑘 − ∇𝐹 (z𝑡)⟩︸                                                    ︷︷                                                    ︸

R1

+ 𝐿
2
E𝑡 ∥z𝑡+1 − z𝑡 ∥2︸           ︷︷           ︸

R2

.



1 APPENDIX A PROOF DETAILS 63

Bounded R1

Note that R1 can be bounded as:

R1 = −𝜆E𝑡 ⟨∇𝐹 (z𝑡),
1
𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
g̃𝑡𝑖,𝑘 − ∇𝐹 (z𝑡)⟩

(𝑎)
= −𝜆E𝑡 ⟨∇𝐹 (z𝑡),

1
𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
g̃𝑡𝑖,𝑘 −

1
𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
∇𝐹𝑖 (z𝑡)⟩

(𝑏)
=
𝜆

2
∥∇𝐹 (z𝑡)∥2 + 𝜆

2
E𝑡 ∥

1
𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾

(
Eg̃𝑡𝑖,𝑘 − ∇𝐹𝑖 (z𝑡)

)
∥2 − 𝜆

2𝑚2E𝑡 ∥
∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
Eg̃𝑡𝑖,𝑘 ∥

2

(𝑐)
≤ 𝜆

2
∥∇𝐹 (z𝑡)∥2 + 𝜆

2
1
𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
E𝑡 ∥Eg̃𝑡𝑖,𝑘 − ∇𝐹𝑖 (z𝑡)∥2

︸                                         ︷︷                                         ︸
R1.a

− 𝜆

2𝑚2E𝑡 ∥
∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
Eg̃𝑡𝑖,𝑘 ∥

2.

(a) applies the fact that 1
𝑚

∑
𝑖∈[𝑚] ∇𝐹𝑖 (z𝑡) = ∇𝐹 (z𝑡). (b) applies −⟨x, y⟩ = 1

2
(
∥x∥2 + ∥y∥2 −

∥x + y∥2) . (c) applies the Jensen’s inequality and the fact that
∑𝐾−1
𝑘=0

𝛾𝑘
𝛾
= 1.

According to the update rule we have:

Eg̃𝑡𝑖,𝑘 = (1 − 𝛼)E
[
g𝑡𝑖,𝑘,1

]
+ 𝛼E

[
g𝑡𝑖,𝑘,2

]
= (1 − 𝛼)E

[
∇𝐹𝑖 (x𝑡𝑖,𝑘 ; 𝜀

𝑡
𝑖,𝑘 )

]
+ 𝛼E

[
∇𝐹𝑖 (x̆𝑡𝑖,𝑘 ; 𝜀

𝑡
𝑖,𝑘 )

]
= (1 − 𝛼)∇𝐹𝑖 (x𝑡𝑖,𝑘 ) + 𝛼∇𝐹𝑖 (x̆

𝑡
𝑖,𝑘 ) = (1 − 𝛼)∇𝐹𝑖 (x𝑡𝑖,𝑘 ) + 𝛼∇𝐹𝑖 (x

𝑡
𝑖,𝑘 + 𝜌g𝑡𝑖,𝑘,1).

Let 𝜌 ≤ 1√
3𝛼𝐿

, thus we could bound the term R1.a as follows:

1
𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
E𝑡 ∥Eg̃𝑡𝑖,𝑘 − ∇𝐹𝑖 (z𝑡)∥2

=
1
𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
E𝑡 ∥(1 − 𝛼)∇𝐹𝑖 (x𝑡𝑖,𝑘 ) + 𝛼∇𝐹𝑖 (x

𝑡
𝑖,𝑘 + 𝜌g𝑡𝑖,𝑘,1) − ∇𝐹𝑖 (z𝑡)∥2

=
1
𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
E𝑡 ∥∇𝐹𝑖 (x𝑡𝑖,𝑘 ) − ∇𝐹𝑖 (z𝑡) + 𝛼

(
∇𝐹𝑖 (x𝑡𝑖,𝑘 + 𝜌g𝑡𝑖,𝑘,1) − ∇𝐹𝑖 (x𝑡𝑖,𝑘 )

)
∥2
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≤ 2
𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
E𝑡 ∥∇𝐹𝑖 (x𝑡𝑖,𝑘 ) − ∇𝐹𝑖 (z𝑡)∥2 + 2𝛼2

𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
E𝑡 ∥∇𝐹𝑖 (x̆𝑡𝑖,𝑘 ) − ∇𝐹𝑖 (x𝑡𝑖,𝑘 )∥

2

≤ 2𝐿2

𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
E𝑡 ∥x𝑡𝑖,𝑘 − z𝑡 ∥2 + 2𝛼2𝐿2𝜌2

𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
E𝑡 ∥g𝑡𝑖,𝑘,1∥

2

=
2𝐿2

𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
E𝑡 ∥x𝑡𝑖,𝑘 − x𝑡 + x𝑡 − u𝑡 + u𝑡 − z𝑡 ∥2 + 2𝛼2𝐿2𝜌2

𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
E𝑡 ∥g𝑡𝑖,𝑘,1∥

2

≤ 4𝐿2

𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
E𝑡 ∥x𝑡𝑖,𝑘 − x𝑡 ∥2 + 4𝐿2

𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
E𝑡 ∥(x𝑡 − u𝑡) + (u𝑡 − z𝑡)∥2

+ 2𝛼2𝐿2𝜌2

𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
E𝑡 ∥g𝑡𝑖,𝑘,1 − ∇𝐹𝑖 (x𝑡𝑖,𝑘 )∥

2 + 2𝛼2𝐿2𝜌2

𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
E𝑡 ∥∇𝐹𝑖 (x𝑡𝑖,𝑘 )∥

2

≤ 4𝐿2

𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
E𝑡 ∥x𝑡𝑖,𝑘 − x𝑡 ∥2 + 2𝛼2𝐿2𝜌2

𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
E𝑡 ∥∇𝐹𝑖 (x𝑡𝑖,𝑘 )∥

2 + 2𝛼2𝐿2𝜌2𝜎2
𝑙

+ 4𝐿2E𝑡 ∥(x𝑡 − u𝑡) + (u𝑡 − z𝑡)∥2

=
4𝐿2

𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
E𝑡 ∥x𝑡𝑖,𝑘 − x𝑡 ∥2 + 2𝛼2𝐿2𝜌2

𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
E𝑡 ∥∇𝐹𝑖 (x𝑡𝑖,𝑘 )∥

2 + 2𝛼2𝐿2𝜌2𝜎2
𝑙

+ 4𝐿2E𝑡 ∥ −
1
𝑚

∑︁
𝑖∈[𝑚]

𝜆ĝ𝑡−1
𝑖 + 𝛾 − 1

𝛾
(u𝑡 − u𝑡−1)∥2

=
4𝐿2

𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
E𝑡 ∥x𝑡𝑖,𝑘 − x𝑡 ∥2 + 2𝛼2𝐿2𝜌2

𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
E𝑡 ∥∇𝐹𝑖 (x𝑡𝑖,𝑘 )∥

2 + 2𝛼2𝐿2𝜌2𝜎2
𝑙

+ 4𝐿2E𝑡 ∥
1
𝑚

∑︁
𝑖∈[𝑚]

(
(u𝑡 − u𝑡−1 + 𝜆ĝ𝑡−1

𝑖 ) − 1
𝛾
(u𝑡 − u𝑡−1 + 𝜆ĝ𝑡−1

𝑖 ) + (1 − 2𝛾
𝛾

)𝜆ĝ𝑡−1
𝑖

)
∥2

=
4𝐿2

𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
E𝑡 ∥x𝑡𝑖,𝑘 − x𝑡 ∥2 + 2𝛼2𝐿2𝜌2

𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
E𝑡 ∥∇𝐹𝑖 (x𝑡𝑖,𝑘 )∥

2 + 2𝛼2𝐿2𝜌2𝜎2
𝑙

+ 4𝜆2𝐿2(1 − 2𝛾)2

𝛾2 E𝑡 ∥
1
𝑚

∑︁
𝑖∈[𝑚]

ĝ𝑡−1
𝑖 ∥2

=
4𝐿2

𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
E𝑡 ∥x𝑡𝑖,𝑘 − x𝑡 ∥2 + 4𝜆2𝐿2(1 − 2𝛾)2

𝛾2 E𝑡 ∥
1
𝑚

∑︁
𝑖∈[𝑚]

ĝ𝑡−1
𝑖 ∥2 + 2𝛼2𝐿2𝜌2𝜎2

𝑙
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+ 2𝛼2𝐿2𝜌2

𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
E𝑡 ∥∇𝐹𝑖 (x𝑡𝑖,𝑘 ) − ∇𝐹𝑖 (z𝑡) + ∇𝐹𝑖 (z𝑡) − ∇𝐹 (z𝑡) + ∇𝐹 (z𝑡)∥2

(𝑎)
≤ 4𝐿2

𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
E𝑡 ∥x𝑡𝑖,𝑘 − x𝑡 ∥2 + 4𝜆2𝐿2(1 − 2𝛾)2

𝛾2 E𝑡 ∥
1
𝑚

∑︁
𝑖∈[𝑚]

ĝ𝑡−1
𝑖 ∥2 + 2𝛼2𝐿2𝜌2𝜎2

𝑙

+ 2𝐿2

𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
E𝑡 ∥x𝑡𝑖,𝑘 − z𝑡 ∥2 + 6𝛼2𝐿2𝜌2𝜎2

𝑔 + 6𝛼2𝐿2𝜌2E𝑡 ∥∇𝐹 (z𝑡)∥2

≤ 8𝐿2

𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
E𝑡 ∥x𝑡𝑖,𝑘 − x𝑡 ∥2 + 8𝜆2𝐿2(1 − 2𝛾)2

𝛾2 E𝑡 ∥
1
𝑚

∑︁
𝑖∈[𝑚]

ĝ𝑡−1
𝑖 ∥2 + 2𝛼2𝐿2𝜌2𝜎2

𝑙

+ 6𝛼2𝐿2𝜌2𝜎2
𝑔 + 6𝛼2𝐿2𝜌2E𝑡 ∥∇𝐹 (z𝑡)∥2.

(𝑏)
≤ 8𝐿2

𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
E𝑡 ∥x𝑡𝑖,𝑘 − x𝑡 ∥2 + 8𝜆2𝐿2(1 − 2𝛾)2

𝛾3
©­«E𝑡 ∥ 1

𝑚

∑︁
𝑖∈[𝑚]

ĝ𝑡−1
𝑖 ∥2 − E𝑡 ∥

1
𝑚

∑︁
𝑖∈[𝑚]

ĝ𝑡𝑖 ∥2ª®¬
+ 8𝜆2𝐿2(1 − 2𝛾)2

𝛾2 E𝑡 ∥
1
𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
g̃𝑡𝑖,𝑘 ∥

2 + 2𝛼2𝐿2𝜌2𝜎2
𝑙 + 6𝛼2𝐿2𝜌2𝜎2

𝑔 + 6𝛼2𝐿2𝜌2E𝑡 ∥∇𝐹 (z𝑡)∥2.

(a) applies the bound of 𝜌 as 𝜌 ≤ 1√
3𝛼𝐿

. (b) applies the lemma 3. These others use the fact

E[𝑥 − E[𝑥]]2 = E[𝑥2] − [E[𝑥]]2 and ∥x + y∥2 ≤ (1 + 𝑎)∥x∥2 + (1 + 1
𝑎
)∥y∥2.

We denote c𝑡 = 1
𝑚

∑
𝑖∈𝑚

∑𝐾−1
𝑘=0 (𝛾𝑘/𝛾)E𝑡 ∥x𝑡𝑖,𝑘 − x𝑡 ∥2 term as the local offset after 𝑘 iterations

updates, we firstly consider the c𝑡
𝑘
= 1
𝑚

∑
𝑖∈𝑚 E𝑡 ∥x𝑡𝑖,𝑘 − x𝑡 ∥2 and it can be bounded as:

c𝑡𝑘 =
1
𝑚

∑︁
𝑖∈[𝑚]
E𝑡 ∥x𝑡𝑖,𝑘 − x𝑡 ∥2 =

1
𝑚

∑︁
𝑖∈[𝑚]
E𝑡 ∥x𝑡𝑖,𝑘 − x𝑡𝑖,𝑘−1 + x𝑡𝑖,𝑘−1 − x𝑡𝑖,0∥

2

=
1
𝑚

∑︁
𝑖∈[𝑚]
E𝑡 ∥ − 𝜂𝑙 (g̃𝑡𝑖,𝑘−1 − ĝ𝑡−1

𝑖 ) + (1 − 𝜂𝑙
𝜆
) (x𝑡𝑖,𝑘−1 − x𝑡𝑖,0)∥

2

≤ (1 + 𝑎) (1 − 𝜂𝑙
𝜆
)2 1
𝑚

∑︁
𝑖∈[𝑚]
E𝑡 ∥x𝑡𝑖,𝑘−1 − x𝑡𝑖,0∥

2 + (1 + 1
𝑎
)
𝜂2
𝑙

𝑚

∑︁
𝑖∈[𝑚]
E𝑡 ∥g̃𝑡𝑖,𝑘−1 − ĝ𝑡−1

𝑖 ∥2

= (1 + 𝑎) (1 − 𝜂𝑙
𝜆
)2c𝑡𝑘−1 + (1 + 1

𝑎
)
𝜂2
𝑙

𝑚

∑︁
𝑖∈[𝑚]
E𝑡 ∥(1 − 𝛼)g𝑡𝑖,𝑘−1,1 + 𝛼g𝑡𝑖,𝑘−1,2 − ĝ𝑡−1

𝑖 ∥2
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= (1 + 1
𝑎
)
𝜂2
𝑙

𝑚

∑︁
𝑖∈[𝑚]
E𝑡 ∥∇𝐹𝑖 (x𝑡𝑖,𝑘−1) − ĝ𝑡−1

𝑖 + 𝛼(∇𝐹𝑖 (x̆𝑡𝑖,𝑘−1) − ∇𝐹𝑖 (x𝑡𝑖,𝑘−1))∥
2

+ (1 + 1
𝑎
)𝜂2
𝑙 𝜎

2
𝑙 + (1 + 𝑎) (1 − 𝜂𝑙

𝜆
)2c𝑡𝑘−1

≤ (1 + 1
𝑎
)
3𝜂2

𝑙

𝑚

∑︁
𝑖∈[𝑚]

(
E𝑡 ∥∇𝐹𝑖 (x𝑡𝑖,𝑘−1)∥

2 + E𝑡 ∥ĝ𝑡−1
𝑖 ∥2 + 𝛼2𝐿2𝜌2E𝑡 ∥∇𝐹𝑖 (x𝑡𝑖,𝑘−1)∥

2
)

+ (1 + 1
𝑎
)𝜂2
𝑙 𝜎

2
𝑙 + (1 + 𝑎) (1 − 𝜂𝑙

𝜆
)2c𝑡𝑘−1

≤ (1 + 1
𝑎
)
4𝜂2

𝑙

𝑚

∑︁
𝑖∈[𝑚]
E𝑡 ∥∇𝐹𝑖 (x𝑡𝑖,𝑘−1)∥

2 + (1 + 1
𝑎
)
3𝜂2

𝑙

𝑚

∑︁
𝑖∈[𝑚]
E𝑡 ∥ĝ𝑡−1

𝑖 ∥2 + (1 + 1
𝑎
)𝜂2
𝑙 𝜎

2
𝑙

+ (1 + 𝑎) (1 − 𝜂𝑙
𝜆
)2c𝑡𝑘−1

≤ (1 + 1
𝑎
)
4𝜂2

𝑙

𝑚

∑︁
𝑖∈[𝑚]
E𝑡 ∥∇𝐹𝑖 (x𝑡𝑖,𝑘−1) − ∇𝐹𝑖 (x𝑡) + ∇𝐹𝑖 (x𝑡) − ∇𝐹𝑖 (z𝑡) + ∇𝐹𝑖 (z𝑡) − ∇𝐹 (z𝑡)

+ ∇𝐹 (z𝑡)∥2 + (1 + 1
𝑎
)
3𝜂2

𝑙

𝑚

∑︁
𝑖∈[𝑚]
E𝑡 ∥ĝ𝑡−1

𝑖 ∥2 + (1 + 1
𝑎
)𝜂2
𝑙 𝜎

2
𝑙 + (1 + 𝑎) (1 − 𝜂𝑙

𝜆
)2c𝑡𝑘−1

≤ (1 + 1
𝑎
)
16𝜂2

𝑙
𝐿2

𝑚

∑︁
𝑖∈[𝑚]
E𝑡 ∥x𝑡𝑖,𝑘−1 − x𝑡 ∥2 + (1 + 1

𝑎
)16𝜂2

𝑙 𝐿
2∥x𝑡 − z𝑡 ∥2 + (1 + 1

𝑎
)𝜂2
𝑙 (16𝜎2

𝑔 + 𝜎2
𝑙 )

+ (1 + 1
𝑎
)16𝜂2

𝑙 ∥∇𝐹 (z
𝑡)∥2 + (1 + 1

𝑎
)
3𝜂2

𝑙

𝑚

∑︁
𝑖∈[𝑚]
E𝑡 ∥ĝ𝑡−1

𝑖 ∥2 + (1 + 𝑎) (1 − 𝜂𝑙
𝜆
)2c𝑡𝑘−1

≤
[
(1 + 𝑎) (1 − 𝜂𝑙

𝜆
)2 + (1 + 1

𝑎
)16𝜂2

𝑙 𝐿
2
]

c𝑡𝑘−1 + (1 + 1
𝑎
)𝜂2
𝑙 (16𝜎2

𝑔 + 𝜎2
𝑙 )

+ (1 + 1
𝑎
)16𝜂2

𝑙 E𝑡 ∥∇𝐹 (z
𝑡)∥2 + (1 + 1

𝑎
)𝜂2
𝑙

[
3 + 16𝜆2𝐿2(1 − 2𝛾)2

𝛾2

]
1
𝑚

∑︁
𝑖∈[𝑚]
E𝑡 ∥ĝ𝑡−1

𝑖 ∥2

=

[
(1 + 𝑎) (1 − 𝜂𝑙

𝜆
)2 + (1 + 1

𝑎
)16𝜂2

𝑙 𝐿
2
]

c𝑡𝑘−1 + (1 + 1
𝑎
)𝜂2
𝑙 (16𝜎2

𝑔 + 𝜎2
𝑙 )

+ (1 + 1
𝑎
)𝜂2
𝑙 𝐿

2 (88𝑃 − 16) c𝑡 + (1 + 1
𝑎
)
2𝜂2

𝑙
(𝑃 − 1)

3
(12𝜎2

𝑔 + 𝜎2
𝑙 )

+ (1 + 1
𝑎
)16𝜂2

𝑙 E𝑡 ∥∇𝐹 (z
𝑡)∥2 + (1 + 1

𝑎
)𝜂2
𝑙 (44𝑃 − 8)E𝑡 ∥∇𝐹 (z𝑡)∥2

+ (1 + 1
𝑎
)
2𝜂2

𝑙
(𝑃 − 1)
3𝛾

1
𝑚

∑︁
𝑖∈[𝑚]

(
E𝑡 ∥ĝ𝑡−1

𝑖 ∥2 − E𝑡 ∥ĝ𝑡𝑖 ∥2
)
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When 𝑃 satisfies the condition of 𝑃 ≤ 2, which means 1
𝑃
= 1 − 24𝜆2𝐿2 (1−2𝛾)2

𝛾2 ≥ 1
2 , then we

have the constant of 2(𝑃−1)
3 ≤ 2

3 < 1, let the last 12𝜎2
𝑔 enlarged to 16𝜎2

𝑔 for convenience, we

have:

c𝑡𝑘 ≤
[
(1 + 𝑎) (1 − 𝜂𝑙

𝜆
)2 + (1 + 1

𝑎
)16𝜂2

𝑙 𝐿
2
]

c𝑡𝑘−1 + 2(1 + 1
𝑎
)𝜂2
𝑙 (16𝜎2

𝑔 + 𝜎2
𝑙 ) + 160(1 + 1

𝑎
)𝜂2
𝑙 𝐿

2c𝑡

96(1 + 1
𝑎
)𝜂2
𝑙 E𝑡 ∥∇𝐹 (z

𝑡)∥2 + 2(1 + 1
𝑎
)
𝜂2
𝑙

𝛾

1
𝑚

∑︁
𝑖∈[𝑚]

(
E𝑡 ∥ĝ𝑡−1

𝑖 ∥2 − E𝑡 ∥ĝ𝑡𝑖 ∥2
)
.

Here we get the recursion formula between the c𝑡
𝑘

and c𝑡
𝑘−1. Actually we need to upper bound

the c𝑡 =
∑𝐾−1
𝑘=0 (𝛾𝑘/𝛾)c𝑡𝑘 , thus let the weight satisfies that:

(1 + 𝑎) (1 − 𝜂𝑙
𝜆
)2 + (1 + 1

𝑎
)16𝜂2

𝑙 𝐿
2 ≤ 𝛾𝐾−2

𝛾𝐾−1
=
𝛾𝐾−3
𝛾𝐾−2

= · · · = 𝛾1
𝛾0

= 1 − 𝜂𝑙
𝜆
,

let 𝜂𝑙 ≤ 𝜆 and thus we have:

c𝑡 =
𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
c𝑡𝑘

≤ 2(1 + 1
𝑎
)
𝜂2
𝑙

𝛾

𝐾−1∑︁
𝑘
′
=0

©­«
𝑘
′−1∑︁
𝑘=0

𝛾𝑘
ª®¬
(
16𝜎2

𝑔 + 𝜎2
𝑙 + 48E𝑡 ∥∇𝐹 (z𝑡)∥2 + 80𝐿2c𝑡

+ 1
𝑚𝛾

∑︁
𝑖∈[𝑚]

(
E𝑡 ∥ĝ𝑡−1

𝑖 ∥2 − E𝑡 ∥ĝ𝑡𝑖 ∥2
))

(𝑎)
≤ 2(1 + 1

𝑎
)𝜂2
𝑙

𝐾−1∑︁
𝑘
′
=0

(
𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾

) (
16𝜎2

𝑔 + 𝜎2
𝑙 + 48E𝑡 ∥∇𝐹 (z𝑡)∥2 + 80𝐿2c𝑡

+ 1
𝑚𝛾

∑︁
𝑖∈[𝑚]

(
E𝑡 ∥ĝ𝑡−1

𝑖 ∥2 − E𝑡 ∥ĝ𝑡𝑖 ∥2
))

= 2(1 + 1
𝑎
)𝜂2
𝑙 𝐾

©­«16𝜎2
𝑔 + 𝜎2

𝑙 + 48E𝑡 ∥∇𝐹 (z𝑡)∥2 + 1
𝑚𝛾

∑︁
𝑖∈[𝑚]

(
E𝑡 ∥ĝ𝑡−1

𝑖 ∥2 − E𝑡 ∥ĝ𝑡𝑖 ∥2
)ª®¬
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+ 160(1 + 1
𝑎
)𝜂2
𝑙 𝐿

2𝐾c𝑡 .

(a) enlarge the sum from 𝑘
′

to 𝐾 − 1 where 𝑘
′ ≤ 𝐾 − 1.

Let 𝜂𝑙 satisfies the upper bound of 𝜂𝑙 ≤ 1√
320(1+1/𝑎)𝐾𝐿

for convenience, we can bound the c𝑡

as:

c𝑡 = 4(1 + 1
𝑎
)𝜂2
𝑙 𝐾

©­«16𝜎2
𝑔 + 𝜎2

𝑙 + 48E𝑡 ∥∇𝐹 (z𝑡)∥2 + 1
𝑚𝛾

∑︁
𝑖∈[𝑚]

(
E𝑡 ∥ĝ𝑡−1

𝑖 ∥2 − E𝑡 ∥ĝ𝑡𝑖 ∥2
)ª®¬ .

Let the 𝑎 satisfies 𝑎 = 1 for convenience, we summarize the extra terms above and bound the

term R1.a as:

R1.a =
1
𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
E𝑡 ∥E[g̃𝑡𝑖,𝑘 ] − ∇𝐹𝑖 (z𝑡)∥2

≤ 8𝐿2c𝑡 + 8𝜆2𝐿2(1 − 2𝛾)2

𝛾3
©­«E𝑡 ∥ 1

𝑚

∑︁
𝑖∈[𝑚]

ĝ𝑡−1
𝑖 ∥2 − E𝑡 ∥

1
𝑚

∑︁
𝑖∈[𝑚]

ĝ𝑡𝑖 ∥2ª®¬ + 2𝛼2𝐿2𝜌2𝜎2
𝑙

+ 8𝜆2𝐿2(1 − 2𝛾)2

𝛾2 E𝑡 ∥
1
𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
g̃𝑡𝑖,𝑘 ∥

2 + 6𝛼2𝐿2𝜌2𝜎2
𝑔 + 6𝛼2𝐿2𝜌2E𝑡 ∥∇𝐹 (z𝑡)∥2

≤ 8𝜆2𝐿2(1 − 2𝛾)2

𝛾3
©­«E𝑡 ∥ 1

𝑚

∑︁
𝑖∈[𝑚]

ĝ𝑡−1
𝑖 ∥2 − E𝑡 ∥

1
𝑚

∑︁
𝑖∈[𝑚]

ĝ𝑡𝑖 ∥2ª®¬ + 2𝛼2𝐿2𝜌2𝜎2
𝑙 + 6𝛼2𝐿2𝜌2𝜎2

𝑔

+ 8𝜆2𝐿2(1 − 2𝛾)2

𝛾2 E𝑡 ∥
1
𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
g̃𝑡𝑖,𝑘 ∥

2 +
64𝜂2

𝑙
𝐿2𝐾

𝑚𝛾

∑︁
𝑖∈[𝑚]

(
E𝑡 ∥ĝ𝑡−1

𝑖 ∥2 − E𝑡 ∥ĝ𝑡𝑖 ∥2
)

+ 3072𝜂2
𝑙 𝐿

2𝐾E𝑡 ∥∇𝐹 (z𝑡)∥2 + 6𝛼2𝐿2𝜌2E𝑡 ∥∇𝐹 (z𝑡)∥2 + 64𝜂2
𝑙 𝐿

2𝐾 (16𝜎2
𝑔 + 𝜎2

𝑙 ).

thus we can bound the R1 as follow:

R1 ≤ 𝜆

2
E𝑡 ∥∇𝐹 (z𝑡)∥2 + 𝜆

2
R1.a − 𝜆

2𝑚2E𝑡 ∥
∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘

𝛾𝑘

𝛾
E[g̃𝑡𝑖,𝑘 ] ∥

2
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≤
(
𝜆

2
+ 3𝜆𝛼2𝐿2𝜌2 + 1536𝜆𝜂2

𝑙 𝐿
2𝐾

)
E𝑡 ∥∇𝐹 (z𝑡)∥2 + 32𝜆𝜂𝑙𝐿2𝐾

𝛾𝑚

∑︁
𝑖∈[𝑚]

(
E∥ĝ𝑡−1

𝑖 ∥2 − E∥ĝ𝑡𝑖 ∥2
)

+ 4𝜆3𝐿2(1 − 2𝛾)2

𝛾3
©­«E𝑡 ∥ 1

𝑚

∑︁
𝑖∈[𝑚]

ĝ𝑡−1
𝑖 ∥2 − E𝑡 ∥

1
𝑚

∑︁
𝑖∈[𝑚]

ĝ𝑡𝑖 ∥2ª®¬ + 𝜆𝛼2𝐿2𝜌2(3𝜎2
𝑔 + 𝜎2

𝑙 )

+ 4𝜆3𝐿2(1 − 2𝛾)2

𝛾2 E𝑡 ∥
1
𝑚

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
g̃𝑡𝑖,𝑘 ∥

2 + 32𝜆𝜂2
𝑙 𝐿

2𝐾 (16𝜎2
𝑔 + 𝜎2

𝑙 ).

We notice that R1 contains the same term with a negative weight, thus we can set another

constrains for 𝜆 to eliminate this term. We will prove it in the next part. Bounded Global

Gradient

As we have bounded the term R1 and R2, according to the smoothness inequality, we combine

the inequalities above and get the inequality:

E𝑡 [𝐹 (z𝑡+1)] ≤ 𝐹 (z𝑡) − 𝜆∥∇𝐹 (z𝑡)∥2 + R1 + 𝐿
2

R2

= 𝐹 (z𝑡) −
(
𝜆

2
− 3𝜆𝛼2𝐿2𝜌2 − 1536𝜆𝜂2

𝑙 𝐿
2𝐾

)
∥∇𝐹 (z𝑡)∥2 + 𝜆𝛼2𝐿2𝜌2(3𝜎2

𝑔 + 𝜎2
𝑙 )

+
(4𝜆3𝐿2(1 − 2𝛾)2

𝛾2 + 𝜆
2𝐿

2𝑚2 − 𝜆

2𝑚2

)
E𝑡 ∥

∑︁
𝑖∈[𝑚]

𝐾−1∑︁
𝑘=0

𝛾𝑘

𝛾
g̃𝑡𝑖,𝑘 ∥

2

+ 32𝜆𝜂𝑙𝐿2𝐾

𝛾𝑚

∑︁
𝑖∈[𝑚]

(
E∥ĝ𝑡−1

𝑖 ∥2 − E∥ĝ𝑡𝑖 ∥2
)
+ 32𝜆𝜂2

𝑙 𝐿
2𝐾 (16𝜎2

𝑔 + 𝜎2
𝑙 )

+ 4𝜆3𝐿2(1 − 2𝛾)2

𝛾3
©­«E𝑡 ∥ 1

𝑚

∑︁
𝑖∈[𝑚]

ĝ𝑡−1
𝑖 ∥2 − E𝑡 ∥

1
𝑚

∑︁
𝑖∈[𝑚]

ĝ𝑡𝑖 ∥2ª®¬ .

We follow as (Yang et al. 2021b) to set 𝜆 that it satisfies 4𝜆3𝐿2 (1−2𝛾)2

𝛾2 + 𝜆2𝐿
2𝑚2 − 𝜆

2𝑚2 ≤ 0,

which is easy to verified that 𝜆 has a upper bound for the quadratic inequality. Thus, the

stochastic gradient term is diminished by this 𝜆. We denote the constant 𝜆𝜅 = 𝜆
2 −3𝜆𝛼2𝐿2𝜌2−
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1536𝜆𝜂2
𝑙
𝐿2𝐾 and take the full expectation on the bounded global gradient as:

𝜆𝜅E∥∇𝐹 (z𝑡)∥2 ≤
(
E𝐹 (z𝑡) − E𝐹 (z𝑡+1)

)
+ 32𝜆𝜂𝑙𝐿2𝐾

𝛾𝑚

∑︁
𝑖∈[𝑚]

(
E∥ĝ𝑡−1

𝑖 ∥2 − E∥ĝ𝑡𝑖 ∥2
)

+ 4𝜆3𝐿2(1 − 2𝛾)2

𝛾3
©­«E𝑡 ∥ 1

𝑚

∑︁
𝑖∈[𝑚]

ĝ𝑡−1
𝑖 ∥2 − E𝑡 ∥

1
𝑚

∑︁
𝑖∈[𝑚]

ĝ𝑡𝑖 ∥2ª®¬
+ 32𝜆𝜂2

𝑙 𝐿
2𝐾 (16𝜎2

𝑔 + 𝜎2
𝑙 ) + 𝜆𝛼

2𝐿2𝜌2(3𝜎2
𝑔 + 𝜎2

𝑙 ).

Take the full expectation and telescope sum on the inequality above and applying the fact that

𝐹∗ ≤ 𝐹 (x) for x ∈ R𝑑 , we have:

1
𝑇

𝑇−1∑︁
𝑡=1
E𝑡 ∥∇𝐹 (z𝑡)∥2 ≤ 1

𝜆𝜅𝑇

(
𝐹 (z1) − E𝑡 [𝐹 (z𝑇 )]

)
+ 32𝜂𝑙𝐿2𝐾

𝜅𝛾𝑚𝑇

∑︁
𝑖∈[𝑚]

(
E∥ĝ0

𝑖 ∥2 − E∥ĝ𝑡𝑖 ∥2
)

+ 4𝜆2𝐿2(1 − 2𝛾)2

𝜅𝛾3𝑇

©­«E𝑡 ∥ 1
𝑚

∑︁
𝑖∈[𝑚]

ĝ0
𝑖 ∥2 − E𝑡 ∥

1
𝑚

∑︁
𝑖∈[𝑚]

ĝ𝑡𝑖 ∥2ª®¬
+ 1
𝜅

(
32𝜆𝜂2

𝑙 𝐿
2𝐾 (16𝜎2

𝑔 + 𝜎2
𝑙 ) + 𝜆𝛼

2𝐿2𝜌2(3𝜎2
𝑔 + 𝜎2

𝑙 )
)

≤ 1
𝜆𝜅𝑇

(
𝐹 (z0) − 𝐹∗)

)
+ 32𝜂𝑙𝐿2𝐾

𝜅𝛾𝑚𝑇

∑︁
𝑖∈[𝑚]
E∥ĝ0

𝑖 ∥2

+ 4𝜆2𝐿2(1 − 2𝛾)2

𝜅𝛾3𝑇
E𝑡 ∥

1
𝑚

∑︁
𝑖∈[𝑚]

ĝ0
𝑖 ∥2

+ 1
𝜅

(
32𝜆𝜂2

𝑙 𝐿
2𝐾 (16𝜎2

𝑔 + 𝜎2
𝑙 ) + 𝜆𝛼

2𝐿2𝜌2(3𝜎2
𝑔 + 𝜎2

𝑙 )
)

Here we summarize the conditions and some constrains in the above conclusion. Firstly we

should note that 𝛾 = 1 − (1 − 𝜂𝑙
𝜆
)𝐾 < 1 when 𝜂𝑙 ≤ 2𝜆. Thus we have 1/𝛾 > 1. When 𝐾

satisfies that 𝐾 ≥ 𝜆
𝜂𝑙

, (1 − 𝜂𝑙
𝜆
)𝐾 ≤ 𝑒−

𝜂𝑙
𝜆
𝐾 ≤ 𝑒−1, and then 𝛾 > 1 − 𝑒−1 and 1/𝛾 < 𝑒

𝑒−1 < 2. To

let 𝜅 = 1
2 − 3𝛼2𝐿2𝜌2 − 1536𝜂2

𝑙
𝐿2𝐾 > 0 hold, 𝜌 and 𝜂𝑙 satisfy that 𝜌 < 1√

6𝛼𝐿
and 𝜂𝑙 < 1

32
√

3𝐾𝐿
.
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1
𝑇

𝑇−1∑︁
𝑡=1
E∥∇𝐹 (z𝑡)∥2 ≤ 2(𝐹 (z1) − 𝐹∗)

𝜆𝜅𝑇
+ 64𝜂𝑙𝐿2𝐾

𝜅𝑇

1
𝑚

∑︁
𝑖∈[𝑚]
E∥ĝ0

𝑖 ∥2 + 32𝜆2𝐿2

𝜅𝑇
E𝑡 ∥

1
𝑚

∑︁
𝑖∈[𝑚]

ĝ0
𝑖 ∥2

+ 1
𝜅

(
32𝜆𝜂2

𝑙 𝐿
2𝐾 (16𝜎2

𝑔 + 𝜎2
𝑙 ) + 𝜆𝛼

2𝐿2𝜌2(3𝜎2
𝑔 + 𝜎2

𝑙 )
)
.
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