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Abstract

Almost all phenomena in the universe are described, at the fundamental level, by quantum many-body
models. In general, however, a complete understanding of large systems with many degrees of freedom
is impossible. The complexity of solving such systems grows exponentially with system size, meaning
that solving the governing equations is currently intractable. While in general many-body quantum
systems are intractable, there are special cases for which there are techniques that allow for an exact
solution. The importance of such models extends beyond the specific models in question. Exactly
soluble models are interesting because they are soluble; beyond this, they can be used to gain intuition
for further reaching many-body systems, including when they can be leveraged to help with numerical
approximations for general models. The work presented in this thesis considers exactly soluble models
of quantum many-body systems. In particular, this thesis investigates two distinct classes of exactly
soluble quantum many-body systems. The first part of this thesis extends the family of many-body
spin models for which we can find a free-fermion solution. A solution method that was developed for
a specific free-fermion model is generalized in such a way that allows application to a broader class
of many-body spin system than was previously known to be free. Further more a simple recognition
test is presented to determine a system’s free-fermion solubility. Models which admit a solution via
this method are characterized by a graph theory invariants: in brief it is shown that a quantum spin
system has an exact description via non-interacting fermions if its frustration graph is claw-free and
contains a simplicial clique. The graph theoretic characterization is also connected to the developing
body of work on operator Krylov subspaces; such a connection could have implications which reach
beyond this class of models, and aide in our understanding of tractability in more general models. The
results in this part of the thesis deepen the already existing connection between many-body physics
and the mathematical theory of claw-free graphs. The second part of this thesis gives an explicit
example of how the usefulness of exactly soluble models can extend beyond the solution itself. This
chapter pertains to the calculation of the topological entanglement entropy in topologically ordered
loop-gas states. Topological entanglement entropy gives an understanding of how correlations may
extend throughout a system. In this chapter the topological entanglement entropy of two- and three-
dimensional loop-gas states is calculated in the bulk and at the boundary. We obtain a closed form
expression for the topological entanglement in terms of the anyonic theory that the models support.
Central to the formulation of these results is the development of a generalized braiding operator.
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Chapter 1

Introduction

Quantum many-body systems are ubiquitous: from semiconductors [1] and superconductors [2–4] in

condensed matter [5] to black holes [6,7] and plasmas in high energy physics [8], quantum many-body

systems are everywhere. Indeed, it could even be argued that the universe, and therefore all of nature,

is a single, vast quantum many-body system. Of course, the universe is an impractical test subject,

so research is generally restricted in purview to more manageable (and focused) settings. Certainly,

a quantum mechanical treatment of the processes in systems with many more than one particle is

important. Such a treatment informs our understanding of all that is around us.

Analyzing many-body systems through the lens of quantum mechanics is fundamentally different

from a classical approach [9]. In classical mechanics it is conceptually possible to label all particles in

a system and to follow their respective motion. In quantum mechanics, this is not possible. Particles

do not have a definitive position between measurements, instead the states of a quantum system in

time are described by wave-functions. The wave-function can be thought of as a probability distri-

bution over different measurement outcomes. Furthermore, there is no experimental result that can

distinguish between two states related by the exchange of identical particles. This leads to the sur-

prising, and yet somehow satisfyingly simple, binary classification of all particles that can naturally

exist in terms of their wave-function. Wave-functions are either symmetric or anti-symmetric, with

symmetric wave-functions reserved for bosons, while anti-symmetric wave-functions describe fermions.

This dichotomy means, among other things, that wave-functions acquire a negative (fermionic) phase

or remain invariant (bosons) under exchange of indistinguishable particles [10]. The anti-symmetry

of the fermionic wave-function further gives rise to the Pauli exclusion principle, which states that

two (or more identical) fermions cannot occupy the same quantum state within a quantum system

1
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simultaneously. Bosons, however, have no such restriction. Thus, studying quantum many-body sys-

tems, that is systems with many more than one degree of freedom, or particles, that obey the laws

of quantum mechanics, necessitates the development of a new paradigm with which to describe the

system in terms of the wave-functions, rather than the dynamics of the constituent particles. Such a

paradigm relates the state of a system at any given time to a previous state by the exchange statistics

of particles within, rather than the trajectories of particles, or other classical properties with similar

analogues.

One of the key goals of the field of quantum many-body physics is to understand the dynamics of a

system that is cannot be experimentally controlled. To do this we develop a model which attempts to

describe the system, and tune parameters until the dynamics of the model most closely resemble the

system itself. The task is then to understand how and why the model describes the system of interest,

not simply to emulate the system entirely; a complete and exact emulation would only be as useful

as looking at the original system itself. Certainly, in terms of naturally occurring systems, it is clear

that there is already a perfect simulation of any phenomena already in existence, the system itself.

Rather, the objective is to develop models which embody the characteristics of a physical system, so

that the processes behind the characteristics may then be understood through the models. While this

distinction may seem arbitrary, it is in fact a poignant contrast, one which allows us to probe the

underlying nature of systems of interest, rather than to simply observe. This task of understanding a

model designed to describe a process is motivated from both the perspectives of the fundamental (as

in gaining a understanding of naturally occurring phenomena), as well as for potential applications

(as in designing new materials).

In general, models that are developed to describe quantum many-body systems are so-called ‘toy’

models: deliberately over-simplistic models which neglect, or remove completely, many details so

that they can be used to explain a specific mechanism concisely. In many cases these toy models are

defined by ensembles of spins particles which are coupled by finite-range, (semi-)local, Pauli interaction

terms [11–14]; or finite-range, (semi-)local, spin-less (boson or fermion) creation and annihilation

operators; which negate coupling terms that are known to weakly persist at extreme distances in

reality.

Even with the restriction to the simplistic, time-independent toy models, there remains a major

challenge within the field, due to the inherent difficulty in solving the equation that governs the dy-

namics of a the degrees of freedom in a system: the time-independent Schrödinger equation [9]. The

Schrödinger equation relates the state of a system after a given time to the energetic spectrum of the
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model, which is determined by a system specific operator called the Hamiltonian. The Schrödinger

equation is mathematically complete, in that in principle, all properties of any system can be obtained

by solving it exactly. In practice however, for a system with many degrees of freedom, this is not feasi-

ble. The Hilbert space dimension, the dimension of the Hamiltonian, and therefore the computational

power required to solve the equation, scales exponentially in the number of degrees of freedom in a

system. Thus, for systems with a large number of degrees of freedom (literally) astronomically large

computers would be necessary to solve exactly an arbitrary system of interest. For example, the com-

putational power achieved by a computer the size of the Andromeda galaxy would barely be sufficient

to solve the equation for a singular caffeine molecule [15]; a computer made by all of the atoms in the

observable universe would only be powerful enough to solve the Schrödinger equation for a system of

one hundred particles [10,15,16].

Quantum computers promise to deliver a performance advantage for some problems which are

currently intractable on a classical computer. [17–19]. One of the main areas in which quantum

computers are expected to provide computational speedups is in the area of quantum many-body

systems [10]. However, quantum devices that are capable of reliable and large-scale computations are

not yet available. Furthermore, the link between building a reliable large scale quantum computers

and understanding the dynamics of many-body systems is a two-way street. Many of the tasks for

which a quantum computer is purported to produce an advantage in run time require the preparation

and control of large and highly entangled quantum systems [15]. Thus, it is important to develop

an understanding of how to manipulate systems with a large number of degrees of freedom in some

regimes in order to even build a quantum computer. For this reason, a number of approximate tech-

niques have been developed to probe the physics of many-body systems. For example, one numerical

technique that has great success at determining the low energy properties of one-dimensional systems

is tensor networks [20], the decomposition of a global quantum state into the product of smaller, local

tensors. Another technique that has seen promising results is that of mean-field theory, where the

interactions are averaged in a self consistent way, rather than considered individually [21]. A third

method is perturbation theory, where a difficult to solve problem is treated as a small deviation from

a system with a known solution, is a prevalent methodology at use throughout physics and applied

mathematics [9].

When there exists a special structure within a model that results in the Hamiltonian admitting

a tractable, exact solution without any approximations, the model is called exactly soluble. Exactly

soluble models are extremely useful in many-body physics for a number of reasons [22, 23]. Models
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that have a tractable, exact solution provide fundamental insight into physics without the need for

difficult numerical methods or perturbation theory. But the common use of perturbation theory in the

field makes plain the necessity for some exactly soluble models for another reason, they can also be

used as starting points for perturbation theory. For perturbation theory to remain valid, the deviation

from a system with a known solution must be small; therefore it is of the utmost importance to find

solvable systems which are most similar to the one of interest. A larger class of systems which are

known to be solvable makes this easier. This thesis considers two distinct classes of exactly soluble

many-body quantum systems: many-body spin systems with free-fermion solutions [24] and string-net

condensates [13], also known as loop-gas models [25].

1.1 Free fermions

Fermions are one of the two types of particles that exist in nature. Fermions are those with an

anti-symmetric wave-function, and thus obey the Pauli exclusion principle, which precludes the event

that two fermions occupy the exact same state at the same time. For this reason, when we think

about a fermionic system, the picture that generally comes to mind is that of a set of billiard-ball-like

particles which move around a lattice of ‘sites’. That is, we tend to think of Dalton-esque atoms

(solid spheres) which move between sites and occasionally bump into one another, such as the image

shown in Fig. 1.1. Obviously this is a false image: fermions are not solid spheres of matter. However,

the image is an intuitive, and even informative one. In a toy model of a spin-less fermionic system

the degrees of freedom are positions and momenta; similarly, in the analogy of solid spheres, the

degrees of freedom of interest are their positions and momenta. Furthermore, the solidity of the balls

means that they cannot occupy the same space at the same time, this exclusion due to solidity is a

reasonable representation for the fact that the fermions obey the Pauli exclusion principle [9]. It is

then tempting to equate to the interactions between fermions an attractive or repulsive force between

the balls which draws them together or apart, impeding the natural flow and increasing the likelihood

of collisions. Although this is not a perfect analogy, and fermion interactions are more nuanced and

complicated, it does serve the purpose of differentiating between the images of a system of interacting

and non-interacting fermions.

The dynamical equations of a fermionic system can thus be written in terms of Majorana creation

and annihilation operators which, as the name suggests, either create and remove a fermion at a given

location. The terms of the Hamiltonian that are quadratic describe hopping amplitudes; these terms

denote fermions moving from one site to another. We could also think about these terms as paths or



1.1. FREE FERMIONS 5

Figure 1.1: A fermionic system is often thought of as a set of solid spheres which move between sites of a
lattice and occasionally collide.

roads between sites and the quadratic terms can be thought of as describing the presence of a road

with coefficients describing the width and speed of the road between two specific sites [10, 16]. The

higher order terms (those which are comprised of a product of three or more creation or annihilation

operators) describe interactions [26]. A dynamical equation which only contains bilinear terms (that

is, terms which are a product of no more than two fermionic operators) is therefore non-interacting

or free. In the billiard ball picture, this means that the balls are able to travel along the paths

unimpeded by any attractive and repulsive forces from other balls, as a result, the billiard balls

do not collide. The balls do not interact, and so the energies of each fermion can be calculated

individually. Crucially, this leads to an exponential decrease in Hilbert space dimension and therefore

size of the Hamiltonian. This means that finding the energy spectrum of the model no longer requires

diagonalizing the full Hamiltonian. Instead, we need only consider a new Hamiltonian of with an

exponentially reduced dimension, that describes the location of any given single particle, called the

single-particle Hamiltonian. The spectrum of the single-particle Hamiltonian gives us the single-

particle energies, and from here we are able to construct the full spectrum by summing together the

occupied particle sites. Because of this, the spectrum of a non-interacting (or free-fermion) model

has a distinct and easily recognizable form. Indeed, how different a given model’s spectrum is from

this specific structure has been used to quantify interactions [26, 27]. Since it is possible to exactly

compute the spectrum using classical means, free-fermion models are considered exactly soluble.

On the other hand, when we think of a quantum many-body spin model, the image that comes

to mind is much more like a set of compass-like vector states that themselves are fixed in space but

that are able to point in arbitrary directions [15]. Phenomena such as entanglement and superposition

mean that the direction in which the compass needles point may be correlated, or that they can move

in unison, or even that we need to consider super-positions of sets of directions. This image could

hardly be further removed from the picture of the solid balls hopping around a lattice. Nevertheless, in

the particular setting of a many-body spin- 12 system, a duality occurs between the spin and fermionic
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systems due to the fact that for given n spins and n fermions the two systems will occupy Hilbert spaces

of the same dimension. In each case adding a spin or fermion doubles the Hilbert space dimension.

Thus, there exists a mathematical map, which can take a model consisting of n fermions and rewrite

it in terms of n spins, or vice versa [16,28].

The construction of such a map, however, requires a little bit more than the same dimension

of Hilbert space of the two systems. The dimension of the Hilbert space of a fermionic system is

determined by the Pauli exclusion principle, which prevents two fermions from residing at the same

site at the same time. However, as we have seen, this is not the only property of a fermionic system

determined by the Pauli exclusion princple: the anti-symmetric wave-function of a system of fermions

also requires that the fermionic operators satisfy the canonical anti-commutation relations. Thus, any

map from spins to fermions must require that the mapped fermions also obey these relations. Such a

map is necessarily non-local [28]. Indeed, this non-locality has lead some physicists to imply that if

nature did not provide us with fermions, then no physicist in their right mind would want to study

them [29].

We may now question why we would even want to map from a spin model to a fermion model.

The map is surjective, and so every spin model can be mapped to a fermion model. In many cases

the fermion model to which the spin system can be mapped is interacting, and so such a map has

not made understanding the model any simpler. However, there is a special case in which solving the

model becomes more tractable: there are examples in which the fermion model to which the model is

mapped is non-interacting [24,30–40], and thus, the full spectrum of the spin model is easily obtained.

The spectrum of the fermion model is exactly the spectrum of the spin model. For this reason a spin

model that can be mapped to non-interacting fermions is also referred to as a free-fermion model.

The quintessential example of a qubit-to-fermion mapping is the Jordan-Wigner transforma-

tion [28]. The Jordan-Wigner transformation requires the ordering of spins in a model, and then

maps creation and annihilation operators to one-dimensional strings of Pauli operators [24]. Other

maps have also been discovered, most of which are generator-to-generator mappings, meaning that

each Pauli term in the spin Hamiltonian is mapped to an individual term in the fermion formal-

ism [22,41]. However, this is not the case for all spin models with a free-fermion solution that the map

takes a generator-to-generator form. Indeed, there are examples of models with a free-fermion solu-

tion for which the Jordan-Wigner mapping, or any generator-to-generator generalization of the map,

produces a highly interacting fermion model, but notwithstanding, the model is free [23]. Thus, an

important task in quantum many-body physics is to develop new maps between spin models and their
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fermionic counterparts, which may lead to the discovery of free-fermion models which were previously

considered be interacting, and to develop a mechanism through which to recognize models that are to

be considered free via the new maps.

In Chapters 2 and 3 of this thesis, we develop a new mathematical framework for the recognition of

a new class of many-body spin- 12 models which are described by free fermions, and provide a solution

to those models. The new framework is expansive, in that it encompasses previous results [22, 41],

and provides a sufficient condition for the recognition of a free-fermion model with regards to the new

map. However, the framework is not complete, in that the condition provided for the recognition of

free-fermion models is not necessary; there are examples of models which are free but do not meet the

criteria.

One key feature that might inform the definition of an effective fermion description of a many-

body spin Hamiltonian is the frustration between the Hamiltonian terms [16]. Frustration describes

the commutation (or anti-commutation) relationship between the Hamiltonian terms. If two terms in

the Hamiltonian commute, the spins on which they act can align to obey the action of both terms at

the same time; on the contrary, if two terms do not commute, the spins on which they act cannot simul-

taneously align to obey both terms; thus the terms are frustrated. Pauli operators obey a strict binary

commutation relationship with one another; that is, if a pair of Pauli operators do not commute, they

necessarily anti-commute [15]. Similarly fermionic operators also either commute or anti-commute.

Because of this binary relationship graph theory presents itself as a natural mathematical framework

in which to investigate a correspondence between these systems based on the frustration.

Graph theory is a branch of pure mathematics that is often considered abstract. Graph theory

is the study of graphs: structures comprising of a (finite) set of objects, represented by vertices, in

which some pairs of the objects are in some sense “related,” with the relationship represented by

edges between the corresponding vertices. In a simple graph, the edges have no direction and are

unweighted, this means that the relationship between pairs of connected vertices is uniform. A simple

graph also contains no self-loops, that is, no node is connected to itself.

The abstract nature of graph theory, and perhaps pure mathematics in general means that results

in the field have no inherent correspondence to the ‘real world’. However, it is exactly this lack of

intrinsic relationship to the real world, that means we are free to interpret and find correspondences in

whichever way we so choose [42]. As it happens, graph theory can be interpreted in such a way that the

axioms and theorems in graph theory have direct applications to the real world in a myriad of ways;

graph theory has found applications in computer science [43, 44], genetics [45, 46], chemistry [47–49],
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engineering [44,50] and also in many-body physics.

In Chapters 2 and 3 a many-body Hamiltonian is represented by a graph by assigning a vertex

to every Hamiltonian term, and joining them by an edge if and only if they anti-commute. We

then look for restrictions on these graphs such that all corresponding models within the class admit

a free-fermion solution. For a generator-to-generator map from spins to fermions (such as Jordan-

Wigner) it is evident that the frustration between terms in the fermionic Hamiltonian must naturally

be isomorphic to the frustration relationships in the spin description. For any Hamiltonian written in

terms of spin there is an associated graph. Similarly, all Hamiltonians in terms of fermionic operators

also have an associated graph. Given a spin model and a fermionic model, if their two graphs are

isomorphic to one another this represents a valid generator-to-generator map [22]. For the more

complicated maps developed in Chapters 2 and 3 the restrictions on the graphs are less intuitive,

nevertheless we are able to find a broad class of graphs for which the corresponding spin models admit

a free-fermion solution.

An interesting consequence of the graph theoretic approach to free-fermion solubility is that the

maps identified are necessarily generic in that the existence of a free-fermion solution is not dependent

on coupling strengths of any Hamiltonian terms. Indeed, even the mathematical form of the solution

is independent of the coupling strength of any of the individual terms. One could imagine a particular

Hamiltonian which admits a free-fermion solution for a particular regime for a subset of Hamiltonian

terms, these models exist outside of the classes that we consider. The free-fermion solutions in this

thesis occur merely a result of the underlying frustration structure.

1.2 Loop-gas models

The second class of exactly soluble quantum many-body system considered in this thesis is topo-

logically ordered systems known as loop-gas models. These families of models were designed not to

describe any known physical system; but rather precisely because they are topologically ordered and

can be solved exactly [13,25,29,51–54]. A topologically ordered quantum system is one whose ground

space degeneracy depends on the topology, and in particular the genus, of the manifold on which it

is supported [10]. Another key identifying feature of topologically ordered systems is the ability to

support anyonic excitations. Full analysis of loop-gas models requires category theory (and string

diagrams), which we leave for Chapter 4, but here give a basic understanding.

An anyon is a particle which can have any exchange statistics. As we have seen, in nature, all

particles are either fermions or bosons. Under exchange, a wave-function describing a pair of fermions
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R

R

Figure 1.2: The ground state of a loop-gas model is defined as superposition of closed string configurations.
Here we depict a single loop configuration, which is partitioned for entropy calculations in Chapter 4. Each
loop is closed, and the Hamiltonian of the model is written explicitly as the sum of commuting projectors.

will acquire a phase of negative one, while the wave-function that describes a pair of bosons will

acquire no phase under exchange. However, it is possible to engineer localized excitations, which

behave like particles, for which this dichotomy of particles is no longer true. If we restrict ourselves

to two spatial dimensions, particles can be constructed from low-energy, local excitations, such that

these point-like excitations acquire arbitrary phases under exchange, as opposed to the binary pair of

particle types that exist in the three spatial dimensions of nature.

Particles in two dimensions can have rich statistical behaviors; in fact, it is possible to construct

a model for particles in two dimensions, so that they have any exchange statistics, which leads to the

name ‘anyon.’ While any phase is possible, the statistics of a given species of anyon within a model

are always well defined, and consistent such that for a pair of anyons the statistical phase acquired

will always be the same. Abelian anyons are the class of anyons for which this acquired scalar phase is

the only change to the wave-function of the system. However, beyond a scalar phase factor, it is also

possible for the statistical evolution to be more complex, and actually lead to a higher-dimensional

unitary matrix applied to the wave-function. These anyons are called non-Abelian, because unitary

matrices do not necessarily commute.

A consistent anyon theory is defined by a finite set of anyons, including the vacuum or no anyon,

a set of fusion rules and a consistent set of braiding statistics (exchange statistics). Given an anyon

theory, a loop-gas model can be defined on a physical lattice in two dimensions, as a Levin-Wen

string-net condensate [13,29,51] or in three dimensions, as a Walker-Wang model [25,52–54] as follows:

Hilbert spaces with dimension equal to the number of anyons in the theory reside on the links of a

trivalent lattice in either two or three spatial dimensions. A set of Hamiltonian coupling terms are

then defined by the following rules. At each vertex of the lattice an operator enforces the fusion rules
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of the anyon theory. These terms ensure that the ground space of the model only includes closed

anyonic loops. For each face or plaquette of the lattice, a family of operators describe the process

of fusing each of the anyon types to the face. The terms in the Hamiltonian project the system into

its ground space and also commute on the ground space, ensuring the solubility of the model. The

ground state of these loop-gas models are a superposition of all possible closed string configurations,

such as the one shown in Fig. 1.2, with coefficients determined by the braiding and fusion rules of the

anyon theory. Higher energy eigenstates of the models are also well understood, because excitations

in the model are localized, appearing as point-like excitations with exotic braiding statistics, they are

the very anyons used to construct the model.

One may now be wondering how a three-dimensional loop-gas model can support anyonic excita-

tions if in three dimensions all particles are fermions or bosons. There are two distinct families of

topologically ordered loop-gas models in three spatial dimensions. The first family has a ground-space

degeneracy that depends on the topology of three-dimensional space. Models in this family support

localized point-like excitations in their bulk and as well as ‘loop-like’ excitations, both of which are

‘deconfined’ in their bulk; meaning that these excitations can move or expand with low energy cost.

The point-like particles behave as fermions or bosons when exchanged, while interesting statistics may

occur between when these point-like excitations are threaded through the loop-like excitations. The

second family, however, has a unique ground state on any closed 3-manifolds. Such a unique ground-

state also results in a complete lack of deconfined excitations in the bulk. Nonetheless, the introduction

of a boundary to the manifold on which these models are supported results in a degenerate ground

space, the dimension of which is dependent on the topology of the boundary. Furthermore, while the

bulk of these models confine any excitations, there are deconfined excitations which are restricted to

the boundary. This restriction to the boundary is effectively a restriction onto two-dimensional space;

thus, these excitations can exhibit complex anyonic statistics [55].

The ground-states of loop-gas models demonstrate long-range entanglement that is not present in

non-topologically ordered systems, sometimes referred to as the ‘trivial’ phase. Typically, we expect

the entanglement between a subsystem of a ground state and the rest of the system to respect an

area law; that is, the entanglement will scale with the size of the surface area of the subsystem. For

most models, we expect that entanglement may be present between two subsystems which in close

proximity to one another; however, we also expect the correlations to diminish rapidly as the distance

between the two subsystems increases. For topologically ordered models, however, there is a long-

range entanglement present that means subsystems at vast differences share the same correlations as
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those in direct contact. This long-range entanglement manifests as a correction to the area law of

the entanglement entropy, with the correction being dependent on the anyon theory supported by the

model. In Chapter 4 we calculate this correction both in the bulk and at the boundary of topological

loop-gas models in two and three dimensions.

Summary

In this thesis we have looked closely at two classes of quantum many-body systems which admit an

exact solution. The first part of this thesis focuses on expanding the class of models which are known to

admit a free-fermion solution. In Chapters 2 and 3, a new recognition criteria and solution method is

developed for many-body spin models that admit a free-fermion solution; first in one spatial dimension

and then in arbitrary dimensions. The second part of this thesis, Chapter 4, concerns the calculation

of the entanglement properties of exactly soluble, topologically ordered many-body systems. The

consequences of this calculation extend beyond limited reach of these specific exactly soluble models;

the results derived in this chapter also offer insight into other classes of topological systems that have

a closer alignment with physical systems that can be fabricated in a lab.



Chapter 2

Free fermions behind the disguise

An invaluable method for probing the physics of a quantum many-body spin system is a mapping to

non-interacting effective fermions. We find such mappings using only the frustration graph G of a

HamiltonianH, i.e., the network of anti-commutation relations between the Pauli terms inH in a given

basis. Specifically, when G is (even-hole, claw)-free, we construct an explicit free-fermion solution for

H using only this structure of G, even when no Jordan-Wigner transformation exists. The solution

method is generic in that it applies for any values of the couplings. This mapping generalizes both the

classic Lieb-Schultz-Mattis solution of the XY model and an exact solution of a spin chain recently

given by Fendley, dubbed “free fermions in disguise.” Like Fendley’s original example, the free-fermion

operators that solve the model are generally highly nonlinear and non-local, but can nonetheless be

found explicitly using a transfer operator defined in terms of the independent sets of G. The associated

single-particle energies are calculated using the roots of the independence polynomial of G, which are

guaranteed to be real by a result of Chudnovsky and Seymour. Furthermore, recognizing (even-hole,

claw)-free graphs can be done in polynomial time, so recognizing when a spin model is solvable in

this way is efficient. We give several example families of solvable models for which no Jordan-Wigner

solution exists, and we give a detailed analysis of such a spin chain having 4-body couplings using this

method.

2.1 Introduction

A notorious challenge for the simulation of quantum many-body systems is the exponential growth

of the Hilbert space dimension in the number of constituent degrees of freedom. Systems for which

12
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this difficulty can be circumvented via an analytic solution are invaluable for at least two reasons.

First, the discovery of a new class of analytic solutions opens up the prospect of tractable simulation

to a new family of models, and potentially of new phenomenology. Second, analytic solutions can be

taken as starting points for approximations to more realistic models, thus extending the reach of these

methods.

For a quantum spin- 12 (qubit) system, one remarkable type of analytic solution comes in the form

of a duality to effective fermions. When the effective fermions are non-interacting, it can be said that

we have found a means of restricting the model’s essential behavior to the low-dimensional subspace

of a single fermion, and the physics of the model is well-understood. The textbook example of a free-

fermion mapping is the Jordan-Wigner transformation [28], which was famously employed to solve

the one-dimensional XY model by Lieb, Schultz, and Mattis [24]. The key insight is the identification

of non-local Pauli operators with fermionic ladder operators. In the fermionic picture, the n-qubit

XY-model Hamiltonian is mapped to a free-fermion Hamiltonian on 2n fermionic modes. The model

is then completely solved by exactly diagonalizing the model’s 2n× 2n free-fermion Hamiltonian, an

exponential simplification from the naive brute-force diagonalization that one might expect to need in

the qubit picture. This solution method is generic, meaning it applies regardless of the values taken by

the nonzero coupling constants in the Hamiltonian. This is because the Jordan-Wigner transformation

maps each term in the Hamiltonian linearly to a fermionic bilinear operator.

One physical signature of models that are solvable in this way is an energy spectrum {Ex} that is

given in terms of a number α of single-particle energies εk by

Ex =

α∑

k=1

(−1)xkεk , (2.1)

where α ≤ n and x ∈ {0, 1}×α is a binary vector describing the occupation of each canonical fermionic

mode. We will refer to a spectrum of the form in Eq. (2.1) as free. We say that a Hamiltonian is

solvable if it has a free spectrum and it can be written in terms of its eigenmodes ψj as

H =

α∑

k=1

εk[ψk, ψ
†
k] , (2.2)

where the ψk obey the canonical anti-commutation relations, {ψj , ψk} = 0 and {ψj , ψ
†
k} = δjkI. When

α < n, a free spectrum will necessarily have degeneracies, since this is equivalent to the case where a

subset of the energies {εk}nk=1 are equal to zero.

Recently, two of the authors [22] have given a simple necessary and sufficient condition for a
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Includes Forbidden

2-4 Simplicial Clique Claw, K1,3 Even hole, C2k

(a) (b) (c)

. . .

k = 2 k = 3

Table 2.1: (a) A graph has a simplicial clique (orange in the example) if it has a clique where the
neighborhood of each constituent vertex, minus the original clique, induces another clique (see Def. 2.1). The
blue nodes are the induced neighbors of the left orange vertex and they induce a clique. The induced
neighbors of the right orange vertex similarly induce a clique, so this graph is simplicial. A graph is claw-free
or even-hole-free if none of its vertex-induced subgraphs contain (b) the “claw” K1,3 or (c) an even hole C2k.
If a graph is (even-hole, claw)-free, it necessarily contains a simplicial clique [56].

qubit Hamiltonian H to be solvable via a Jordan-Wigner mapping by looking at properties of the

frustration graph of H (see Def. 2.2). This gives a complete solution for this best-known class of

solvable models. However, there exist models that are free and solvable, but that cannot be solved

via any Jordan-Wigner mapping. Such a model has been introduced by Fendley [23] as free fermions

“in disguise”. Fendley solves this model by directly defining the single-particle eigenstates for the

Hamiltonian through its interaction terms. The free fermions manifest nonlinearly and non-locally in

a basis which is dependent on the specific interaction strengths, but they remain free for all values of

the couplings. The solution is therefore generic. This solution method has since been reproduced in

a family of generalized spin-chain models [57, 58], including qudit models, where the system is dual

to so-called free parafermions [59]. The generic nature of the free spectrum in these models would

suggest that the frustration-graph formalism of Ref. [22] could be applied to understand this solution.

However, since these models provably do not admit a Jordan-Wigner mapping, it would seem the

solution relies on much subtler commutation structures than previously understood.

In this work, we go behind the disguise and clarify the role that the frustration graph plays in

solving these models. We develop an infinite family of free-fermion solutions which generalizes Ref. [23]

by finding specific graph-theoretic conditions for when such a solution is possible. Specifically, when

the frustration graph of H avoids certain obstructions known as claws and even holes (see Table 2.1

and Def. 2.3), then H is solvable.

Result 2.1. (Informal version of Thm. 2.1 and Thm. 2.2.) If a Hamiltonian has an (even-hole,

claw)-free frustration graph, then it has an explicit free-fermion solution.
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The proof proceeds by considering the independence polynomial of the frustration graph. The

independence polynomial of a graph is the polynomial generating function that counts the independent

sets in the graph. We prove that these independent sets give us families of conserved charges for the

model whenever the frustration graph is claw-free; meaning that when the frustration graph of H

avoids claws the model is integrable.

Result 2.2. (Corollary of Lemma 2.1.) If a Hamiltonian has a claw-free frustration graph, then

the model is integrable.

We can incorporate detailed information about the Hamiltonian into the independence polynomial

by attaching certain vertex weights given in terms of squares of Hamiltonian coupling strengths. We

then prove that when the frustration graph is additionally even-hole-free, the independence polynomial

factorizes into a quadratic of a certain transfer operator. The single-particle spectrum can then be

derived by looking at the zeros of the vertex-weighted independence polynomial. Given knowledge of

the spectrum, the transfer operator then acts like a raising operator when acting on a fiducial mode

whose existence is guaranteed by the structure of (even-hole, claw)-free graphs. The modes generated

in this way allow us to define the eigenmodes of the free-fermionic Hamiltonian.

As in Fendley’s original model [23], there are no “physical modes” to speak of from this derivation

as there would be from a Jordan-Wigner transformation. The eigenmodes are “disguised”, and then

emerge directly as nonlinear, non-local combinations of the underlying spin operators. We call the

eigenmodes revealed by this procedure incognito modes.

We then describe explicit families of models with frustration graphs that satisfy the (even-hole,

claw)-free condition. The first of these examples is a small system, which is chosen explicitly as

it has no generalized Jordan-Wigner solution and yet has a free-fermion solution of the form we

consider. We show that this particular model is in fact related to one with a Jordan-Wigner solution

by a local rotation. We next demonstrate how the family of generalized spin chain models included in

Refs. [23,57,58] fit into our formalism. These models have a particular one-dimensional structure which

makes their asymptotic dispersion relations amenable to the techniques of Toeplitz-matrix analysis.

Though this is not expected to be true of general (even-hole, claw)-free graphs, a structure theorem

for these graphs demonstrates that we should expect their coarse topology to be one-dimensional, or

possibly treelike.

The structure of the chapter is as follows: in Section 2.2, we formally state all definitions and our

main results. In Section 2.3, we discuss our result in the context of prior work. In Section 2.4 we prove

the main results as Thm. 2.1 and Thm. 2.2. In Section 2.5, we demonstrate how specific examples fit
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into our formalism, and in Section 2.6 we close with a discussion of possible future work.

2.2 Main Results

We begin with self-contained statements of our main theorems and necessary supporting definitions.

First, let us fix graph-theoretic conventions. A graph G := (V,E) consists of a set of vertices V

together with a set of 2-element subsets E ⊂ V ×2 called edges. All graphs we consider are finite and

simple: every pair of vertices neighbors by at most one edge, and the graphs contain no self loops.

An induced subgraph is a graph G[S] := (S,E ∩ S×2) whose vertex set is S ⊆ V and whose edge set

consists of all of the edges in E with both endpoints in S. We denote the vertex and edge sets of

G[S] by VS and ES , respectively. We will also use the notation G −W := G[V \W ] to denote the

induced subgraph of the graph G by removing the set of vertices W . We will often refer to a subset

of vertices interchangeably with the subgraph it induces. The open neighborhood of a vertex, Γ(v) is

the set of vertices neighboring the vertex, v. The closed neighborhood of a vertex, Γ[v], is the set of

vertices neighboring the vertex, v, together with v itself. An independent set, or stable set, of a graph

G = (V,E) is a subset of vertices S ⊆ V which induces a subgraph with no edges, G[S] = (S, {}).

Notice that our definition includes the empty set and sets of one vertex as independent sets.

A clique is a graph where every pair of vertices is neighboring. For us, a particularly important

type of clique in a graph is a simplicial clique (See Table 2.1 (a)):

Definition 2.1 (Simplicial clique). A simplicial clique Ks in G is a non-empty clique such that for

every vertex, v ∈ Ks, the (closed or open) neighborhood of v induces a clique in G−Ks. That is, for

each v ∈ Ks we have that Kv := Γ[v]\(Ks\v) induces a clique in G.

The claw, K1,3, is the complete bipartite graph between one vertex and a set of three non-

neighboring vertices (See Table 2.1 (b)). A path of length ℓ is a connected graph of ℓ + 1 vertices

and ℓ edges such that every vertex has at most two neighbors. A cycle, Cℓ, is a connected graph of

ℓ edges and ℓ vertices such that each vertex has exactly two neighbors. Informally, a path of length

ℓ is a cycle Cℓ+1 with one edge removed. A hole in a graph G is a subset of ℓ vertices W ⊆ V such

that G[W ] ∼= Cℓ (i.e. an induced cycle of G), where ℓ ≥ 4. A hole is called even if it has an even

number of vertices and edges. Importantly, our definition of an even hole includes holes of four vertices

(See Table 2.1 (c)).

Next we turn to definitions involving a physical many-body qubit model. Consider an n-qubit
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Hamiltonian, H, written in a given basis of Pauli operators {σj} as

H :=
∑

j∈V

hj :=
∑

j∈V

bjσ
j , (2.3)

where V ⊆ {0, x, y, z}⊗n is a set of strings labeling the n-qubit Pauli operators in the natural way. A

frustration graph describes the commutation relations between the Hamiltonian terms as follows:

Definition 2.2 (Frustration graph). The frustration graph of a Hamiltonian of the form in Eq. (2.3)

is a graph, G(H) = (V,E), with vertices in V in one-to-one correspondence with the Pauli terms

{σj}j∈V in H, and edge set E defined by the commutation relations between the Hamiltonian terms:

E =
{
(j,k)

∣∣{σj , σk} = 0
}
. (2.4)

That is, two vertices in V are adjacent in G(H) if and only if their corresponding Paulis anti-commute.

The frustration graph is the complement of the Pauli graph introduced by Planat [60]. Notice that

it is always simple by construction. Where clear from context, we will drop the dependence on the

Hamiltonian from G(H).

Definition 2.3 (ECF). A graph G is said to be (even-hole, claw)-free, or ECF, if it contains no even

holes and no claws among its induced subgraphs (see Table 2.1). A Hamiltonian H is ECF if its

frustration graph G(H) is ECF.

It can be shown that all (even-hole, claw)-free graphs are simplicial, meaning they contain a

simplicial clique [56]. If a Hamiltonian H is ECF then its frustration graph is necessarily simplicial,

so we say that H is simplicial as well.

Our first main result says that the spectrum of an ECF Hamiltonian is free, with single-particle

energies given by the roots of a certain polynomial.

Theorem 2.1. Every ECF Hamiltonian H has a free spectrum of the form in Eq. (2.1). In particular,

the single-particle energies {εj}α(G)
j=1 satisfy

PG

(
−1/ε2j

)
= 0 , (2.5)
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where PG(x) is the vertex-weighted independence polynomial of the frustration graph G(H),

PG(x) :=

α(G)∑

k=0

∑

S∈S(k)


∏

j∈S

b2j


xk . (2.6)

S(k) is the set of k-vertex independent sets of G(H), and α(G) is the independence number of G(H).

Here we note that when α < n each energy level of the model’s spectrum will necessarily have

a 2n−α degeneracy. An important result that we will show is that even if the frustration graph is

only claw-free, then the Hamiltonian is still integrable, as there exists a set of mutually commuting

conserved charges.

Definition 2.4 (Independent-set charges). Given a Hamiltonian of the form in Eq. (2.3) with frus-

tration graph G(H), we define the α(G) + 1 independent-set charges as

Q(k) :=
∑

S∈S(k)

∏

m∈S

hm , k ∈ {0, 1, . . . , α(G)} , (2.7)

with the convention that Q(0) := I. Additionally, notice that Q(1) = H.

As we will prove in Lemma 2.1 below, the independent-set charges satisfy

[
Q(r), Q(s)

]
= 0 , ∀ r, s ∈ {1, . . . , α(G)}. (2.8)

Since Q(1) = H, this demonstrates that the charges are conserved. To take advantage of the

independent-set charges, we exploit the simplicial property of H and define a fiducial mode, χ, in

terms of which we can express the “incognito modes”.

Definition 2.5 (Incognito mode, simplicial mode). Given a simplicial Hamiltonian of the form in

Eq. (2.3) with frustration graph G(H), we define a simplicial mode χ to be any Pauli operator which

is not present in the original Hamiltonian and which anti-commutes with all of the operators in

a simplicial clique of G(H). The α(G) incognito modes of H are defined with respect to a given

simplicial mode χ as

ψj = N−1
j TG(−uj)χTG(uj) , j ∈ {1, . . . , α(G)} , (2.9)
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where uj := 1/εj for the single-particle energy εj satisfying Eq. (2.5), TG(u) is a transfer operator

TG(u) :=

α(G)∑

j=0

(−u)jQ(j) , (2.10)

and N−1
j is a normalization factor which is computable (see Eq. (2.70)).

Note that we can always construct a simplicial mode for any simplicial Hamiltonian. To do so

we introduce an additional (fictitious) spin to the system and augment each Hamiltonian term in

the simplicial clique with a Pauli-X applied to the extra spin — notice that this will not affect the

frustration graph. The simplicial mode is then defined by a Pauli-Z operator applied to the additional

spin; clearly, the simplicial mode will anti-commute with all terms in the simplicial clique, but no

other Hamiltonian terms.

Theorem 2.2. An ECF Hamiltonian H is free-fermion-solvable via Eq. (2.2) with eigenmodes given

by its incognito modes.

Our proofs of Theorem 2.1 and Theorem 2.2 closely resemble the solution method introduced by

Fendley in Ref. [23]. The operative technical insight is that many of the key properties of that model,

and its generalizations in Refs. [57, 58], are actually special cases of more general recursion relations

in the class of models we identify.

2.3 Relation to prior work

Since its discovery, the Jordan-Wigner transformation [28] and subsequent generalizations [12,30–33,

39,61–64] have enjoyed great success in probing the fundamental physics of quantum many-body spin

models, as well as classical statistical mechanics models through so-called transfer-matrix methods [65–

67]. An understanding of these mappings has furthermore proven useful for designing fermion-to-qubit

mappings with desired properties for simulating fermionic systems on a quantum computer [34–36,

68–74]. Here, operator locality in the dual spin model is generally enabled through coupling to an

auxiliary gauge field [37, 38, 40], which endows fermionic-pair excitations with the structure of freely

deformable strings on the spin lattice [75]. The preponderance of these mappings suggests that a

fundamental theory of physics containing fermionic degrees of freedom need not hold fermions as

fundamental objects [29,76].

Free-fermion models have an interesting connection to graph theory. The dynamics of free-fermion

models are equivalent to matchgate circuits [77–82], which were originally developed in the context
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of counting perfect matchings in graphs [83–86]. Independently, graph-theoretic methods have been

utilized in quantum information in the context of variational quantum eigensolvers [87–93], where the

frustration graph is commonly known as the anticompatibility graph. Inspired by these methods, two

of the authors have shown that a generalized Jordan-Wigner transformation exists for exactly those

models for which the frustration graph is a line graph [22].

Definition 2.6 (Line Graph). A line graph L(R) := (E,F ) is a graph whose vertex set is in one-to-

one correspondence with the edges E of a root graph R := (V,E). Vertices in L(R), e1, e2 ∈ E, are

neighboring if and only if |e1 ∩ e2| = 1, i.e. the edges in R are incident at a vertex in V .

We note that line graphs also play an important role in understanding the spectrum of certain

tight-binding models [94,95], but we will not discuss these models further here.

A generalized Jordan-Wigner transformation maps a spin Hamiltonian of the form in Eq. (2.3)

to one which is quadratic in Majorana fermion modes {γj}. These are Hermitian operators, which

satisfy canonical anti-commutation relations

{γj , γk} = 2δjkI and γ†j = γj ∀ j, k . (2.11)

That is, when solving a Hamiltonian of the form in Eq. (2.3) by Jordan-Wigner, we are asking whether

there exists a mapping ϕ : V 7→ Ṽ ×2 acting on the Pauli terms of H, and effecting

σj 7→ iγϕ1(j)γϕ2(j) ∀ j ∈ V (2.12)

such that

H 7→ H̃ :=
i

2

∑

j,k∈Ṽ

hjkγjγk :=
i

2
γ · h · γT, (2.13)

in a way that preserves the commutation relations between terms, i.e. G(H) ≃ G(H̃). The coefficient

matrix h — called the single-particle Hamiltonian — is necessarily anti-symmetric, since any sym-

metric part will vanish under the sum in Eq. (2.13), and we may take H to be traceless without loss of

generality. The central theorem of Ref. [22] gives a necessary and sufficient criterion for a generalized

Jordan-Wigner solution to exist for a particular qubit Hamiltonian.

Theorem 2.3 (Thm. 1 of Ref. [22]). An injective map ϕ as defined in Eq. (2.12) and Eq. (2.13) such

that G(H) ≃ G(H̃) exists for the Hamiltonian H as defined in Eq. (2.3) if and only if there exists a
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With Twins

(Even-hole, Claw)-Free

Table 2.2: Nine forbidden induced subgraphs for line graphs. No model containing a subset of terms
inducing any of the above frustration graphs admits a generalized Jordan-Wigner solution, unless the global
frustration graph contains twin vertices which may then be removed via a symmetry to give a line graph [22].
Note that we define twin vertices to be non-neighboring, and that all but the claw and the graphs in the
rightmost column above contain at least one pair of neighboring vertices with the same closed neighborhoods.
Vertices from these pairs may be removed through a unitary rotation as described in Section 2.5.1. The
six-qubit instance of the four-fermion model introduced by Fendley has the frustration graph shown at the
very bottom right, and larger instances clearly contain a subset of terms inducing this graph. Surprisingly,
each of these graphs describes a standalone model with a free-fermion solution, as the graphs themselves
either contain twins or are (even-hole, claw)-free. What is important, therefore, is the precise way that these
graphs are connected to a global frustration graph that determines whether or not a generic free-fermion
solution is possible. Left column: Forbidden subgraphs which contain twin vertices, highlighted in red, but
also contain either a claw or an even-hole, highlighted by blue edges. Middle column: This forbidden
subgraph contains twin vertices, but no claws or even holes. Each red highlighted vertex is also simplicial.
Right column: These graphs do not contain twins, but are (even-hole, claw)-free. Though they contain
many simplicial cliques, an example is highlighted for each graph in orange. Importantly, note that the
simplicial vertex highlighted in the four-fermion model is necessary for Fendley’s exact solution of this model.

root graph R such that

G(H) ≃ L(R) . (2.14)

Upon constructing a free-fermion solution for a given Hamiltonian, we find that h gives an edge-

weighted skew-adjacency matrix of the root graph R. The graph R may therefore be seen as the

Majorana-fermion hopping graph. A full solution for H is found by a linear transformation on the

Majorana modes in Eq. (2.13) to diagonalize the Hermitian matrix ih. Letting the nonzero eigenvalues

of ih be given by {±εj}αj=1 with εj > 0 for all j ∈ {1, . . . , α}, this brings the Hamiltonian to the form

in Eq. (2.2) with single-particle energies given by the {εj}.

Claw-free graphs were originally investigated as natural generalizations to line graphs [96] and have

since developed into the subject of a rich area of study in graph theory [97]. Line graphs are claw-free,
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as no three edges in R can be incident to another edge without at least two of them being incident

to each other. Remarkably, the free-fermion solution method presented in this work extends the

generalized Jordan-Wigner solution in a way that parallels the relationship between claw-free graphs

and line graphs. Specifically, the single-particle energies obtained from Eq. (2.13) satisfy Eq. (2.5)

when L(R) is an ECF graph. Every vertex of R corresponds to a simplicial clique of L(R). Clearly,

the edges incident to a given vertex in R are mapped to the vertices of a clique in L(R), and since

every edge is incident to two vertices in R, the open neighborhood of a vertex in L(R) induces two

vertex-disjoint cliques [98]. When a line graph is even-hole-free, the corresponding root graph is

even-cycle-free, as any even cycle in R will be mapped to an even hole in L(R). Suppose that a given

Hamiltonian satisfies Eq. (2.14) with L(R) an ECF graph. The single particle energies are zeros of

fR(u) = det (ih− uI) . (2.15)

Equivalently, we may consider the reciprocal polynomial f∗R to fR,

f∗R(u) := unfR(1/u) = (−1)n det (I− iuh) , (2.16)

where n is the number of vertices in R. For an arbitrary simple graph R, the characteristic polynomial

fR (and thus f∗R) would only depend on products of elements from h from matchings and even cycles

of R [99]. Since R is an even-cycle-free graph however, only the matchings are relevant. LetMk be

the set of all k-edge matchings M of R. We have

f∗R(u) = (−1)n
⌊n/2⌋∑

k=0

(−u2)k

 ∑

M∈Mk

∏

(i,j)∈M

h2ij


 (2.17)

f∗R(u) = (−1)nPL(R)(−u2) . (2.18)

The last equality follows because the matchings of a graph correspond to the independent sets of

its line graph. Therefore, ±εj are an eigenvalue pair of ih if and only if Eq. (2.5) is satisfied for

G(H) ≃ L(R). Though even-hole-free line graphs are a rather limited set of frustration graphs, what

is incredibly surprising is that Theorem 2.1 holds when G(H) is relaxed to be a general ECF graph,

though there is no fermion-hopping graph R for this set of graphs in general. We remark that for

any claw-free graph, the vertex-weighted independence polynomial, PG(x), is real-rooted for all values

of the Hamiltonian couplings by the results given in Refs. [100, 101]. This generalizes the result for
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the un-weighted independence polynomial originally proved by Chudnovsky and Seymour [102]. Since

PG(x) has non-negative coefficients and real roots, all of its roots must be negative by Descartes’ rule

of signs [103], and therefore all of the single-particle energies {εj} are themselves real. The free-fermion

solution method presented here therefore includes systems for which we can prove that no generalized

Jordan-Wigner solution is possible, as we shall now see.

Line graphs can be characterized by the set of nine forbidden subgraphs [104], shown in Table 2.2.

No model containing a subset of terms inducing any of the frustration graphs in Table 2.2 admits a

generalized Jordan-Wigner solution. One possible exception is when the Jordan-Wigner mapping is

allowed to be non-injective; i.e. there is a mapping satisfying Eq. (2.12) and preserving the frustration

graph which takes multiple Pauli terms to the same fermionic pair. These Pauli terms must then

correspond to twin vertices in G(H): vertices with identical open neighborhoods, Γ(v). Notice that

twin vertices are never neighboring by this definition, as a vertex is not included in its own open

neighborhood.1 Since operators corresponding to twin vertices anti-commute with the same set of

operators in the Hamiltonian, the product of any pair of such operators commutes with every term

in the Hamiltonian and so constitutes a symmetry. We can thus project onto the eigenspace of this

symmetry operator to replace one operator in the set of twins with another, thus removing its vertex

from the frustration graph. If twins can be removed in such a way as to change the frustration graph

into a line graph, then the Hamiltonian is still solvable via Jordan-Wigner. This will sometimes be

possible, as some of the forbidden subgraphs in Table 2.2 themselves contain twins. From Table 2.2,

we see that all forbidden subgraphs for line graphs either contain twins, are simplicial ECF, or both.

They therefore surprisingly all have a free spectrum, and it is truly how these graphs are connected

to one another that allows us to infer the existence of a free-fermion solution.

The class of ECF graphs is generalized by the set of so-called (even-hole, pan)-free graphs [105].

A pan is a graph consisting of a hole together with an additional vertex with exactly one neighbor

on the hole. A pan contains a claw as an induced subgraph, and so an (even-hole, pan)-free graph is

necessarily ECF. The structure of (even-hole, pan)-free graphs has been completely characterized, and

this allows the authors of Ref. [105] to give an O(mn)-time algorithm for recognizing them, where m is

the number of edges in the graph and n is the number of vertices. Specifically, the authors of Ref. [105]

show that (even-hole, pan)-free graphs either: (i) have a clique cutset, (ii) are unit circular-arc graphs,

(iii) are a clique, (iv) are the join of a clique and a unit circular-arc graphs. A unit circular-arc graph

is one whose vertices correspond to distinct arcs of unit length on a circle, such that vertices are

1Here we caution the reader that this definition differs slightly from that used in the graph-theory literature, where
vertices with identical closed neighborhoods (which are therefore neighboring) are also referred to as twins. We will
return to pairs of vertices with identical closed neighborhoods in Section 2.5.1.
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neighboring if and only if their corresponding arcs intersect. A clique cutset is a subset of vertices

inducing a clique whose removal disconnects the graph. The join of two graphs G1 := (V1, E1) and

G2 := (V2, E2) is the graph with vertex-set V1 ∪ V2 and edge-set E1 ∪ E2 ∪ {(u, v)|u ∈ V1, v ∈ V2}.

Though the theorem of Ref. [105] completely describes the structure of these graphs, we can intuitively

expect that the coarse topology of these models is fundamentally one-dimensional or treelike.

As general claw-free graphs can also be recognized efficiently [106], we have an efficient algorithm

for recognizing ECF graphs. In Ref. [107], a polynomial time algorithm is given for detecting whether

a general claw-free graph contains a simplicial clique. It is therefore computationally efficient to

recognize a simplicial clique in an ECF graph. Moreover, every (nonempty) ECF graph has at least

one simplicial clique [56].

2.4 Proofs of Main Results

In this section we prove the two main results presented in Section 2.2. We restate these theorems here

for convenience. The first main result tells us that an ECF model will have a free spectrum, of the

form Eq. (2.1), and provides an explicit form of the single-particle energies.

Theorem 2.1. (Restatement.) Every ECF Hamiltonian H has a free spectrum of the form in

Eq. (2.1). In particular, the single-particle energies {εj}α(G)
j=1 satisfy

PG

(
−1/ε2j

)
= 0 , (2.19)

where PG(x) is the vertex-weighted independence polynomial of the frustration graph G(H),

PG(x) :=

α(G)∑

k=0

∑

S∈S(k)


∏

j∈S

b2j


xk . (2.20)

S(k) is the set of k-vertex independent sets of G(H), and α(G) is the independence number of G(H).

The second main result gives an explicit realization of the canonical modes of an ECF model in

terms of independent sets of Hamiltonian terms, and the simplicial mode, χ.

Theorem 2.2. (Restatement.) An ECF Hamiltonian H is free-fermion-solvable via Eq. (2.2) with

eigenmodes given by its incognito modes.
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Figure 2.1: The frustration graph of the model introduced in Ref. [23], which is (even-hole, claw)-free.
Each of the sets of colored (red and blue) vertices are independent sets, and together they induce a path in
the frustration graph. In a general claw-free graph, the symmetric difference of any pair of independent sets
induces a bipartite subgraph of maximum degree two: all of the components of the subgraph are induced
paths and even-holes. If the graph is furthermore even-hole free, then the symmetric difference induces a set
of disjoint paths.

Recall that the incognito modes are defined in terms of the simplicial mode, χ, as

ψj = N−1
j TG(−uj)χTG(uj) , j ∈ {1, . . . , α(G)} , (2.21)

where uj := 1/εj for the single-particle energy εj satisfying Eq. (2.19), TG(u) is a transfer operator

TG(u) :=

α(G)∑

j=0

(−u)jQ(j) , (2.22)

and N−1
j is a normalization factor which is computable.

We proceed by making successively more restrictive assumptions on G(H): first that it is claw-free,

then (even-hole, claw)-free. We begin by proving the following lemma, regarding claw-free Hamilto-

nians and the independent-set charges.

Lemma 2.1. Given a Hamiltonian with claw-free frustration graphG(H), the independent-set charges

are mutually commuting:

[
Q(r), Q(s)

]
= 0 , ∀ r, s ∈ {1, . . . , α(G)}. (2.23)

Proof. We may assume r ̸= s, since Eq. (2.23) clearly holds if r and s are equal. For a given

independent set S, define

hS :=
∏

j∈S

hj . (2.24)

and notice that, since operators belonging to an independent set in G(H) are commuting, the order

in which we take the product is unimportant in this definition. For two independent sets S, S′ of a
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claw-free graph

[hS , hS′ ] =





±2
(∏

j∈S∩S′ b2j

)∏
j∈S⊕S′ hj |ES⊕S′ | odd

0 |ES⊕S′ | even
(2.25)

where S ⊕ S′ := (S ∪ S′)\(S ∩ S′), the symmetric difference of S with S′. When it is not empty, the

graph G[S ⊕ S′] is bipartite, since S and S′ are both independent sets. Commuting hS through hS′

thus gives a factor of −1 for every edge in this graph, and so Eq. (2.25) holds. From here, we naturally

restrict to the case where |ES⊕S′ | is odd.

As G is claw-free, we must furthermore have that every vertex of G[S ⊕ S′] has degree at most

two in this graph, since once again, G[S ⊕ S′] is bipartite. Every component of G[S ⊕ S′] is therefore

either an isolated vertex, path, or even cycle (odd cycles are not bipartite). We have assumed that

G[S⊕S′] has odd-many edges, and so this graph must have an odd number (and thus at least one) of

odd-length-path components. Such paths have the same number of vertices from both S and S′ and

so cannot be the only component of G[S⊕S′], since we have assumed r ̸= s. Pick one such odd path,

L ⊆ V , and note that

{hS∩L, hS′∩L} = 0. (2.26)

Since G[L] has the same number of vertices from both S and S′, we can exchange the subsets S ∩ L

and S′ ∩ L between S and S′, respectively, to obtain a new unique pair of independent sets without

changing the number of vertices in either, while also preserving the sets S ∩S′ and S⊕S′. This gives

[hS/LhS∩L, hS′/LhS′∩L] = −[hS/LhS′∩L, hS′/LhS∩L] , (2.27)

and so these terms cancel in the commutator [Q(r), Q(s)]. Letting N be the number of odd-length-path

components in G[S⊕S′], there are are 2N pairs of independent sets (S, S′), related by these exchanges,

for which the graph G[S ⊕ S′] is fixed. The contributions to the commutator [Q(r), Q(s)] from each

(S, S′) therefore cancel pairwise, and we have [Q(r), Q(s)] = 0 for all r and s.

Lemma 2.1 implies that all claw-free models have a set of conserved quantities whose size generally

grows with system size, since Q(1) := H. Thus, we can conclude that, in the traditional sense, claw-

free models are integrable. Consider as an example the frustration graph of the model introduced in

Ref. [23], as shown in Fig. 2.1. The graph is always claw-free, although contains even holes when the
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model has periodic boundary conditions. Two independent sets of vertices (highlighted in red and

blue) induce a path in the frustration graph. In a general claw-free graph, the symmetric difference

of any pair of independent sets induces a bipartite subgraph of maximum degree two: all of the

components of the subgraph are induced paths and even-holes. Lemma 2.1 also implies that the

transfer operator, TG(u), defined in Eq. (2.22), will commute with the Hamiltonian.

Next consider the following lemma regarding the transfer operators, TG(u), of even-hole-free mod-

els.

Lemma 2.2. If G is an (even-hole, claw)-free graph, the transfer matrix, TG(u), satisfies

TG(u)TG(−u) = PG(−u2) (2.28)

where PG is the vertex-weighted independence polynomial, defined in Eq. (2.6).

Proof. Let G be an ECF graph. Using Eq. (2.22) we have

TGT
−
G =

α(G)∑

s,t=0

(−1)sus+tQ(s)Q(t), (2.29)

where we have used the abbreviated notation TG(−u) := T−
G . If s and t have opposite parity, then

Q(s)Q(t) and Q(t)Q(s) have a relative minus sign in the sum, and so these terms vanish in the sum

since Q(s) and Q(t) commute.

Thus we need only consider terms for which s and t have the same parity

TGT
−
G =

α(G)∑

s,t=0
s+t even

(−1)sus+tQ(s)Q(t), (2.30)

By expanding the Q(k) in terms of independent sets, hS , we can write

TGT
−
G =

α(G)∑

s,t=0
s+t even

(−1)sus+t
∑

S∈S(s)

S′∈S(t)

|ES⊕S′ | even


 ∏

j∈S∩S′

b2j


hS∩(S⊕S′)hS′∩(S⊕S′). (2.31)

The constraint that s + t is even implies that the number of vertices |VS⊕S′ | is even, and we require

that |ES⊕S′ | be even because the operators hS and hS′ will anti-commute otherwise and cancel in the

sum over S, S′. It thus suffices to consider induced subgraphs, G[S ⊕ S′], with even-many edges and

even-many vertices. Once again, such graphs must be bipartite and, furthermore, must be a union of
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disjoint isolated vertices, paths, and even cycles.

By a similar argument as above, we will show that the contributions from any such graphs contain-

ing an odd-length path will cancel in the sum. Assume that G[S⊕S′] does contain an odd-length path

L. Since |ES⊕S′ | must be even, L cannot be the only component of G[S ⊕ S′], and in fact one of the

additional components of G[S ⊕ S′] must be another odd-length path (otherwise the total number of

edges in G[S⊕S′] cannot be made even). Exchanging S∩L and S′∩L between S and S′ gives another

pair of distinct independent sets for the same s, t, S ∩ S′, and S ⊕ S′, but for which the operator

hS∩(S⊕S′)hS′∩(S⊕S′) appears with a minus sign in the sum and cancels the term corresponding to S

and S′. The contributions from G[S ⊕ S′] therefore cancel pairwise in this case.

Next, we will show that contributions from any such graphs containing an even-length path will

cancel in the sum, and therefore non-vanishing contributions must come from graphs containing no

paths at all. Once again, assume G[S ⊕ S′] does contain such a path L of even length (which may be

an isolated vertex, i.e. a path of length zero). Since L has an odd number of vertices, L cannot be

the only component of G[S ⊕ S′] and in fact one of the additional components of G[S ⊕ S′] must be

another even-length path (otherwise the total number of vertices in G[S ⊕ S′] cannot be made even).

Both of the endpoints of L must belong to the same independent set, either S or S′. If L is an isolated

vertex, then it trivially belongs to the same independent set as itself. Exchanging S ∩ L and S′ ∩ L

between S and S′ in this case gives another pair of distinct independent sets for the same value of

s+ t, S ∩ S′, and S ⊕ S′, for which the operator hS∩(S⊕S′)hS′∩(S⊕S′) appears with the same sign in

the sum since L has even-many edges. Both of the parities of s and t are changed in this exchange,

and so s and t have the same parity still, but this term appears with an overall relative minus sign in

the sum due to the factor of (−1)s. This therefore cancels the term corresponding to S and S′, and

so the contributions from G[S ⊕ S′] cancel pairwise.

The only allowed graphs G[S ⊕ S′] whose term in the sum is not canceled by something else are

those for which G[S ⊕ S′] consists of a set of disconnected even cycles. However, we have assumed

that G is even-hole free. Therefore, these contributions do not appear, and we will have

TGT
−
G = PG(−u2), (2.32)

if there are no even holes in G.

Note that PG has strictly positive coefficients, which do not depend on the signs of the Hamiltonian

coefficients {bj}j∈V . Thus, as discussed in Sect. 2.3, PG(−x) will have all positive roots, denoted by
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x := u2ℓ .

We next consider the commutation of the incognito modes, ψℓ, with the Hamiltonian. Here we

further use the fact that an ECF graph, G(H), contains a simplicial clique, Ks. Recall that the

simplicial mode, χ, commutes with all terms in the Hamiltonian outside of Ks, but anti-commutes

with all terms in Ks, {χ, hv} = 0 for all v ∈ Ks. Thus, we can write the commutation of TGχT
−
G with

the Hamiltonian for arbitrary u as

[H,TG(u)χTG(−u)] = 2
∑

v∈Ks

TG(u)hvχTG(−u). (2.33)

For an ECH model, we require that when u = −uℓ, the right-hand-side of Eq. (2.33) is equal to 2εℓψℓ,

where 1/εℓ := uℓ (similarly when u = uℓ, it is equal to −2εℓψ†
ℓ ). A crucial step for proving this is the

following lemma:

Lemma 2.3. Let Ks be a simplicial clique in G(H), and let χ be a simplicial mode, as defined

in Def. 2.5, then

TG

(
1 + u

∑

v∈Ks

hv

)
χT−

G = PG(−u2)
(
1− u

∑

v∈Ks

hv

)
χ. (2.34)

Proof. We first express important recurrence relations for both TG and PG. For any clique K ⊆ G we

have

TG =TG−K − u
∑

v∈K

hvTG−Γ[v]. (2.35)

This follows from the fact that independent sets of G can be partitioned into two groups: (i) sets which

do not contain v ∈ K, corresponding to the first term TG−K ; and (ii) sets which contain a single v ∈ K,

and thus contain none of its neighbors, corresponding to the second term, −u∑v∈K hvTG−Γ[v]. When

K is simplicial, K := Ks, we can show the additional recursion relation

TG = TG−Ks − u
∑

v∈Ks

hvTG−Kv (2.36)

where Kv := Γ[v]\(Ks\v) is a clique in G for all v ∈ Ks, since Ks is simplicial. We show Eq. (2.36)
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by applying the recursion relation in Eq. (2.35) twice in succession

TG = TG−Ks − u
∑

v∈Ks

hvTG−Ks−Kv (2.37)

TG = TG−Ks
− u

∑

v∈Ks

hv


TG−Kv

+ u
∑

w∈Ks\{v}
hwTG−Ks−Kv−Kw


 (2.38)

where we have rearranged the expansion Eq. (2.35) by the clique Ks in the graph G − Kv and

substituted into Eq. (2.37) to obtain Eq. (2.38) (recall that, by definition, Kv∩Ks = {v}). Expanding

Eq. (2.38), we see that the operators hv and hw anti-commute since v and w are distinct vertices both

belonging to the clique Ks. However, the subscript of the transfer matrix is symmetric under the

exchange of v and w in the double sum. This double sum over v ̸= w ∈ Ks therefore vanishes and we

obtain the desired relation in Eq. (2.36).

Notice that both Eqs. (2.35) and (2.36) have analogues in terms of T−
G , given by substituting u for

−u in these identities. Additionally, both Eqs. (2.35) and (2.36) have analogues with hv to the right

of the transfer operator instead of to the left. It is especially surprising that this is true for Eq. (2.36),

since hv does not commute with TG−Kv in general. Examining the proof however, we see that we

can equivalently pull hv to the right instead of to the left everywhere, and the proof goes through.

In the forthcoming proofs, we will often refer to our use of these analogous identities as Eqs. (2.35)

and (2.36), as the specific form of the identity we are using will be clear from context.

By similar reasoning as for TG, we have the corresponding recurrence relation for PG(−u2)

PG =PG−K − u2
∑

v∈K

b2vPG−Γ[v] (2.39)

Note that, since any induced subgraph of G is also ECF, we can expand Eq. (2.28) in Lemma 2.2 by
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Eq. (2.35) for some clique K to obtain

PG(−u2) = TGT
−
G (2.40)

=

(
TG−K − u

∑

v∈K

hvTG−Γ[v]

)(
T−
G−K + u

∑

v∈K

hvT
−
G−Γ[v]

)
(2.41)

= PG−K − u2
∑

v∈K

b2vPG−Γ[v] + u
∑

v∈K

(
TG−KhvT

−
G−Γ[v] − hvTG−Γ[v]T

−
G−K

)

− u2
∑

v ̸=w∈K

hvTG−Γ[v]hwT
−
G−Γ[w] (2.42)

PG(−u2) = PG(−u2) + u
∑

v∈K

(
TG−KhvT

−
G−Γ[v] − hvTG−Γ[v]T

−
G−K

)

− u2
∑

v ̸=w∈K

hvTG−Γ[v]hwT
−
G−Γ[w] (2.43)

In the last line, we used the recurrence relation in Eq. (2.39). This gives

u2
∑

v ̸=w∈K

hvTG−Γ[v]hwT
−
G−Γ[w] = u

∑

v∈K

(
TG−KhvT

−
G−Γ[v] − hvTG−Γ[v]T

−
G−K

)
. (2.44)

Now we expand the left-hand side of Equation (2.34), and compute each of the two terms:

TG

(
1 + u

∑

v∈Ks

hv

)
χT−

G = TGχT
−
G + u

∑

v∈Ks

TGhvχT
−
G (2.45)

For the first term, we make use of the recurrence relation Eq. (2.35) for the simplicial clique, Ks,

noting that χ anti-commutes with hv for all v ∈ Ks and commutes with hv for v /∈ Ks

TGχT
−
G =

(
TG−Ks − u

∑

v∈Ks

hvTG−Γ[v]

)(
T−
G−Ks

− u
∑

v∈Ks

hvT
−
G−Γ[v]

)
χ (2.46)

=

[
PG−Ks + u2

∑

v∈Ks

b2vPG−Γ[v] − u
∑

v∈Ks

(
TG−KshvT

−
G−Γ[v] + hvTG−Γ[v]T

−
G−Ks

)

+u2
∑

v ̸=w∈Ks

hvTG−Γ[v]hwT
−
G−Γ[w]


χ (2.47)

TGχT
−
G =

(
PG + 2u2

∑

v∈Ks

b2vPG−Γ[v] − 2u
∑

v∈Ks

hvTG−Γ[v]T
−
G−Ks

)
χ (2.48)

In the last line, we used the recurrence relation Eq. (2.39) and the identity Eq. (2.44).

Turning to the second term in Eq. (2.45), we consider the individual terms in the sum separately.

For each v ∈ Ks, we expand by Kv using Eq. (2.35). We then use the fact that hvχ anti-commutes
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with hw for all w ∈ Kv and commutes with hw for all w /∈ Kv. A similar set of steps as above gives

TGhvχT
−
G =

(
2PG−Kv − PG − 2u

∑

w∈Kv

hwTG−Γ[w]T
−
G−Kv

)
hvχ, (2.49)

where we have used a different rearrangement of Eq. (2.39) from that in Eq. (2.48) to simplify the

expression. We next combine Eqs. (2.48) and (2.49) according to the linear combination on the

left-hand side of Eq. (2.34) to obtain

TG

(
1 + u

∑

v∈Ks

hv

)
χT−

G = PG

(
1− u

∑

v∈Ks

hv

)
χ

+ 2u
∑

v∈Ks

(
ub2vPG−Γ[v] − hvTG−Γ[v]T

−
G−Ks

)
χ

+ 2u
∑

v∈Ks

(
PG−Kv

− u
∑

w∈Kv

hwTG−Γ[w]T
−
G−Kv

)
hvχ.

(2.50)

We next proceed to prove that the last two terms in Eq. (2.50) evaluate to zero. Denote these terms

by ∆. What follows is a tedious yet straightforward rearrangement of the expression for ∆:

∆ = 2u
∑

v∈Ks

(
ub2vPG−Γ[v] − hvTG−Γ[v]T

−
G−Ks

)
χ

+ 2u
∑

v∈Ks

(
PG−Kv

− u
∑

w∈Kv

hwTG−Γ[w]T
−
G−Kv

)
hvχ (2.51)

We begin by separating the sum over w ∈ Kv into the cases where w = v term and w ̸= v terms,

and make other minor rearrangements for simplification. We also commute the operators χ and hv to

the left of each expression, taking care to keep track of the sign changes and employ h2v = b2v in the

w = v term. Finally, we have made use of the identification G − Γ[v] ≃ G −Ks −Kv for v ∈ Ks in

the subscripts of the first two terms. Thus we can write ∆ as

∆ = 2χ
{[
u2
∑

v∈Ks

b2vPG−Ks−Kv
+ u
( ∑

v∈Ks

hvTG−Ks−Kv

)
T−
G−Ks

]

− u
∑

v∈Ks

[
PG−Kvhv + u

( ∑

w∈Kv
w ̸=v

hvhwTG−Γ[w] + b2vTG−Ks−Kv

)
T−
G−Kv

]}
(2.52)

Next, we expand the factor of T−
G−Kv

, for the w = v term, by the recursion relation Eq. (2.35) for the
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clique Ks\{v}, so that ∆ becomes

∆ = 2χ
{[
u2
∑

v∈Ks

b2vPG−Ks−Kv + u
( ∑

v∈Ks

hvTG−Ks−Kv

)
T−
G−Ks

]

− u
∑

v∈Ks

[
PG−Kv

hv + u
∑

w∈Kv
w ̸=v

hvhwTG−Γ[w]T
−
G−Kv

(2.53)

+ ub2vTG−Ks−Kv

(
T−
G−Ks−Kv

+ u
∑

w∈Ks
w ̸=v

hwT
−
G−Kv−Γ[w]

)]}

We next simplify the first of the terms in the final parenthesis of Eq. (2.53) expansion using Lemma 2.2

to give

∆ = 2χ
{[
u2
∑

v∈Ks

b2vPG−Ks−Kv
+ u
( ∑

v∈Ks

hvTG−Ks−Kv

)
T−
G−Ks

]

− u
∑

v∈Ks

[
PG−Kvhv + u

∑

w∈Kv
w ̸=v

hvhwTG−Γ[w]T
−
G−Kv

(2.54)

+ ub2vPG−Ks−Kv
+ u2b2vTG−Ks−Kv

∑

w∈Ks
w ̸=v

hwT
−
G−Kv−Γ[w]

]}
.

Here, we notice that the first term and second-to-last term in Eq. (2.54) cancel to give

∆ = 2χ
[
u
( ∑

v∈Ks

hvTG−Ks−Kv

)
T−
G−Ks

− u
∑

v∈Ks

(
PG−Kvhv + u

∑

w∈Kv
w ̸=v

hvhwTG−Γ[w]T
−
G−Kv

+ u2b2vTG−Ks−Kv

∑

w∈Ks
w ̸=v

hwT
−
G−Kv−Γ[w]

)]
(2.55)

We again make minor rearrangements using the factorizations PG−Kv
= TG−Kv

T−
G−Kv

and b2v = h2v,

together with the fact that the term χhv commutes with all operators outside of the clique Kv ⊆ Γ[w]

for w ∈ Kv, so that

∆ = 2uχ
∑

v∈Ks

hv

(
TG−Ks−Kv

T−
G−Ks

− u2hvTG−Ks−Kv

∑

w∈Ks
w ̸=v

hwT
−
G−Kv−Γ[w]

)

− 2u
∑

v∈Ks

(
TG−Kv − u

∑

w∈Kv
w ̸=v

hwTG−Γ[w]

)
T−
G−Kv

χhv (2.56)

Making use of Eq. (2.35), we can rewrite the parentheses in the second term as TG plus the missing
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term from the sum over Kv, again making use of the identification G−Γ[v] ≃ G−Ks−Kv for v ∈ Ks:

∆ = 2uχ
∑

v∈Ks

hv

(
TG−Ks−KvT

−
G−Ks

− u2hvTG−Ks−Kv

∑

w∈Ks
w ̸=v

hwT
−
G−Kv−Γ[w]

)

− 2u
∑

v∈Ks

(
TG + uhvTG−Ks−Kv

)
T−
G−Kv

χhv (2.57)

Next, we collect the residual term from the sum over Ks in the second parentheses with the final term

in the first parentheses, to obtain

∆ = 2uχ
∑

v∈Ks

[
hvTG−Ks−Kv

T−
G−Ks

+ ub2vTG−Ks−Kv

(
− u

∑

w∈Ks
w ̸=v

hwT
−
G−Kv−Γ[w] + T−

G−Kv

)]

− 2u
∑

v∈Ks

TGT
−
G−Kv

χhv (2.58)

Expanding the second term in parentheses using the recurrence relation Eq. (2.35) for the clique

Ks\{v}, we find

∆ = 2uχ
∑

v∈Ks

[
hvTG−Ks−Kv

T−
G−Ks

+ ub2vTG−Ks−Kv

(
− u

∑

w∈Ks
w ̸=v

hwT
−
G−Kv−Γ[w] + T−

G−Ks−Kv
+ u

∑

w∈Ks
w ̸=v

hwT
−
G−Kv−Γ[w]

)]
(2.59)

− 2u
∑

v∈Ks

TGT
−
G−Kv

χhv

The first and third terms in parentheses in Eq. (2.59) cancel, and by Lemma 2.4, the remaining term

is PG−Ks−Kv . Thus

∆ = 2uχ
∑

v∈Ks

(
hvTG−Ks−KvT

−
G−Ks

+ ub2vPG−Ks−Kv

)
− 2u

∑

v∈Ks

TGT
−
G−Kv

χhv (2.60)
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Finally, we employ the recursion relation Eq. (2.36) to obtain

∆ = 2uχ
∑

v∈Ks

(
hvTG−Ks−KvT

−
G−Ks

+ ub2vPG−Ks−Kv

)
+ 2TG

(
T−
G − T−

G−Ks

)
χ (2.61)

= −2
(
TG + u

∑

v∈Ks

hvTG−Ks−Kv

)
T−
G−Ks

χ+ 2u2χ
∑

v∈Ks

b2vPG−Ks−Kv
+ 2TGT

−
G χ (2.62)

= −2TG−Ks
T−
G−Ks

χ+ 2u2χ
∑

v∈Ks

b2vPG−Ks−Kv
+ 2TGT

−
G χ (2.63)

= −2
(
PG−Ks − u2

∑

v∈Ks

b2vPG−Ks−Kv

)
χ+ 2TGT

−
G χ (2.64)

∆ = −2PGχ+ 2PGχ = 0 (2.65)

Therefore, Eq. (2.50) evaluates to

TG

(
1 + u

∑

v∈Ks

hv

)
χT−

G = PG

(
1− u

∑

v∈Ks

hv

)
χ (2.66)

and this proves the lemma.

Since uℓ is a root of PG(−u2), the right-hand-side of Equation (2.34) becomes zero for u = uℓ..

The left-hand side can then be rearranged, such that we can rewrite Eq. (2.33) as

[H,TG(±uℓ)χTG(∓uℓ)] = ∓
2

uℓ
TG(±uℓ)χTG(∓uℓ). (2.67)

Thus, Equation (2.67) implies that the incognito modes of the model act as canonical ladder operators

and the Hamiltonian of the ECH model can be written as Eq. (2.2) in terms of the incognito modes,

ψℓ.

Finally, to show that the canonical modes of the Hamiltonian are fermionic, we must confirm that

the incognito modes obey the canonical anti-commutation relations. It is straightforward to see from

the definition of ψℓ that (ψℓ)
2 ∝ P (−u2ℓ)2 = 0 (remember the simplicial mode χ is defined as a Pauli

operator, so χ2 = I). Further, since the transfer matrix and the simplicial mode are both Hermitian,

we have

ψ†
ℓ =

1

Nℓ
(T (uℓ)χT (−uℓ)) := ψ−ℓ. (2.68)

Lemma 2.4. The incognito modes, {ψℓ} (Def. 2.5), satisfy the canonical anti-commutation relations,

{ψℓ, ψ−m} = δm,ℓ (2.69)
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with normalization

(Nℓ)
2 = 16u2ℓPG−Ks(−u2ℓ)∂x(PG(x))x=−u2

ℓ
, (2.70)

where ∂x(PG(x))x=−u2
ℓ
denotes the derivative of PG(x) with respect to x, evaluated at −u2ℓ .

Proof. This proof closely follows the derivation by Fendley [23], again with generalizations to the

graph recursion relations. To find the anticommutator between any two fermionic operators, we take

the limit of

{ψℓ, ψ−m} =
1

Nm
lim

u→um

{ψℓ, TG(u)χTG(−u)} (2.71)

We start by finding the explicit relationship acquired by commuting ψℓ and TG(u). To do this we

expand TG(u)χTG(−u), using Eq. (2.34) and Lemma 2.3, noting that the transfer matrices commute,

even at different u, due to Lemma 2.1, so that

TG(u)ψℓTG(−u) =
1

Nℓ
TG(−uℓ)

[
−uTG(u)

(∑

v∈Ks

hvχ

)
TG(−u) + PG(−u2)

(
1− u

∑

v∈Ks

hv

)
χ

]
TG(uℓ)

(2.72)

=− u

2
TG(u)[H,ψℓ]TG(−u) + PG(−u2)

(
ψℓ −

u

2
[H,ψℓ]

)
(2.73)

TG(u)ψℓTG(−u) =
1

uℓ

(
− uTG(u)ψℓTG(−u) + PG(−u2)(uℓ − u)ψℓ

)
(2.74)

By rearranging the expression in Eq. (2.74), we find algebra obeyed by the transfer matrices and ψℓ

as

(uℓ + u)TG(u)ψℓ = (uℓ − u)ψℓTG(u). (2.75)

Thus, the argument of Equation (2.71) becomes

{ψℓ, TG(u)χTG(−u)} =
uℓ + u

uℓ − u
TG(u){ψℓ, χ}TG(−u). (2.76)

The anticommutator between ψℓ and χ can be calculated explicitly using the recursion relation Equa-

tion (2.35),

{ψℓ, χ} =
4

Nℓ
PG−Ks

(−u2ℓ). (2.77)

Since the right hand side of Eq. (2.77) is scalar, we can commute the transfer matrix, T (u), in Eq. (2.71)

through the anticommutator and use Equation (2.6) to write explicitly

{ψℓ, TG(um)χTG(−um)} = lim
u→um

4

Nℓ
PG−Ks

(−u2ℓ)PG(−u2)
uℓ + u

uℓ − u
. (2.78)
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In this limit we find that the polynomial PG(−u2) → 0, except in the case when ℓ = m. Here, this

limit requires the use of L’Hôpital’s rule, since both the numerator and denominator of the expression

go to zero. Doing so gives

{ψℓ, ψ−m} = δℓ,m
16u2ℓ
N2

ℓ

PG−Ks
(−u2ℓ)∂x(PG(x))x=−u2

ℓ
. (2.79)

Thus, we define the normalization factor of the incognito modes to be

(Nℓ)
2 = 16u2ℓPG−Ks(−u2ℓ)∂x(PG(x))x=−u2

ℓ
, (2.80)

revealing that the {ψℓ} do indeed satisfy the algebra of fermions.

Finally, we prove Theorems 2.1 and 2.2. In general, the existence of fermionic ladder operators

satisfying Eqs. (2.67) and (2.69) is only enough to show that the Hamiltonian block-diagonalizes into

sectors (i.e. multiplets). In each sector, the Hamiltonian has the same free spectrum up to a sector-

dependent constant shift. In our case, however, the transfer matrix formalism allows us to prove

the stronger statements of Theorems 2.1 and 2.2. Having proven the necessary lemmas, this proof

is straightforward, as it matches exactly to the proof given by Fendley in Ref. [23]. We restate the

essential steps of this proof here for completeness.

Proof of Thms. 2.1 and 2.2. In Ref. [23], the higher Hamiltonians {H(k)}∞k=1 are defined as operators

generated by the logarithmic derivative of TG

H(u) :=
∞∑

k=1

H(k)uk−1 := −∂u ln [TG(u)] = −
1

PG(−u2)
TG(−u)T ′

G(u) . (2.81)

The last equality follows from Lemma 2.2, where T ′
G is the derivative of TG with respect to u. Sub-

stituting u = 0 into the second and fourth expressions in this definition demonstrates that H(1) := H.

The operatorH(u) is a meromorphic function of u whose only singularities are at the roots of PG(−u2),

since TG(−u)T ′
G(u) is a finite series in u with bounded-operator coefficients. Since PG(x) has a con-

stant term, none of the roots of PG(−u2) are at u = 0, and so H(u) is analytic on a small disk centered

at this point. Therefore, we can write each of the higher Hamiltonians as an integral over a small

oriented contour C around u = 0

H(k) =
1

2πi

∮

C

du u−kH(u) . (2.82)
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Changing variables to u = 1/ε gives

H(k) =
1

2πi

∮

C̃

dε εk−2H(ε) (2.83)

where the new contour C̃ encircles all of the poles at the zeros of PG(−u2) with the same orientation

as C (reversing this orientation incurs a sign change). This gives

H(k) = − 1

2πi

∮

C̃

dε
ε2α+k−2

∏α
j=1(ε

2 − ε2j )
TG(−1/ε)T ′

G(1/ε) (2.84)

where we have utilized the factorization PG(−u2) =
∏α

j=1

(
1− ε2ju2

)
and multiplied numerator and

denominator by u−2α := ε2α in the integral (u ̸= 0 over C). Note here that T ′
G is still the derivative of

TG with respect to its argument and not the derivative with respect to ε in the equation above. Since

the maximum power of u in TG(u) is α, the minimum power of ε in TG(−1/ε)T ′
G(1/ε) is −2α + 1,

and so the integrand has no poles at ε = 0 for k ≥ 1. The only poles of the integrand are therefore at

±εj , and so the Cauchy residue theorem gives

H(k) = −
α∑

j=1

ε2α+k−2
j∏α

ℓ=1,ℓ̸=j(ε
2
j − ε2ℓ)

[
1

2εj
TG(−1/εj)T ′

G(1/εj)−
(−1)k
2εj

TG(1/εj)T
′
G(−1/εj)

]
(2.85)

Using

∂u
[
PG(−u2)

]
u=uj

= −2εj
α∏

ℓ=1,ℓ̸=j

(1− ε2ℓu2j ) (2.86)

gives

H(k) =

α∑

j=1

u−k
j

∂u [PG(−u2)]u=uj

[
TG(−uj)T ′

G(uj)− (−1)kTG(uj)T ′
G(−uj)

]
(2.87)

Next we evaluate the commutator

[ψj , ψ
†
j ] = [ψj , ψ−j ] (2.88)

=
1

Nj
lim

u→uj

[ψj , TG(u)χTG(−u)] (2.89)

[ψj , ψ
†
j ] =

1

Nj
lim

u→uj

{(
uj + u

uj − u

)
TG(u)[ψj , χ]TG(−u)

}
(2.90)

This follows by similar steps to Eqs. (2.71) and (2.76). Our definition of the incognito modes, together
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with Lemma 2.2, implies

TG(uj)ψj = ψ−jTG(uj) = 0 (2.91)

both numerator and denominator of Eq. (2.90) vanish in the limit, so we have

[ψj , ψ
†
j ] = −

2uj
Nj

(T ′
G(uj)ψjχTG(−uj) + TG(uj)χψjT

′
G(−uj)) . (2.92)

Exchanging χ and ψj using the anticommutator, Eq. (2.77), gives

[ψj , ψ
†
j ] = −

8uj
N2

j

PG−Ks
(−u2j ) (T ′

G(uj)TG(−uj) + TG(uj)T
′
G(−uj)) (2.93)

as the additional terms vanish by Eq. (2.91). Rewriting the normalization condition of Eq. (2.70) as,

(Nj)
2 = −8ujPG−Ks(−u2j )∂u[PG(−u2)]u=uj , (2.94)

and then substituting into the above expression gives

[ψj , ψ
†
j ] =

1

∂u[PG(−u2)]u=uj

(T ′
G(uj)TG(−uj) + TG(uj)T

′
G(−uj)) (2.95)

Comparing Eq. (2.87) for k = 1 to Eq. (2.95) proves both Theorems 2.1 and 2.2.

In this way we can see that a ECH model is described by non-interacting fermions, with single

particle energies given by the reciprocals of the roots of the vertex-weighted independence polynomial,

Eq. (2.6), and canonical modes given by the incognito modes (Def. 2.5). This constitutes a complete

solution to any model of this kind.

2.5 Examples

In this section we analyze explicitly two sets of models whose Hamiltonians are (even hole, claw)-free,

thus admitting a free-fermion solution via Theorems 2.1 and 2.2. The first set includes a pair of

examples of models realized on small systems, including a model whose frustration graph is a line

graph and a simple extension whose frustration graph is one of the nine forbidden subgraphs of a

line graph (see Table 2.2). The second example is a class of graphs we call equipartition indifference

graphs. This family of models generalizes the well-known XY-model and was exactly solved at their
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critical points in Refs. [57, 58]. In the third subsection we define a new set of integrable and soluble

models constructed by fusing the equipartion indifference graphs into more complex structures.

2.5.1 Small systems

Here we look at two related models on three qubits. The Hamiltonians of the models, denoted H5

and H6, and are related by the addition of a single term

H5 = aX1X2 + bZ2 + cY1Y2X3 + dY1Z2 + eX1Z2 (2.96)

H6 = aX1X2 + bZ2 + cY1Y2X3 + dY1Z2 + eX1Z2 + fY1Y2Z3, (2.97)

where {Xi, Yi, Zi} refer to Pauli operators applied to the i-th spin in the natural way and the

coupling strengths {a, b, c, d, e, f} are arbitrary real numbers. The frustration graphs for H5 and H6

are depicted in Figure 2.2, with vertices labeled by their corresponding field strengths.

The frustration graph of the first model, G(H5), is a five-cycle, as depicted in Fig. 2.2 (a): the

five Hamiltonian terms anti-commute only with those directly before and after it in a closed chain.

G(H5) is a line graph, as such this model admits a Jordan-Wigner solution [22]. Let R(H5) be the

root graph of G(H5); this graph is also a five-cycle. Each Hamiltonian term is mapped to a Majorana

bilinear with Majorana modes {γj}5j=1 assigned to each vertex of the root graph. Using this method,

the Hamiltonian is mapped to

H =
i

2

4∑

j,k=0

γjhj,kγk (2.98)

where the single particle Hamiltonian is given by

i

2
h =

i

2




0 a 0 0 −e

−a 0 b 0 0

0 −b 0 c 0

0 0 −c 0 d

e 0 0 −d 0




. (2.99)

Note here that the orientation of R(H5) given by the signs of the elements in h is arbitrary, i.e. we

can change the sign of any coupling coefficient without affecting the spectrum.

The frustration graph of G(H5) is also an (even hole, claw)-free graph: every edge induces a

simplicial clique. Thus, the model can be solved using the method developed here. The vertex-
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(a) a

be

cd

(b) a

be

cd

f

Figure 2.2: Frustration graphs for small system sizes solved in this section: (a) a five-cycle, which admits a
generator-to-generator mapping, but is both even hole and claw free also, thus admitting a solution by the
method developed in the present work, (b) one of the six forbidden subgraphs of a line graph with no twins,
created by adding a single additional Hamiltonian term to the five-cycle, thus when f → 0, this model is
identical to (a). This model does not admit a generator-to-generator mapping, but is solvable using the
method developed here.

weighted independence polynomial of G(H5) is

PG(H5)(−u2) = 1− u2
(
a2 + b2 + c2 + d2 + e2

)

+ u4
[
a2
(
c2 + d2

)
+ b2

(
d2 + e2

)
+ c2e2

]
.

(2.100)

PG(H5) can be factored simply as a quadratic polynomial in u2. The roots of PG(H5) provide the

the single particle energies, as well as the spectral parameters for the incognito modes, {ψk}k in

Eq. (2.9). Note that, as discussed in Sect. 2.3, PG(H5) is exactly the characteristic polynomial of the

single-particle Hamiltonian ih

PG(H5)(−u2) = det (I− iuh) . (2.101)

Thus, we can see the direct link between the two approaches for a solution when the model is an even

hole-free line graph. Furthermore, the eigenvectors of the single particle Hamiltonian, h, elucidate the

non-locality of the canonical modes, {ψk}k.

The frustration graph G(H6) is depicted in Fig. 2.2 (b). In direct contrast to H5, this graph is

one of the six forbidden subgraphs of a line graph that does not contain twins and admits no Jordan-

Wigner mapping to non-interacting fermions. Nevertheless, Fig. 2.2 (b) contains no even holes or

claws, and each maximal clique of the graph is simplicial. Thus, by Theorem 2.1 the model must be

free.

The vertex-weighted independence polynomial of G(H6) is

PG(H6)(−u2) =1− u2
(
a2 + b2 + c2 + d2 + e2 + f2

)
+

+ u4
[
a2
(
c2 + d2 + f2

)
+ b2

(
d2 + e2

)
+ c2e2 + e2f2

] (2.102)
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and so the single particle energies can be found by again solving a simple quadratic equation.

Despite the similarities between the two models, H5 admits a solution in terms of individual

fermions localized to physical modes, while H6 does not. It therefore remains an open question to

clarify the intrinsic link (if any) between the graphical and spatial structures for models with ECF

frustration graphs, a stark contrast from the line-graph setting.

While the spectrum, and fermionization, of the models is independent of the explicit Pauli realiza-

tion, the qubitization of the graphs given does elucidate an interesting link between the ECF models

and those that have a Jordan-Wigner mapping (line-graph models). Here H5 and H6 are related via

a single-qubit rotation on the third qubit. To see this, rewrite the Hamiltonian as

H6 = aX1X2 + bZ2 + Y1Y2(cX3 + fZ3) + dY1Z2 + eX1Z2. (2.103)

By applying the coupling strength dependent rotation (cX3 + fZ3) → ±
√
c2 + f2X3, we can see

the direct relation between models H5 and H6. In general, the transformation from an arbitrary

(even-hole, claw)-free model to a similar line-graph model is nontrivial, requiring complicated, multi-

qubit rotations. However, this particular example shows when two vertices share the same closed

neighborhood we can always perform a rotation to remove one of them, without altering the spectrum.

This is analogous to the situation involving twin vertices – i.e. vertices sharing an open neighborhood

– discussed in Sect. 2.3. The difference is that vertices sharing a closed neighborhood are themselves

neighboring. Similarly to removing twin vertices by projecting onto a subspace, we remove these pairs

by performing a rotation.

2.5.2 Indifference Graphs

An infinite family of ECF graphs is given by the set of indifference graphs. Indifference graphs are

defined by placing vertices on the real line and connecting two vertices if and only if they are separated

by a distance ≤ k, for some fixed and finite k. Such graphs are ECF since they have a known forbidden

induced subgraph characterization that forbids (among others) the claw and even holes [108]. They

are therefore also simplicial. In fact, the closed neighborhood of the vertex corresponding to the least

real number is always a simplicial clique (its neighbors are all within distance 1 of each other, hence

induce a clique). Finally, it is simple to identify the independent sets for these graphs: they are the

subsets of vertices whose pairwise separation on the real line is greater than 1. Some examples of

indifference graphs are shown in Fig. 2.3. Given an indifference graph G, there is no unique way to
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(a)

k = 2

k = 3

k = 4

k = 5

(b)

(c)

Figure 2.3: Indifference frustration graphs for some ECF models (see text). (a) Equipartition indifference
graphs arise, for example, as frustration graphs for the translation-invariant spin chain (having open
boundary conditions) with Hamiltonian Hk =

∑
i XiXi+1 · · ·Xi+k−2Zi+k−1. The frustration graph is shown

for k = 2, . . . , 5. When k = 2, a Hadamard rotation on every second spin shows that this model is equivalent
to the XY model with half of its terms removed, and it can be solved by a Jordan-Wigner transformation.
The k = 3 model is the model studied by Fendley [23]. When k > 2, the graph is not a line graph, so it
cannot be solved by any Jordan-Wigner transformation [22], but since it is ECF by construction, it can be
solved by the methods introduced in this chapter. (b,c) Two examples of ECF graphs that arise as
indifference graphs with randomly chosen points at different densities. It is evident that, depending on the
point density, the connectivity of interval graphs can look rather complex.

find a spin model Hamiltonian having G as its frustration graph, though such models will always exist.

To get a natural mapping to spin models, we will specialize to the set of graphs (shown in Fig. 2.3(a))

where the vertices are equally spaced on the real line.

We therefore consider a particularly nice family of spin models, which generalizes the XY-model

and the four-fermion model in Ref. [23]. This family was originally introduced in Refs. [57,58] and the

critical behavior analyzed there as well. Here we demonstrate how this family fits into our formalism.

Each model in the family is indexed by an integer k. When k = 2, we get an XY-chain, albeit

with half the terms removed. This model is still solvable by a Jordan-Wigner transformation. When

k = 3, we get the four-fermion model solved in Ref. [23]. When k ≥ 4, we get an infinite family

of free-fermion-solvable models with translation-invariant frustration graphs. The construction of the

associated frustration graph with N unit cells, G(N, k), is simple: fix k, and consider the set of integers

M(N, k) ⊂ Z

M(N, k) :=

N−1⋃

n=0

k−1⋃

j=0

(nk + j) . (2.104)

Let m(n, j) := nk + j. Associate a vertex of G(N, k) to each point in M(N, k), and join vertices

corresponding to m(n, j) and m(n′, j′) by an edge if |m(n, j) − m(n′, j′)| < k. Then G(N, k) is

equivalent to the indifference graph of M(N, k) after rescaling our distance function appropriately.

We will often refer to the vertices of G(N, k) by their corresponding points in M(N, k) directly. We

will shortly see that N = α, the independence number of G(N, k). See Fig. 2.4 for an example when
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b1

b2

b3

b4

b1

b2

b3

b4

b1

b2

. . .

. . .

Figure 2.4: Equipartition indifference graph for k = 4, formed from the frustration graph of the
Hamiltonian in Eq. (2.105). The Hamiltonian couplings are 4-periodic and are labeled b1, b2, b3, and b4.

k = 4.

An explicit qubit Pauli Hamiltonian realizing G(N, k) is given in Refs. [57, 58]

H =

N−1∑

n=0

k−1∑

j=0

bnk+jXnk+j

k−1∏

ℓ=1

Ynk+j+ℓ . (2.105)

Similarly to these references, we consider staggered, uniform couplings: k different couplings which

are repeated periodically as

bnk+j := bj , (2.106)

For simplicity of expression we collect the squares of the coupling strengths in a vector

b = (b20, b
2
1, b

2
2, ..., b

2
k−1). (2.107)

Define the elementary symmetric polynomials in b as

ej(b) :=
∑

0≤i1<i2<···<ij≤k−1

j∏

ℓ=1

b2iℓ (2.108)

for j ∈ {0, . . . , k}, with e0 := 1. Finally, denote the clique induced by the vertices corresponding to

the points {m(n, 0),m(n, 1), . . . ,m(n, k − 1)} ⊂M(N, k) in G(N, k) by Kn. Notice that

G(N, k)−
(

ℓ∑

p=0

Kp

)
= G(N − ℓ− 1, k) . (2.109)

Since any independent set can contain at most one vertex from each clique Kn, we have that α ≤ N .

An explicit independent set with N vertices is given by ∪N−1
n=0 m(n, 0). Therefore, α = N .

Let us first show that PG(N,k) satisfies a recursion relation which is symmetric in the entries of b,
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(a)

b21 b23

b24

b22

(b)
b22

b23b21

(c)
b22

b23b21

(d)
b22 = b24

b23b21

Figure 2.5: Phase diagram for the equipartition indifference graph Hamiltonian for k = 4, with staggered
uniform couplings, b1, b2, b3, b4. (a) shows a three dimensional simplex, with parameters. (b) shows a cross
section of the plane at b4 = 0. (c) shows a cross section parallel to that in (a), but with b4 > b1, b2, b3, (d)
shows a cross section at a diagonal through the tetrahedron where b22 = b24 at all times

which follows from the graph-theoretic recurrence relations.

PG(N,k) = PG(N−1,k) −
k∑

ℓ=1

u2ℓeℓ(b)PG(N−ℓ,k) (2.110)

For k = 4, for example

PG(N,4) =
[
1− u2e1(b)

]
PG(N−1,4) − u4e2(b)PG(N−2,4) − u6e3(b)PG(N−3,4) − u8e4(b)PG(N−4,4) .

(2.111)

We show Eq. (2.110) by first expanding PG(N,k) via the recursion relation Eq. (2.39) in the clique K0,

with the convention in Eq. (2.109). Note that the neighbors to each vertex m(0, j) ∈ K0, besides K0

itself, are given by translations {m(1, ℓ)}j−1
ℓ=1 . This gives,

PG(N,k) = PG(N−1,k) − u2
k−1∑

j=0

b2jPG(N−1,k)−∑j−1
ℓ=0 m(1,ℓ) . (2.112)

We can rearrange similar expansions in the induced subgraphs of K1, which are also cliques, to obtain

PG(N−1,k)−∑j−1
ℓ=0 m(1,ℓ) = PG(N−1,k) + u2

j−1∑

ℓ=0

b2ℓPG(N−2,k)−∑ℓ−1
p=0 m(1,p) (2.113)
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for j ∈ {1, . . . , k − 1}. Substituting Eq. (2.113) into Eq. (2.112) gives

PG(N,k) =
[
1− u2e1(b)

]
PG(N−1,k) − u4

k−1∑

j=0

j−1∑

ℓ=0

b2jb
2
ℓPG(N−2,k)−∑ℓ−1

p=0 m(1,p) (2.114)

We can iterate this procedure by substituting Eq. (2.113), with G(N − 1, k) replaced by G(N − 2, k),

back into the sum over j and ℓ in Eq. (2.114). Notice that each time we do this, the sum over single

vertices p in the subscript of the summand contains one fewer term, the equipartition indifference

graph in this subscript contains one fewer clique Kn, and the coefficient in the summand acquires

another factor from b. Iterating k − 1 times gives the desired recurrence relation, Eq. (2.110).

We next assemble a vector with entries

vs(ε
2) = ε2sPG(s−1,k)(ε

−2), (2.115)

such that the recursion relation, Eq. (2.110), can be rewritten as

vN+1 = ε2vN −
k∑

ℓ=1

eℓ(b)vN−ℓ+1 . (2.116)

As this recursion relation holds for any value of N , we can define the matrix R with elements

Rss′ =

k∑

ℓ=0

δs−ℓ+1,s′eℓ(b), (2.117)

such that Eq. (2.116) has the form of an eigenvalue equation

R · v = ε2v . (2.118)

When the eigenvalue corresponds to a root ε−2
j of PG(N,k), the corresponding eigenvector v satis-

fies the boundary condition vN+1(ε
2
j ) = 0. We further require v satisfy the boundary conditions

v0 = . . . = v−k+2 = 0 (by our convention, v1 ∝ PG(0,k) = 1).

These models exhibit critical behavior when any subset of the coupling coefficients become equal.

For all k-sized equipartition indifference models, the phase diagram is a (k − 1)- dimensional simplex

with k-critical point at the center. The phase diagram for k = 4 is shown in Fig. 2.5 as both a three

dimensional tetrahedron, as well as three cross sections of the depicting the gapped regions in white,

with gapless regions in red. Here we see the two-dimensional semi-hyperplanes meeting at the center
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Figure 2.6: Dispersion relations for the k = 4 instance of equipartition indifference models, with
b24 ∈ {0.1, 0.2, . . . , 0.9}, and other couplings equal such that the sum of their squares is normalized to 1. For
b24 ≤ 0.25, the model is critical at momentum p = π, as our numerics indicate.

point of the tetrahedron, where b21 = b22 = b23 = b24, as well as along one dimensional lines.

It is clear from the cross section in Fig. 2.5 (b) that the class of models is hereditary as boundary

of the phase diagram corresponds directly to the phase diagram of the k = 3 model (see Ref. [23]).

Interestingly, Fig. 2.5 (c) shows that as we increase the fourth parameter, b24, the central, tri-critical

point in the model opens and a gapless phase emerges. Fig. 2.5 (d) shows the cross-section through

the center of the tetrahedron when b22 = b24. We see that there is a regime in which there is a large

gapped phase, as well as two symmetric gapless phases separated by a gapped region.

The critical behavior of these models has been exactly analyzed in Refs. [57, 58] (and indeed,

extended to parafermionic systems as well), and the authors find a dynamical critical exponent of k/d

for general qudits of dimension d (d = 2 in our setting). We add that the model can be numerically

analyzed over the entire phase diagram using the fact that R is a banded Toeplitz matrix with

bandwidth k + 1 and applying the algorithm in Ref. [109] to find the dispersion relation in the

asymptotic limit. Figure 2.6 shows the dispersion relations along the central axis from one vertex

(b24 = 1) to the center of the opposite face (b24 = 0), with other coefficients equal and normalized. We

find that the model is indeed critical when b24 ≤ 0.25, and the dispersion relation is nonlinear about

this point.
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Figure 2.7: An example frustration graph of a junction for more complex models which are either
integrable or soluble.

2.5.3 Integrable and Soluble models

Here we define a new class of two-dimensional models not previously discussed in the literature.

The models are formed by attaching the one-dimensional chains from Sect. 2.5.2 to one another via

interaction terms with clique-like frustration graphs. In order to ensure that the graphs remain claw-

free, at each point of attachment, or junction, the clique must contain at least twice as many vertices as

attached chains. Consider the example frustration graph depicted in Fig. 2.7, the junction is trivalent;

however, in order to ensure that the model remains claw-free, the junction contains a sixth order

clique (K6). Notice, that if the new structure formed from the joining of the chains is a quasi-two-

dimensional structure (such as a tree), the model will be even-hole-free, and thus free-fermion soluble

using the methods developed here. On the contrary, if the new structure is two dimensional, then the

frustration graph will necessarily contain even-holes. Nevertheless, the model will still be integrable,

due to Lemma 2.1.

2.6 Discussion

We have proven that Hamiltonians with (even-hole, claw)-free frustration graphs in a given basis admit

a solution by non-interacting fermions, even when such models provably do not admit a Jordan-Wigner

solution. Though our result considerably expands the set of known free-fermion solutions, we should

note that it clearly does not capture all of them. First, there exist models whose free-fermion solution

is non-generic, in that they only hold for specific values of the coupling strengths. As an example, we
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can consider the following model on three qubits:

H = aZ2 + bY1X2 + cX1Y2 + dZ1Y3 + eY1X3 + fZ3 (2.119)

The frustration graph of the model is depicted in Fig. 2.8. The graph clearly contains both claws and

even holes, and is thus outside the class of models discussed in this chapter. In general, the model

is not free for arbitrary couplings. Nevertheless, the model does have a free spectrum for all equal

couplings (a = b = c = d = e = f). Further, we can numerically verify that the single particle energies

of the model are the reciprocals of the roots of the vertex weighted independence polynomial of the

graph.

A perhaps much deeper open question concerns the relationship between the spatial structure

of a given model and the associated free-fermion modes which emerge from this solution. We have

structured our argument to draw a parallel between the way in which these mappings generalize the

Jordan-Wigner transformation—whose spatial structure is evident—with the way claw-free graphs

generalize line graphs. Carrying this argument through, one might ask whether the even-hole-free as-

sumption can be relaxed, as Hamiltonians whose frustration graphs are arbitrary line graphs still admit

a Jordan-Wigner free-fermion solution. From a technical perspective, simplicial claw-free graphs enjoy

many of the properties that we relied on to prove our general solution. Models with simplicial claw-

free frustration graphs admit an extensive number of commuting conserved charges defined through

their independent sets (i.e., they satisfy Lemma 2.1), and their independence polynomials are also

real-rooted [100–102]. One might attempt to incorporate even holes into this formalism by defining

spatial hopping terms ψjψ
†
k. The simplicial mode cancels in the definition of these quadratic opera-

tors, leaving them defined only in terms of Hamiltonian terms. However, the resulting expressions are

very complicated. Furthermore, allowing for even holes requires us to generalize Lemma 2.2, which

was crucial for the following proof. Though we cannot say anything definitive about the more general

class of simplicial claw-free graphs currently (indeed, they may not admit a free-fermion solution at

all), we remark that they would be a natural class of models for further study.

Another clear open question concerns whether this construction could be generalized to solutions

of qudit models in terms of parafermions [110]. The concept of free parafermions has been developed

by Fendley [59], and Refs. [57, 58] consider non-Hermitian qudit generalizations of the equipartition

indifference graphs which have free parafermionic spectra. It is known that, unlike fermions, bilinear

parafermions are not always free, yet our formalism may provide a clue to recognizing such sys-

tems. Recall that the structure theorem of Ref. [105] states that (even-hole, pan)-free graphs (which
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Figure 2.8: The frustration graph of the model, defined in Equation (2.119). This model has claws and
even holes, nevertheless for all-equal-coefficients the model has a free fermion spectrum.

generalize our class of graphs) are essentially unit circular-arc graphs connected by clique cutsets.

Incidentally, a subset of bilinear parafermion models have frustration graphs given by oriented unit

circular-arc graphs, where the orientation captures the fact that the group-commutator between bi-

linear parafermionic terms is a complex phase, and this orientation is inherited from an underlying

orientation on the circular-arc representation. This characterization could therefore clarify the rela-

tionship between free-parafermion models, the models considered in Refs. [57, 58], and more general

bilinear parafermion models.

One strength of the solution method developed in the present work is that it could in principle

be applied to interacting fermion models in addition to qubit models. Indeed, Fendley’s four-fermion

model is an obvious example. This is because the existence of the solution is independent of the Pauli

realization and relies only on the graph structure of the model. In Ref. [23], Fendley suggests applying

this solution method to the cooper pair model of Refs. [111, 112], which represents one other such

fermion model. However, the frustration graph of this model has even holes, and so is ineligible for

solution by our method. Nevertheless, it would be interesting to investigate our method as a starting

point for approximate solutions to non-integrable models such as quantum impurity models [113].

One potential application would be to extend the exact analysis of Fendley’s four-fermion model to

an approximate one on periodic boundary conditions. We leave such questions for future work.



Chapter 3

A unified graph theoretic approach

to free fermions

We show that a quantum spin system has an exact description by noninteracting fermions when its

frustration graph is claw-free and contains a simplicial clique. Our result captures a vast family

of known free-fermion solutions. In particular, it generalizes graph-theoretic characterizations given

in previous work, where it was shown that a free-fermion solution exists if the frustration graph is

either a line graph, or (even-hole, claw)-free. The former case includes the celebrated Jordan-Wigner

transformation and the exact solution to the Kitaev honeycomb model. The latter case generalizes a

nonlocal solution to the four-fermion model given by Fendley. Our characterization unifies these two

approaches, extending generalized Jordan-Wigner solutions to the nonlocal setting and extending the

generalized four-fermion solution to models of arbitrary spatial dimension. Our key technical insight

is the identification of a class of cycle symmetries for all models with claw-free frustration graphs.

We prove that these symmetries commute, and this allows us to apply Fendley’s solution method

to each symmetric subspace independently. Finally, we give a physical description of the fermion

modes in terms of operators generated by repeated commutation with the Hamiltonian, connecting

our framework to the developing body of work on operator Krylov subspaces. Our results establish a

deep connection between many-body physics and the mathematical theory of claw-free graphs.

51
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3.1 Introduction

The Jordan-Wigner transformation represents a fascinating insight into the physics of quantum many-

body spin systems. It identifies collective spin degrees of freedom with those of fermions, resulting in

a fermionic model with the same energy spectrum as the spin system of interest [28]. It is perhaps

best-known for its application to models where the effective fermions are non-interacting, allowing for

an exact solution to these otherwise non-trivial systems [24]. Since its discovery, the Jordan-Wigner

transformation has been generalized to a family of exact free-fermion solutions [30–40], yielding new

understanding for a wide class of spin models.

In addition to the setting of exactly solvable systems, an understanding of effective fermions is

important for applications in quantum information. Interacting fermionic systems are foundational to

quantum chemistry [114–117], which is motivates the design of good fermion-to-qubit mappings [34,

69–74,76,118–120]. These mappings can, in some sense, be considered the reverse problem of finding

a free-fermion solution to a spin model. Further, Majorana fermions represent a promising avenue for

the topological protection of quantum information [11, 121–124] which is promising for experimental

realization [125].

Concretely, the Jordan-Wigner transformation and its generalizations map many-qubit Pauli ob-

servables directly to fermionic operators: the Majorana modes. These mappings are generator-to-

generator, as they identify a direct correspondence between Hamiltonian terms in the spin system

and its dual fermion model. Additionally, they are generic, meaning that the solution method applies

for all values of the Hamiltonian couplings. In Ref. [22], a connection was shown between a system’s

solvability by this method and its frustration graph. This is the graph whose vertices correspond

to terms in the spin Hamiltonian written in the given Pauli basis and are neighboring if the associ-

ated Pauli operators anticommute. It is shown in Ref. [22] that a generator-to-generator free-fermion

solution is only possible if the frustration graph is a line graph. This property corresponds to the ab-

sence of certain forbidden induced subgraphs of the Hamiltonian frustration graph: anticommutation

structures among subsets of Hamiltonian terms that obstruct a free-fermion solution. The line-graph

characterization captures generator-to-generator mappings, and these generally accompany a set of

symmetries associated to induced cycles — or holes — of the frustration graph.

More recently, a free-fermion-solvable model outside of the generalized Jordan-Wigner framework,

called the four-fermion model, was given in a remarkable result by Fendley [23]. Here, the fermions

correspond to nonlinear polynomials in the Pauli terms of the spin Hamiltonian, rather than individual

terms. This solution maps the entire spin Hamiltonian onto the entire free-fermion Hamiltonian and is



3.1. INTRODUCTION 53

(even-hole, claw)-free
e.g. four fermion.

Line graphs of
even-cycle-free

graphs

Line graphs
e.g. XY chain,

Kitaev honeycomb.

Simplicial, claw-free
(this work)

Free-fermion soluble models

Figure 3.1: Summary of this work in relation to earlier results. In Ref. [22], it was shown that a generalized
Jordan-Wigner (generator-to-generator) mapping exists if and only if the frustration graph of a given spin
model is a line graph. In Ref. [126], it was shown that a more complicated solution of the type given in
Ref. [23] holds when the graph is (even-hole, claw)-free. Though these two graph classes intersect at the class
of line graphs of even-cycle-free graphs, neither class contains the other. In the present work, these methods
to show that a somewhat more complicated free-fermion structure exists for simplicial, claw-free frustration
graphs. We expect that there are still free-fermion solution methods beyond this characterization, including
non-generic solutions.
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generic despite apparently transcending the generator-to-generator structure. Surprisingly, a solution

of this form is also revealed by the absence of certain forbidden induced subgraphs of the Hamiltonian

frustration graph [126]. These forbidden subgraphs include K1,3, or the claw — which is also a

forbidden induced subgraph for line graphs — as well as all even holes. The two graph classes share

some overlap, but also each include cases not present in the other. In a generalized Jordan-Wigner

solution, even holes correspond to the aforementioned Pauli symmetries, and this strongly suggests

the existence of a free-fermion solution framework unifying these two methods.

In this work, we formalize a graph-theoretic characterization unifying these two approaches. Our

main result is summarized in Fig. 3.1. We show that if the frustration graph is claw-free and contains

a structure called a simplicial clique, then it admits an exact free-fermion solution. We refer to this

set of graphs as simplicial, claw-free. Both graph classes of Refs. [22,126] have this property. It is an

interesting consequence of our characterization that free-fermion solutions are generalized much in the

same way as the graphs that describe them. Importantly, our result removes the even-hole assumption

of Ref. [126], and so extends the non-local solution method given by Fendley to graphs with arbitrary

spatial dimension in their coarse topology. We are able to relax this assumption by identifying a

class of cycle-like symmetries, which generalize the cycle symmetries of generalized Jordan-Wigner

solutions. This identification can be seen as our main technical insight.

This chapter is organized as follows. In the remainder of the introduction, we summarize our main

results and analyze a small illustrative example. In Section 3.2 we review the concept of frustration

graphs and standardize our notation. Section 3.3 gives a thorough background on free-fermion models.

In Section 3.4, we review some properties of claw-free graphs. In the following sections, we prove our

main results. Finally, we give a numerical example of a two-dimensional model which is not obviously

free-fermion-solvable in Section 3.8. We conclude with a discussion of future work in Section 3.9.

3.1.1 Main Results

We consider many-body spin systems on n qubits with Hamiltonians written in the Pauli basis as

H =
∑

j∈V

bjσ
j (3.1)

:=
∑

j∈V

hj

where V ⊆ {I, x, y, z}×n is a set of strings labeling the n-qubit Pauli operators in the natural way,

and hj := bjσ
j with bj ∈ R \ {0}.
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Forbidden Includes
Claw K1,3 Simplicial clique

(a) (b)

Ka

Ks

a

b

c

d

Ke

e

Table 3.1: (a) A graph is claw-free if no subset of its vertices induces a claw, K1,3. (b) A simplicial clique,
Ks (orange), is a clique such that the neighborhood of each vertex in Ks induces a clique in the graph G\Ks.
The simplicial clique is depicted in orange consisting of the vertices {a, e}. The neighborhood of the vertex
a in G \Ks is the clique Ka = {b, c}. Similarly, the neighbourhood of e in G \Ks is the single vertex clique
Ke = d. Crucially, our result captures frustration graphs containing even holes.

The frustration graph of H, G := (V,E), is the graph with vertices given by nonzero Pauli terms

in H, neighboring if the corresponding Paulis anticommute. Our main result extends the class of

free-fermion-solvable spin Hamiltonians H based on their frustration graphs G.

Result 3.1 (Theorems 3.1 and 3.2). Let H be a Hamiltonian whose frustration graph, G, is claw-free

and contains a simplicial clique. There exist commuting symmetries {JG[⟨C0⟩]}⟨C0⟩, defined in terms

of induced cycles of G, such that each symmetric subspace with projector ΠJ admits a free-fermion

solution

H =
∑

J




α(G)∑

j=1

εJ ,j [ψJ ,j , ψ
†
J ,j ]


ΠJ . (3.2)

where α(G) is the independence number of G. The fermionic ladder operators, {ψJ ,j}J ,j , are con-

structed from another set of commuting symmetries {Q(k)
G }

α(G)
k=0 defined in terms of independent sets

of G. The single particle energies, {εJ ,j}J ,j , can be calculated from the roots of a generalized char-

acteristic polynomial, ZG(−u2), over each symmetric subspace specified by the ΠJ . Finally, the

{JG[⟨C0⟩]}⟨C0⟩ and {Q
(k)
G }

α(G)
k=0 commute with each other.

We prove the result by applying the solution method of Refs. [23, 126] independently to each

symmetric subspace of H specified by the projector ΠJ . Notice that when there are no even holes,
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there is only a single such subspace, and we recover the result proven in Ref. [126].

While our result gives an exact, explicit means to solve the Hamiltonian in Eq. (3.1), it is difficult

to extract a physical picture for the fermion modes from the solution. We address this with our second

main result.

Result 3.2 (Theorem 3.3 and Corollary 3.6). Given a Hamiltonian, H, with a simplicial, claw-free

frustration graph, G. Let χ := σj∗
be a Pauli operator such that j∗ /∈ V , and χ only anticommutes

with every operator corresponding to the vertices in a simplicial clique of G. There exists a real matrix

A, whose elements are indexed by induced paths in G∪ {j∗}, such that, over each mutual eigenspace

of the {JG[⟨C0⟩]}⟨C0⟩, we have

adkiH χ = (−2i)k
∑

J

[∑

P

(
Ak

G,J
)
{j∗},P hP

]
ΠJ . (3.3)

where adiH χ := [iH, χ]. The matrix A is the weighted adjacency matrix of a directed bipartite graph.

The operators generated by repeated commutation with H satisfy

{adjiH χ, adkiH χ} = 2
∑

J
(MG,J )jk ΠJ (3.4)

where the real matrix M is positive definite.

Before we prove these results, we first consider a small, illustrative example, to see how they can

be applied in practice.

3.1.2 A worked example

We consider the model defined on four qubits by the following Hamiltonian

H = σx
1 + σz

1 + σx
1σ

x
2 + σz

1σ
x
2σ

x
3 + σy

1σ
z
2 + σz

1σ
z
3

+ σz
1σ

x
2σ

y
3σ

x
4 + σy

1σ
y
2σ

y
3σ

z
4 .

(3.5)

where we have set bj = 1 for all j ∈ V for succinctness. Additionally, we denote each of the Hamilto-

nian terms as hj , for j ∈ {1, 2, . . . , 8}, based on the order in which the term appears in Eq. (3.5).
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The frustration graph of this model, shown in Fig. 3.2 claw-free, and contains the simplicial cliques

hC1 = h1h3h2h4 = σx
3

hC2 = h1h3h2h6 = σx
2σ

z
3

hC3
= h1h3h2h7 = σy

3σ
x
4

hC4
= h8h3h2h4 = −σz

1σ
y
2σ

z
3σ

z
4

hC5
= h5h3h2h6 = σz

1σ
y
2σ

z
3

hC6 = h8h3h2h7 = σz
1σ

y
2σ

y
4

hC7 = h8h7h6h4 = σz
4

hC8
= h8h6h5h7 = −σz

3σ
y
4 .

This gives the following generalized cycle symmetries

J1 ≡ JG[⟨C1⟩] =
6∑

k=1

hCk
(3.6)

J2 ≡ JG[⟨C7⟩] =
8∑

k=7

hCk
(3.7)

Unlike in the case where G is a line graph, these cycle symmetries do not generally square to an

operator proportional to the identity, and so they are not proportional to Pauli operators in any basis.

Rather, we have

J2
1 = 6I − 2J2 (3.8)

J2
2 = 2I (3.9)

Thus, J1 and J2 commute, as we expect. The generalized characteristic polynomial of a model is

constructed by taking the independence polynomial of the frustration graph, G, and then subtracting

the generalized even hole operators Since these operators commute, we can then simultaneously diag-

onalize them and find a distinct polynomial over each symmetric subspace. For this model, we arrive

at the polynomial

ZG(x) = 1 + 8x+ 9x2 − 2(J1 + J2)x
2. (3.10)

By solving ZG(−u2) for u for the various eigenvalues of the even hole operators, we are able to calculate

the single particle energies of the model in each of the mutual eigenspaces.
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h7

h6

h1

h5

h3

h4

h2

h8

Figure 3.2: The frustration graph of a small, illustrative example on four qubits. Clearly the graph is not a
line graph, but it is claw-free and contains a simplicial clique.

Let ΠJ be the projector onto the eigenspace of J1 with eigenvalue J1, corresponding to the

eigenspace of J2 with eigenvalue J2 as J1 = ±√6− 2J2. Additionally, let us identify the simplicial

clique formed by the vertices associated with the terms {h1, h2, h5, h8} and define

χ = σy
1σ

y
2σ

x
3σ

z
4 . (3.11)

Finally, let K(ℓ) be the sum of all path operators with endpoint j∗ and length ℓ, where we take

K(0) = χ as our convention. We complete the free fermion solution by taking repeated commutators

ad0iH χ = K(0) (3.12)

ad1iH χ = −2iK(1) (3.13)

ad2iH χ = (−2i)2(4K(0) +K(2)) (3.14)

ad3iH χ = (−2i)3
[(

4K(1) +K(3)
)

(3.15)

+ (3χh1 + χh2 + χh5 + 2χh8)]

ad4iH χ = (−2i)4
{
[23− 2(J1 + J2)]K

(0) + 8K(2)
}

(3.16)

ad4iH χ = −(−2i)4 (9 + 2J1 + 2J2)
(
ad0iH χ

)
(3.17)

+ 8(2)2
(
ad2iH χ

)

In the last line, we see that the fourth nested commutator is a linear combination of the previous
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ones, so we have the characteristic polynomial

fJ1,J2(u) = u4 − 32u2 + 16(9 + 2J1 + 2J2) (3.18)

and single particle energies given by

εJ ,J2,± =

√
4±

√
7− 2J1 − 2J2. (3.19)

3.2 Frustration Graphs

Here we explain frustration graphs in-detail and standardize our graph-theoretic notation. A graph

G = (V,E) is a set V of vertices, together with a set E ⊂ V ×2 of two-element subsets of V called

edges. Vertices j, k ∈ V are said to be neighboring if there is an edge (j,k) ∈ E. Edges (j,k),

(u,v) ∈ E are said to be incident if they share a vertex: |{j,k} ∩ {u,v}| = 1. A vertex j ∈ V and

edge (u,v) ∈ E are similarly incident if j ∈ {u,v}. The order of a graph is the cardinality |V | of its

vertex set; the size of a graph is the cardinality |E| of its edge set.

Because Pauli operators only either commute or anticommute, it is convenient to describe these

relations between terms in a spin Hamiltonian by a graph.

Definition 3.1 (Frustration Graph). The frustration graph of the Hamiltonian H in Eq. (3.1) is the

graph G = (V,E) with

E := {(j,k) | hjhk = −hkhj}. (3.20)

The frustration graph is always simple; there are no self loops because every Hamiltonian term

commutes with itself, and there is at most one edge per pair of terms. For this work, we additionally

assume all models have finitely many terms, so the frustration graphs we consider are finite. Without

loss of generality, we assume that distinct vertices in the frustration graph correspond to linearly

independent Pauli terms in H. We can always collect repeated Paulis by adding their coefficients

bj . The commutation relation between Pauli terms is clearly unchanged by including the coefficients

in their definitions, so we prefer to give statements in terms of the hj rather than the σj , with the

understanding that h2j = b2j . The frustration graph thus naturally captures properties of the spin

model that do not depend on the coefficients. We refer to such properties as generic.
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We next consider subsets of Hamiltonian terms and the associated induced subgraphs of the frustra-

tion graph. To this end, we define our labeling scheme in Eq. (3.1) more precisely. We can equivalently

describe a Pauli string j ∈ {I, x, y, z}×n by a binary string on 2n bits by associating each single-qubit

pauli label to a 2-bit string as I →
(
0 0

)
, x →

(
1 0

)
, z →

(
0 1

)
, and y →

(
1 1

)
. Let

j :=

(
jx jz

)
∈ {0, 1}×2n be the binary vector such that the kth component of jx, jx,k, is the first

bit of the kth qubit label according to this association, and, similarly, jz,k is the second bit of the kth

qubit label. This gives

σj = ijx·jz

[
n⊗

k=1

(σx
k)

jx,k

][
n⊗

k=1

(σz
k)

jz,k

]
(3.21)

where jx · jz :=
∑n

k=1 jx,kjz,k denotes the Euclidean inner product.

The scalar commutator between Paulis is defined implicitly via

σjσk = [[σj , σk]]σkσj . (3.22)

Since Pauli operators only commute or anticommute, we have [[σj , σk]] = ±1. This sign factor is given

by

[[σj , σk]] = (−1)⟨j,k⟩, (3.23)

where ⟨j,k⟩ := ∑n
m=1(jx,mkz,m + jz,mkx,m) (mod 2) is the binary symplectic inner product. The

scalar commutator distributes over multiplication as

[[A,BC]] = [[A,B]][[A,C]], (3.24)

and, accordingly, the binary symplectic inner product is linear in j and k. Because commutation

relations between operators are unchanged upon multiplying the operators by nonzero constants, the

scalar commutator and binary symplectic inner product are well-defined for the operators {hj}j∈V as

well.

For a subset U ⊂ V , the induced subgraph G[U ] is the subgraph of G whose vertex set is U and

whose edge set E[U ] = E ∩ U×2 consists of all edges in G which have both endpoints in U . We will

often refer to the vertex susbset interchangeably with the subgraph it induces. Similarly, we will use

set-theoretic notation to denote the exclusion of vertices, e.g., G \ U = G[V \ U ].
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An important family of vertex-subsets is given by the neighborhoods of vertices in the graph.

Definition 3.2 (Open and closed neighborhoods, degree). The open neighborhood of j ∈ V is the set

given by

Γ(j) := {k | (j,k) ∈ E}, (3.25)

and the closed neighborhood of j is Γ[j] := Γ(j)∪ {j}. The degree of j, ∆(j) := |Γ(j)|, is the order of

its open neighborhood.

We often refer to the open or closed neighborhood of a vertex j in a subset of vertices U ⊂ V by

ΓU (j) := Γ(j) ∩ U . Similarly, ΓU [j] := ΓU (j) ∪ {j}. Note that we do not necessarily assume j ∈ U

for this definition. Accordingly, we refer to the degree in a subset by ∆U (j) := |ΓU (j)|. We will also

refer to the closed neighborhood of a subset U ⊆ V by Γ[U ] =
⋃

j∈U Γ[j], and similarly for the open

neighborhood where there is no ambiguity.

One useful consequence of the binary linear structure of the commutation relations between Hamil-

tonian terms is that it allows us to talk about commutation relations between products over subsets

of terms. We can thus extract such commutation relations from the graph itself. In general, we will

let

hU :=
∏

j∈U

hj (3.26)

be the product of all operators whose vertices in G are members of a particular subset U ⊆ V . Because

re-ordering the operators in this product contributes an overall sign factor to hU , the operator ordering

is irrelevant to the commutation relations between hU and other products of Hamiltonian terms. We

will define the operator ordering for specific families of vertex subsets on a case-by-case basis. With

these definitions, we have

[[hj , hU ]] = (−1)∆U (j) (3.27)

for any j ∈ V . That is, ⟨j,∑k∈U k⟩ = ∆U (j) (mod 2) as we expect. We denote the symmetric

difference between vertex subsets U , W ⊆ V by U ⊕W := (U \W )∪ (W \U). Applying the constraint

that h2j ∝ I gives

[[hj , hU⊕W ]] = [[hj , hU ]][[hj , hW ]], (3.28)
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so the commutation relation between hj and hU is only changed by taking the symmetric difference

with W if hj and hW anticommute. When the graph is claw-free, often the parity of the degree alone

is enough to fix the neighboring relation between j and a particular graph structure U . We go on to

define several important such structures.

An independent set S in G is a subset of vertices with no edges between them (i.e. E[S] = ∅). For

the corresponding operator, hS , the ordering of the factors in the product is irrelevant, as these factors

commute with one another. The independence number α(G) is the order of the largest independent

set in G. We denote SG as the collection of all independent sets from G and let S(k)G denote the

collection of all independent sets of order k from G. A matching M in G is a subset of edges such

that no two edges in M are incident. A perfect matching is a matching such that every vertex in V

is incident to exactly one edge in the matching. Clearly, a graph can only have a perfect matching

if its order is even. We denote MG as the collection of all matchings in G and let M(k)
G denote the

collection of all matchings of k edges from G.

The claw is the graph consisting of a central vertex neighboring to every vertex in an independent

set of order three (see Table 3.1). That is, it is the complete bipartite graph K1,3. The vertices in

the three-vertex independent set are called the leaves of the claw. A graph is claw-free if it does not

include the claw as an induced subgraph. When we list a subset of vertices that induces a claw, we

will generally order the list by the central vertex followed by the leaves.

A path is a set of distinct vertices P = {ji}ℓi=0 with ji neighboring to ji+1 for i ∈ {0, . . . , ℓ− 1}.

The vertices {j0, jℓ} are the endpoints of the path, and the quantity ℓ is the length of the path. When

P ⊆ V is a subset of vertices such that E[P ] = {(ji, ji+1)}ℓ−1
i=0 , we say P is an induced path. That is,

there are no edges in G[P ] other than those between vertices with consecutive indices in the path, of

which there are ℓ. We refer to the index i as the distance from ji to j0 along P in this case, and we

give the vertex labeling for P as

P := j0-j1- . . . -jℓ. (3.29)

For the corresponding operator, hP , we similarly order the factors from left to right according to their

distance from an endpoint in accordance with the labeling above. We denote the set of all induced

paths in G by PG and the set of all induced paths in G of length ℓ by P(ℓ)
G . We also define Pk as the

subpath of P induced by the vertices up 4o jk: Pk = {ji}ki=0.

A cycle is a set of distinct vertices C = {ji}ℓ−1
i=0 with ji neighboring to ji+1 for i ∈ {0, . . . ℓ − 1}

with index addition taken modulo ℓ. The quantity ℓ is the length of the cycle. When C ⊆ V is a
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subset of vertices such that E[C] = {(ji, j(i+1) (mod ℓ))}ℓ−1
i=0 for ℓ ≥ 4, we say C is an induced cycle or

hole. In this case, ℓ = |C| is the number of vertices and edges of the hole. An even hole is a hole with

an even number of vertices and edges. If C is an even hole with length ℓ = 2k, then there are two

unique independent sets of size k > 1 in C, which we refer to as the coloring classes of C. Let these

coloring classes be Ca and Cb. We label the vertices of C with distinct labels for the vertices in each

coloring class as

C := b0-a0-b1-a1- . . . -bk−1-ak−1-b0 (3.30)

where {aj}k−1
j=0 := Ca and {bj}k−1

j=0 := Cb. Here, we take addition in the indices of these vertices

modulo k. We choose the factor-ordering for the operator corresponding to C as hC = hCa
hCb

, where

the ordering within each of the coloring-class factors is again irrelevant as these are independent sets.

Furthermore, we are free to exchange the ordering of hCa and hCb
, as these operators commute. We

denote the set of all even holes in G by C(even)G and the set of all even holes in G of length ℓ by C(ℓ)G .

We say two even holes C, C ′ ∈ C(even)G are compatible if and only if G[C ∪C ′] is a disconnected graph

whose components are G[C] and G[C ′]. We let C
(even)
G denote the collection of all subsets of C(even)G

that are pairwise compatible. For a given such subset X ⊆ C(even)G (i.e. X ∈ C
(even)
G ), we take

∂X :=
⋃

C∈X
C (3.31)

to be the set of vertices in X . Let |X | denote the number of even-hole components in X , and |∂X| be

the total length of all the elements of X .

A clique K in G is a subset of vertices such that every pair of vertices in K is neighboring. A

simplicial clique Ks is a clique such that, for every vertex j ∈ Ks, Γ(j) induces a clique in G\Ks

(see Table 3.1). A graph is simplicial if it contains a simplicial clique. We say that a Hamiltonian is

simplicial, claw-free (SCF) if its frustration graph is claw-free and contains a simplicial clique.

The aforementioned graph structures all play important roles in the free-fermion solvability of a

Hamiltonian with frustration graph G, as we will see.



3.3. FREE-FERMION MODELS 64

3.3 Free-Fermion Models

3.3.1 Exact Solution

A free-fermion Hamiltonian has the form

Hf = i
∑

(j,k)∈Ef

hjkγjγk (3.32)

:=
i

2
γT · h · γ (3.33)

where we collect the set of Majorana fermion modes in the vector γ := (γj) and the Hamiltonian

coefficients in the single-particle Hamiltonian h := (hij). We denote the set of Majorana indices by

Vf and the set of pairs (j, k) of distinct elements of Vf for which hjk is nonzero as Ef . The graph

R := (Vf , Ef) is the Majorana hopping graph.

The Majorana modes satisfy the canonical anticommutation relations

{γj , γk} := γjγk + γkγj = 2δjkI (3.34)

Products of Majorana operators only commute or anticommute and square to ±I. Without loss

of generality, we take h to be antisymmetric, since any symmetric part of h will only contribute a

physically irrelevant identity term to Hf by Eq. (3.34).

The relations in Eq. (3.34) imply that linear combinations of the Majorana modes are preserved

under commutation with the Hamiltonian

adHf
γj := [Hf , γj ] = −2i (h · γ)j (3.35)

where we remind the reader of our definition of adHf
below Result 3.2. This gives

eiHf tγje
−iHf t =

(
e2ht · γ

)
j
, (3.36)

and e2ht is called the single-particle transition matrix. Because h is antisymmetric, e2ht is an orthog-

onal matrix in the group SO(|Vf |). Thus, conjugation by free-fermion unitary evolution preserves the

canonical anticommutation relations (3.34).
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Similarly, we can find an orthogonal matrix ew that block-diagonalizes h as

e−w · h · ew =

|Vf |/2⊕

j=1




0 −εj
εj 0


 (3.37)

if |Vf | is even. If |Vf | is odd, then the tensor sum runs to ⌊Vf/2⌋, and h has an additional zero

eigenvalue. Choosing W := e−
i
4 (γ

T·w·γ) gives

W †HfW = −i
⌊|Vf |/2⌋∑

j=1

εjγ2j−1γ2j . (3.38)

It is convenient to pair the Majorana modes in this basis to define the fermionic eigenmodes {ψj}⌊|Vf |/2⌋
j=1

as

W †ψjW =
1

2
(γ2j−1 + iγ2j) j ∈ {1, . . . , ⌊|Vf |/2⌋} (3.39)

These operators satisfy the canonical anticommutation relations for fermionic ladder operators

{ψj , ψk} = 0 {ψj , ψ
†
k} = δjkI, (3.40)

and this gives

Hf =

⌊|Vf |/2⌋∑

j=1

εj [ψj , ψ
†
j ]. (3.41)

The linear map adHf
satisfies the conventional eigenvector relation with respect to the eigenmodes

[Hf , ψj ] = εjψj (3.42)

and we see that the free-fermion Hamiltonian Hf has spectrum given by

Ex =

⌊Vf/2⌋∑

j=1

(−1)xjεj x ∈ {0, 1}×⌊Vf/2⌋. (3.43)

The quantities {εj} are called the single-particle energies, and we can generate eigenstates of Hf by

applying W † to the mutual eigenstates of the operators {−iγ2j−1γ2j}.
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The single-particle energies are the reciprocals of the roots of the polynomial

fh(u) = det(I− iuh) (3.44)

=
∑

U⊆Vf

(−iu)|U | det (hUU ) (3.45)

where hUU is the principal submatrix of h with rows and columns indexed by the elements of U . This

polynomial is in-fact the reciprocal polynomial to the characteristic polynomial of h. We will need the

expression of this polynomial in terms of the graph structures of R. Because hUU is antisymmetric,

its determinant is the square of the Pfaffian:

det (hUU ) = Pf (hUU )
2
. (3.46)

The Pfaffian is defined to be zero if |U | is odd, and

Pf (hUU ) =
∑

M∈M(|U|/2)
R[U]

(−1)π(M)
∏

(j,k)∈M
j<k

hjk (3.47)

if |U | is even. The sign factor (−1)π(M) is defined implicitly as the factor incurred upon sorting the

individual Majorana-mode factors in
∏

{(j,k)∈M |j<k}(γjγk) such that indices are ascending from left

to right. This gives

fh(u) =
∑

M,M ′∈MR

|M |=|M ′|

(−u2)|M |(−1)π(M)+π(M ′)

×
( ∏

(j,k)∈M
j<k

hjk

)( ∏

(j,k)∈M ′

j<k

hjk

)
(3.48)

We will return to this explicit expression in the following sections.

In Eq. (3.35) we show that a single commutation of a given Majorana mode with the free-fermion

Hamiltonian gives a linear combination of the Majorana modes transformed by the single-particle

Hamiltonian. Let us now consiser nesting these commutators - note that we now include a factor of

i, as in Theorem 3.3, with the Hamiltonian to ensure that the resulting linear map is positive

adkiHf
γj = (−2)k(hk · γ)j . (3.49)
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Therefore, we can see that Hf will satisfy the characteristic polynomial (the reciprocal polynomial of

Eq. (3.45)).

Furthermore, we have

{adkiHf
γj , ad

ℓ
iHf
γj} = (−2)k+ℓ

(
hk+ℓ

)
jj
I (3.50)

Analogs to the relations above are indicative of the existence of a free-fermion solution, as we will see

in Sect. 3.7.

3.3.2 Generalized Jordan-Wigner Solutions

Remarkably, the exact solvability of free-fermion models can be leveraged to find exact solutions to

spin models, which are not explicitly given in terms of free fermions. If one can find the proper

identification of spin and fermionic degrees of freedom, one can treat the spin model as an effective

free-fermion model and apply the exact solution method. One way to do this is to identify each

term in a given spin model H with a corresponding term in Hf such that commutation relations

between terms are preserved. Such a solution is called a generator-to-generator mapping. This family

of solutions includes the celebrated Jordan-Wigner transformation as well as the exact solution to the

Kitaev honeycomb model. For this reason, it is also called a generalized Jordan-Wigner solution.

Graph theory allows us to make this procedure systematic using the frustration graph of H. Note

that, for a given free-fermion Hamiltonian Hf , the frustration graph has a particular structure due

to the canonical anticommutaton relations (3.34). It is the graph whose vertices are the edges of

the fermion hopping graph, R, with vertices adjacent in the frustration graph if and only if the

corresponding edges of R are incident. That is, the frustration graph of Hf is the line graph of R.

Definition 3.3 (Line graph). Given a graph R := (V,E), the line graph of R, L(R) := (E,F ), is the

graph whose vertices correspond to the edges of R, and

F := {(e, f) | e, f ∈ E, |e ∩ f | = 1}. (3.51)

R is called the root graph of L(R).

Not every graph can be realized as the line graph of another graph. In particular, note that a line

graph is always claw-free, as three edges cannot all be incident to a fourth edge without at least two

of those edges being incident to each other. In fact, line graphs are characterized by a complete set of
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nine forbidden subgraphs that includes the claw [104]. Using the notation of Def. 3.3, a vertex j ∈ V

in R is mapped to the clique Kj := {(j, k)}k∈Γ(j) ⊆ E in L(R) under the line graph mapping. Because

every edge has two vertices, it is an equivalent characterization of line graphs that the edges of a line

graph L(R) can be partitioned into cliques such that every vertex in L(R) is a member of at most

two cliques [98]. Furthermore, every such clique Kj in L(R) is simplicial because ΓL(R)\Kj
[e] = Kk

for e = (j, k) ∈ E. Thus, line graphs are automatically simplicial and claw-free. Similarly, a path

of length ℓ in R is mapped to an induced path of length ℓ − 1 in L(R), and a cycle of length ℓ in

R is mapped to a hole of length ℓ in L(R). Conversely, for every induced path in L(R), there is a

unique corresponding path in R; for every hole in L(R), there is a unique corresponding cycle in R. A

matching of size k in R is mapped to an independent set of order k in L(R), and for every independent

set in L(R), there is a unique matching in R.

In Ref. [22], it was shown that an injective generator-to-generator mapping from H to a free-

fermion Hamiltonian Hf exists if and only if its frustration graph is a line graph. This allows us to

associate each vertex j ∈ V of the frustration graph G with an edge φ(j) := (φ1(j), φ2(j)) ∈ Ef of the

fermion hopping graph R. We choose an ordering on the vertices Vf , and our convention on φ is such

that φ1(j) < φ2(j). While this mapping guarantees that commutation relations between terms are

preserved, it does not necessarily give the correct products of free-fermion terms, since, for example, we

can multiply a free-fermion term by any real number without changing the commutation relations. The

products between free-fermion terms are enforced through constraints. The constraint that h2j = b2j

guarantees that we must identify hj with one of ±i|bj |γφ1(j)γφ2(j). Becauase γjγk = −γkγj for j ̸= k,

we can equivalently consider that R is a directed graph with arc (j → k) ∈ Ef if ihjkγjγk appears

in Hf and hjk > 0. The association of a direction to every edge in R is called an orientation of R,

which we denote by τ . Concretely, we say that τ fixes the free-fermion mapping by identifying hj with

i(−1)τ(j)|bj |γφ1(j)γφ2(j) with τ(j) ∈ {0, 1} for all j ∈ V . We choose the orientation τ by imposing

additional constraints, which correspond to restricting H to a mutual eigenspace of its commuting

cycle symmetries.

Let Cf := {ji}ℓ−1
i=0 ⊆ Vf be a cycle in R, and denote C := {ji}ℓ−1

i=0 ⊆ V as the hole in G such that

φ(ji) = (ji, ji+1) ∈ Ef , with index addition taken modulo ℓ. We have

ℓ−1∏

i=0

(
γjiγji+1

)
=
∏

j∈Cf

γ2j = I. (3.52)
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Thus, we have that the cycle symmetry

hC :=
∏

j∈C

hj (3.53)

commutes with every term in H by the requirement that the generator-to-generator mapping pre-

serve commutation relations. Furthermore, cycle symmetry operators hC , hC′ mutually commute for

distinct holes C, C ′ ⊂ V because they themselves are products of terms from H. While hC is not

proportional to the identity in general, h2C is. Under the free-fermion solution, hC maps to

∏

j∈C

(
i(−1)τ(j)|bj |γφ1(j)γφ2(j)

)
= ±i|C|


∏

j∈C

|bj |


 (3.54)

Thus, choosing an orientation τ is equivalent to fixing a mutual set of symmetry eigenvalues, and

we have a unique free-fermion solution for every such restriction. It is shown in Ref. [22] that every

mutual set of symmetry eigenvalues corresponds to an orientation of R.

Finally, the parity operator

P := i
1
2 |Vf |(|Vf |−1)

∏

j∈Vf

γj (3.55)

is always a symmetry of Hf . When |Vf | is even, this operator can be constructed from terms in Hf

using edges from a structure called a T-join of R. A perfect matching is a special case of a T -join,

and a graph with even order will have a T -join even if it does not have a perfect matching. If M

is a perfect matching in R, then P can be constructed as the product
(∏

(j,k)∈M iγjγk

)
. However,

the corresponding product, hM , of terms from H may give the identity, so we must only consider a

fixed-parity restriction of Hf as a solution to the spin model.

3.3.3 “Hidden” Free-Fermion Modes

We now consider the much more detailed problem of finding a free-fermion solution to a spin model

whose frustration graph is not a line graph. In this case, there is no direct mapping from terms in

H to terms in any free-fermion Hamiltonian Hf of the form in Eq. (3.32). However, it may still be

possible to find a free-fermion solution to H. The essential idea is to treat independent sets, cliques,

induced paths, and holes algebraically as though they result from a line graph mapping, even though

there is no associated root graph. Our foray into this problem is the machinery of transfer matrices.

We first need to define the following set of operators, related to independent sets of the frustration
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graph G.

Definition 3.4 (Independent-set charges). The independent-set charges {Q(k)
G }

α(G)
k=0 are defined as

the sum over independent sets of order k in G by

Q
(k)
G =

∑

S∈S(k)
G

hS . (3.56)

Note that Q
(1)
G := H. By convention, Q

(0)
G := I, and Q

(k)
G = 0 for k < 0.

It is shown in Ref. [126] that the independent-set charges Q
(k)
G commute with each other when G

is claw-free. Because Q
(1)
G = H, the independent-set charges are conserved as well.

The independent set charges satisfy a recursion relation due to the fact that no independent set

can have more than one vertex in a clique of G. For a given clique K ⊆ V , we partition terms in Q
(k)
G

according to independent sets with no vertices in K and those with exactly one vertex in K. This

gives

Q
(k)
G = Q

(k)
G\K +

∑

j∈K

hjQ
(k−1)
G\Γ[j]. (3.57)

When K = Ks is a simplicial clique, we define

Kj ≡ Γ[j] \ (Ks \ {j}) (3.58)

as the clique such that Γ[j] = Ks ∪Kj . Note that we define Kj such that j ∈ Kj . In this case, we

can show the following lemma

Lemma 3.1. With the definitions above, we have

Q
(k)
G = Q

(k)
G\Ks

+
∑

j∈Ks

Q
(k−1)
G\Kj

hj (3.59)

where Ks is a simplicial clique in the claw-free graph G.

We prove Lemma 3.1 in Sect. 3.C. We next define the transfer operator.

Definition 3.5 (Transfer operator [23]). Let H be a Hamiltonian with frustration graph G. The
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transfer operator TG(u) is defined as the generating function of independent set charges

TG(u) :=
∑

S∈SG

(−u)|S|hS (3.60)

=

α(G)∑

k=0

(−u)kQ(k)
G , (3.61)

where u ∈ R is the spectral parameter.

The transfer operator can be viewed as the operator analogue for the independence polynomial of

a graph.

Definition 3.6 (Vertex-weighted independence polynomial).

IG(x) =
∑

S∈SG

x|S| ∏

j∈S

b2j (3.62)

Both the transfer operator and the independence polynomial satisfy similar recursion relations to

Eq. (3.57)

TG(u) = TG\K(u)− u
∑

j∈K

hjTG\Γ[j](u) (3.63)

IG(x) = IG\K(x) + x
∑

j∈K

b2jIG\Γ[j](x). (3.64)

A special case of these recursion relations is that for which K consists of a single vertex.

The transfer operator bears an interesting relation to the characteristic polynomial for the free-

fermion model.

Definition 3.7 (Generalized characteristic polynomial). Let H be an SCF Hamiltonian with frustra-

tion graph G. The generalized characteristic polynomial ZG of G is defined as

ZG(−u2) := TG(u)TG(−u). (3.65)

with the transfer operator defined as in Def. 3.5.

Strictly speaking, ZG is an operator-valued polynomial, but reduces to an ordinary polynomial

when restricted to a mutual eigenspace of the JG[⟨C0⟩]. The reason for calling ZG the generalized
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characteristic polynomial becomes clear when we consider the case where G is a line graph L(R).

Suppose this is the case. In Sect. 3.B, Eq. (3.225), we show

ZG(−u2) =
∑

S,T∈SG
S⊕T=∂X
X∈C

(even)
G

(−u2)|S|hShT (3.66)

=
∑

S,T∈SG
S⊕T=∂X
X∈C

(even)
G

(−u2)|S|
( ∏

j∈S∩T

b2j

) ∏

C∈X
hC . (3.67)

Because the hC are symmetries of the Hamiltonian, we can restrict to a mutual eigenspace of these

symmetries through the orientation of R implicit in h. Denote MS ∈ M(|S|)
R as the matching of

R corresponding to the independent set S in L(R), and similarly for MT . Under the free-fermion

solution, the operator hShT maps to

[ ∏

(j,k)∈MS

j<k

(ihjkγjγk)

][ ∏

(j,k)∈MT

j<k

(ihjkγjγk)

]
(3.68)

= (−1)π(MS)+π(MT )

( ∏

(j,k)∈MS

j<k

hjk

)( ∏

(j,k)∈MT

j<k

hjk

)

since every Majorana mode is either included zero times or twice in this product by the constraint on

S⊕T . The phase factor is calculated by sorting the Majorana modes in each matching individually, giv-

ing a factor of (−1)π(MS)+π(MT ). Squaring the sorted operator gives a factor of i2|M |(−1) 1
2 (2|M |)(2|M |−1) =

1. Comparing Eqs. (3.66) and (3.68) to Eq. (3.48) gives

ZL(R)(−u2) = fh(u). (3.69)

In the case where G is a general SCF graph, Eqs. (3.66) and (3.67) still hold, but the hC are not

symmetries of the Hamiltonian in general. To recover a set of cycle-like symmetries, we need to

sum these operators over subsets of even-holes with the same neighborhood, and the solution follows

analogously.

To finally give the full solution, we need to describe the fermionic eigenmodes. These are given in

terms of the roots {±uj} of ZG(−u2) over a fixed symmetric subspace via the transfer operator and

a so-called simplicial mode.

Definition 3.8 (Simplicial mode). Let H be an SCF Hamiltonian with frustration graph G. A
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simplicial mode with respect to a simplicial clique Ks is a Pauli operator χ := σj∗
such that j∗ /∈ V ,

and χ satisfies

⟨j∗,k⟩ = δk∈Ks
(3.70)

That is, χ only anticommutes with terms in H whose vertices in G are in the simplicial clique Ks.

In Ref. [126], the corresponding result is proven in the special case that G is even-hole-free and

claw-free. It is shown in Ref. [127] that these graphs are always simplicial. In this case, there is only

one symmetry sector J , for which ΠJ = I, so the mapping to the free-fermion model is “direct” in

this sense. Additionally, considering Eq. (3.67) when there are no even holes in G, we see that the

only nonvanishing terms in Eq. (3.66) are those for which S = T , and the generalized characteristic

polynomial coincides with the vertex-weighted independence polynomial

ZG(−u2) = IG(−u2). (3.71)

It is a well-known result that the independence polynomial of a claw-free graph has real negative

roots [102], and the generalization to the vertex-weighted case can be seen from [100].

3.4 Claw-Free Graphs

We review some properties of claw-free graphs that are important for our purposes. The following is

a well-known fact about claw-free graphs, which we set apart by stating as a lemma and briefly prove

for completeness.

Lemma 3.2. Let S and S′ be independent sets. The graph G[S ⊕ S′] induced by the symmetric

difference of S and S′ is a bipartite graph of maximum degree at most two.

Proof. Clearly G[S⊕S′] is bipartite with coloring classes S\S′ and S′\S, which are both independent

sets by definition. If any vertex j ∈ S ⊕S′ has degree greater than two in G[S ⊕S′], then j, together

with any three of its neighbors in G[S ⊕ S′], induce a claw in G.

Lemma 3.2 implies that G[S ⊕ S′] is a union of disjoint isolated vertices, induced paths, and even

holes (odd holes are not bipartite).

Induced paths and even holes are triangle-free (they do not contain a clique of three vertices). As

we might expect, the tension between this triangle-free constraint and the claw-free constraint on the
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Commuting Anticommuting

(a.i) (b.i)

(a.ii)

(a.iii)

Hole Path Hole Path

(a.iv) (a.v) (b.ii) (b.iii)

(b.iv)

Table 3.2: Summary of the possible neighboring relations between a hole or induced path L and a vertex
j /∈ L in a claw-free graph. (a) The Hamiltonian term hj commutes with hL only if j has at most four
neighbors in L. If j has two neighbors in L, they must be (a.ii) neighboring, or (a.v) the endpoints of an
induced path of at least one edge. If j has four neighbors in L, they may (a.iii) induce two disjoint edges, a
path of length three, or (a.iv) a hole of length four in L. (b) The Hamiltonian term hj anticommutes with
hL only if j has at most five neighbors in L. If j has three neighbors in L, they must (b.i) induce a path of
length two in L, unless (b.iv) L is an induced path, in which case j can neighbor an endpoint and any pair of
neighboring vertices in L. (b.i) The only possibility for j to have one neighbor in L is if L is an induced
path, and j is neighboring its endpoint. (b.ii) The only possibility for j to have five neighbors in L is if L is
a hole of length five. In case (b.i), we can define a unique additional hole or induced path by the
single-vertex deformation (L\{k}) ∪ {j}.
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entire graph tightly restricts the neighboring relations between these structures and other vertices in

the graph.

Lemma 3.3. Given an induced path or hole L in a claw-free graph G and a vertex j /∈ L, then the

only possible neighboring relations between j and L are given in Table 3.2.

Proof. Rather than list the cases here, we give their definitions in the caption under Table 3.2. These

cases are not necessarily mutually exclusive, such as for L an induced path of length one. Note that,

while we consider general holes in this lemma, we define a hole to have length greater than three,

so G[L] contains no triangles. Additionally, any induced subgraph of G[L] must either be bipartite

(an even hole, or a disjoint union of induced paths) or an odd hole. Since any bipartite graph of at

least five vertices or odd hole of more than five vertices contains an independent set of at least three

vertices, j cannot have five or more neighbors in L unless L is a hole of five vertices. This gives case

(b.ii). Clearly, there are no claws in G[{j} ∪L] if j has no neighbors in L, so this gives case (a.i). We

consider each additional case according to the number of neighbors to j in L.

Suppose j has exactly one neighbor, k ∈ L. If k has two neighbors, u, v ∈ L, then {k, j,u,v}

induces a claw in G. Thus, the only possibility is for k to have exactly one neighbor in L. This gives

case (b.iii), where L is an induced path, and k is an endpoint of L.

More generally, if k ∈ L is a neighbor to j /∈ L, and k has two neighbors u, v ∈ L, then at least

one of u, v must be a neighbor to j as well. If j has exactly two neighbors, ΓL(j) := {k0,k1} ⊆ L,

this gives case (a.ii) when at least one of k0, k1 has two neighbors in L. If both of k0 and k1 have

exactly one neighbor in L, this gives case (a.v).

If j has exactly three neighbors ΓL(j) := {k0,k1,k2} ⊆ L, then at least two of these vertices must

be neighboring in L. This gives case (b.i) when all of k0, k1, and k2 have two neighbors in L. If at

least one of k0, k1, or k2 has one neighbor in L, then we have case (b.iv).

If j has four neighbors ΓL(j) := {k0,k1,k2,k3} ⊆ L, then we have case (a.iv) if L is a hole of

length four. In general, any subset of three vertices in L has an independent set of at least two vertices,

since G[L] does not contain triangles. Thus, G[ΓL(j)] cannot contain an isolated vertex. Assuming

ΓL(j) not to be a hole, there is a pair of vertices in ΓL(j) with only one neighbor in ΓL(j). Without

loss of generality, suppose these vertices are {k0,k3}. If these vertices are neighboring, then k1 and

k2 must be neighboring, so as not to be isolated. This gives case (a.iii). If k0 and k3 have the same

unique neighbor, say k1, then k2 must also neighbor k1 since it again cannot be isolated in G[ΓL(j)],

and we have assumed k0 and k3 each only have one neighbor in ΓL(j). However, this gives that k1

has degree three in G[L] (and accordingly {k1,k0,k2,k3} induces a claw in G), so we must have that
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k0 and k3 have distinct unique neighbors in G[ΓL(j)] if they are not neighboring. Suppose k1 is the

unique neighbor to k0, and k2 is the unique neighbor to k3. This again gives case (a.iii).

In the forthcoming graph-theoretic proofs, Lemma 3.3 is very important insofar as it allows us to

infer neighboring relations based on partial information. We state this explicitly as a pair of useful

corollaries

Corollary 3.1. If j is neighboring to k in an even hole, C, then j is also neighboring to a neighbor

of k in C.

Corollary 3.2. Let j be such that k0-k1-k2 ⊆ ΓL(j) for an induced path or even hole L. If j has

an additional neighbor u ∈ L, then u must neighbor at least one of k0 or k2.

We make the distinction between the case where hj commutes with hL and the case where hj

anticommutes with hL in Table 3.2, as the latter is especially important from a physical perspective.

Interestingly, there is only one possibility for hj to anticommute with hC when C is an even hole,

which is Table 3.2 (b.i). When this case holds, and L is either an induced path or even hole, there is

a unique additional induced path or even hole defined informally as a rerouting of L through j.

Definition 3.9 (Single-vertex deformation). Let L be a hole or an induced path, and let j /∈ L be a

vertex with neighborhood ΓL(j) := u-k-v as in case (b.i) of Table 3.2. The single-vertex deformation

L′ of L by j is given by

L′ := (L\{k}) ∪ {j}. (3.72)

The vertex k is called the clone to j in L and is denoted by j ≺L k.

Note that single-vertex deformations are “reversible”; if j ≺L k, then k ≺L′ j.

There is a kind of generalization of a deformation that we need for our proof of Result 3.2.

Definition 3.10 (Bubble wand, handle, hoop). Suppose j neighbors a path P as in case (b.iv) with

ΓP (j) = {ji-ji+1, jℓ} as labeled in Eq. (3.29). We define the bubble wand graph to be B := P ∪ {j}

and define the handle of the wand as the path Pi := {jk}ik=0, with the hoop defined as C := B \ Pi.

We denote this relationship by B = Pi ◁ C.

We will return to this structure in Sect. 3.7.

We collect all of the holes or induced paths related by sequences of single-vertex deformations into

sets called deformation closures.
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Definition 3.11 (Deformation closure). Let L0 be a hole or an induced path. The deformation

closure ⟨L0⟩ of L0 is the set such that L0 ∈ ⟨L0⟩ and, for any hole or induced path L ∈ ⟨L0⟩ and

single-vertex deformation L′ of L, L′ ∈ ⟨L0⟩ as well.

Note that a given hole or induced path cannot belong to more than one deformation closure. If

L ∈ ⟨L0⟩ and L ∈ ⟨L′
0⟩, then L and L0 are related by a deformation, and so are L and L′

0. Thus, L0

is related to L′
0 by the deformation that first takes L0 to L and then from L to L′

0. This therefore

gives ⟨L0⟩ = ⟨L′
0⟩. Additionally, all of the holes in a deformation closure have the same length, so the

deformation closures partition the holes in the graph such that all of the holes in a given deformation

closure have a fixed length. The induced paths in a given deformation closure have the same length

and endpoints, so their deformation closures partition them similarly.

The structures of the deformation closures can be complicated, with certain single-vertex defor-

mations either enabled or prevented by other ones. In particular, this happens when a given vertex t

is neighboring to exactly one of {s,a} with s ≺L a. In this case, we say that t is dependent on the

deformation by s ≺L a. We will especially be interested in the instance where L is an even hole, for

which we have the following lemma.

Lemma 3.4. Let C be an even hole with labeling defined as in Eq. (3.30). If s ≺C a0 and t neighbors

exactly one of {s,a0}, then we must have either

Γ({s}∪C)(t) =





ak−1-b0-u (i)

bk−1-ak−1-b0-u (ii)

u-b1-a1 (iii)

u-b1-a1-b2 (iv)

(3.73)

where u = s or u = a0. If k = 2, then cases (ii) and (iv) coincide.

Proof. Without loss of generality, suppose u = s, and let C ′ := (C \ a0) ∪ {s} be the single-vertex

deformation of C by s. By Corollary 3.1, t must neighbor at least one vertex in ΓC′(s) = {b0, b1}.

Once again without loss of generality, suppose t neighbors b0. Again by Corollary 3.1, t must neighbor

at least one vertex in ΓC(b0) = {ak−1,a0}, so it must neighbor ak−1. This gives case (i). If t has

an additional neighbor in C ′, then by Corollary 3.2, it must be either bk−1 or b1. If k = 2, then

bk−1 = b1, cases (ii) and (iv) coincide, and this gives that case. If k > 2, then t cannot neighbor b1,

as {b1, t,a0,a1} would induce a claw, and t cannot have any additional neighbors in C ′ in this case.
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Thus, t must neighbor bk−1, and this gives case (ii). A similar argument applies for the case where

b1 ∈ ΓC(t) and the case where u = a0.

Lemma 3.4 gives the following useful corollaries.

Corollary 3.3. If t neighbors exactly one of {s,a0} in the setting of Lemma 3.4 with k > 2, it must

neighbor exactly one of {b0, b1}.

Corollary 3.4. If t neighbors at least one of {s,a0} and both of {b0, b1} in the setting of Lemma 3.4

with k > 2, it must neighbor both of {s,a0}.

As stated previously, Lemma 3.4 allows us to consider sequences of deformations. The following

lemma is a simple example

Lemma 3.5. If t ∈ Γ[C0] for an even hole C0, then t ∈ Γ[C] for any even hole C ∈ ⟨C0⟩.

Proof. It is sufficient to prove that t ∈ Γ[C] for C a single-vertex deformation of C0. Thus, let

C := (C0 \ {a0}) ∪ {s} (3.74)

with s ≺C0
a0. Suppose that t /∈ Γ[C], then t /∈ C ∪ C0 since C ∪ C0 ⊂ Γ[C], and ΓC∪C0

(t) = a0

since t ∈ Γ[C0]. However, this is a contradiction to Lemma 3.4. Therefore, if t ∈ Γ[C0], then t ∈ Γ[C]

for any single-vertex deformation C of C0. For an even hole C ∈ ⟨C0⟩ that is not necessarily a single-

vertex deformation of C0, applying this result iteratively to the sequence of deformations from C0 to

C gives the lemma.

Lemma 3.5 shows that Γ[C] = Γ[C0] for any C ∈ ⟨C0⟩. Conversely, if t /∈ Γ[C0], then t /∈ Γ[C]

for any C ∈ ⟨C0⟩. Recall from Sect. 3.2 that two even holes C and C ′ are said to be compatible if

j /∈ Γ[C ′] for every j ∈ Γ[C]. We thus have the following corollary

Corollary 3.5. If an even hole C is compatible with an even hole C0, then C is compatible with any

even hole C ′ ∈ ⟨C0⟩.

These results will allow us to collect statements about individual even holes into statements about

their deformation closures.

We now turn to the structures of deformation sequences. We give two important examples of

deformation sequences in Fig. 3.3. In each, we deform the hole C by each vertex in S := {sj}ℓ−1
j=0

successively in j. Let C(j) be the hole following the deformation by sj , with the last hole in the

deformation denoted by C̃ := C(ℓ−1).
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(a)

(b)

Figure 3.3: Two special cases for deformations of an even hole C by a sequence of vertices S := {sj}ℓ−1
j=0.

(a) The deformation along a path P when S is an independent set, defined as the path component of
G[S ⊕ Ca] with endpoint s0, where Ca is the coloring class to which the clone of s0 in C belongs. If sℓ is
present, then we cannot deform by sℓ, and we say that s0 is tethered to sℓ. Otherwise, the path P has odd
length. (b) Deformation by a sequence of length-one paths. If sℓ−1 has three neighbors in C, then we can
not deform by sℓ−1, and s0 and sℓ−1 are similarly uniquely paired.

In Fig. 3.3a, we consider the case where S is an independent set in G. That is, sj+1 is not

neighboring to sj , but is neighboring to its clone, aj , in C
(j−1). If we can deform C(j) by sj+1, then

sj+1 ≺C(j) aj+1 by Lemma 3.4. Because none of the {sj} are neighboring, sj+1 is not neighboring to

bj for j > 0. Otherwise, sj+1 would be neighboring to sj−1 by Lemma 3.4 applied to the hole C(j−1).

Thus, the deformation must continue in the “direction” specified by s0 and s1.

There is a unique path associated to the sequence of deformations shown in Fig. 3.3a. This is

the path component of G[S ⊕ Ca] with endpoint s0, where the independent set Ca is operationally

defined as the coloring class of C to which the clone to s0 belongs. (Because s0 has only one neighbor

in Ca, it is the endpoint of a path component of G[S ⊕ Ca].) We call this sequential deformation by

vertices in P ∩ S a deformation along the path P , and we call P the deformation path. We call s0

the initializing vertex of the deformation. We can continue the deformation until we reach a vertex

sℓ with only three neighbors in C, as shown in Fig. 3.3a, and we cannot deform by sℓ if it is present.

Letting P ′ be the path component of G[S ⊕Cb] with sℓ as an endpoint, we could similarly deform C

along P ′ until we reach the vertex s0, so s0 and sℓ can be uniquely associated this way. We say that

s0 and sℓ are tethered with respect to C. If s0 is untethered with respect to C (i.e. sℓ is not present),

the path P has odd length 2ℓ− 1, so is given by

P := s0-a0- . . . sℓ−1-aℓ−1. (3.75)
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Note that for |C| = 2k, we must have ℓ ≤ k. Otherwise, this contradicts the requirement that P is

a path. Given a vertex j /∈ C ∪ S, we show in Sect. 3.5.3 that requiring that j satisfy Lemma 3.3

simultaneously with respect to both P and C tightly constains its neighboring relations.

In Fig. 3.3b, we demonstrate an opposite extreme, whereby we deform along a sequence of length-

one untethered paths. Here S is not an independent set, and sj+1 neighbors sj , but not its clone in C

(which may be in either coloring class). Because each untethered path in the deformation has length

one, sj+1 is the unique vertex dependent on the deformation by sj . We can continue this sequential

deformation by vertices in S until we again reach a vertex sℓ−1 with three neighbors in C. Starting

the deformation instead from sℓ−1 and deforming by each vertex sℓ−j successively in j, we see we can

continue until we reach s0. Thus, s0 and sℓ can be uniquely associated in this way.

We close this section with an overall summary in relation to previous results. Deformations for

holes and induced paths are closely related to well-studied reconfiguration problems for claw-free

graphs. A reconfiguration problem considers whether a graph structure, such as an independent set

or shortest path, can be reached from another one by a sequence of allowed moves. We consider the

following important reconfiguration move for independent sets

Definition 3.12 (Token sliding [128]). Given independent sets S, S′ in a claw-free graph G, S and

S′ are related by a token slide if there is a pair of neighboring vertices u, v with u ∈ S \ S′ and

v ∈ S′ \ S such that

S′ = (S \ u) ∪ {v} (3.76)

That is, we consider a set of tokens placed on the independent set S and ask whether we can

obtain S′ from S by sliding a token along an edge of G. Note that if S′ is reachable from S by a token

sliding move, then S is similarly reachable from S′. We say that S ↔TS S
′ if S and S′ are related by

a sequence of token-sliding moves.

Reachability is described by the solution graph TSk(G), whose vertices correspond to k-vertex

independent sets in G and are neighboring if they are related by a token slide. Two k-vertex indepen-

dent sets S, S′ satisfy S ↔TS S
′ if S, S′ are in the same connected component of TSk(G). Let Ξk be

the set of connected components of TSk(G).

We see that the token sliding operation closely resembles a single-vertex deformation. We can

consider a connected component of TSk(G) as a corresponding “closure” of independent sets, and

define the following conserved charges of Theorem 3.1 as sums over the appropriate closures
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Definition 3.13 (Token-sliding charges, generalized cycle symmetries). The token-sliding charge

Q
(k,µ)
G is defined as

Q
(k,µ)
G =

∑

S∈µ

hS (3.77)

where µ ∈ Ξk is a connected component of TSk(G).

These are related to the independent-set charges from Def. 3.4 via

∑

µ

Q
(k,µ)
G = Q

(k)
G . (3.78)

The Q
(k,µ)
G can thus be thought of a fine-graining of the independent set charges to account for the

case where G is not connected or contains a certain kind of even hole. That is, the independent set

charge is a sum over the connected components of TSk(G).

The generalized cycle symmetries are defined by

JG[⟨C0⟩] =
∑

C∈⟨C0⟩
hC (3.79)

Note that if G is itself not connected, then neither is TSk(G), and we have token-sliding charge for

each component of TSk(G). However, even when G is connected, TSk(G) may not be. The case where

G is an even hole and k = α(G) is a clear example, since any token slide will take a coloring class of

G to a set which is not independent. Ref. [128] gives necessary and sufficient conditions for TSk(G)

to be connected. In fact, it is only possible for TSk(G) to be disconnected with G connected when

k = α(G) and when G contains an even hole. This implies that Lemma 1 of Ref. [126] (corresponding

to Theorem 3.1 in this work) is already the strongest possible when H has connected frustration graph.

However, when G contains even holes, we may have additional token-sliding charges. Note that the

single-vertex deformation of a hole is the special case of a token sliding on one of its coloring classes

that preserves the structure of the even hole.

3.5 Conserved Quantities

A crucial component to the proof of Result 3.1 is the identification of the conserved charges via their

graphical structures. In this section we prove the following theorem
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Theorem 3.1 (Conserved Charges). Consider a Hamiltonian, H, with frustration graph, G, that is

claw-free. There exist a set of operators {Q(s,µ)
G , JG[⟨C0⟩]} defined in Def. 3.13 that obey

[Q
(s,µ)
G , Q

(t,ν)
G ] = 0, (3.80a)

[JG[⟨C0⟩], Q(s,µ)
G ] = 0, (3.80b)

[JG[⟨C0⟩], JG[⟨C ′
0⟩]] = 0. (3.80c)

In particular,
∑

µQ
(1,µ)
G = H, which implies that {Q(s,µ)

G , JG[⟨C0⟩]} are conserved charges of the

model.

This theorem alone gives further evidence for the idea proposed in Ref. [126] that Hamiltonians

with claw-free frustration graphs are integrable. Our proof strategy is to expand each operator as

a sum in the commutator. For each non-vanishing contribution to the sum, we will show there is a

unique additional term to cancel it. This is simply illustrated with our proof of Eq. (3.80a).

3.5.1 Proof of Eq. 3.80a

We have

[Q
(s,µ)
G , Q

(t,ν)
G ] =

∑

S∈µ,S′∈ν

[hS , hS′ ] (3.81)

In general

hShS′ = (−1)
∑

j∈S ∆S′ (j)hS′hS (3.82)

= (−1)|E[S⊕S′]|hS′hS . (3.83)

Eq. (3.82) follows from Eq. (3.27). Using the fact that both S and S′ are independent sets, we have

∆S′(j) = ∆S′\S(j) for j ∈ S, and ∆S′(j) = 0 for j ∈ S ∩ S′. This gives

∑

j∈S

∆S′(j) =
∑

j∈S\S′

∆S′\S(j) = |E[S ⊕ S′]| (3.84)

since S ⊕ S′ = (S \ S′) ∪ (S′ \ S), and G[S ⊕ S′] is bipartite.

Consider the terms in Eq. (3.81) that are nonvanishing, for which hS and hS′ anticommute. By

Lemma 3.2, there must be at least one (and odd many in general) path component of G[S ⊕ S′] with
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odd length. Choose a fiducial such path P , and let

P := s′0-s0- . . . s
′
ℓ−1-sℓ−1 (3.85)

with {sj}ℓ−1
j=0 = S ∩ P and {s′j}ℓ−1

j=0 = S′ ∩ P , so P has length 2ℓ− 1. Define

S̃ := S ⊕ P

S̃′ := S′ ⊕ P

We can reach S̃ from S by successively sliding sj to s′j for j ∈ {0, . . . , ℓ − 1}. Thus, S ↔TS S̃, and

S̃ ∈ µ. Similarly, S′ ↔TS S̃
′, and S̃′ ∈ ν. Because S ⊕ S′ = S̃ ⊕ S̃′, G[S̃ ⊕ S̃′] has odd-many edges, so

there is an additional nonvanishing term in Eq. (3.81) indexed by (S̃, S̃′). We have

[hS , hS′ ] + [hS̃ , hS̃′ ] = 2
(
hShS′ + hS̃hS̃′

)

= 2hS\P (hS∩PhS′∩P + hS′∩PhS∩P )hS′\P

= 0

For a collection of nonvanishing terms indexed by (S, S′) in Eq. (3.81) with fixed graph G[S ⊕S′], fix

a fiducial path component of G[S ⊕ S′] by which to similarly pair corresponding terms. Therefore,

terms in Eq. (3.81) can be made to cancel pairwise, and this proves Eq. (3.80a).

3.5.2 Proof of Eq. 3.80b

We next consider Eq. (3.80b)

[JG[⟨C0⟩], Q(s,µ)
G ] =

∑

C∈⟨C0⟩,S∈µ

[hC , hS ]. (3.86)

If hC and hS anticommute, then there is at least one (and odd many in general) vertex, s0 ∈ S such

that hs0
anticommutes with hC . As shown in the previous section, each such vertex is the endpoint

of a (possibly tethered) deformation path, and is called the initializing vertex to the deformation. If

every deformation path is tethered, then we can uniquely pair initializing vertices, and this contradicts

the assumption that hS and hC anticommute. Thus, there must be at least one untethered path P ,

and we assume we have chosen our labeling such that s0 is the endpoint of this path, with s0 ≺C a0,
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and

P := s0-a0- . . . -sℓ−1-aℓ−1 (3.87)

as shown in Fig. 3.3a. Once again, we define

C̃ := C ⊕ P

S̃ := S ⊕ P

We have shown in the previous section that C̃ ∈ ⟨C0⟩, and it is clear from the proof of Eq. (3.80a)

that S̃ ∈ µ.

We have that hP anticommutes with both hS and hC because only hs0
anticommutes with hC ,

and only haℓ−1
anticommutes with hS . Thus, hS̃ and hC̃ anticommute by Eq. (3.28) because hS and

hC do. We have

[hC , hS ] + [hC̃ , hS̃ ] = 2
(
hChS + hC̃hS̃

)

= 2hC\P (hC∩PhS∩P + hS∩PhC∩P )hS\P

= 0

where last line follows because S ∩ P and C ∩ P are the coloring classes of a path of odd length. For

a given collection of nonvanishing terms in Eq. (3.86) related by a fixed set of untethered paths, we

choose a fiducial path by which to cancel terms pairwise. This therefore proves Eq. (3.80b).

3.5.3 Proof of Eq. 3.80c

Finally, we consider Eq. (3.80c)

[JG[⟨C0⟩], JG[⟨C ′
0⟩]] =

∑

C∈⟨C0⟩,C′∈⟨C′
0⟩
[hC , hC′ ] (3.88)

Fix a pair C, C ′ such that hC and hC′ anticommute. Let us choose the vertex labeling according to

Eq. (3.30) as

C := b0-a0-b1-a1 . . . -bk−1-ak−1-b0 = Ca ∪ Cb (3.89)

C ′ := d0-c0-d1-c1 . . . -dk′−1-ck′−1-d0 = C ′
c ∪ C ′

d (3.90)
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where Ca := {aj}k−1
j=0 and Cb := {bj}k−1

j=0 are the coloring classes of C, and C ′
c := {cj}k

′−1
j=0 and

C ′
d := {dj}k

′−1
j=0 are the coloring classes of C ′. We sequentially deform C by vertices in C ′ along an

ordered collection of deformation paths O := (P (j))mj=0 such that





C̃ := C ⊕
(
∪mj=0P

(j)
)
∈ ⟨C0⟩

C̃ ′ := C ′ ⊕
(
∪mj=0P

(j)
)
∈ ⟨C ′

0⟩
(3.91)

The term corresponding to (C̃, C̃ ′) is also nonvanishing in Eq. (3.88) and can be uniquely paired to

cancel the (C,C ′) term. The deformation O is such that





P (j) ⊆ G[Ca ⊕ C ′
c] or P (j) ⊆ G[Cb ⊕ C ′

d] (i)

P (j) ⊆ G[Ca ⊕ C ′
d] or P (j) ⊆ G[Cb ⊕ C ′

c] (ii)

(3.92)

for all j ∈ {0, . . . ,m}. In case (i), we say that O is (a, c)-pairing, and in case (ii), we say that O is

(a, d)-pairing. We refer to this property as the pairing type of O. Similarly, we say that each P (j)

is either (a, c)- or (a, d)-pairing. Note that when vertices are tethered, their respective deformation

paths have opposite pairing type, Fig. 3.3a.

Let U ⊆ C ′ \C be the set of vertices j ∈ C ′ such that hj anticommutes with hC′ . Because hC and

hC′ anticommute, |U | must be odd. For each j ∈ U , we define a unique deformation Oj := (P
(j)
j )mj=0

initialized by j, in that j is the endpoint of P
(0)
j in C ′ \C. Here, we will potentially allow for Oj to be

empty, i.e., Oj = (), but we will still associate a unique pairing type to Oj even in this case, and our

desired deformation O will never be empty. If a particular deformation Oj fails to give us this desired

deformation, then it is obstructed by another vertex j′ ∈ U . When this happens, Oj′ has the opposite

pairing type to Oj . We thus define a bipartite directed graph D ≡ (U,D) such that (j → j′) ∈ D if

j′ obstructs Oj . The coloring classes of D are naturally given by the two pairing types.

Because a given deformation Oj can be obstructed by at most one additional vertex in U , there

is at most one outgoing arc from each vertex in D. We will also see that the obstructions come in

two varieties, which we will call type-I and type-II obstructions. A given vertex cannot obstruct two

distinct deformations in the same way, so there are at most two incoming arcs to each vertex in D.

Because D is bipartite with odd-many vertices, there is thus either at least one vertex in D with

no outgoing arc or at least one vertex in D with two incoming arcs. In the former case, we have
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a deformation Oj with no obstruction, and this will be seen to be the desired deformation O. In

the latter case, there is a vertex j′′ which obstructs Oj and Oj′ for vertices j, j′ ∈ U . Note that

Oj′′ must have the opposite pairing type to both Oj and Oj′ , so Oj and Oj′ must have the same

pairing type as each other. Suppose j′′ is a type-I obstruction for Oj and a type-II obstruction for

Oj′ , then we will see that the deformation given by O′
j := (Oj′ ,Oj ,O[j,j′]) is not obstructed by j′′.

Here, parentheses denotes concatenation of the deformations as ordered sets of deformation paths,

and O[j,j′] is the set of ordered paths resulting from continuing the deformation Oj through j′′ after

Oj′ has been applied. We will see that O′
j has the same pairing type as Oj and Oj′ . We thus

construct a new bipartite directed graph D(0) resulting from replacing Oj with O′
j in D, and continue

this reconfiguration procedure on D until we reach a graph D(p) with some unobstructed deformation.

Because this procedure is guaranteed to never reach the same directed graph twice, we will eventually

find the unobstructed deformation.

We next describe our process to associate a unique deformation Oj to the initializing vertex

j ∈ C ′\C. For concreteness, let us, without loss of generality, fix our labeling such that j := c0 ≺C a0.

In this case, we say that Oj is (a, c)-pairing. If c0 is tethered to another vertex cg ∈ C ′ \ C, then let

j′ := cg. We say that j′ is a type-I obstruction to Oj , and we take Oj = (). As shown previously,

this definition similarly gives that j is a type-I obstruction to Oj′ = (), and Oj′ is (a, d)-pairing as

desired. This will be the only case where Oj is empty as a subset of induced paths, so we will see that

no such empty subset can have a type-II obstruction.

Next, suppose that c0 is untethered with respect to C, and assume we have chosen our labeling

for P (0) ⊆ G[Ca ⊕ C ′
c] such that

P
(0)
j = c0-a0- . . . c

(j)-aj- . . . -c
(ℓ−1)-aℓ−1 (3.93)

Again without loss of generality, we assume to have chosen our labeling such that

ΓC(c
(j)) = aj−1-bj-aj-bj+1 (3.94)

for j > 0 if ℓ > 1, but we do not assume c(j) = cj for j > 0 (hence the use of superscript labeling).

Notably, we do not assume that c(j) and c(j+1) share a neighbor in C ′
d for any j ∈ {0, . . . , ℓ− 2} with

the convention that c(0) = c0.

If aj is neighboring to both vertices in ΓC′(c(j)) for all j ∈ {0, . . . , ℓ − 1}, then Oj = (P
(0)
j ) is

unobstructed, and we take O := Oj as our desired deformation. We thus consider the cases where
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there is a vertex d(s) ∈ ΓC′(c(s)) \ ΓC′(as). In this case, d(s) is dependent on the deformation

c(s) ≺C(0,s−1) as. Let C(0) := C ⊕ P
(0)
j , C(0,s) := C ⊕ ({c(j)}sj=0 ∪ {aj}sj=0). We will utilize the

following Lemmas concerning this situation, given the definitions above

Lemma 3.6. If there is a vertex d(s) ∈ C ′
d such that

d(s) ∈ ΓC′(as) \ ΓC′(c(s)) (3.95)

then

(a) s < ℓ− 1 (and thus ℓ > 1).

(b) there exists an s′ > s such that

d(s) ∈ ΓC′(c(s
′)) \ ΓC′(as′). (3.96)

Lemma 3.6 shows that we do not need to consider vertices d(s) ∈ ΓC′(as) \ ΓC′(c(s)) when con-

sidering deformations with respect to entire paths, as this will reduce to the case where d(s) ∈

ΓC′(c(s
′)) \ ΓC′(as′) for some s′ > s.

Lemma 3.7. If there is a vertex d(s) ∈ C ′
d such that

d(s) ∈ ΓC′(c(s)) \ ΓC′(as) (3.97)

then we have the following

(a) If ∆C(d
(s)) = 4, then ∆C(0)(d(s)) = 4, and there is another vertex

d(s′) ∈ ΓC′(c(s
′)) \ ΓC′(as′) (3.98)

with s′ < s and ∆C(d
(s′)) < 4. This vertex lies in the same path component of G[Cb ⊕ C ′

d] as

d(s), and hd(s) commutes with hP in this case.

(b) Otherwise, hd(s) anticommutes with hP , and we have

∆C(0)(d(s)) = ∆C(d
(s)) + 1 (3.99)



3.5. CONSERVED QUANTITIES 88

with





d(s) ≺C u ∈ Ca ∆C(d
(s)) = 3

d(s) ≺C(0) u ∈ Cb ∆C(0)(d(s)) = 3

. (3.100)

Lemma 3.7(a) essentially allows us to only consider dependent vertices d(s) whose degree in C is

either 2 or 3, and Lemma 3.7(b) conveniently relates the degree of d(s) in C to its degree in the path

with (a, c) pairing type.

Lemma 3.8. There is no other path P ⊆ G[Ca ⊕ C ′
c] \ P (0)

P := j(0)-k(0)- . . . j(ℓ
′−1)-k(ℓ′−1) (3.101)

such that d(s) ∈ ΓC′(j(s
′)) \ ΓC′(k(s′)).

That is, a given vertex in C ′ can depend on at most one deformation path of a fixed pairing type.

By utilizing Lemma 3.8 and Lemma 3.7 successively, we can see how vertices’ neighboring relationships

change under continued deformation of C.

We continue to construct Oj through our iterative method. Recall that we have assumed our

deformation is (a, c)-pairing, and assume that we have constructed it out to step s− 1 with O(s−1)
j =

(P
(r)
j )s−1

j=0 for s ≥ 0. Let C(s−1) := C ⊕ (∪s−1
j=0P

(r)
j ). In this construction, we have

P
(r)
j := j(r,0)-k(r,0)- . . . -j(r,ℓr−1)-k(r,ℓr−1) (3.102)

for r ∈ {0, . . . , s − 1} such that j(r,0) ∈ C ′ \ C(r−1) is untethered with respect to C(r−1). If s = 0,

let u := j, in which case O(−1) := (), C(−1) = C, so ∆C(s−1)(u) = 3. If s > 0, let u(r,t) be the sole

element (by Corollary 3.1) of [ΓC′(j(r,t)) \ΓC′(k(r,t))] \C(s−1) if it exists and satisfies ∆C(u
(r,t)) < 4.

If there is no such vertex, then take Oj = O(s−1)
j . In this case, Oj is unobstructed, so we take Oj = O.

Otherwise, let

u := max(
∑r−1

q=0 ℓq)+t{u(r,t)}0≤t≤ℓr−1
0≤r≤s−1

(3.103)

By assumption, u is dependent on at least one deformation path in O(s−1), and so it is dependent on

exactly one deformation path by Lemma 3.8. If ∆C(u) = 2, then ∆C(s−1)(u) = 3 by Lemma 3.7(b).

If u is untethered with respect to C(s−1), then let P
(s)
j be the path with (a, c)-pairing and endpoint
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u. Let O(s)
j = (O(s−1)

j , P
(s)
j ) and continue the construction. If ∆C(u) = 2 and u is tethered to j′

with respect to C(s−1), then take Oj = O(s−1)
j , and j′ is a type-I obstruction for Oj . Because the

deformation path of C(s−1) initialized by j′ has (a, d)-pairing, it cannot be dependent on any path in

Oj , so j′ ∈ U . If ∆C(u) = 3 and u is untethered with respect to C, then take Oj = O(s−1)
j , and u

is a type-II obstruction for Oj . If ∆C(u) = 3 and u is tethered to v with respect to C, then consider

v. If v is untethered with respect to C(s−1), let P
(s)
j be the path with (a, c)-pairing and endpoint v.

Let O(s)
j = (O(s−1)

j , P
(s)
j ) and continue the construction. If v is tethered to j′ with respect to C(s−1),

then take Oj = O(s−1)
j , and j′ is a type-I obstruction for Oj . This completes our description of our

unique deformation process Oj .

Suppose there are two such deformations Oj , Oj′ that share j′′ as an obstruction. We show

that j′′ cannot be a type-I obstruction for both, nor a type-II obstruction for both. First, note

that Oj := {P (r)
j }mr=0 and Oj′ := {P (r)

j }m
′

r=0 are disjoint as induced path subsets because every path

P
(s)
j ∈ Oj is determined uniquely by its initializing vertex j(s,0) ∈ C ′ \ C(s−1) and pairing type, and

all such initializing vertices in Oj and Oj′ except j and j′ are dependent on a previous deformation

path. Since j ̸= j′, by Lemma 3.8, no initializing vertex is common to ∪mr=0P
(r)
j and ∪m′

r=0P
(r)
j′ , so Oj

and Oj′ are disjoint as induced path subsets. If j′′ is a type-II obstruction for both Oj and Oj′ , then

it must be dependent on both P
(m)
j and P

(m′)
j′ , again contradicting Lemma 3.8.

If j′′ is a type-I obstruction for both Oj and Oj′ , then there is some path P with (a, c)-pairing in

which j′′ is a degree-2 vertex. Furthermore, one endpoint of P is dependent on some path deformation

in Oj and the other is dependent on some path deformation in Oj′ Let ΓC(j
′′) = u-k-v, with u, v ∈ P .

Because u, v ∈ C, they cannot be the endpoints of P , so let w-u-j′′-v-r ⊆ P . Both w and r neighbor

k, the clone to j′′ in C, so {k, j′′,w, r} gives a claw. Therefore, j′′ cannot be a type-I obstruction for

both Oj and Oj′ .

Suppose j′′ is a type-I obstruction to Oj and a type-II obstruction to Oj′ . Let C(m′) := C ⊕

(∪m′
r=0P

(r)
j′ ). By Lemma 3.7, ∆C(m′)(j

′′) = 4. Additionally, no vertex that initializes a path defor-

mation in Oj can be dependent on a path deformation in Oj′ . The vertex j cannot be dependent

on Oj′ , as it would have the wrong pairing type, and any additional initializing vertices also cannot

be dependent on Oj′ by Lemma 3.8. By Lemma 3.7(a) and Lemma 3.8, any vertex u ∈ ∪m′
r=0P

(r)
j′

with ∆C(u) = 4 must also have ∆C(m′)(u) = 4, so we can perform the deformation by the same

paths in Oj after deforming by Oj′ . However, because ∆C(m′)(j
′′) = 4 and j′′ cannot be dependent

on any path deformation in Oj by Lemma 3.8, j′′ is not an obstruction to the deformation given by

(Oj′ ,Oj). This allows us to continue the deformation through j′′ and reroute the graph D to D′ as
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described. Note that, now O′
j := (Oj′ ,Oj ,O[j,j′]) is not disjoint from Oj′ as a path subset. However,

this method gives that if j′′ is a type-II obstruction to Oj′ , then it cannot be a type-II obstruction

to O′
j . Since this is the only situation under which deformations intersect, we see that no vertex can

be a type-II obstruction to two deformations in any rerouted graph D(p). Furthermore, every such

rerouting D(p) differs from D(p−1) by exactly one arc, and no graph can repeat under this rerouting

process. Therefore, we must eventually find a deformation O with no obstruction. Finally, Lemma 3.7

guarantees that any vertex u ∈ ΓC′(j(r,t)) \ ΓC′(k(r,t)) with ∆C(u) = 4 also lies in a deformation

path of O.

We next show that this guarantees the reverse deformation sequence to O is also a deformation of

C ′: C̃ ′ := C ′ ⊕ (∪mr=0P
(r)) ∈ ⟨C ′

0⟩. Let





j := ∪mr=0{j(r,t)}ℓr−1
t=0

k := ∪mr=0{k(r,t)}ℓr−1
t=0

. (3.104)

Considering the last deformation in the sequence

C̃ = (C(m,ℓm−2) \ k(m,ℓm−1)) ∪ j(m,ℓm−1) (3.105)

where we have k(ℓm−1) ≺C̃ j(m,ℓm−1), there can be no vertex in C ′ that neighbors exactly one of

{k(m,ℓm−1), j(m,ℓm−1)}, since this vertex is in C̃ by assumption on O, and so this would contradict

the fact that k(m,ℓm−1) ≺C̃ j(m,ℓm−1). This gives that k(m,ℓm−1) ≺C′ j(m,ℓm−1).

Now suppose we can perform the reverse deformation out to step g on path s, and let





j(s,g) := ∪s−1
r=0{j(r,t)}ℓr−1

t=0 ∪ {j(s,t)}gt=0

k̄(s,g) := ∪mr=s+1{k(r,t)}ℓr−1
t=0 ∪ {k(s,t)}ℓs−1

t=g+1

(3.106)

with





C(s,g) = (C \ k) ∪ j(s,g) ∪ k̄(s,g)

C ′(s,g) = (C ′ \ j) ∪ j(s,g) ∪ k̄(s,g)
(3.107)

That is,
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C ′(s,g) = [C(s,g) \ (C \ k)] ∪ (C ′ \ j) (3.108)

we have k(s,g) ≺C(s,g) j(s,g). Finally, note

j(s,g) ∈ C(s,g) ∩ C ′(s,g) (3.109)

with

C(s,g) ∩ C ′(s,g) = [(C \ k) ∩ (C ′ \ j)] ∪ j(s,g) ∪ k̄(s,g) (3.110)

To prove that k(s,g) ≺C′(s,g) j(s,g), we require that ΓC′(s,g)(k(s,g)) = ΓC′(s,g) [j(s,g)]. Since k(s,g) ≺C(s,g)

j(s,g), if there is a vertex u in exactly one of {ΓC′(s,g)(k(s,g)),ΓC′(s,g) [j(s,g)]}, it must be in C ′(s,g)\C(s,g).

Thus, it is in (C ′ \ j) but not (C \ k). However, such a vertex would be a vertex in C ′ neighboring

precisely one of {j(s,g),k(s,g)}, so it would be in C̃ by our construction. This is a contradiction, since

there is no vertex in

[(C ′ \ j) \ (C \ k)] ∩ [(C \ k) ∪ j] = (C ′ \ j) ∩ j = ∅. (3.111)

Next, we show that the term indexed by (C̃, C̃ ′) is nonvanishing in Eq. (3.88). Let hO =
∏m

r=0 hP (r) .

We have

[[hC̃ , hC̃′ ]] = [[hC̃ , hC′hO]] (3.112)

= [[hC̃ , hC′hChC̃ ]] (3.113)

= [[hC̃ , hC′ ]][[hC̃ , hC ]] (3.114)

Note that there are odd-many vertices in ∪mr=0P
(r) whose corresponding operator anticommutes with

hC . Clearly hj anticommutes with hC if j is the initializing vertex of O. If there is a dependent vertex

in the deformation whose corresponding operator anticommutes with hC , then it must be tethered

to another such vertex with respect to C, or there is another initializing vertex that will allow us

to continue the deformation. Thus, such vertices come in pairs, and we have that the total number

of vertices whose corresponding operator anticommutes with hC is odd. This gives [[hC̃ , hC ]] = −1,

since odd many vertices whose operator commutes with hC have been replaced by vertices for which
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the corresponding operator anticommutes. Additionally, this gives [[hC̃ , hC′ ]] = 1, since odd many

vertices in C ′ whose operator anticommutes with hC have been replaced by vertices for which the

corresponding operator commutes with hC̃ , and the total number of such vertices in C ′ was odd.

Therefore, we have

[[hC̃ , hC̃′ ]] = −1. (3.115)

Finally, we show that corresponding terms indexed by (C,C ′) and (C̃, C̃ ′) cancel in Eq. (3.88) We

have

[hC , hC′ ] + [hC̃ , hC̃′ ] = 2
(
hChC′ + hC̃hC̃′

)
. (3.116)

Because hC and hC′ anticommute, exactly one of hC′
c
or hC′

d
anticommutes with hC . Suppose hC′

d

commutes, so we have

hChC′ = (hCahCb
)(hC′

c
hC′

d
) (3.117)

= hC′
d
(hCb

hCa
)hC′

c
(3.118)

= (hC′
d\Oh(C′

d∩O))[(h(Cb∩O)hCb\O) (3.119)

× (hCa\Oh(Ca∩O))](h(C′
c∩O)hC′

c\O)

= (−1)m+1(hC′
d\Oh(Cb∩O))[(h(C′

d∩O)hCb\O)

× (hCa\Oh(C′
c∩O))](h(Ca∩O)hC′

c\O) (3.120)

hChC′ = (−1)m+1hC̃′
d
(hC̃b

hC̃a
)hC̃′

c
(3.121)

where, e.g. C̃a := Ca ⊕ (∪mr=0P
(r)), and similarly for the other coloring classes of C̃, C̃ ′. Next we

check

[[hC̃′
d
, hC̃ ]] = [[hC′

d
h[O∩(Cb∪C′

d)]
, hChO]] (3.122)

= [[hC′
d
, hC ]][[hC′

d
, hO]]

× [[h[O∩(Cb∪C′
d)]
, hC ]][[h[O∩(Cb∪C′

d)]
, hO]] (3.123)

If hj anticommutes with hO for j ∈ C ′
d, then either hj anticommutes with hP (r) for exactly one (by

Lemma 3.8) path component P (r) ⊆ G[Ca ⊕ C ′
c] of O, or hj anticommutes with hP (r) for exactly
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one path component P (r) ⊆ G[Cb ⊕ C ′
d]. If ∆C(j) = 2 and hj anticommutes with hP (r) for P (r) ⊆

G[Ca ⊕ C ′
c], then hj satisfies both cases, so it commutes with hO. If ∆C(j) = 4, then hj satisfies

neither case. Thus, the only vertices j ∈ O for which hj anticommutes with hO are those for which

hj also anticommutes with hC and for which j ∈ O ∩ C ′
d. Thus, we have

[[hC′
d
, hO]] = [[hO∩C′

d
, hC ]] = [[h[O∩(Cb∪C′

d)]
, hC ]] (3.124)

and

[[hC̃′
d
, hC̃ ]] = [[hC′

d
, hC ]][[h[O∩(Cb∪C′

d)]
, hO]] (3.125)

= [[hC′
d
, hC ]][[h[O∩(Cb∪C′

d)]
, h[O∩(Ca∪C′

c)]
]] (3.126)

We have





h[O∩(Cb∪C′
d)]

=
∏

{r|P (r)⊆G[Cb⊕C′
d]} hP (r)

h[O∩(Ca∪C′
c)]

=
∏

{r|P (r)⊆G[Ca⊕C′
c]} hP (r)

(3.127)

To complete the proof, we consider the frustration graph GP whose vertices correspond to the path

operators hP (r) for P (r) ∈ O. We will show that this graph captures the dependencies between the

paths in the deformation O in the following way

Lemma 3.9. Given the definitions above, suppose P (r) precedes P (s) in the deformation O, then

hP (r) and hP (s) will anticommute if and only if P (s) is dependent on P (r) in O.

By the construction of O togther with Lemma 3.9, GP is a connected tree with coloring classes

given by O ∩ (Cb ∪ C ′
d) and O ∩ (Ca ∪ C ′

c), so

[[h[O∩(Cb∪C′
d)]
, h[O∩(Ca∪C′

c)]
]] = (−1)m. (3.128)

Therefore,

[[hC̃′
d
, hC̃ ]] = (−1)m[[hC′

d
, hC ]] (3.129)

[[hC̃′
d
, hC̃ ]] = (−1)m (3.130)
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by our assumption that [[hC′
d
, hC ]] = 1, and we have

hChC′ = −hC̃′
d
hC̃′

c
(hC̃b

hC̃a
)hC̃′

c
= −hC̃hC̃′ (3.131)

and

[hC , hC′ ] + [hC̃ , hC̃′ ] = 0 (3.132)

For each collection of terms indexed by (C,C ′) sharing a fixed deformation O, we can uniquely

pair them using this deformation. This therefore proves Eq. (3.80c) and completes our proof of

Theorem 3.1.

3.6 Exact Solution

With the identification of the conserved charges, we can then proceed to show the rest of Result 3.1.

In particular, we show that within each symmetric subspace of the generalized-even-hole operators, a

Hamiltonian with a simplicial, claw-free frustration graph exhibits a free fermion solution. Formally:

Theorem 3.2 (Exact Solution). Given a Hamiltonian, H, with frustration graph, G, which is claw-

free and contains a simplicial clique. There exists a set of mutually commuting cycle symmetries

{JG[⟨C0⟩]} for H, such that we can write

H =
∑

J




α(G)∑

j=1

εJ ,j [ψJ ,j , ψ
†
J ,j ]


ΠJ (3.133)

with

ψJ ,j := N−1
J ,jΠJ T (−uJ ,j)χT (uJ ,j) (3.134)

where the {ΠJ }J are a complete set of projectors onto the mutual eigenspaces of the {JG[⟨C0⟩]}, and

uJ ,j satisfies ZG(−u2J ,j)ΠJ = 0. Furthermore, the projectors ΠJ satisfy

[ΠJ , ψJ ′,j ] = 0 (3.135)

for all J , J ′, and j. The single-particle energies in the subspace labeled by J are given by εJ ,j =

1/uJ ,j .
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The proof closely follows the analysis given in Refs. [23, 126] with slight modifications and gener-

alizations where necessary. We first prove the following lemma relating the transfer operators to the

generalized characteristic polynomial ZG of the frustration graph G.

Lemma 3.10. Let H be a Hamiltonian with claw-free frustration graph G. The generalized charac-

teristic polynomial, ZG is given by

ZG(−u2) =
∑

X∈C
(even)
G

(−u2)|∂X|/22|X |IG\Γ[X ](−u2)
∏

C∈X
hC (3.136)

We prove Lemma 3.10 in Appendix 3.B. We also require the following lemma.

Lemma 3.11. Let H be an SCF Hamiltonian with frustration graph G. Further let Ks be a simplicial

clique and let χ be a simplicial mode with respect to Ks. Then

TG(u)


1 + u

∑

j∈Ks

hj


χTG(−u)

= ZG(−u2)


1− u

∑

j∈Ks

hj


χ.

(3.137)

We prove Lemma 3.11 in Appendix 3.C. Lemma 3.11 immediately shows that the incognito modes

satisfy the eigenmode condition for the Hamiltonian over the subspace specified by J .

Lemma 3.12. Let H be an SCF Hamiltonian with frustration graph G. The single particle energies

{εJ ,j} and incognito modes {ψJ ,j} satisfy

[H,ψJ ,±j ] = ±2εJ ,jψJ ,±j . (3.138)

Proof. We have

[H,ψJ ,±j ] = N−1
J ,jΠJ T (∓uJ ,j)[H,χ]T (±uJ ,j) (3.139)

= 2N−1
J ,jΠJ T (∓uJ ,j)


∑

j∈Ks

hjχ


T (±uJ ,j) (3.140)
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Applying Lemma 3.11, together with the definition of uJ ,j that ΠJZG(−u2J ,j) = 0 gives

[H,ψJ±j ] = ±
2

uJ ,jNJ ,j
ΠJ T (∓uJ ,j)χT (±uJ ,j) (3.141)

= ±2εJ ,jψJ ,±j , (3.142)

completing the proof.

We now show that the incognito modes {ψJ ,±j} obey the canonical anticommutation relations.

Lemma 3.13. LetH be an SCF Hamiltonian with frustration graph G. The incognito modes {ψJ ,±j}

satisfy the following anticommutation relations.

{ψJ ,+j , ψJ ′,−k} = δJ ,J ′δjkΠJ . (3.143)

We prove Lemma 3.13 in Appendix 3.D. Finally, we show that we can write the Hamiltonian H

as a free-fermion Hamiltonian in the eigenmode basis.

Lemma 3.14. Let H be an SCF Hamiltonian with frustration graph G. The single particle energies

{εk}α(G)
k=1 and incognito modes {ψ±j}α(G)

j=1 satisfy

H =
∑

J




α(G)∑

j=1

εJ ,j [ψJ ,+j , ψJ ,−j ]


ΠJ . (3.144)

We prove Lemma 3.14 in Appendix 3.E. Combining Lemma 3.12, Lemma 3.13, and Lemma 3.14

proves Theorem 3.1.

3.7 Polynomial Division

We next present an alternative solution method inspired by a well-known polynomial divisibility result

of Godsil [129] and a recently emerging body of work on operator Krylov subspaces [130–132]. As

such, we expect the method to provide a strategy for applying graph theory to more general models,

and, for our purposes, it will provide a better physical intuition for the free-fermion modes in the Pauli

basis where H is defined. The technical content of the method is captured by the following theorem

Theorem 3.3 (Polynomial Divisibility). There exists a real matrix A with elements indexed by
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induced paths in G such that

adkiH χ = (−2)k
∑

P∈P

(
Ak
)
{j∗},P hP . (3.145)

over each mutual eigenspace of the {JG[⟨C0⟩]}, where χ is a simplicial mode corresponding to the

vertex j∗ /∈ V , and we define adiH χ := [iH, χ]. The matrix A is the weighted adjacency matrix of a

directed bipartite graph.

3.7.1 Implications of Theorem 3.3

Before continuing to the proof, let us elaborate on some implications of Theorem 3.3. The theorem

already appears very “holographic” in the sense that commutation with the Hamiltonian only changes

path operators at the endpoints. This is entirely due to the fact that the frustration graph is claw-free.

We make this precise by showing that the theorem implies a set of fermion modes given by repeated

commutators with the Hamiltonian.

Corollary 3.6. The operators generated by repeated commutation with H satisfy

{adjiH χ, adkiH χ} = 2MjkI (3.146)

where the matrix M is real symmetric.

Proof. We show Eq. (3.146) by induction on j. Note that, for all k

{ad0iH χ, adkiH χ} = {χ, adkiH χ}

= (−i)k2k+1
(
Ak
)
{j∗},{j∗} I (3.147)

by applying Theorem 3.3 to adkiH χ together with the fact that the only operator in the sum that does

not anticommute with χ is itself. Thus, the corollary holds for j = 0 with

M0,k = (−2i)k
(
Ak
)
{j∗},{j∗} . (3.148)

Now assume that

{adℓiH χ, adkiH χ} = 2Mℓ,kI, (3.149)
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for all k, for some matrix M, and all ℓ < {0, . . . , j − 1}. Then

[adjiH χ, adkiH χ] = [adiH

(
adj−1

iH χ
)
, adkiH χ]

= [H, [adj−1
iH χ, adkiH χ]]− [adj−1

iH χ, adk+1
iH χ]

= −2Mj−1,k+1I − 2 adkiH χ adjiH χ,

(3.150)

The second line follows by the Jacobi identity. The third line follows from applying the inductive

hypothesis with the identity

[A,B] = {A,B} − 2BA (3.151)

and canceling terms. Applying Eq. (3.151) again to Eq. (3.150) gives.

{adjiH χ, adkiH χ} = −2Mj−1,k+1I.

This shows the first part of the corollary. By solving the recursion relation for M, we have

{adjiH χ, adkiH χ} = 2(−i)jM0,j+kI

{adjiH χ, adkiH χ} = (−i)j+k2j+k+1
(
Aj+k

)
{j∗},{j∗} I (3.152)

This gives

Mjk = (−2i)j+k
(
Aj+k

)
{j∗},{j∗} (3.153)

so M is real symmetric.

While we may take as many commutators with H as we like, the fact that the set of induced paths

of G is finite implies that there is a minimal rank, r, such that adriH χ is a linear combination of the

elements of {adjiH χ}r−1
j=0. Suppose we have

adriH χ =

r−1∑

k=0

vk ad
k
iH χ (3.154)
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this gives

{adjiH χ, adriH χ} =
r−1∑

k=0

vk{adjiH χ, adkiH χ} (3.155)

= 2 (M · v)j I. (3.156)

Thus, it suffices to consider only the spanning set given by the elements of {adjiH χ}r−1
j=0, and we take

M to be an r× r matrix. We will see that, in fact, the value of this rank is generally much lower than

the number of induced paths in G.

By the definition of M, we have

(
vT ·M · v

)
=

1

2d

r−1∑

j,k=0

vjvk tr
(
{adjiH χ, adkiH χ}

)
(3.157)

=
1

d
tr

[(∑r−1
j=0 vj ad

j
iH χ

)2]
(3.158)

Because this is the trace of the square of a non-zero Hermitian matrix, it is positive. Thus,M is positive

definite. This allows us to define a set of “physical” Majorana modes {γj}r−1
j=0 by diagonalizing M as

M = UTDU (3.159)

where U is an orthogonal matrix and D is a diagonal matrix with positive elements Djj ≡ λj along

the main diagonal. We next define

γj = i(j mod 2)λ
−1/2
j

r−1∑

k=0

Ujk ad
k
iH χ. (3.160)

These operators are Hermitian and satisfy the canonical anticommutation relations for fermions

{γj , γk} = 2δjkI. (3.161)

As a result, they are trace-orthogonal

d−1 tr(γjγk) =
1

2d
tr({γj , γk}) = δjk (3.162)

where d is the Hilbert-space dimension. We can write the elements of an effective single-particle
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Figure 3.4: The induced path tree: (a) a simplicial, claw-free graph with an even hole; (b) a path tree from
a simplicial vertex attached to the simplicial clique {a, e} in the graph; (c) the hopping graph of a walk
induced by the nested commutators of χ with the Hamiltonian H for which the graph is the frustration
graph.

Hamiltonian by

hjk = − i

2d
tr[γjadH(γk)] (3.163)

Formally, h is given by the inverse transformation relating the {γj}r−1
j=0 to the {adjiH χ}r−1

j=0 applied to

the companion matrix for adiH on the cyclic subspace generated by χ.

3.7.2 Induced path trees

We next turn to the proof of Theorem 3.3. While the only specific property of A that we rely on is

the fact that it is the weighted adjacency matrix of a directed bipartite graph, it will be helpful to

propose the specific form of A here. For this purpose, we define the induced path tree Υ(G) of G. The

definition of Υ(G) is given in Ref. [100] and we repeat it here with our conventions.

Definition 3.14 (Induced path tree with respect to j [100]). For j ∈ V , the induced path tree, Υj(G),

of G with respect to j is defined recursively. If G is a tree, then Υj(G) = G, and we say that j is the

root of Υj(G). Otherwise, we consider the forest of disjoint trees Υk((G \Γ[j])∪{k}) with root k for

each k ∈ Γ(j). We then define Υj(G) by appending a root vertex corresponding to j and connecting

it to the roots of each of these trees.

As in Ref. [100], we also define an induced path tree with respect to a clique, K ⊆ G.

Definition 3.15 (Induced path tree with respect to K [100]). Let K be a clique. The induced path

tree ΥK(G) of G with respect to K is defined as follows. Let G∗ be the graph formed by attaching a

new vertex j∗ to G with the property that (j∗,k) ∈ E(G∗) for all k ∈ K. Then ΥK(G) := Υj∗(G∗).
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Note that G∗ from Def. 3.15 is also simplicial, claw-free. Clearly it is simplicial since j∗ is a

simplicial vertex. Suppose that it contains a claw, then that claw must contain j∗ since G is claw-free.

However, Γ(j∗) = Ks, so there must be some vertex k ∈ Γ(j∗) that neighbors an independent set

of order at least three. Suppose that this is the case, then the set Γ[k] \ Γ[j∗] must contain a pair

of non-neighboring vertices, but this contradicts our assumption that Ks is simplicial. Therefore, we

must have that G∗ is a simplicial, claw-free graph as well. In particular, we shall use the fact that all

of the neighboring relations in Table 3.2 hold for induced paths containing j∗ as an endpoint in G∗.

Also note that G \K is also simplicial, with simplicial cliques defined by ΓG\K(v) for all v ∈ K [100].

Fig. (3.4a) shows a small example of a claw-free simplicial graph, we have identified the simplicial

clique K = {a, e} and constructed the induced path tree ΥK(G) (equivalently Υj∗(G∗)) in Fig. (3.4b).

In what follows, we shall always consider the induced path tree with respect to a fixed simplicial clique

of G, so we drop the explicit j∗-dependence in our notation as Υ(G∗) ≡ Υj∗(G∗).

The graph, Λ, is related to the graph Υ by replacing each edge in Υ with a pair of directed arcs,

and we additionally add a set of arcs corresponding to the generalized cycles in G as follows. There is

an arc from P to P ′ in Λ if there is a vertex k /∈ P such that P ∪{k} is a bubble wand (see Def. 3.10)

with P ′ the handle, and the hoop is an even hole. An example of the graph Λ is shown in Fig. (3.4c).

We now define the matrix elements, APP ′ , for (P, P ′) ∈ EΛ, as

APP ′ ≡





1 |P ′| > |P |

b2j P ′ = P \ {j}
J⟨C0⟩

NP,P ′,⟨C0⟩
hoop in ⟨C0⟩

(3.164)

and zero otherwise. The normalization factor is chosen such that 1
2

∑
P ′ N

−1
P,P ′,⟨C0⟩ = 1. Each of these

cases corresponds to a particular non-vanishing contribution from an additional application of adiH in

a fixed mutual subspace of the generalized cycle symmetries. In the first two cases, the induced path

can transition to an adjacent induced path in the induced path tree. In the last case, the induced

path “wraps around” an even hole, and this even-hole part contributes a factor of the generalized

cycle eigenvalue in the given subspace. There is an additional factor of two due to the fact that the

path can wrap around the hole in either direction.

To prove Theorem 3.3, we will also consider a particular Pauli representation of G∗, and we will

prove particular properties of G∗ using this representation. Since the result will be a property of G∗

alone, it will not depend on the representation, and we can conclude that it holds for all representations
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of G∗. We choose the representation to have the property that

d−1 tr
(
h†PhP ′

)
= δPP ′ (3.165)

for any pair of induced paths P , P ′ ∈ PG∗ . For an explicit instance of such a representation, we can

take the so-called fiducial bosonization from Ref. [124]. In this representation, we assign a qubit to

each edge e = (j,k) ∈ EG of the frustration graph. Without loss of generality, we choose one of the

terms from hj and hk to act on this qubit as σz
e , and we let the other term act as σx

e (e.g. hj acts as

σz
e and hk acts as σx

e ). Additionally the only terms acting on the qubit corresponding to edge e are

hj and hk. Thus, hP is the only induced-path operator acting as σy only on the qubits corresponding

to the edges in E[P ], so it satisfies the property above.

3.7.3 The single-vertex-deformation closure of an induced path

We now prove the following following lemma regarding paths within the same single-vertex-deformation

closure.

Lemma 3.15. Given an induced path

P := j∗-j1- . . . -jℓ (3.166)

with ℓ ≥ 2, then we have

(
Ak
)
{j∗},P =

(
Ak
)
{j∗},P̃ (3.167)

for all P̃ ∈ ⟨P ⟩ and all k ≥ 0.

Proof. It is sufficient to prove the lemma for P̃ given by a single-vertex deformation of P . By con-

vention, we take j0 ≡ j∗, and we let

P̃ ≡ (P \ {ji}) ∪ {k} (3.168)

for k ≺P ji, with i ∈ {1, . . . , ℓ − 1}. It is useful to consider
(
Ak
)
P,P ′ as the weighted sum of walks
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from P to P ′ on Λ(G∗) in k steps. Let Pm := j∗-j1- . . . -jm for m ≤ ℓ, with Pℓ := P , and define

P̃m :=





Pm m < i

(Pm \ {ji}) ∪ {k} m ≥ i
. (3.169)

We first show that, if a weighted arc Pr → Ps is present in Λ for r, s ∈ {i, i+1, . . . , ℓ}, then there is a

corresponding arc P̃r → P̃s with the same weight present as well. Suppose Pr and Ps are neighboring

in Υ(G∗). If s > r, then Pr ⊂ Ps with Ps \ Pr = {js}. Because r ≥ i, we must have s ≥ i + 1,

so P̃r ⊂ P̃s with P̃s \ P̃r = {js}. Thus, there is an arc Pr → Ps with weight 1 present in Λ in this

case. If s < r, Ps ⊂ Pr with Pr \ Ps = {jr} Because s ≥ i, we must have r ≥ i+ 1, so P̃r ⊂ P̃s with

P̃s \ P̃r = {jr}. Thus, there is an arc Pr → Ps with weight b2jr
present in Λ in this case.

If (Pr, Ps) /∈ EΥ(G∗), then there is a vertex s ∈ Γ(jr) \ Γ[jr−1] such that Pr ∪ {s} = Ps ∪ C with

C ∈ ⟨C0⟩. Restricting to this case, if s = i, then we must have that s and k are neighboring. If this

is not the case, then {ji+1, s,k, ji+2} induces a claw in G. Thus, we have ΓP̃r
(s) = {jr,k, ji+1} and

so P̃r ∪ {s} = P̃s ∪ C with C ∈ ⟨C0⟩ . If s > i, then P̃r ∪ {s} = P̃s ∪ C with C ∈ ⟨C0⟩. Thus, there is

an arc P̃r → P̃s with the same weight as that from Pr → Ps.

Consider the weighted sum of walks from {j∗} to P on Λ in k steps. Since every walk in this

sum must end at P , there must be a step m ≤ k, which is the last step in which the arc Pi−1 → Pi

is traversed. After this, no arcs Pr → Ps can be traversed where s < i. Otherwise, the walk would

need to traverse the arc Pi−1 → Pi again. Thus, all arcs Pr → Ps traversed after step m will have

r, s ∈ {i, i + 1, . . . , ℓ}. Since APi−1,Pi = APi−1,P̃i
= 1, we can substitute APi−1,Pi → APi−1,P̃i

at step

m and APr,Ps
→ AP̃r,P̃s

thereafter. This gives a walk with an equal weight that ends at P̃ , and since

this substitution can be performed for each term in the sum, we therefore we have

(
Ak
)
{j∗},P =

(
Ak
)
{j∗},P̃ , (3.170)

proving the lemma.

We note that a single-vertex deformation of a path P is a special case of a bubble wand with the

hoop being a cycle of length three. Thus, we expect there to be a similar result, regarding bubble

wands when the hoops are even holes and describe symmetries of the model, which we shall see in the

following proof.
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3.7.4 Proof of Theorem 3.3

We proceed to prove Theorem 3.3 by induction on the power, k, of adiH . Clearly, we have

ad0iH χ = χ = (−2i)0
∑

P∈P

(
A0
)
{j∗},P hP (3.171)

adiH χ = −2i
∑

j∈Ks

χhj = −2i
∑

P∈P
(A){j∗},P hP (3.172)

so the theorem holds for k ∈ {0, 1}. Now assume it is true for all powers m < k,

admiH χ =
∑

P

(Am){j∗},PhP (3.173)

for m < k, and take

(−2i)−k adkiH χ = (−2i)−k[iH, adk−1
iH χ] (3.174)

= −1

2

∑

P

(Ak−1){j∗},P [iH, hP ] (3.175)

=
∑

P≡j∗-...-jℓ

(Ak−1){j∗},P b
2
jℓ
hP\jℓ

(3.176)

+
∑

P

(Ak−1){j∗},P
∑

j /∈P
[[hj ,hP ]]=−1

hPhj

From the second to the third line, we have expanded the commutator by linearity in H =
∑

j∈V hj

and grouped terms according to whether j ∈ P or j /∈ P . In the former case, the only operator hj with

j ∈ P that anticommutes with hP is hjℓ
, and this gives the first term in Eq. (3.176). By Lemma 3.3,

there are three cases whereby hj can anticommute with hP for j /∈ P . In case (b.i), where j ≺P k,

we have a unique additional term corresponding to P̃ ≡ (P \ k) ∪ {j} and k /∈ P̃ , which cancels that

corresponding to P and j as

(
Ak−1

)
{j∗},P hPhj +

(
Ak−1

)
{j∗},P̃ hP̃hk (3.177)

=
[(
Ak−1

)
{j∗},P −

(
Ak−1

)
{j∗},P

]
hPhj

= 0. (3.178)

In case (b.iv), we have that ΓP (j) = {js, js+1, jℓ} for 0 ≤ s < ℓ− 2 (if s = ℓ− 2, then we again have

case (b.i)). Let P ′ := j∗-j1- . . . -js, then we have that C := (P \P ′)∪ {j} gives a hole in G. Next, let
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P ∗ ≡ (P ∪{j}) \ {js+1} be the path traversing C in the “opposite direction” to P . We will show that

(Am){j∗},P = (Am){j∗},P∗ (3.179)

for all powers m < k. We have

(Am){j∗},P =
∑

P∈P×m−1
G

A{j∗},P (1)AP (1),P (2) . . . AP (m−1),P (3.180)

where P = {P (1), . . . , P (m−1)} is a walk on the directed graph with weighted adjacency matrix A.

Let us group terms in thus sum by walks which pass P ′ for the last time at step g. This gives

(Am){j∗},P =

m∑

g=0

∑

P∈P×g−1
G

A{j∗},P (1) . . . AP (g−1),P ′

×
(
Am−g

G\(P ′∪{j,js+1})

)
{js+1},(P\P ′)

(3.181)

whereAG\(P ′∪{j,js+1}) is the graph corresponding to the weighted adjacency matrix G\(P ′∪{j, js+1})

in the natural way. It is a result of Ref. [102] that hjs+1
is a simplicial mode for P ′ ∪{j, js+1}, so this

matrix is well defined.

First, note that, strictly speaking, we cannot have g = m by the requirement that s < ℓ − 2 and

the fact that the length of a path can increase by at most one at any step in the walk. This implies

that the largest g can be is m− 3, but we will include all values of g that are not obviously forbidden

in Eq. (3.181) with the understanding that there are no terms in the sum when g is too large. Next,

we see that once the walk passes through P ′ for the last time, it must immediately next pass through

P ′ ∪ {js+1}, or it will eventually have to return to P ′ again to proceed to P . Since j neighbors js

and js+1, if the walk passes through any path containing j from this point, it will again return to P ′

by the definition of A. Finally, if the walk ever passes through a path Pr := j∗-j1- . . . -jr for r ≤ s,

then it must pass through P ′ again. Thus, our requirement that the walk passes through P ′ for the

last time at step g gives Eq. (3.181). To prove Eq. (3.179), it is sufficient to prove

(
Am

G\{j,k}

)
{j},(P\{j∗})

=
(
Am

G\{j,k}

)
{k},(P∗\{j∗})

(3.182)

for j, k ∈ Ks with simplicial mode corresponding to vertex j∗, and P ∗ := (P ∪ {k}) \ {j} with

(P \ {j∗}) ∪ {k} = (P ∗ \ {j∗}) ∪ {j} ∈ CG. We thus proceed to prove Eq. (3.182).



3.7. POLYNOMIAL DIVISION 106

Letting

H ′ ≡ H − hj − hk (3.183)

we next apply the inductive hypothesis and assume the fiducial bosonization of Ref. [124] to obtain

(
Am

G\{j,k}

)
{j},(P\{j∗})

=

(
d
∏

u∈P

b2u

)−1

tr
[
h†P ad

m
H′ (χhj)

]
(3.184)

where

h†P =

(∏

u∈C

b2u

)(
h†ChC

)
h†P (3.185)

h†P = b−2
k h†C(hkχ) (3.186)

This gives

(
Am

G\{j,k}

)
{j},(P\{j∗})

=

(
d
∏

u∈C

b2u

)−1

tr
[
h†C (hkχ) ad

m
H′ (χhj)

]
(3.187)

= (−1)m
(
d
∏

u∈C

b2u

)−1

tr
{
(hjχ) ad

m
H′

[
h†C (χhk)

]}
(3.188)

where we have applied the identity

tr (X adiH Y ) = − tr (Y adiH X) (3.189)
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m times in succession. We next sum over all deformations of P to obtain

∑

P∈⟨P ⟩

(∏

u∈C

b2u

)
(Am){j∗},P

= (−1)m tr {(hjχ) admH′ [JG[⟨C⟩] (χhk)]} (3.190)

= (−1)m tr {(hjχ) JG[⟨C⟩]admH′ [(χhk)]} (3.191)

= (−1)m
∑

P∈⟨P ⟩
tr
{
(hjχ)h

†
Cad

m
H′ (χhk)

}
(3.192)

= (−1)m+|C| ∑

P∈⟨P ⟩

(∏

u∈C

b2u

)
(Am){j∗},P∗ (3.193)

Applying Lemma 3.15, we have that the matrix amplitude in the sum is a constant, so we have the

result Eq. (3.182). By pairing corresponding walks to P and P ∗ with the same first g − 1 steps in

Eq. (3.181), we have the full result Eq. (3.179). Therefore, in case (b.iv), contributions from odd holes

cancel, and contributions from even holes add. This therefore proves the theorem.

3.8 Numerical Example

We now apply our formalism to a two dimensional model that has previously not been discussed in

the literature. The system is supported on a two-dimensional square lattice, with five qubits located

on the links of the lattice, such that there is a spin at each of the positions (j + α
6 , k) and (j, k + α

6 )

for α = {1, 2, 3, 4, 5}. The frustration graph of the model is shown in Fig. 3.5. The frustration graph

is not a line graph, thus admitting no obvious map to free fermions [22]; also, since the graph is two-

dimensional the model necessarily contains even holes, and thus falls beyond the scope of Ref. [126].

Nevertheless, the frustration graph is claw-free and contains a simplicial clique, thus admitting a

free-fermion solution of the form Eq. (3.2). The model was constructed by first designing a two-

dimensional, claw-free, simplicial graph which is not a line graph and finding a qubitzation of the

model, which we provide in Sect. 3.F. As we have shown, the free-fermion solution does not depend

on this particular realization, so we do not write it explicitly here. We stress that, while the solution

can be found by mapping the model to a line graph through a local unitary transformation, the model

was not constructed to have this property.

For small system sizes it is possible to construct the full independence polynomial and generalized

characteristic polynomial of the graph, from which the single particle energies and fermionic modes can

be extracted. However, in the thermodynamic limit this is not practical. It is perhaps more informative



3.8. NUMERICAL EXAMPLE 108

Figure 3.5: The frustration graph for the two-dimensional model analyzed below. The frustration graph is
simplicial and claw-free. The model is neither a line graph nor (even-hole, claw)-free and so exists beyond
the scope of Refs. [22,126]

to use our knoledge of the existence of such a solution to construct a unitary (and therefore spectrum-

preserving) transformation which maps the model from its present form to one whose frustration graph

is a line graph.

The unit cell of the model contains sixteen Hamiltonian terms acting on ten qubits; however, there

is an obvious symmetry between the horizontal and vertical links of the lattice. It is sufficient therefore

to consider the transformation on a single arm of the graph containing eight vertices (Hamiltonian

terms) applied to five qubits; we thus denote the Hamiltonian on each of the arms of the graph as

Harm = ha + hb + hc + hd + he + hf + hg + hh

with each term associated to the Pauli realization given in Eq. (3.263) in the natural way.

The transformation is depicted graphically in Fig. 3.6a. In each step the Hamiltonian is conjugated

by a unitary generated by the product of a pair of terms, choosing the generating angle to remove one

of the terms. This will generally introduce new terms in the Hamiltonian with interaction strengths

depending on the rotation angle of our previous steps. By choosing our rotations appropriately, we

can iterate this procedure until the frustration graph is a line graph. While our result guarantees that

such a unitary circuit exists, in general cases it may be difficult to find in practice.

We begin by applying a unitary rotation to contract the edge between the vertices c and d. This

rotation is generated by the product of the Hamiltonian terms hc and hd in each of the halved unit

cells so that Ucd =
∏

j,k e
θhchd with θ = 1

2 arctan
(
c
d

)
and chosen such that Ucd(hc + hd)U

†
cd = hδ
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Figure 3.6: A 2-dimensional simplicial claw-free frustration graph. (a) A graphical depiction of the unitary
circuit to map the model as given to a model whose frustration graph is a line graph and so admits a
Jordan-Wigner solution. In the last step, we show the generalized Jordan-Wigner solution applied to a single
unit cell, though it is not always the case that such a solution extends globally. (b) The generalized
Jordan-Wigner transformation on the entire model.

where

hδ :=
1

c

√
c2 + d2hd. (3.194)

That is, the Hamiltonian term associated with the vertex c is removed from the model. Note that

vertices a, b and e each neighbor both c and d, thus commuting with the unitary Ucd. However,

vertex f neighbors only d, so this rotation introduces an additional term to the Hamiltonian hκ with

a coupling strength defined by κ = f sin(2θ) for each arm in the lattice via UcdhfU
†
cd = cos(2θ)hf+hκ.

The frustration graph of the rotated model is shown in the top right of Fig. 3.6a. This graph is one of

the forbidden subgraphs of a line graph and so another rotation needs to be applied in order to find

the hopping graph. We now apply a rotation to contract the edge between vertices e and f .

This rotation is given by the unitary Uef =
∏

j,k e
ϕhehf with ϕ = − 1

2 arctan
(

f cos(2θ)
e

)
and chosen

such that Uef (he + cos(2θ)hf )U
†
ef = hφ. We now see that the frustration graph shown in the bottom

left of Fig. 3.6a is a line graph. Finding the root graph, as shown in the bottom right of Fig. 3.6a,
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gives the hopping graph of an arm of the lattice. Though it is not always the case that a local

transformation will extend globally, in this case we have transformed the entire Hamiltonian into a

line-graph free-fermion model with a local unitary circuit.

With the majorana hopping graph identified it is then possible to numerically construct and plot

the dispersion relation for the model. The dispersion relation for the model is shown in Fig. 3.7. Note

that when hκ term is turned off (that is when f sin θ = 0), the dispersion relation model has a conical

shape and is critical at p = (0, 0) with critical exponent zc = 1. Thus, when κ = 0, the model is in the

same phase as the Kitaev honeycomb model [12]. On the contrary, as κ is increased, the gap opens

and the other bands hybridize. Thus, we have constructed a gapped, two-dimensional phase which

can be realized by a two-local Hamiltonian. Such a model could well prove useful for applications in

error correction or general condensed matter physics.

Figure 3.7: Dispersion relation ε(p) for the two-dimensional model studied here with with κ turned off
(left) and on (right). When hκ is turned off, the model reverts to the same phase as the Kitaev honeycomb
model as can be seen from the Dirac cone shape [12]. When hκ is turned on, a gap opens up and the other
bands hybridize as in the periodic model.

3.9 Discussion

Quantum circuits describing the evolution of time-dependent free-fermion systems under the Jordan-

Wigner transform are the focus of fermionic linear optics, where these are also known as matchgate

circuits. These circuits were initially proposed by Valiant as an instance of a holographic algorithm [86],

inspired by the Fisher-Kastelyn-Temperley algorithm [133–135] for counting weighted perfect match-

ings in a graph, and they illustrate the deep connection between fermions and combinatorial structures.

While matchgate circuits can be efficiently simulated classically in a fixed basis, simple changes to this
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setting will make them classically intractable or even universal for quantum computation [77–79,81,82].

It is interesting to see that efficient classical algorithms are reflected in the exact solvability of quan-

tum models, much as with Valiant’s original proposal for matchgates. This work can be viewed as an

extension to this line of reasoning.

In recent work [22, 41, 126] a relationship has been established between the frustration graph of

a Hamiltonian and the free-fermion solvability of the model. Fig. 3.1 depicts how the results of

Chapman and Flammia [22] and Elman et al. [126] overlap, but neither result contains completely

the other. Here, we have developed a graph-theoretic framework for free-fermion solvability, which

unifies the results of the previous work. Our results show that the absence of a claw and the presence

of a simplicial clique in the frustration graph of a Hamiltonian are sufficient to prove that the model

has a generic free-fermion solution. Our key insight in this proof is the identification of a family of

mutually commuting Hamiltonian symmetries - the generalized cycle symmetries (see Sect. 3.5). The

identification of these symmetries has also developed further the connection, previously established

in Ref. [126], between the absence of a claw in the frustration graph of a quantum many-body model

and the integrability of the model.

While the sufficient condition of an SCF frustration graph encompasses the previous work in this

area, SCF Hamiltonians do not span the entirety of the free-fermionic Hamiltonian space. For one

thing we know that there exist models which are free for specific coefficients; for another there are

models whose spectrum is the union of an super linearly increasing number free-fermionic spectra.

In Sect. 3.8, we have considered two models that are equivalent to a Jordan-Wigner solvable free-

fermion model under a constant-depth circuit. On the contrary the four-fermion model introduced

by Fendley [23] is equivalent to a line-graph model under a quantum circuit which grows linearly

with the size of the system. One could even imagine a class of models that can be mapped to a

Jordan-Wigner solvable model via a circuit whose depth grows exponentially. Thus, it is clear that a

characterization of free-fermion models could be developed based on the depth of the circuit needed to

transform the models frustration graph into a line-graph. Such a characterization could theoretically

help to categorize those models which do not have a gapless phase, and thus fall beyond the scope of

the characterization by critical exponents and quantum field theories [136,137].

Because the claw is a forbidden induced subgraph of both previous graph-theoretic characteriza-

tions, it seems to be a natural criterion for any free-fermion solution to apply. However, it is perhaps

mysterious that we require the presence of a simplicial clique as well. Indeed, the graph families of

both previous characterizations are guaranteed to also contain a simplicial clique. This was recently
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shown in Ref. [56] for a family generalizing (even-hole, claw)-free graphs, as inspired by this precise

question. Intuitively, we can view a simplicial clique as a kind of fermionic boundary mode, and its

existence in a claw-free graph implies a recursive structure that forces the model to be fermionic in

some sense. We capture this intuition by connecting these models to a polynomial divisibility result

for the independence polynomial of a graph given by Godsil [129] and later generalized to the mul-

tivariate setting in Ref. [100]. While our characterization does not capture all free-fermion solutions

to spin models (there are well-known examples of non-generic solutions), we expect that it will be

difficult to remove the simplicial clique assumption in the generic case.

Regarding quantum circuits, there is also the question of whether the extended class of free-fermion

models also extends the class of free-fermionic quantum gates. It is known that the matchgates [77–

79, 81, 82] represent a non-universal set of quantum gates. It is also known that a quantum circuit

constructed entirely from matchgates results in Gaussian states which are ground states of a Jordan-

Wigner-type Hamiltonians [82]. This then raises the question of whether there is an overlapping, but

not universal, gate set which produces the SCF Hamiltonians developed here. Also related to quantum

circuits is the notion of simulability. It has been suggested [138] that free-fermion states can be more

efficiently prepared using quantum optimization algorithms than their interacting counterparts. It

would be interesting to know whether the ground states (or thermal states) of SCF models are more

efficiently preparable using quantum optimization algorithms. It is clear then, that while the current

work extends the class of known free-fermion-solvable models, there are avenues for further work

regarding both free-fermion solutions to many-body physics, and using the mathematical framework

of graph theory to probe our understanding of physics.

Certainly, it appears as though free-fermion-solvable models are more abundant than was previ-

ously known, so an obvious question to ask would be: just how abundant are free-fermionic Hamil-

tonians? Even if the class of Hamiltonians was restricted to those currently known to have a generic

solution it remains unknown what the likelihood is of a random Hamiltonian admitting an SCF free-

fermion solution. There are also unanswered questions pertaining to whether free-fermionic systems

can be leveraged for purposes within the field of quantum information. A strong link between the

Jordan-Wigner-type free-fermion models of Chapman and Flammia [22] and error correcting codes for

quantum computing has been established and studied by Chapman and Flammia [124]. However it

remains to be seen whether such a link can be extended to include the (even-hole, claw)-free models

developed in Ref. [126] or the SCF models developed in the current work. The ability to leverage

free-fermionic solutions might also appear useful in the development of more compact fermion-to-qubit
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mappings [118], which could have a plethora of uses in the fields of quantum chemistry, condensed

matter physics, and high-energy physics.

Another example of future work that could be probed within the mathematical framework of

graph theory pertains to the question of qudit many-body models and free parafermions. In partic-

ular, it would be interesting to understand whether there exists a graph-theoretic characterization

of free parafermions in the same way that we have developed for fermions. Some examples of free

parafermionic models have been studied in isolation [59, 139, 140], while families of spin chains have

also been constructed [57,58,141,142]. However, as of yet, there is no systematic identification mech-

anism akin to the simplicial, claw-free characterization of free fermions. We conjecture that such a

characterization is possible.
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Appendix

3.A Proof of Lemmas 3.6, 3.7, 3.8

3.A.1 Proof of Lemma 3.6

Suppose we have a vertex d(s) ∈ ΓC′(as) \ ΓC′(c(s)).

We first show (a) s < ℓ − 1, and so ℓ > 1. Suppose to the contrary that s = ℓ − 1, we first show

that as = aℓ−1 /∈ C ′. Suppose to the contrary that aℓ−1 ∈ C ′, then because c(ℓ−1) ∈ ΓC′(aℓ−1), aℓ−1

must have two neighbors in C ′
c, but this contradicts the assumption that aℓ−1 is the endpoint of P (0)

(alternatively, if aℓ−1 ∈ C ′, then it cannot have neighbors in both C ′
c and C ′

d). Thus, aℓ−1 /∈ C ′.

Because aℓ−1 has neighbors c(ℓ−1) ∈ C ′
c and d(ℓ−1) ∈ C ′

d, which are themselves non-neighboring, aℓ−1

must neighbor C ′ as case (a.iii) such that ΓC′(aℓ−1) induces two disconnected paths, each of length

1. However, this would again imply that aℓ−1 has two neighbors in C ′
c, contradicting the assumption

that aℓ−1 is the endpoint of P (0). Thus, s < ℓ− 1 and ℓ > 1.

We now show (b), there exists an s′ > s such that d(s) ∈ ΓC′(c(s
′)) \ ΓC′(a′

s) We must have

c(s+1) ∈ Γ(d(s)) to avoid the claw {as, c
(s), c(s+1),d(s)}. If as+1 /∈ Γ(d(s)), then the statement holds

for s′ = s + 1, so assume as+1 ∈ Γ(d(s)). Suppose k > 2, then we must have bs+1 ∈ Γ(d(s)) by

Lemma 3.4. If d(s) has another neighbor in C, it must be bs+2 d(s) must have an additional neighbor

u ∈ C ′
c, since it does not neighbor c(s). We cannot have u ∈ C, since all possible neighbors as-bs+1-

as+1-bs+2 to d(s) in C have at least one neighbor in C ′
c. We must have that u neighbors at least one

of {as,as+1} to avoid {d(s),as,as+1,u}, but as has two neighbors c(s), c(s+1) ∈ C ′
c already. Thus,

u = c(s+2) ∈ ΓC′
c
(as+1) and we have ℓ > 2. If as+2 /∈ Γ(d(s)), then the statement holds for s′ = s+2,

so assume as+2 ∈ Γ(d(s)), but then {d(s),as,as+1,as+2} induces a claw. Thus, the statement holds

for k > 2. Assume k = 2, which gives ℓ = 2, and assume ΓC(d
(s)) = as+1-bs-as (the case not covered

for k > 2). d(s) must have an additional neighbor u ∈ C ′
c, since it does not neighbor c(s). We cannot

have u ∈ C, since all vertices in C have a neighbor in C ′
c. We must have that u neighbors at least one

of {as,as+1} to avoid {d(s),as,as+1,u}, but as has two neighbors c(s), c(s+1) ∈ C ′
c already. Thus,

u = c(s+2) ∈ ΓC′
c
(as+1) and we have ℓ > 2, but this is a contradiction to the conclusion that ℓ = 2.

This therefore proves Lemma 3.6.
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3.A.2 Proof of Lemma 3.7

Suppose there is a vertex in d(s) ∈ C ′
d such that d(s) ∈ ΓC′

(
c(s)
)
\ ΓC′ (as). Suppose s = 0, then by

lemma 4 applied to c0 ≺C a0, we have

Γ({c0}∪C)

(
d(0)

)
=





ak−1-b0-c0 (i)

bk−1-ak−1-b0-c0 (ii)

c0-b1-a1 (iii)

c0-b1-a1-b2 (iv)

(3.195)

Thus, it is not possible to have ∆C

(
d(0)

)
= 4 in this case. In cases (i) and (ii), if ak−1 ∈ P (0), then

by our labeling, ℓ = k. By Lemma 3.6(a), we must have c(k−1) ∈ Γ
(
d(0)

)
as well. This gives





ΓC

(
d(0)

)
= ak−1-b0





ΓC(0)

(
d(0)

)
= ak−1-b0-c0 ak−1 /∈ P (0)

ΓC(0)

(
d(0)

)
= c(k−1)-b0-c0 ak−1 ∈ P (0)

ΓC

(
d(0)

)
= bk−1-ak−1-b0





ΓC(0)

(
d(0)

)
= bk−1-ak−1-b0-c0 ak−1 /∈ P (0)

ΓC(0)

(
d(0)

)
= bk−1-c

(k−1)-b0-c0 ak−1 ∈ P (0)

(3.196)

So ∆C(0)(d(0)) = ∆C(d
(0)) + 1, and





d(s) ≺C ak−1 ∈ Ca ∆C(d
(s)) = 3

d(s) ≺C(0) b0 ∈ Cb ∆C(0)(d(s)) = 3

(3.197)

so the statement holds in cases (i) and (ii). In cases (iii) and (iv), if a1 ∈ P (0), then if c(1) /∈ Γ
(
d(0)

)
,

we have ℓ > 2 by Lemma 3.6(a). We must have c(2) ∈ Γ
(
d(0)

)
to avoid the claw {a1, c

(1), c(2),d(0)},

but since a2 /∈ Γ
(
d(0)

)
, we must have c(1)-b2 ⊂ Γ

(
d(0)

)
by Lemma 3.4, together with the above.

However, this clearly contradicts our assumption, so we have c(1) ∈ Γ
(
d(0)

)
. This gives





ΓC(d
(0)) = b1-a1





ΓC(0)

(
d(0)

)
= c0-b1-c1 ak−1 /∈ P (0)

ΓC(0)

(
d(0)

)
= c0-b1-c

(1) ak−1 ∈ P (0)

ΓC

(
d(0)

)
= b1-a1-b2





ΓC(0)

(
d(0)

)
= c0-b1-a1-b2 ak−1 /∈ P (0)

ΓC(0)

(
d(0)

)
= c0-b1-c

(1)-b2 ak−1 ∈ P (0)

(3.198)
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So ∆C(0)

(
d(0)

)
= ∆C(d

(0)) + 1, and





d(s) ≺C a1 ∈ Ca ∆C

(
d(s)

)
= 3

d(s) ≺C(0) b1 ∈ Cb ∆C(0)

(
d(s)

)
= 3

(3.199)

In cases (i) and (ii) as well.

Suppose s > 0 and k > 3. If as−1 /∈ Γ(d(s)), then {c(s),d(s),as−1,as} induces a claw, so

as−1 ∈ Γ(d(s)). If bs /∈ Γ(d(s)), then considering Lemma 3.4 with respect to c(s) ≺C(0,s−1) as gives

that we must have c(s)-bs+1-as+1 ⊂ Γ(d(s)), but this also implies bs−1 ∈ ΓC(d
(s)) by Corollary 1

applied to as−1 ∈ C.

We then have that bs−1-as−1-c
(s)-bs+1-as+1 ⊂ Γ(d(s)), so {d(s), bs−1, c

(s),as+1} induces a claw

if k > 3 (if k = 3, then bs−1 is neighboring to as+1 in C). Thus, bs ∈ Γ(d(s)). By Lemma 3.4 with

c(s) ≺C(0,s−1) as, we must have c(s−1) ∈ Γ(d(s)). If d(s) has another neighbor in C(0,s−1), it must be

bs−1 again by Lemma 3.4 with c(s) ≺C(0,s−1) as. Because bs−1-as−1-bs ⊂ ΓC(d
(s)), then if d(s) has

another neighbor in C, it must be as−2. If as−2 ∈ Γ(c(s−1)), then {d(s), c(s−1), c(s),as−2} induces a

claw. Thus, we must have as−2 ∈ P (0), so s ≥ 2 and ℓ ≥ 3. We cannot have that d(s) has more than

four neighbors in C or more than two neighbors in C ′, so this gives

Γ(C∪C′)

(
d(s)

)
=





{
c(s−1), c(s),as−1, bs

}

{
c(s−1), c(s), bs−1,as−1, bs

}

{
c(s−1), c(s),as−2, bs−1,as−1, bs

}
(s ≥ 2, ℓ ≥ 3)

(3.200)

theses cases are depcited in Fig. 3.8 and this gives





ΓC

(
d(s)

)
= as−1-bs ΓC(0)

(
d(s)

)
= c(s−1)-bs-c

(s)

ΓC

(
d(s)

)
= bs−1-as−1-bs ΓC(0)

(
d(s)

)
= bs−1-c

(s−1)-bs-c
(s)

ΓC

(
d(s)

)
= as−2-bs−1-as−1-bs ΓC(0)

(
d(s)

)
= bs−1-c

(s−1)-bs-c
(s)

(3.201)

So the statement holds in this case.

Suppose ∆C(d
(s)) = 4 Let d(s−1) be the additional neighbor to c(s−1) in C ′

d. We cannot have

d(s−1) ∈ C, since all neighbors to c(s−1) also neighbor d(s) (we only need to show this for bs−1

and bs, because any vertices in P (0) ∩ Ca must have a neighbor in C ′
d, so these vertices cannot be

in C ′
d). If d(s−1) does not neighbor as−1, then we can apply Lemma 3.7 to d(s−1) ∈ ΓC′(c(s−1)) \
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ΓC′ (as−1), so assume d(s−1) does neighbor as−1. We must have bs−1 ∈ ΓC(d
(s−1)) to avoid the claw

{as−1,d
(s−1), bs−1, c

(s)}, since we cannot have d(s−1) neighboring c(s) or k′ = 2 < ℓ.

By Lemma 3.4 applied to d(s) ≺C(0,s−2) as−1, we must have c(s−2) ∈ Γ(d(s−1)). If d(s−1) does not

neighbor as−2, then we can apply Lemma 3.7 to d(s−1) ∈ ΓC′(c(s−2)) \ ΓC′ (as−2), so assume d(s−1)

does neighbor as−2. We must have bs−2 ∈ Γ(d(s−1)) to avoid the claw {as−2, bs−2,d
(s−1),d(s)}. Let

d(s−2) be the additional neighbor to c(s−2) in C ′
d. We cannot have d(s−2) in C because both bs−2, bs−1

have a neighbor in C ′
d. d(s−2) cannot neighbor as−2 because ΓC′(as−2) = c(s−2)-d(s−1)-c(s−1)-d(s),

so we can apply the Lemma 3.7 to d(s−2) ∈ ΓC′(c(s−2)) \ ΓC′(as−2). Thus, there must be a vertex

d(s′) ∈ ΓC′(c(s
′)) \ ΓC′(as′) such that ∆C(d

(s′)) < 4, or we will always have an additional vertex

neighboring a vertex in P (0) ∩ C ′
c without neighboring its clone. In all cases, this vertex d(s′) lies in

the same path component of G[Cb ⊕ C ′
d] as d

(s).

Suppose s > 0 and k = 3, and bs /∈ Γ(d(s)), so

Γ(d(s)) = bs+1-as+1-bs−1-as−1. (3.202)

We must have c(s−1) ∈ Γ(d(s)) to avoid the claw {as−1, c
(s−1),d(s), bs}. We must have as+1 ∈

Γ
(
c(s−1)

)
to avoid the claw {d(s), c(s−1), c(s),as}. Thus, ℓ = k = 3, but then {bs+1,d

(s),as, c
(s+1)}

induces a claw. Therefore, we must have bs ∈ Γ
(
d(s)

)
, and we recover the cases for k > 3.

Γ(C∪C′)

(
d(s)

)
=





{c(s−1), c(s),as−1, bs}

{c(s−1), c(s), bs−1,as−1, bs}

{c(s−1), c(s),as−2, bs−1,as−1, bs} (s = 2, ℓ = 3)

(3.203)

and this gives





ΓC

(
d(s)

)
= as−1-bs ΓC(0)

(
d(s)

)
= c(s−1)-bs-c

(s)

ΓC

(
d(s)

)
= bs−1-as−1-bs ΓC(0)

(
d(s)

)
= bs−1-c

(s−1)-bs-c
(s)

ΓC

(
d(s)

)
= as−2-bs−1-as−1-bs ΓC(0)

(
d(s)

)
= bs−1-c

(s−1)-bs-c
(s)

(3.204)

and the remaining part of the statement holds as well.

Finally, suppose s > 0 and k = 2, so ℓ = 2 and s = 1. We cannot have ∆C(d
(1)) = 4 since
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a1 /∈ Γ(d(1)). If b1 ∈ Γ(d(1)), we have by Lemma 3.4





a0-b1 = ΓC(d
(1)) c0-b1-c

(1) = ΓC(0)(d(1))

b0-a0-b1 = ΓC(d
(1)) b0-c0-b1-c

(1) = ΓC(0)(d(1))

(3.205)

so the statement holds in this case.

If b1 /∈ Γ(d(1)), then b0 ∈ ΓC(d
(1)) by Lemma 3.4, and

b0-a0 = ΓC(d
(1)) and c0-b0-c

(1) = ΓC(0)(d(1)) (3.206)

which proves the lemma for this case, and therefore Lemma 3.7 is proved.

3.A.3 Proof of Lemma 3.8

Clearly, this is the case for s > 0, or d(s) will have three neighbors in C ′
c, giving a claw. Thus, the

only possibility is for s = s′ = 0, and there is an additional vertex neighboring to d(s) in Ca that is

neighboring to neither c(0) nor j(0). This therefore gives a claw unless the statement holds.

3.A.4 Proof of Lemma 3.9

If [[hP (j) , hP (k) ]] = −1 and P (k) precedes P (j) in O then there exists a vertex v ∈ P (j) such that hv

anticommutes with hP (k) . If v ∈ C ′
d, then v depends on P (k). If v ∈ Cb, then v has a neighbor in

P (k) ∩ Ca, otherwise, by Table 3.2, v neighbors c(0) /∈ C, so {v,ak−1,a0, c
(0)} induces a claw.

Let b(s) := v with neighbor as ∈ P (k). We have c(s) ≺C(k,s−1) as, but b(s) ∈ C(k,s−1), so b(s)

neighbors c(s). If d(s) doesn’t neighbor c(s), then this contradicts d(s) ≺C(j,s−1) b(s). If b(s) has

another neighbor, as−1 ∈ P (k), then it must neighbor c(s−1) ≺C(k,s−2) as−1, but this contradicts hb(s)

anticommuting with hP (k) . This rules out cases (b.iii) and (b.iv) from Table 3.2, therefore we have

(b.i) ℓ > 1. Therefore {b(s),as−1, c
(s), c(s+1)} gives a claw.

This shows that if hP (j) and hP (k) anticommute and P (k) precedes P (j) in O, P (j) depends on

P (k). Next, we show the other direction: if P (j) depends on P (k), then hP (j) and hP (k) anticommute.

We show that there is precisely one vertex in j ∈ P (j) that depends on P (k) with ∆C(j) < 4, and

so hj is the only factor of hP (j) that anticommutes with hP (k) . By our construction of O, there is at

least one such vertex, so suppose j is this vertex, and that, without loss of generality, d(s) := j ∈ C ′
d

with P (k) ∈ G[Ca ⊕ C ′
c] and d(s) ∈ ΓC′(c(s)) \ ΓC′(as). If ∆C(d

(s)) > 2, then if there is another

vertex d(s+1) ∈ ΓC′
d
(bs) in P

(j), then it must also neighbor c(s) by our assumption on O that P (j) is
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untethered with respect to C(k). By our assumption on O in Eq. (3.103), there is no additional vertex

in P (j) that depends on P (k) with degree in C less than four in this case.

Thus, we show that if ∆C(d
(s)) = 2, then if there is another vertex u ∈ ΓC′

d
(bs) in P (j), then

it must also neighbor c(s). Suppose to the contrary that d(s−1) := u does not neighbor c(s), then

|C ′| > 4, and by Lemma 3.4 applied to d(s) ≺C(k) bs, we must have

bs−1-as−1-bs ⊆ ΓC(d
(s−1)) (3.207)

If as /∈ Γ(d(s−1)), then {bs,as,d
(s),d(s−1)} is a claw. Thus, as ∈ Γ(d(s−1)) and |C| = 4 by Lemma 3.4

together with the assumption that d(s−1) /∈ Γ(c(s)). This gives

as−1-bs-as-bs−1 = ΓC(d
(s−1)) (3.208)

Now, c(s) has another neighbor u ∈ C ′
d, which cannot be in C because every neighbor to c(s) in C

has a neighbor in C ′
d. Thus, let d(s+1) := u. If as /∈ ΓC(d

(s+1)), then {c(s),d(s),as,d
(s+1)} is a

claw. If bs−1 /∈ ΓC(d
(s+1)) {as,d

(s−1), bs−1,d
(s+1)} is a claw. We thus have {d(s−1), c(s)-d(s+1)} ⊂

ΓC′(as), {d(s−1), c(s)-d(s+1)} ⊂ ΓC′(bs−1), and {d(s−1),d(s)-c(s)} ⊂ ΓC′(bs−1), which allows us to

infer ∆C′(as) = ∆C′(bs−1) = ∆C′(bs) = 4 from Lemma 3.3. Thus, the only possibility for hC and

hC′ to anticommute is for

ΓC′(as−1) = d(s−1)-c(s−1)-d(s) (3.209)

(i.e. as−1 ≺C′ c(s−1)). By Lemma 3.4, bs neighbors c
(s−1). Now, d(s−1) has another neighbor u ∈ C ′

c,

which again cannot be in C since all of the neighbors to d(s−1) in C have a neighbor in C ′
c. If u does

not neighbor as, then {d(s−1),u,as−1,as} gives a claw. Since u /∈ ΓC′(c(s)) = {d(s),d(s+1)}, we have

bs−1 ∈ ΓC(u) by Lemma 3.4 applied to c(s) ≺C(k,s−1) as and the fact that the neighborhoods in C ′ to

bs and as−1 are fixed. However, then {bs−1,as−1, c
(s),u} gives a claw. Thus, if bs has an additional

neighbor u ∈ C ′
d, it must also neighbor c(s), so by the argument above, there can be no additional

vertex in P (j) whose corresponding operator anticommutes with hP (k). Therefore, if P
(j) depends on

P (k), there is precisely one vertex j ∈ P (j) for which hj anticommutes with hP (k) , so hP (j) and hP (k)

anticommute, and this proves the lemma.
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Figure 3.8: Diagram of the possible cases given in Eq. (3.200).

3.B Proof of Lemma 3.10

Proof of Lemma 3.10. By definition,

ZG(−u2) = TG(u)TG(−u) (3.210)

=




α(G)∑

s=0

(−u)sQ(s)
G






α(G)∑

t=0

utQ
(t)
G


 (3.211)

=

α(G)∑

s,t=0

(−1)sus+tQ
(s)
G Q

(t)
G (3.212)

If s+ t = 1 (mod 2), then, by Theorem 3.1,

(−1)sQ(s)
G Q

(t)
G + (−1)tQ(t)

G Q
(s)
G = (−1)s[Q(s)

G , Q
(t)
G ] = 0 (3.213)

Hence,

ZG(−u2) =
α(G)∑

s,t=0
s+t=0 (mod 2)

(−1)sus+tQ
(s)
G Q

(t)
G (3.214)

=
∑

S,T∈SG

|S|+|T |=0 (mod 2)

(−1)|S|u|S|+|T |hShT (3.215)

=
∑

S,T∈SG

|S|+|T |=0 (mod 2)

(−1)|S|u|S|+|T | (hS∩T )
2
hS\ThT\S . (3.216)

As in the proof of Eq. (3.80a), we use the fact that every factor hj with j ∈ S ∩ T commutes with

every factor in hShT . Commuting a given factor of hj for j ∈ S \ T through hT\S gives a factor of
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(−1) for every neighbor to j in T \ S. Using

S ⊕ T = (S \ T ) ∪ (T \ S) (3.217)

gives

hS\ThT\S = (−1)|E[S⊕T ]|hT\ShS\T (3.218)

since G[S ⊕ T ] is bipartite by Lemma 3.2. Thus, if |E[S ⊕ T ]| = 1 (mod 2), then hS\ThT\S +

hT\ShS\T = 0. Hence,

ZG(−u2) =
∑

S,T∈SG

|S|+|T |=0 (mod 2)
|E[S⊕T ]|=0 (mod 2)

(−1)|S|u|S|+|T | (hS∩T )
2
hS\ThT\S (3.219)

=
∑

S,T∈SG

|S|+|T |=0 (mod 2)
|E[S⊕T ]|=0 (mod 2)

(−1)|S|u|S|+|T |hShT . (3.220)

Again by Lemma 3.2, G[S⊕T ] is a disjoint union of paths and even holes. Suppose G[S⊕T ] contains

a path component P . Since P either has odd-many vertices or odd-many edges, it cannot be the only

component of G[S ⊕ T ]. Define

S̃ = S ⊕ P

T̃ = T ⊕ P

this gives distinct independent sets S̃ and T̃ for which S ⊕ T = S̃ ⊕ T̃ and |S|+ |T | = |S̃|+ |T̃ |. This

gives

(−1)|S̃|u|S̃|+|T̃ |hS̃hT̃ = (−1)|S̃|u|S̃|+|T̃ |hS\PhT∩PhS∩PhT\P (3.221)

= (−1)|S̃|+|E[P ]|u|S̃|+|T̃ |hS\PhS∩PhT∩PhT\P (3.222)

(−1)|S̃|u|S̃|+|T̃ |hS̃hT̃ = −(−1)|S|u|S|+|T |hShT (3.223)

Hence,

(−1)|S|u|S|+|T |hShT + (−1)|S̃|u|S̃|+|T̃ |hS̃hT̃ = 0 (3.224)
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where we have used the fact that, if P has odd length, then |S̃| = |S|, and if P has even length,

then |S̃| = |S| ± 1. Thus, (−1)|S̃|+|E[P ]| = −(−1)|S|. For a given collection of pairs (S, T ) such that

G[S⊕T ] is fixed, we can choose a fiducial path component by which to pair terms to cancel. Therefore,

G[S ⊕ T ] can contain no path components, so it must be a collection of disjoint and non-neighboring

even holes. In this case |S| = |T |, and we have

ZG(−u2) =
∑

S,T∈SG
S⊕T=∂X
X∈C

(even)
G

(−u2)|S|hShT (3.225)

ZG(−u2) =
∑

X∈C
(even)
G

(−u2)|∂X|/22|X |IG\Γ[X ](−u2)
∏

C∈X
hC (3.226)

By Lemma 3.5, this gives

ZG(−u2) =
∑

⟨X⟩∈⟨C (even)
G ⟩

(−u2)|∂⟨X⟩|/22|X |IG\Γ[⟨X⟩](−u2)
∏

⟨C0⟩∈⟨X⟩
JG[⟨C0⟩] (3.227)

completing the proof.

3.C Proofs of Lemmas 3.1 and 3.11

Proof of Lemma 3.1. From Eq. (3.57), we have

Q
(k)
G = Q

(k)
G\Ks

+
∑

j∈Ks

Q
(k−1)
G\(Ks∪Kj)

hj , (3.228)

and

Q
(k−1)
G\Kj

= Q
(k−1)
G\(Ks∪Kj)

+
∑

k∈Ks\{j}
Q

(k−2)
G\(Ks∪Kj∪Kk)

hk, (3.229)

where, again, Q
(k)
G = 0 for k < 0. This gives

Q
(k)
G = Q

(k)
G\Ks

+
∑

j∈Ks


Q(k−1)

G\Kj
−

∑

k∈Ks\{j}
Q

(k−2)
G\(Ks∪Kj∪Kk)

hk


hj (3.230)

= Q
(k)
G\Ks

+
∑

j∈Ks

Q
(k−1)
G\Kj

hj −
∑

j,k∈Ks, j ̸=k

Q
(k−2)
G\(Ks∪Kj∪Kk)

hkhj . (3.231)
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The third term vanishes because Q
(k−2)
G\(Ks∪Kj∪Kk)

is symmetric in j and k, but hj and hk anticommute

for j, k ∈ Ks and j ̸= k. Therefore

Q
(k)
G = Q

(k)
G\Ks

+
∑

j∈Ks

Q
(k−1)
G\Kj

hj (3.232)

and proves the lemma.

Proof of Lemma 3.11. By Def. 3.7, it is sufficient to show that


1 + u

∑

j∈Ks

hj


χTG(−u) = TG(−u)


1− u

∑

j∈Ks

hj


χ. (3.233)

By equating coefficients of uk, this is equivalent to showing that

χQ
(k)
G +

∑

j∈Ks

hjχQ
(k−1)
G =


Q(k)

G −Q(k−1)
G

∑

j∈Ks

hj


χ. (3.234)

We expand the left-hand side by applying Eq. (3.57) to the clique Ks in the first term and the

clique Kj ≡ Γ[G] \ (Ks \ {j}) in the second term. This gives

χQ
(k)
G +

∑

j∈Ks

hjχQ
(k−1)
G = χ


Q(k)

G\Ks
+
∑

j′∈Ks

hj′Q
(k−1)
G\(Ks∪Kj′ )


+

∑

j∈Ks

hjχ


Q(k−1)

G\Kj
+
∑

j′∈Kj

hj′Q
(k−2)
G\Γ[j′]




(3.235)

For j ∈ Ks, we see that hjχ only anticommutes with hk if k ∈ Kj . Thus

χQ
(k)
G +

∑

j∈Ks

hjχQ
(k−1)
G =


Q(k)

G\Ks
−
∑

j′∈Ks

hj′Q
(k−1)
G\(Ks∪Kj′ )


χ+

∑

j∈Ks


Q(k−1)

G\Kj
−
∑

j′∈Kj

hj′Q
(k−2)
G\Γ[j′]


hjχ

(3.236)

=


Q(k)

G\Ks
+
∑

j∈Ks

Q
(k−1)
G\Kj

hj


χ−

∑

j∈Ks


Q(k−1)

G\(Ks∪Kj)
+
∑

j′∈Kj

hj′Q
(k−2)
G\Γ[j′]


hjχ

(3.237)

= Q
(k)
G χ−

∑

j∈Ks

(
Q

(k−1)
G\(Ks∪Kj)

+Q
(k−1)
G −Q(k−1)

G\Kj

)
hjχ (3.238)
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and

Q
(k−1)
G\(Ks∪Kj)

−Q(k−1)
G\Kj

= −
∑

j′∈Ks\{j}
Q

(k−2)
G\(Ks∪Kj∪Kj′ )

hj′ . (3.239)

This gives

χQ
(k)
G +

∑

j∈Ks

hjχQ
(k−1)
G = Q

(k)
G χ−Q(k−1)

G

∑

j∈Ks

hjχ+
∑

j,j′∈Ks, j ̸=j′

Q
(k−2)
G\(Ks∪Kj∪Kj′ )

hj′hjχ (3.240)

In the last term, Q
(k−2)
G\(Ks∪Kj∪Kj′ )

is symmetric in j and j′, but hj anticommutes with hj′ for j,

j′ ∈ Ks with j ̸= j′. Thus, this term vanishes, and we have

χQ
(k)
G +

∑

j∈Ks

hjχQ
(k−1)
G =


Q(k)

G −Q(k−1)
G

∑

j∈Ks

hj


χ (3.241)

completing the proof.

3.D Proof of Lemma 3.13

Proof of Lemma 3.13. We have

TG(u)ψJ ,+jTG(−u) =
1

NJ ,j
TG(u) [ΠJ TG(−uJ ,j)χTG(uJ ,j)]TG(−u) (3.242)

=
1

NJ ,j
ΠJ TG(−uJ ,j) [TG(u)χTG(−u)]TG(uJ ,j) (3.243)

=
1

NJ ,j
ΠJ TG(−uJ ,j)


ZG(−u2)


1− u

∑

j∈Ks

hj


χ− TG(u)


u

∑

j∈Ks

hj


χTG(−u)


TG(uJ ,j)

(3.244)

where we have applied Lemma 3.11 in the last line. From our proof of Lemma 3.12, we have

TG(u)ψJ ,+jTG(−u) =
1

NJ ,j
ΠJ TG(−uJ ,j)

{
ZG(−u2)χ−

u

2
ZG(−u2)[H,χ]−

u

2
TG(u)[H,χ]TG(−u)

}
TG(uJ ,j)

(3.245)

= ZG(−u2)ψJ ,+j −
u

2
ZG(−u2)[H,ψJ ,+j ]−

u

2
T (u)[H,ψJ ,+j ]TG(−u) (3.246)

= ZG(−u2)ψJ ,+j −
u

uJ ,j
ZG(−u2)ψJ ,+j −

u

uJ ,j
T (u)ψJ ,+jTG(−u) (3.247)

TG(u)ψJ ,+jTG(−u) =
1

uJ ,j

[
ZG(−u2) (uJ ,j − u)ψJ ,+j − uTG(u)ψJ ,+jTG(−u)

]
. (3.248)
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where we applied Lemma 3.12 directly in Eq. (3.247). Now, by rearranging, we have

(uj + u)TG(u)ψ+j = (uj − u)ψ+jTG(u). (3.249)

where we have applied Z−1
G (−u2)TG(u) to the right on both sides. This requires choosing u ̸= ±uJ ,j

for any pair (J , j), as ZG(−uJ ,j) is not invertible. Applying this allows us to write

{ψJ ,+j , TG(u)χTG(−u)} =
uJ ,j + u

uJ ,j − u
TG(u){ψJ ,+j , χ}TG(−u). (3.250)

We compute the anticommutation relation {ψJ ,+j , χ} as

{ψJ ,+j , χ} =
4

NJ ,j
ΠJZG\Ks

(−u2J ,j) (3.251)

By setting

NJ ,j = 4uJ ,j

(
ZG\Ks

(−u2J ,j)
∂ZG(x)

∂x

∣∣∣
x=−u2

J ,j

) 1
2

, (3.252)

we have

{ψJ ,+j , ψJ ′,−k} = δJ ,J ′δjkΠJ , (3.253)

completing the proof.

3.E Proof of Lemma 3.14

Proof of Lemma 3.14. By following a similar analysis to the proof of Lemma 3.13, the commutator

[ψ+j , ψ−j ] may be expressed as

[ψ+j , ψ−j ] =
1

Nj
lim

u→uj

(
uj + u

uj − u
T (u)[ψ+j , χ]T (−u)

)
. (3.254)

= −2uj
Nj

(
∂TG(uj)

∂uj
[ψ+j , χ]T (−uj) + T (uj)[ψ+j , χ]

∂TG(−uj)
∂uj

)
(3.255)

= −2uj
Nj

(
∂TG(uj)

∂uj
ψ+jχT (−uj)− T (uj)χψ+j

∂TG(−uj)
∂uj

)
. (3.256)
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Now, by using the anticommutation relation from the proof of Lemma 3.13, we obtain

[ψ+j , ψ−j ] = −
8uj
N2

j

(
T (−uj)

∂TG(uj)

∂uj
− T (uj)

∂TG(−uj)
∂uj

)
(3.257)

= − 1

2uj

(
∂ZG(x)

∂x

∣∣∣
x=−u2

j

)−1(
T (−uj)

∂TG(uj)

∂uj
− T (uj)

∂TG(−uj)
∂uj

)
. (3.258)

Then,

α(G)∑

j=1

εj [ψ+j , ψ−j ] = −
α(G)∑

j=1

1

2u2j

(
∂ZG(x)

∂x

∣∣∣
x=−u2

j

)−1(
TG(−uj)

∂TG(uj)

∂uj
− TG(uj)

∂TG(−uj)
∂uj

)
.

(3.259)

By using

∂ZG(x)

∂x

∣∣∣
x=−u2

j

=
1

u2j

α(G)∏

k=1
k ̸=j

(
u2k − u2j
u2k

)
, (3.260)

we have

α(G)∑

j=1

εj [ψ+j , ψ−j ] = −
1

2

α(G)∑

j=1

(
TG(−uj)

∂TG(uj)

∂uj
− TG(uj)

∂TG(−uj)
∂uj

) α(G)∏

k=1
k ̸=j

(
−u2k

u2j − u2k

)
. (3.261)

Finally, by the Lagrange interpolation formula,

α(G)∑

j=1

εj [ψ+j , ψ−j ] =

(
TG(u)

∂TG(u)

∂u

)∣∣∣
u=0

= H, (3.262)

completing the proof.

3.F Numerical model definition

In this appendix we give the full qubitization of the many-body model defined in Sect. 3.8. The model

is defined on a two-dimensional square lattice, with five qubits residing on the links of the lattice such

that there is a spin at each of the positions (j + α
6 , k) and (j, k + α

6 ). The model is two-local, with

each term bilinear in Pauli operators. Due to the obvious symmetry of the lattice we collect the terms

along each link of the lattice in the Hamiltonian by their couplig strength and label each term as hµ
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for µ ∈ {a, b, c, d, e, f, g, h}. We then give the full Hamiltonian as

H =
∑

j,k

(
a
(
σy

j+ 2
6 ,k
σx
j+ 1

6 ,k
+ σy

j,k+ 2
6

σx
j,k+ 1

6

)
+ b

(
σx
j+ 2

6 ,k
σy

j− 1
6 ,k

+ σx
j,k+ 2

6
σy

j+ 1
6 ,k

)

+ c
(
σz
j+ 2

6 ,k
σy

j+ 3
6 ,k

+ σz
j,k+ 2

6
σy

j,k+ 3
6

)
+ d

(
σz
j+ 2

6 ,k
σz
j+ 3

6 ,k
+ σz

j,k+ 2
6
σz
j,k+ 3

6

)

+ e
(
σx
j+ 3

6 ,k
σz
j+ 4

6 ,k
+ σx

j,k+ 3
6
σz
j,k+ 4

6

)
+ f

(
σy

j+ 3
6 ,k
σz
j+ 4

6 ,k
+ σy

j,k+ 3
6

σz
j,k+ 4

6

)

+ g
(
σx
j+ 4

6 ,k
σy

j+1,k+ 1
6

+ σx
j,k+ 4

6
σy

j− 1
6 ,k

)
+ h

(
σy

j+ 4
6 ,k
σx
j+ 5

6 ,k
+ σy

j,k+ 4
6

σx
j,k+ 5

6

))
.

(3.263)

With this in mind we can now explicitly define the unitary rotations discussed in Sect. 3.8 in terms

of their Paulis. Note that the unitaries are defined as products of local unitaries across all links, that

is for all values of j and k within the lattice. Thus we can write

Ucd =
∏

j,k

exp

{
−iθσx

j+
3
6 ,k

}
exp

{
−iθσx

j,k+
3
6

}
(3.264)

Uef =
∏

j,k

exp

{
−iϕσz

j+
3
6 ,k

}
exp

{
−iϕσz

j,k+
3
6

}
. (3.265)

We can also give an explicit expression for the extraneous term, hκ, which is introduced by the rotation

of hf by Ucd:

hκ :=





f sin(2θ)σz

j+
3
6 ,k
σz

j+
4
6 ,k

on horizontal links

f sin(2θ)σz

j,k+
3
6

σz

j,k+
4
6

on vertical links.

(3.266)



Chapter 4

Boundary topological entanglement

entropy in two and three

dimensions

The topological entanglement entropy is used to measure long-range quantum correlations in the

ground space of topological phases. Here we obtain closed form expressions for the topological entropy

of (2+1)- and (3+1)-dimensional loop gas models, both in the bulk and at their boundaries, in terms

of the data of their input fusion categories and algebra objects. Central to the formulation of our

results are generalized S-matrices. We conjecture a general property of these S-matrices, with proofs

provided in many special cases. This includes constructive proofs for categories up to rank 5.

4.1 Introduction

The classification of topological phases is fundamental to the study of modern condensed matter

physics [16,143–145]. Moreover, they have properties that may be valuable for the robust storage and

manipulation of quantum information [146, 147]. Their characteristics include a stable gap at zero

temperature and quasiparticle excitations with non-trivial braid statistics [148,149].

An important class of topological phases are represented by topological loop-gas models [13, 25].

These models can be defined in terms of an input unitary fusion category, and their ground states by

superpositions of string diagrams labeled by objects from the category. The categorical framework

128
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provides a collection of local relations that ensure topological invariance of the ground states. In

(2+1)-dimensions, these models are called Levin-Wen models [13]. Levin-Wen models have point-like

excitations, commonly called anyons, with non-trivial fusion rules and braid statistics. In (3+1)-

dimensions, the input category must be equipped with a premodular braiding, leading to a Walker-

Wang model [25]. Generically, Walker-Wang models support point-like and loop-like excitations. In

contrast to Levin-Wen models, the excitations in the bulk of a Walker-Wang model may be trivial,

specifically if the input category is modular.

Loop-gas models can be defined on manifolds with boundaries by modifying the local relations

governing the strings in the vicinity of the boundary. One way to define a boundary to a topological

loop-gas is to allow some strings to terminate on the boundary. This is captured in the current work

using particular objects called algebras [150,151]. Despite their trivial bulk excitations, Walker-Wang

models may have highly non-trivial boundary excitations.

Intimately connected to the topological properties of these phases is the long-range entanglement

present in the ground state of the Hamiltonians describing these phases [152, 153]. The long-range

quantum correlations found in the ground states of topological phases can be measured using the

topological entanglement entropy [154–156]. We typically expect that the entanglement entropy shared

between two subsystems of the ground state of a gapped many body system to respect an area law [157].

However, supposing a sensible choice of bipartition, the entanglement entropy of the ground state of

topological phases has a constant universal correction [154]. In (2+1)-dimensions, it is known that

this correction relates to the total quantum dimension of the quasiparticle excitations supported by

the phase [155,156]. We can also evaluate the quantum dimensions of individual excitations [158] and

defects [159, 160] of a phase using topological entanglement entropy. Other work has shown we can

use the topological entanglement entropy to calculate the fusion rules [161] and braid statistics [162]

of (2+1)-dimensional phases.

Generalizations of topological entanglement entropy diagnostics have been found [163, 164] for

(3+1)-dimensional phases with bulk topological order. These diagnostics were first demonstrated

using the (3+1)-dimensional toric code model [165] as an example. This phase gives rise to one species

of bosonic excitation that braids non-trivially with a loop-like excitation in the bulk of the system.

In contrast, particular classes of Walker-Wang models [25] have been shown to behave differently

using the same diagnostics. Modular examples of these models demonstrate zero bulk topological

entanglement entropy [55, 166], even though, at their boundary, they realize quasiparticle excitations

with non-trivial braid statistics [55].
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In Ref. [167], two new diagnostics were found to interrogate the long-range entanglement at the

boundary of a (3+1)-dimensional-dimensional topological phase. The behavior of the diagnostics was

determined by making quite generic considerations of the support of creation operators for topological

excitations, without assuming any knowledge of the underlying particle theory of the phase. It was

shown that the diagnostics will show a null outcome only if all the particles that can be created at

the boundary have trivial braid statistics. Conversely, boundary topological order must necessarily

show positive topological entanglement entropy if quasi-particles that demonstrate non-trivial braid

statistics can be created. In that work, the diagnostics were tested at the different boundaries of the

(3+1)-dimensional-dimensional toric code where null outcomes were obtained at boundaries where the

appropriate types of particles condense. However, a limitation of the diagnostics presented in that

paper is that the meaning of a positive outcome is not well understood.

From the input fusion category perspective, the topological entanglement entropies can be under-

stood as arising from constraints on the ‘string flux’ passing through a surface. In (3+1)-dimensions,

there are also additional corrections due to braiding. Allowing strings to terminate in the vicinity

of a physical boundary alters the flux (and braiding) constraints in the vicinity, thereby altering the

topological entropy.

In this work, we obtain closed form expressions for bulk and boundary topological entanglement

entropy diagnostics for topological loop-gas models. We obtain our results by evaluating the entan-

glement entropy of various regions of ground states of Levin-Wen and Walker-Wang models. This

requires careful analysis of various string diagrams, such as generalized S-matrices which encode the

braiding properties of the input category. Additionally, we examine how the inclusion of boundaries,

via algebra objects, alter these diagrams, and so the topological entropy. In all cases, we find that the

entropy can be expressed in terms of the quantum dimension of the input category and the quantum

dimension of the algebra object. In the bulk of (3+1)-dimensional models, we conjecture, and prove

in many cases, that the entropy is the logaritheorem of the total quantum dimension of the particle

content of the theory, extending the results of Ref. [166].

Overview

Following a brief summary of our results, the remainder of this chapter is structured as follows. In

Sect. 4.2, we introduce some notation and minor results that are required for the remainder of the

chapter. In Sect. 4.3, we briefly review the models of interest, and discuss the class of boundaries we

consider. In Sect. 4.4, we explain the origin and meaning of topological entanglement entropy, and
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define the diagnostics used to detect boundary topological entanglement entropy. In Sect. 4.5, we

compute the entropy of bulk regions for Levin-Wen models. These computations are required for the

Walker-Wang models, and provide a good warm-up. We then discuss the additional considerations for

Walker-Wang models, and extend the computations to these. In Sect. 4.6, we compute the boundary

entropy diagnostics for Levin-Wen models with boundary, followed by some classes of Walker-Wang

models with boundary. We summarize in Sect. 4.7.

We include two appendices. In Sect. 4.A, we provide proofs of some results concerning generalized

S-matrices. In Sect. 4.B, we provide proofs of some results concerning loop-gas models, and their

entropies.

Summary of results

In Table 4.1, we summarize our main results. The models we discuss will be introduced in the following

sections, followed by the proofs of these results. We note that many of these results were previously

known, for example the bulk Levin-Wen appears in Refs. [155, 156]. When the Levin-Wen model is

defined by the fusion category Vec (G), the boundary Levin-Wen results appear in Ref. [168]. The

bulk results for symmetric and modular Walker-Wang models appear in Ref. [166]. We extend this

to include all pointed inputs (all quantum dimensions equal to 1), as well as all input categories up

to rank 5. This allows us to conjecture a general result. To the best of our knowledge, there are no

results concerning boundary entropies of Walker-Wang models beyond the (3+1)-dimensional toric

code [167].

4.2 Preliminaries

In this work, each of the (3+1)-dimensional models we are interested in are described by a unitary

premodular category. Boundaries of these models can be specified using algebra objects in the input

category. For definitions of the various algebraic objects, we refer to Ref. [169], or for the physically

minded reader Refs. [12,170,171]. Here, we briefly review the notation we use to describe these objects.

Let C be a fusion category (Ref. [169], Def. 4.1.1). Without loss of generality, we assume C is

skeletal (isomorphic objects are equal), and the unit is strict. The number of simple objects is called

the rank of C, denoted rk(C). In all cases, we denote the unit object of C by 1, and the dual of an

object x by x̄.

The category C is equipped with a bilinear functor ⊗ : C × C → C. Once we fix a basis for the
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3

Model Bulk strings Boundary Q-system Topological entropy

� = logD2
Z(C)Levin-Wen C fusion

A � = logD2

� = logD2
Z2(C)

a

�• =?b
A

�� = log d2A � logD2 +�•

�• = logD2

Walker-Wang C premodular

A = 1
�� = 0

� = logD2
Z2(C)

�• = logD2 � log dAWalker-Wang C symmetric
A

�� = log dA

� = logD2
Z2(C)

�• = logD2 � 2 log dAA such that A \ Z2(C) = {1}c
�� = 0

�• = logD2 � log dA

Walker-Wang C pointed

A such that A \ Z2(C) = A
�� = log dA

a
Conjectured, proven in many cases as indicated in Theorem 3.

b
We do not have a general form at present.

c
Includes the case C modular.

In Section IA, we summarize our main results. The models we discuss will be introduced in the following sections,
followed by the proofs of these results. We note that many of these results were previously known, for example the
bulk Levin-Wen appears in Refs. 16 and 17. When the Levin-Wen model is defined by the fusion category Vec (G),
the boundary Levin-Wen results appear in Ref. 30. The bulk results for symmetric and modular Walker-Wang models
appear in Ref. 28. We extend this to include all pointed inputs (all quantum dimensions equal to 1), as well as all
input categories up to rank 5. This allows us to conjecture a general result. To the best of our knowledge, there are
no results concerning boundary entropies of Walker-Wang models beyond the (3+1)-dimensional toric code [29].

Table 4.1: Summary of results, technical terms defined in Sect. 4.2. The bulk strings are labeled by a
unitary fusion category C, possibly with extra structure. The number D denotes the total quantum
dimension of C, A is a Q-system (with extra structure, see Sect. 4.2) of dimension dA, Z(C) and Z2(C) are
the Drinfeld and Müger centers of C respectively. Topological entanglement entropies for Levin-Wen models
are denoted γ and Γ for the bulk and near the boundary respectively. These quantities are defined in
Eq. (4.10), Eq. (4.11) and Fig. 4.2. The corresponding quantities in (3+1)-dimensions are denoted δ for the
bulk entropy (Eq. (4.12) and Fig. 4.3), and ∆• (∆◦) for the boundary entropy detecting point-like (loop-like)
excitations as defined in Eq. (4.13) and Fig. 4.4 (Eq. (4.14) and Fig. 4.5).
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fusion space C(a⊗ b, c), we denote a basis vector µ using a trivalent vertex 1

a b

c

µ . (4.1)

The (vector space) dimension of C(a ⊗ b, c) is denoted N c
a,b. We call these tensors the fusion rules

of C. If all N c
a,b ∈ {0, 1}, we call the category multiplicity free. We normalize these bases following

Ref. [170].

The natural isomorphism (− ⊗ −) ⊗ − ∼= − ⊗ (− ⊗ −) is realized as the F -matrices [12] of C,

and we refer to such a re-association as an F -move. If these are unitary, we say that C is a unitary

fusion category. Henceforth, we restrict to the unitary setting. We assume that C is equipped with

the unique unitary spherical structure [172], meaning that all diagrams can be treated as though they

are drawn on the surface of a sphere.

The dimension of a simple object a is denoted da, while the total dimension of C is denoted

D2
C :=

∑
a d

2
a, where the sum is over all simple objects. When it is clear from context, we omit the

subscript. In string diagrams, a loop labeled by a is assigned da. We refer to insertion or removal of

a loop, and the associated division or multiplication by the dimension, as a loop move. If D2 = rk(C),

we say that C is pointed. This property is also commonly called Abelian in the physics literature.

Braided unitary fusion categories (Ref. [169], Def. 8.1.2) can be uniquely equipped with a unitary

premodular structure [173]. For the results in this manuscript, it is important to understand which

strings can be ‘uncrossed’. This is captured by the Müger center (Ref. [174], Def. 2.9), denoted Z2(C).

A premodular category is symmetric if Z2(C) = C, and modular if Z2(C) = Vec. We will refer to

premodular categories which are neither symmetric nor modular as properly premodular.

We will make extensive use of an operator we call the connected S-matrix Sc, with matrix elements

[Sc](a,α),(b,β) =
1

D bab̄ā

β

α
c

c̄ . (4.2)

The usual S-matrix (Ref. [174], Def. 2.2) occurs as a special case, namely Sa,b = [S1]a,b. The connected

S-matrix appears in Theorem 3.1.17 of Ref. [175], and is closely related to the punctured S-matrix of

1We refrain from drawing arrows on the diagrams, instead using the convention that all lines are oriented upwards.
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Ref. [176]. We will need the following result concerning the connected S-matrix.

Lemma 4.1. Let C be a unitary premodular category, then

∑

c∈C
TrS†cSc = D2, (4.3)

where Sc is the connected S-matrix and D is the total dimension of C.

Proof. Provided in Appendix 4.A.

We now briefly review the notation we use to describe algebra objects in C. Let (A,m, η) be a

Q-system, also called a unitary Frobenius algebra, in C (Ref. [177], Def. 5.4). Since C is semi-simple,

we can decompose the object A = 1⊕ a1 ⊕ a2 ⊕ . . .. In this work, we restrict to the multiplicity free

case, so each ai appears at most once. We represent the multiplication morphism m as

m =

A A

A

=
∑

a,b,c∈A

mc
a,b

a b

c

. (4.4)

To simplify the notation, we define mz
x,y = 0 whenever any of the labels do not occur in the decom-

position of A. This allows us to always sum over simple objects in C. Additionally, we suppress the

A label. Any unlabeled lines carry an implicit A. We can always normalize the unit morphism η = 1,

and the multiplication morphism

∑

a,b∈A

∣∣mc
a,b

∣∣2√dadb = δc∈A

√
dcdA, (4.5)

where dA =
∑

a∈A da. When it does not cause confusion, we will indicate a Q-system by its object,

for example A = 1, the ‘unit algebra’.

If the underlying category C is braided, we say the algebra is commutative if it commutes in the

category (Ref. [169], Def. 8.8.1).

4.2.1 Examples

We use the following examples throughout our work to illustrate our results. The unitary fusion

category Vecω (Z2) is the category of finite dimensional Z2-graded vector spaces. The simple objects

of this pointed category are group elements Z2 :=
{
1, x

∣∣x2 = 1
}
. We neglect to draw the unit object,
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1. As such, the only nonzero trivalent vertex is

. (4.6)

There are exactly two inequivalent associators compatible with the fusion rule, namely

= ω , (4.7)

with ω = ±1. With the associator fixed, there are two compatible braidings

= ϕ , (4.8)

with φ2 = ω. We denote by Vecω,φ (Z2) the braided category, with associator ω and braiding φ. The

categories Vec−1,±i (Z2) are modular, while Vec1,±1 (Z2) are symmetric.

For these examples, there are two possible Q-systems, namely A0 := 1, with trivial m morphism,

andA1 := 1⊕x. The unit algebra, A0, is compatible as a commutative Q-system. ForA1, compatibility

as a Q-system reduces to m1
x,xω = m1

x,x, so is only a valid algebra object when ω = 1. In that case,

A1 is commutative when m1
x,xφ = m1

x,x, which required φ = 1.

4.3 Loop-gas models in (3+1) dimensions

Walker-Wang [25,52–54] models are three-dimensional Hamiltonian models that give rise to topological

loop-gas states as their ground states. Hamiltonians for these models are given in Ref. [25]. Our results

do not depend on the particular form of the Hamiltonian, rather on universal properties of the ground

states in the associated topological phase.

Quasiparticle excitations in these models are defects in the ground state, corresponding to a local

change in the rules. Far from the excitations, the excited state remains invariant under the original

moves but, for example, a string may be allowed to terminate at the location of the excitation.

4.3.1 Bulk

We now briefly introduce the categorical description of the models of interest far from any physical

boundary.

Given a unitary fusion category C, and a given lattice embedded on a three-dimensional manifold,
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A A A A

Figure 4.1: An algebra specifies a boundary for a Levin-Wen model on a ‘comb lattice’. Dashed lines
indicate the lattice continues. The top, thick blue lines are labeled by an algebra A that defines a physical
boundary to the lattice.

the ground states of Walker-Wang models are super-positions of closed diagrams from the category.

Strings lie along the edges of the lattice, and closed means they cannot terminate. To produce a lattice

model, D-dimensional vector spaces are assigned to each edge. These vector spaces are equipped with

an orthogonal basis consisting of the objects of C. If the category is multiplicity free, vector spaces

corresponding to the fusion spaces are assigned to the vertices. An abstract string configuration

is realized by the vector consisting of the appropriate basis vector on each edge. At the vertices,

the fusion rules of the category dictate which strings can fuse. If a given configuration occurs in a

particular ground state, then any other configuration that is obtainable by local moves (i.e. F - or

loop-moves) also occurs in that ground state. The relative coefficients are dictated by the F -symbols,

and consistency is ensured by the pentagon equation. Since the allowed moves are all local, there may

be multiple ground states on manifolds with nontrivial genus. For example, a loop enclosing a cycle

of the torus cannot be removed with the local loop move.

In (3+1)-dimensions, for Walker-Wang models, the diagrams can also include crossings. This

required additional data to be added to the category, in particular a braiding. If we picture these

diagrams embedded in 3 dimensional space, there is an ambiguity involved in these crossing. For

example, if we look at a crossing from ‘the side’, there is no crossing. This ambiguity can be resolved

by widening the strings into ribbons. This is implemented by insisting that the braided category is

premodular.

In addition to the F - and loop- moves, R- moves and insertion of links (or knots), such as the

S-matrix are allowed. Again, given any closed string configuration, any other configuration that can

be reached via these rules is included in the ground state superposition.



4.3. LOOP-GAS MODELS IN (3+1) DIMENSIONS 137

4.3.2 Boundaries

To include a physical boundary in a loop-gas model, the rules must be modified. For the topological

loop-gas models, these rules are again defined by local moves in the vicinity of the boundary. These

must be compatible with the bulk moves, and ensure topological/retriangulation invariance at the

boundary. We restrict our attention to gapped boundaries.

Levin-Wen models

There are various equivalent classifications for the gapped boundaries of Levin-Wen models [150,

151, 178–181]. In this work, we use an internal classification. In this framework, gapped boundary

conditions for Levin-Wen models are labeled by indecomposable Q-systems in C up to Morita equiv-

alence [150, 151]. We restrict to multiplicity free algebras for simplicity. These algebra objects are

(not necessarily simple) objects in C, and their simple subjects are roughly the string types that are

allowed to terminate on the boundary.

On the comb lattice (Fig. 4.1), for example, the dangling edges only take values in the chosen

algebra. Far from the boundary, the ground states look just like those with no boundary. Near the

boundary, loops are no longer required to be closed, rather they can terminate on the boundary if

their label occurs within the algebra. We refer to Refs. [150,151] for more details, including an explicit

Hamiltonian.

Walker-Wang models

Just as in the bulk, when me move to (3+1)-dimensions, the braiding must be taken into account.

A general classification of gapped boundaries for Walker-Wang models has not been established, so

we proceed for a class of boundaries generalizing those for Levin-Wen introduced above. As before,

a boundary is labeled by an algebra object. Since the bulk is braided, an additional compatibility

condition is required, namely that the algebra is commutative (Ref. [169], Def. 8.8.1). Finally, in this

work, an indecomposable, commutative, Q-systems labels a gapped boundary condition of a Walker-

Wang model 2.

4.3.3 Examples

Recall the examples from Sect. 4.2.1. In (2+1)-dimensions, Vec1,±1 (Z2) lead to the same loop-gas

model, since the Levin-Wen construction doesn’t make use of the braiding. This model is the equally

2Private communications with David Aasen
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weighted superposition of all loop diagrams (with no branching due to the fusion rules). This is the

ground state of the toric code model [146].

Likewise, Vec±i (−1) correspond to the same loop-gas model. Due to the nontrivial Frobenius-

Schur indicator [12], it is convenient to associate −1 to a loop rather than +1 (otherwise we can take

extra care when bending lines). The ground state is therefore a superposition of loops, but weighted

by (−1)number of loops. This is commonly called the double-semion model.

There are two possible (gapped) boundaries for the toric code, the ‘smooth’ boundary, correspond-

ing to the algebra A0, and the ‘rough’ boundary, corresponding to A1. We refer to Ref. [182] for more

details. The double-semion model only allows for one kind of (gapped) boundary, labeled by A0.

In (3+1)-dimensions, each of these models labels a distinct Walker-Wang model. The models

Vec1,1 (Z2) , Vec1,−1 (Z2) are commonly called the bosonic- and fermionic- toric code models respec-

tively [165, 183]. Since these categories both have Z2(C) = {1, x}, they both have a single particle

excitation, in addition to the trivial excitation, whose self-statistics lead to the names of the models.

The two models Vec±i (−1) are both referred to as semion models.

In (3+1)-dimensions, the bosonic toric code still has two kinds of boundaries, but the remaining

models are only compatible with the trivial boundary labeled by A0.

4.4 Entropy diagnostics

In what follows we describe the universal correction to the area law that we expect for topological

phases. We then define two diagnostics that can be used to probe the properties of the excitations at

the boundary of (3+1)-dimensional topological phases.

4.4.1 The universal correction to the area law

The ground states of topological phases of matter demonstrate robust long-range entanglement that is

not present in trivial phases [154–156]. Typically, we expect the entanglement entropy shared between

a subsystem of a ground state of a gapped phase with the rest of the system to respect an area law,

i.e., the entanglement will scale with the size of the surface area of the subsystem. The long-range

entanglement manifests as a universal correction to the area law. More precisely, we expect that

if we partition the ground state of a system into two subsystems, R and its complement Rc, the

entanglement entropy, SR, will satisfy

SR = α|∂R| − bRγ. (4.9)
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a)

CB B

D

D

P P

b)

CB B

D

D

P P

Figure 4.2: Example of subsystems that can be used to find topological entropies in (2+1)-dimensions.
The region A is the complement of BCD. The regions a) are used to find the bulk entropy γ, and the
regions b) are used for the boundary entropy Γ.

Here α is a non-universal coefficient that depends on the microscopic details of the system, |∂R| is the

surface area of the interface between the partitioned regions, bR is the number of disjoint components

of the interface between R and Rc, and γ is a universal constant commonly known as the topological

entanglement entropy. We have assumed that R is large compared to the correlation length of the

system, and its shape has no irregular features.

4.4.2 (2+1)-dimensional models

Intimately connected to the long-range entanglement of a topological phase are the properties of its

low-energy excitations. A large class of topological models in (2+1)-dimensions are the Levin-Wen

string-net models [13]. These models support topological point-like excitations that can be braided

to change the state of the system.

Throughout this work we will be interested in the boundaries of topological phases. Importantly,

topological particles can behave differently in the vicinity of the boundary of a phase. For instance,

topological particles found in the bulk may become trivial particles close to certain boundaries. This

is because topological particles can condense at the boundary such that non-trivial charges can be

created locally.

As the physics of the quasi-particles of a topological phase can change close to its boundary, so to do

we expect that the nature of its long-range entanglement to change. In Ref. [167], several topological

entanglement entropy diagnostics were found to probe long-range entanglement of a model, both in

the bulk and near to a boundary. The first is the bulk topological entanglement entropy

γ := SBC + SCD − SB − SD, (4.10)



4.4. ENTROPY DIAGNOSTICS 140

where the regions are depicted in Fig. 4.2a, and XY := X ∪ Y . If γ = 0, all point-like excitations

can be created on the distinct parts of P with a creation operator that has no support on ACD,

where A is the region that is complement to those shown in the figure. In this case, we declare them

trivial. Conversely, if there are non-trivial topological excitations, for example created with string-like

operators, γ is necessarily non-zero.

In the presence of a gapped boundary, the excitations may differ. If a bulk topological excitation

can be discarded or ‘condensed’ on the boundary, it is possible to locally create such an excitation

near the boundary. This is detected using the diagnostic

Γ := SBC + SCD − SB − SD, (4.11)

where the regions are depicted in Fig. 4.2b. If Γ = 0, all point-like excitations on P can be created

with an operator that has no support on ACD, while non-trivial excitations require non-zero Γ.

4.4.3 (3+1)-dimensional models

Walker-Wang models give rise to both point- and line-like topological particles in the bulk, in addition

to boundary excitations. Unlike Levin-Wen models, in some instances topological particles are only

found at the boundary.

Since there are two kinds of topological excitations in (3+1)-dimensions, we might expect that

there are two bulk diagnostics generalizing γ. However, as it has been shown [164,166], these coincide.

We define the bulk topological entanglement entropy

δ := SBC + SCD − SB − SD, (4.12)

where the regions are depicted in Fig. 4.3. We obtained this choice of region following intuition given

in Ref. [167] where we consider the creating point excitations at the distinct parts of region P using

a string operator supported on ACD. We find δ is zero only if all the excitations can be created

using an operator with local support. The boundary diagnostics that we describe next are obtained

by bisecting the regions shown in Fig. 4.3 along different planes where the boundary lies.

In Ref. [167] two topological entanglement entropy diagnostics were found to probe long-range

entanglement of a model near to a boundary. The first boundary diagnostic is an indicator that

point-like topological particles can be created at the boundary of the system, and the second indicates

that the boundary supports extended one-dimensional ‘loop-like’ topological particles. Unlike in the
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CD DP P

B

.

Figure 4.3: Partitioning of the lattice for detecting excitations in the bulk. B encircles CD, and A is the
complement of BCD. If δ is small, excitations on P can be created by only acting on PD and so have trivial
statistics.

B

.

B

CD DP P

Figure 4.4: Partitioning of the lattice for detecting point-like excitations on the boundary. The top (blue)
surface is on the physical boundary of the lattice. If ∆• is small, excitations on P can be created by only
acting on PD and so have trivial statistics.

bulk, these diagnostics do not necessarily coincide. The first

∆• := SBC + SCD − SB − SD, (4.13)

defined using the regions in Fig. 4.4, is non-zero if non-trivial point-like excitations can be created

near the boundary. If ∆• = 0, all point-like excitations on P can be created with a local operator, so

they are necessarily trivial. Conversely, if there are non-trivial point-like particles near the boundary,

∆• > 0.

The final diagnostic is designed to detect nontrivial loop-like excitations. Using the regions depicted

in Fig. 4.5, this diagnostic is

∆◦ := SBC + SCD − SB − SD. (4.14)

Similarly to the other diagnostics, if ∆◦ is zero, then line-like excitations must be trivial. Conversely,

∆◦ must be nonzero if non-trivial loop excitations can be created at the boundary.

The diagnostics presented in Ref. [167] were found using generic arguments about the support of

deformable operators that are used to create excitations. As such, it was shown rigorously that the

null outcome is obtained only if a boundary does not give rise to topological particles. Conversely, a

boundary that gives rise to topological excitations must give a positive reading for these diagnostics.
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However, due to spurious contributions [184–187], the generic arguments cannot guarantee that the

diagnostics do not give false positives and, moreover, the work gives no interpretation for the magni-

tude of a positive reading. In our work, we restrict to loop-gas models. In that setting, for a large

class of models, we obtain expressions for the topological entanglement entropy near the boundary.

4.5 Bulk entropy of topological loop-gasses

We now show how the entanglement entropy of ground states of Levin-Wen models is computed far

from any boundary, before moving on to Walker-Wang models. To make the calculation we take the

Schmidt decomposition of the ground state

|ψ⟩ =
r∑

λ=1

Φλ

∣∣ψλ
R

〉 ∣∣ψλ
Rc

〉
, (4.15)

for regions R, where the sets {
∣∣ψλ

R

〉
} and {

∣∣ψλ
Rc

〉
} are orthonormal, and r is the Schmidt rank of the

state |ψ⟩. This allows us to compute the reduced state ρR on R. Diagonalizing this matrix yields the

entanglement entropy.

In what follows, we will need to parameterize the states
∣∣ψλ

R

〉
and

∣∣ψλ
Rc

〉
. Recall from Sect. 4.3

that ground states of the loop-gas models can be understood as classes of diagrams which are related

by local moves. It is convenient to parameterize
∣∣ψλ

R

〉
in a similar way. Far from the interface (since

the correlation length is 0, far means one site), the state behaves exactly like the ground state. Unlike

in the bulk, the interface defines a fixed boundary condition for the diagram in R. States
∣∣ψλ

R

〉
will

therefore be represented by some fiducial diagram T , and are understood to consist of a superposition

of all diagrams that can be obtained from T by local moves restricted to R as indicated in Fig. 4.6.

Particular lattices may provide geometric complications, but the topological invariance of the ground

state will mean these are of no consequence. In all cases, we will choose a particular class of fusion

trees as fiducial diagrams. For the following, we will therefore need several results concerning fusion

C

B

D

B

D

Figure 4.5: Partitioning of the lattice for detecting line-like excitations on the boundary. The top (blue)
surface is on the boundary of the lattice. If ∆◦ is small, excitations on B can be created without acting on C
and so have trivial statistics.
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a) b)

← interface →

R

Rc

Figure 4.6: To compute the Schmidt decomposition, we need to parameterize states contained on one
sub-region. Given a generic configuration on the lattice (a), we can utilize the ‘moves’ outlined in Sect. 4.2,
restricted to either side of the interface, to deform into a tree (b). The lattice sites on the boundary provide
boundary conditions for the states in R and Rc. We utilize constraints on the total fusion outcome in each
region to parameterize the allowed trees.

trees. Consider fusing n strings labeled x⃗ := (x1, x2, . . . , xn) to a fixed object a. Using F -moves, we

can bring the fusion tree for this process into the canonical form

x1 x2 x3 x4 xn−1 xn

a

y1

y2

yn−2

µ1

µ2

µ3

µn−2

, (4.16)

where 1 ≤ µ ≤ N c
a,b parameterizes the distinct fusion channels a⊗ b→ c. In the following, sums over

xi, yi are over all simple objects in C. First, we need two results concerning summing over trees.

Lemma 4.2. Let C a unitary fusion category, then for a fixed simple fusion outcome a,

∑

x⃗,y⃗

Ny1
x1x2

Ny2
y1x3

. . . Na
yn−2xn

∏

j≤n

dxj
= daD2(n−1), (4.17)

where D =
√∑

i d
2
i is the total quantum dimension of C.

Proof. Provided in Appendix 4.B.

Lemma 4.3. Let C a unitary fusion category, then for a fixed simple fusion outcome a,

∑

x⃗,y⃗

Ny1
x1x2

Ny2
y1x3

. . . Na
yn−2xn

∏
j≤n dxj

D2(n−1)
log

∏

k≤n

dxk
= nda

∑

x

d2x log dx
D2

. (4.18)

Proof. Provided in Appendix 4.B.
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Finally, we need the probability of a given fusion tree in a topological loop-gas model.

Lemma 4.4 (Probability of trees). Let C a unitary fusion category. Given a fusion outcome a on n

edges, the probability of the tree in Eq. (4.16) is

Pr[x⃗, y⃗, µ⃗|a] =
∏

j≤n dxj

daD2(n−1)
. (4.19)

Proof. Provided in Appendix 4.B.

Throughout the remainder of this section, we use the following condensed notation

∑

x⃗,y⃗,µ⃗

:=
∑

x1,...,xn

∑

y1,...,yn−2

∑

µ1,...,µn−2

(4.20)

=
∑

x1,...,xn

∑

y1,...,yn−2

Ny1
x1x2

Ny2
y1x3

. . . Na
yn−2xn

, (4.21)

where we frequently leave the fusion outcome a implicit.

4.5.1 Levin-Wen models

Theorem 4.1 (Topological entropy of (2+1)-dimensional Levin-Wen models in the bulk [155, 156,

188]).

Consider the regions shown in Fig. 4.2a, then the Levin-Wen model defined by a unitary spherical

fusion category C, with total dimension D, has topological entropy

γ = 2 logD2 = logD2
Z(C), (4.22)

where Z(C) is the modular category called the Drinfeld center [169] of C which describes the anyons

of the theory.

Examples. Recall the examples from Sect. 2.5. As discussed in Sect. 4.3.3, these label two distinct

loop-gas models in (2+1)-dimensions, the toric code and double semion models. Since all the input

categories for these examples have D2 = 2, the topological entanglement entropy is γ = 2 log 2 for

both.

Lemma 4.5 (Entropy of (union of) simply connected bulk regions [156,166,188]). On a region R in



4.5. BULK ENTROPY OF TOPOLOGICAL LOOP-GASSES 145

the bulk consisting of the disjoint union of simply connected sub-regions, the entropy is

SR = nS[C]− b0 logD2, (4.23)

where b0 is the number of disjoint interface components of R, n is the number of links crossing the

entanglement interface, and

S[C] := logD2 −
∑

x

d2x log dx
D2

. (4.24)

Proof of Lemma 4.5. Consider a ball R with n sites along the interface, in the configuration x⃗ =

x1, x2, . . . , xn. Since any configuration must be created by inserting closed loops into the empty state,

the total ‘charge’ crossing the interface must be 1. For a fixed x⃗, there are now many ways for this to

happen, parameterized by trees depicted in Eq. (4.16) with fusion outcome a = 1.

Trees with distinct labelings (in x⃗, y⃗ or µ⃗) are orthogonal. This means that if the tree Eq. (4.16)

occurs adjacent to the interface within R, it must also occur on the other side of the interface

x1 x2 x3 x4 xn−1 xn

c

y1

y2

yn−2

µ1

µ2

µ3

µn−2

µn−1

d

z1
z2

zn−2

ν1

ν2

ν3

νn−2

νn−1

R

Rc

∝ δz⃗=y⃗δν⃗=µ⃗δd=c. (4.25)

If the trees on either side of the cut had different branching structures, we could use local moves on

either side of the cut to bring them to this standard form.

We take the Schmidt decomposition of the ground state as follows

|ψ⟩ =
∑

x⃗,y⃗,µ⃗

Φx⃗,y⃗,µ⃗

∣∣∣ψx⃗,y⃗,µ⃗
R

〉 ∣∣∣ψx⃗,y⃗,µ⃗
Rc

〉
, (4.26)

where the notation x⃗, y⃗, µ⃗ indicates the labeling of a valid tree as in Eq. (4.16). The state
∣∣∣ψx⃗,y⃗,µ⃗

R

〉
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includes any state that can be reached from Eq. (4.16) (with a = 1) by acting only on R. The reduced

state on R is

ρR =
∑

x⃗,y⃗,µ⃗

|Φx⃗,y⃗,µ⃗|2
∣∣∣ψx⃗,y⃗,µ⃗

R

〉〈
ψx⃗,y⃗,µ⃗
R

∣∣∣ (4.27)

=
∑

x⃗,y⃗,µ⃗

Pr[x⃗, y⃗, µ⃗|1]
∣∣∣ψx⃗,y⃗,µ⃗

R

〉〈
ψx⃗,y⃗,µ⃗
R

∣∣∣ , (4.28)

where Pr[x⃗, y⃗, µ⃗|1] is the probability of the labeled tree, given that x⃗ fuses to 1. From Lemma 4.4, the

reduced state is

ρR =
∑

x⃗,y⃗,µ⃗

∏
j≤n dxj

D2(n−1)

∣∣∣ψx⃗,y⃗,µ⃗
R

〉〈
ψx⃗,y⃗,µ⃗
R

∣∣∣ . (4.29)

The von Neumann entropy of ρR is therefore

SR :=− tr ρR log ρR (4.30)

=−
∑

x⃗,y⃗,µ⃗

∏
j≤n dxj

D2(n−1)
log

∏
k≤n dxk

D2(n−1)
(4.31)

=
logD2(n−1)

D2(n−1)

∑

x⃗,y⃗,µ⃗

∏

j≤n

dxj
−
∑

x⃗,y⃗,µ⃗

∏
j≤n dxj

D2(n−1)
log

∏

k≤n

dxk
(4.32)

=n(logD2 −
∑

x

d2x log dx
D2

)− logD2 (4.33)

=nS[C]− logD2 (4.34)

where Lemmas 4.2 and 4.3 are applied to the left and right terms of line (4.32), respectively, and

S[C] := logD2 −
∑

x

d2x log dx
D2

. (4.35)

It is straightforward to check that this holds on each sub-region of R.

Applying Lemma 4.5 to the regions in Fig. 4.2a completes the proof of Thm. 4.1.

4.5.2 Walker-Wang models

In this section, we prove the following result for the bulk diagnostic for Walker-Wang models. The

essential arguments in this section were made in Ref. [166], however we use slightly different language

that allows the result to be applied more generally.
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Theorem 4.2. For a Walker-Wang model defined by a unitary premodular category C, the topological

entanglement entropy (defined using the regions in Fig. 4.3) in the bulk is given by

δ =
∑

c,λc

λc
D2

log
λc
dc
, (4.36)

where {λc} are the eigenvalues of S†cSc, and Sc is the connected S-matrix (Eq. (4.2)).

Proof. In simply connected regions, the arguments from Lemma 4.5 still hold. The other type of region

in Fig. 4.2a is a torus. In this case, we cannot simply decompose the ground state as in Eq. (4.26),

with the sum over configurations on the interface. Recall that the reason we could do this for a simple

region was ground states are created by inserting closed loops, and all closed loops except those

crossing the interface can be added entirely within either R or Rc. This is not the case for a toroidal

region. Consider, for example, the configuration depicted in Fig. 4.7. The closed string inside R (red,

dashed) cannot be altered by acting entirely within R, so contributes additional entanglement to the

ground state, which is not witnessed by the interface configuration. Additionally, the two loops may

be connected by a string, such that the global charge is trivial. Therefore, unlike for simply connected

regions, the net charge crossing the boundary is not necessarily trivial. With these considerations, we

can decompose the ground state as

|ψ⟩ =
∑

x⃗,y⃗,µ⃗
c,a,α,b,β

Φx⃗,y⃗,µ⃗,c

[Sc](b,β)(a,α)
D

∣∣∣ψx⃗,y⃗,µ⃗,c,a,α
R

〉 ∣∣∣ψx⃗,y⃗,µ⃗,c,b,β
Rc

〉
, (4.37)

where Sc is the connected S-matrix defined in Eq. (4.2). The indices x⃗, y⃗, µ⃗ are as in Eq. (4.26),

b labels the loop encircling R, while a is the loop within R, and c is the total charge crossing the

boundary (the top label in Eq. (4.16)). The reduced state on R is

ρR =
∑

x⃗,y⃗,µ⃗
a1,α1,a2,α2,c

Pr[x⃗, y⃗, µ⃗|c]
D2

[
S†cSc

]
(a2,α2)(a1,α1)

∣∣∣ψx⃗,y⃗,µ⃗,a1,α1,c
R

〉〈
ψx⃗,y⃗,µ⃗,a2,α2,c
R

∣∣∣ (4.38)

=
∑

x⃗,y⃗,µ⃗
a1,α1,a2,α2,c

∏
j≤n dxj

dcD2n

[
S†cSc

]
(a2,α2)(a1,α1)

∣∣∣ψx⃗,y⃗,µ⃗,a1,α1,c
R

〉〈
ψx⃗,y⃗,µ⃗,a2,α2,c
R

∣∣∣ . (4.39)

To compute the entropy of this state, it is convenient to diagonalize it. Denote the eigenvalues of S†cSc
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Figure 4.7: When the region R is not simply connected, the computation of entropy is more subtle. There
is additional entanglement in the system due to intersecting loops that cannot be created in R or Rc

separately. This is not witnessed by the configuration of strings on the interface.

by {λc}. By a unitary change of basis, we have

UρRU
† =

∑

x⃗,y⃗,µ⃗,
c,λc

∏
j≤n dxj

dcD2n
λc

∣∣∣φx⃗,y⃗,µ⃗,c
λc

〉〈
φx⃗,y⃗,µ⃗,c
λc

∣∣∣ , (4.40)

with von Neumann entropy

SR = nS[C]−
∑

c,λc

λc
D2

log
λc
dc
, (4.41)

where Lemmas 4.1 to 4.3 are used. Combining with Lemma 4.5 completes the proof.

Conjecture 4.1. Let C be a unitary premodular category C, and define the connected S-matrix via

its matrix elements

[Sc](a,α),(b,β) =
1

D bab̄ā

β

α
c

c̄ . (4.42)

The connected S-matrix obeys

∑

c,λc

λc
D2

log
λc
dc

= logD2
Z2(C), (4.43)

where {λc} are the eigenvalues of S†cSc, and Z2(C) is the Müger center of C.

We conjecture that Eq. (4.43) holds in general, however we are currently unable to compute the

spectrum of Sc beyond the families outlined in Thm. 4.3.
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Theorem 4.3. For a Walker-Wang model defined by a unitary premodular category of one of the

following types:

• C = A⊠ B, where A is symmetric and B is modular [166],

• C pointed,

• rk(C) < 6 and multiplicity free,

• rk(C) = rk(Z2(C)) + 1 and dx = DZ2(C), where x is the additional object (as a special case, C is

a Tambara-Yamagami category [189,190]),

then Eq. (4.43) holds. As a consequence, the topological entanglement entropy (defined using the

regions in Fig. 4.3) in the bulk is given by

δ = logD2
Z2(C), (4.44)

where Z2(C) is the Müger center of C. As special cases, this includes

δmodular = 0 (4.45)

δsymmetric = logD2 (4.46)

We conjecture that Eq. (4.44) holds in generality. Physically, this is seen by noting that the particle

content of the bulk Walker-Wang model is given by the Müger center Z2(·) [191].

Proof. Provided in Appendix 4.B.

Examples. Recall the examples from Sect. 2.5. As discussed in Sect. 4.3.3, these label four distinct

loop-gas models in (3+1)-dimensions, the bosonic and fermionic toric code models, and two semion

models. All four input categories are pointed, so we can apply Thm. 4.3 to obtain the topological

entanglement entropy. The first two models are symmetric, so δ = log 2 for both. The inputs to the

semion models are modular, so the bulk is trivial [55]. In this case δ = 0.

4.6 Boundary entropy of topological loop-gasses

We now turn to the computation of the boundary diagnostics from Sect. 4.4. As before, we begin

with Levin-Wen models.
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4.6.1 Levin-Wen models

Theorem 4.4 (Topological entropy of (2+1)-dimensional Levin-Wen models at a boundary).

Consider the regions shown in Fig. 4.2b. The Levin-Wen model defined by unitary spherical fusion

category C, with boundary specified by an indecomposable Q-system A ∈ C has boundary entropy

Γ = logD2, (4.47)

where D is the total quantum dimension of C.

Examples. Recall the examples from Sect. 2.5. As discussed in Sect. 4.3.3, these label two distinct

loop-gas models in (2+1)-dimensions, the toric code, and the double semion. The toric code has

two possible boundary conditions, while the double semion only allows for the trivial boundary. All

boundaries have Γ = log 2.

Recall that a boundary for a Levin-Wen model defined by C is specified by an algebra object A ∈ C.

The algebra encodes the strings that can terminate on the boundary. This interpretation leads us to

the following lemma.

Lemma 4.6 (Entropy of (union of) simply connected regions, with boundary). On a region R con-

sisting of the disjoint union of simply connected sub-regions, the entropy is

SR = nS[C] + b1
2
log dA − b0 logD2, (4.48)

where b0 is the number of disjoint interface components of R, b1 is the number of points where the

entanglement surface intersects the physical boundary, and n is the number of links crossing the

entanglement interface.

Proof. Consider a ball R with n sites along the interface, which is in contact with the boundary.

Recall that in the bulk, the fusion of the strings crossing the boundary was required to be 1. In the

presence of the boundary, this conservation rule is modified, since loops can terminate. All that is
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now required is that the fusion is in A

x1 x2 x3 x4 xn−1 xn

a ∈ A

y1

y2

yn−2

µ1

µ2

µ3

µn−2

, (4.49)

The ground state can be decomposed as

|ψ⟩ =
∑

x⃗,y⃗,µ⃗
a∈A

Φx⃗,y⃗,µ⃗,a

∣∣∣ψx⃗,y⃗,µ⃗,a
R

〉 ∣∣∣ψx⃗,y⃗,µ⃗,a
Rc

〉
. (4.50)

As before, the state
∣∣∣ψx⃗,y⃗,µ⃗,a

R

〉
includes any state that can be reached from Eq. (4.49) by acting only

on R. The reduced state on R is

ρR =
∑

x⃗,y⃗,µ⃗
a∈A

|Φx⃗,y⃗,µ⃗,a|2
∣∣∣ψx⃗,y⃗,µ⃗,a

R

〉〈
ψx⃗,y⃗,µ⃗,a
R

∣∣∣ (4.51)

=
∑

x⃗,y⃗,µ⃗
a∈A

Pr[x⃗, y⃗, µ⃗|a] Pr[a]
∣∣∣ψx⃗,y⃗,µ⃗,a

R

〉〈
ψx⃗,y⃗,µ⃗,a
R

∣∣∣ , (4.52)

where Pr[x⃗, y⃗, µ⃗|a] is the probability of the labeled tree, given that x⃗ fuses to a, and Pr[a ∈ A] = da/dA.

Therefore,

ρR =
∑

x⃗,y⃗,µ⃗
a∈A

∏
j≤n dxj

D2(n−1)dA

∣∣∣ψx⃗,y⃗,µ⃗,a
R

〉〈
ψx⃗,y⃗,µ⃗,a
R

∣∣∣ . (4.53)

Applying Lemmas 4.2 and 4.3 completes the proof for this region. It is straightforward to check that

this holds on each sub-region of R, where Lemma 4.5 is used for any bulk sub-region.

Applying Lemma 4.6 to the regions in Fig. 4.2b completes the proof of Thm. 4.4.

We can make sense of this halving of the entropy by considering folding the plane. Suppose we

fold the model in Fig. 4.2a so that it resembles Fig. 4.2b. This turns the bulk of a model defined

by C to a boundary of a model labeled by C ⊠ Cop. The quantum dimension of the folded theory is

DC⊠Cop = D2
C , so the bulk diagnostic for C matches the boundary diagnostic computed for this folded
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Figure 4.8: When the region R is in non-simple contact with a boundary on which strings can terminate,
the computation of entropy is more subtle. There is additional entanglement in the system due to
intersecting loops that cannot be created in R (red, dashed) or Rc (blue, dotted) separately. The red
(internal) strings can terminate on the boundary. Also, the blue loop can emit a string which can terminate
on the boundary.

theory.

4.6.2 Walker-Wang models

In (3+1)-dimensions, just like in (2+1)-dimensions, strings can terminate at the boundary. In addition,

loops can interlock as discussed in Sect. 4.5.2. In the vicinity of the boundary, these two effects can

occur simultaneously as depicted in Fig. 4.8.

For simply connected regions in contact with a boundary, we can apply Lemma 4.6, replacing b1/2

with the number of lines where the region contacts the physical boundary. By applying the results so

far, it is straightforward to check that the two diagnostics Eq. (4.13) and Eq. (4.14) are related by

∆◦ = ∆• + log d2A − logD2, (4.54)

so we only need to consider ∆•. We are currently unable to compute this in general, however in this

section we prove the following results:

Theorem 4.5. For a Walker-Wang model defined by a unitary premodular category C, the entropy

diagnostic ∆• for a boundary labeled by an indecomposable, commutative Q-system A is given by

∆• =





logD2 A = 1,

logD2 − log dA C symmetric,

logD2 − 2 log dA C pointed and Z2(C) ∩A = {1}. In particular C modular.

logD2 − log dA C pointed and Z2(C) ∩A = A.

(4.55)

Examples. Recall the examples from Sect. 2.5. As discussed in Sect. 4.3.3, these label four distinct
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loop-gas models in (3+1)-dimensions, the bosonic and fermionic toric code models, and two semion

models. All four input categories are pointed, so we can apply Thm. 4.5 to obtain the boundary

topological entanglement entropy.

The bosonic toric code is compatible with two distinct gapped boundary conditions, labeled by

A0 and A1 (see Sect. 2.5), with dA0
= d1 = 1, and dA1

= d1 + dx = 2. Since the input category

is symmetric, Z2(C) ∩ Ai = Ai, so the entropy diagnostics are ∆•(A0) = log 2 − log 1 = log 2 and

∆•(A1) = log 2− log 2 = 0.

For the remaining examples, only the boundary labeled by A0 is compatible, and ∆• = log 2 in all

cases.

Proof. To capture configurations like the one in Fig. 4.8, we need new boundary S-matrices resembling

1

D
a0b0a1b1

d

c c̄

, (4.56)

where the dots indicate where a string meets the boundary. We use boundary retriangulation invari-

ance, as defined in Refs. [150,151] to evaluate this diagram on the ground space. Using this, we define

the new S-matrix elements as

[Sc,d](b0,b1),(a0,a1)
:=

md̄
a1,a0

(da0
da1

dd)1/4dAD
a0b0a1b1

d d̄

c c̄

, (4.57)

where a0, a1, d ∈ A and b0, b1, c ∈ C. With this, the ground state can be written

|ψ⟩ =
∑

x⃗,y⃗,µ⃗
c,b0,b1∈C
d,a0,a1∈A

Φx⃗,y⃗,µ⃗,c

[Sc,d](b0,b1),(a0,a1)

NA

∣∣∣ψx⃗,y⃗,µ⃗,c,a0,a1

R

〉 ∣∣∣ψx⃗,y⃗,µ⃗,c,b0,b1,d
Rc

〉
, (4.58)

where NA is a normalizing factor. The reduced state on R is

ρR =
∑

x⃗,y⃗,µ⃗
c∈C

d,a0,a1,a2,a3∈A

∏
j≤n dxj

[
S†c,dSc,d

]
(a2,a3),(a0,a1)

dcD2(n−1)NA

∣∣∣ψx⃗,y⃗,µ⃗,c,a0,a1

R

〉〈
ψx⃗,y⃗,µ⃗,c,a2,a3

R

∣∣∣ . (4.59)
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A = 1

When the algebra is trivial, no strings can terminate. In that case, S†1,1S1,1 = 1, so the reduced state

is

ρR =
∑

x⃗,y⃗,µ⃗

∏
j≤n dxj

D2(n−1)

∣∣∣ψx⃗,y⃗,µ⃗
R

〉〈
ψx⃗,y⃗,µ⃗
R

∣∣∣ , (4.60)

which is diagonal and has entropy

SR = nS[C]− logD2. (4.61)

C symmetric

When C is symmetric, the rings in Eq. (4.57) separate, so

[Sc,d](b0,b1),(a0,a1)
=δc=d

√
db0db1

(da0
da1

)1/4md̄
a1,a0

d
1/4
d d2AD

, (4.62)

[
S†c,dSc,d

]
(a2,a3),(a0,a1)

=δc=d

∑

b0,b1

Nd
b0b1

db0db1√
dd

(da0da1da2da3)
1/4

md̄
a1,a0

(
md̄

a3,a2

)∗

d4AD2
(4.63)

=δc=d(da0da1da2da3)
1/4
√
dd
md̄

a1,a0

(
md̄

a3,a2

)∗

d2A
. (4.64)

It can readily be verified that this matrix is rank 1. The eigenvalue can be found using Eq. (4.5),

giving λ = dd/dA. We can therefore write the state on R as

ρR =
∑

x⃗,y⃗,µ⃗
c∈C
d∈A

δc=d

∏
j≤n dxj

D2(n−1)dA

∣∣∣ψx⃗,y⃗,µ⃗,c
R

〉〈
ψx⃗,y⃗,µ⃗,c
R

∣∣∣ (4.65)

=
∑

x⃗,y⃗,µ⃗
c∈A

∏
j≤n dxj

D2(n−1)dA

∣∣∣ψx⃗,y⃗,µ⃗,c
R

〉〈
ψx⃗,y⃗,µ⃗,c
R

∣∣∣ . (4.66)

Using Lemmas 4.2 and 4.3, we find that the entropy of this state is

SR = nS[C]− logD2 + log dA. (4.67)
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C pointed

When all quantum dimensions are equal to 1, the boundary S-matrix is

[Sc,d](b0,b1),(a0,a1)
=δc=d

md̄
a1,a0

dA
[S1]b0,ā1

, (4.68)

where [S1]b0,a1
is the S-matrix from Eq. (4.2). This gives

[
S†c,dSc,d

]
(a2,a3),(a0,a1)

= δc=d

md̄
a1,a0

(md̄
a3,a2

)∗

d2A

∑

b0

[S1]∗b0,ā3
[S1]b0,ā1

. (4.69)

Using Lemmas 2.4 and 2.13 of Ref. [174], this can be simplified to

[
S†c,dSc,d

]
(a2,a3),(a0,a1)

= δc=d

md̄
a1,a0

(md̄
a3,a2

)∗

d2A
δa3⊗ā1∈Z2(C). (4.70)

Pointed braided categories have fusion rules given by an Abelian group G [169,192], and algebras

are twisted group algebras [193, 194] of subgroups of G. Moreover, Z2(C) also has fusion rules given

by a subgroup.

Since a3 ⊗ ā1 ∈ A and a3 ⊗ ā1 ∈ Z2(C), there must be some h ∈ Z2(C) ∩ A so that a3 = a1h. We

can then write

ρR =
∑

x⃗
d,a∈A

h∈Z2(C)∩A

md−1

a,(ad)−1(md−1

ah,(ahd)−1)∗

d2AD2(n−1)NA

∣∣∣ψx⃗,d,a
R

〉〈
ψx⃗,d,ah
R

∣∣∣ . (4.71)

In the case that Z2(C) ∩ A = A, this reduces to the symmetric case, since summing over h ∈ A is

the same as summing over A ∋ h′ = ah.

When Z2(C) ∩A = {1}, the unit, the reduced state on R simplifies to

ρR =
∑

x⃗
d,a∈A

md−1

a,(ad)−1(md−1

a,(ad)−1)∗

d2AD2(n−1)NA

∣∣∣ψx⃗,d,a
R

〉〈
ψx⃗,d,a
R

∣∣∣ . (4.72)
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This reduced state is diagonal, and has entropy

SR = −
∑

x⃗
d,a∈A

|md−1

a,(ad)−1 |2

D2(n−1)d2A
log

(
|md−1

a,(ad)−1 |2

D2(n−1)d2A

)
(4.73)

= −
∑

x⃗
d,a∈A

|md−1

a,(ad)−1 |2

D2(n−1)d2A
log
(
|md−1

a,(ad)−1 |2
)
+ log

(
D2(n−1)d2A

)
, (4.74)

where we have made use of Eq. (4.5). Since A is a twisted group algebra, we may assume |mc
ab| ∈ {0, 1}.

Finally, this gives

SR = log
(
D2(n−1)d2A

)
(4.75)

= S[C]− logD2 + 2 log dA, (4.76)

completing the proof.

4.7 Remarks

To summarize, we have evaluated the long-range entanglement in the bulk, and at the boundary,

of (2+1)- and (3+1)-dimensional topological phases. In (2+1)-dimensions, we found the entropy

diagnostic Γ = logD2 regardless of the choice of boundary algebra A. This is in contrast to the results

for (3+1)-dimensions, where a signature of the boundary, namely its dimension as an algebra, can be

seen in the diagnostics ∆• and ∆◦.

The most natural boundary for these models is defined by the algebra A = 1, which (uniquely)

always exists. At this boundary, we found that the point-like diagnostic ∆• recovers the total dimen-

sion of the input category. In particular, when C is a (2+1)-dimensional anyon model, this is consent

with a boundary that supports the anyons. Conversely, the loop-like diagnostic ∆◦ is zero at these

boundaries, ruling out loop-like excitations in the vicinity.

We have conjectured a general property of the connected S-matrix which, if proven in general,

allows computation of bulk Walker-Wang topological entropy. Such a proof may also be interesting

for the classification of premodular categories in general. To the best of our knowledge, there is no

complete classification of boundaries for Walker-Wang models. Such a classification is complicated by

requiring, as a sub-classification, a complete understanding of (2+1)-dimensional theories. This goes

beyond the scope of the current work, and we have therefore specialized to boundaries described by
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Q-systems and to particular families of input fusion category. Extending these results may provide a

more complete understanding of the possible boundary excitations and their properties.

Appendix

4.A Properties of the connected S-matrix

Proposition 4.A.1 (Premodular trap). Let C be a unitary premodular category, then

1

D2

∑

a

da a

x y

=
∑

z∈Z2(C),µ

√
dz
dxdy

x y

x y

z
µ
µ

. (4.77)

Proof. This is a slight generalization of Prop. 3.1 of Ref. [195], following from Lemmas 2.4 and 2.13

of Ref. [174].

Lemma (4.1). Let C be a unitary premodular category, then

∑

c∈C
TrS†cSc = D2, (4.78)

where Sc is the connected S-matrix and D is the total dimension of C.

Proof. The operator Sc acts on the fusion spaces as [12]

Sc
c

b b̄

β
=

√
dc
D
∑

x

dx

β

b̄

xx̄

c

. (4.79)
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Using Eq. (4.79), we have

∑

c

TrS†cSc =
∑

a,α,c

[
S†cSc

]
(a,α),(a,α)

(4.80)

=
∑

a,α,c

√
dc
D2

∑

x

dx
aā x

α

α
c

c̄
(4.81)

=
∑

a,α,c

√
dc
D2

∑

x

dx
aā x

α

α

c

, (4.82)

using the properties of the trace. Applying the premodular trap (Proposition 4.A.1), this gives

∑

c

TrS†cSc =
∑

a,α,c,
z∈Z2(C),µ

√
dcdz
d2a

z

µ

µ

c

α

α
ā

ā

a

a

(4.83)

=
∑

a,z∈Z2(C),µ

√
dz z

µ

µ

(4.84)

=
∑

a,z∈Z2(C),µ
|κa|2δz=1d

2
a (4.85)

= D2, (4.86)

where κa is the Frobenius-Schur indicator [12].
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4.B Loop-gas results

In this section, given a fusion category C, an n-tuple of simple objects x⃗n := (x1, x2, . . . , xn), and a

fixed simple object a, we use the notation

Na(x⃗n) :=
∑

y⃗n−2

Ny1
x1,x2

Ny2
y1,x3

. . . Na
yn−2,xn

, (4.87)

where y⃗n−2 := (y1, y2, . . . , yn−2), and the sum is over all tuples of simple objects in C. Na(x⃗n) counts

the number of ways x⃗n can fuse to a. When it can easily be inferred, we omit the subscript on the

tuple x⃗.

Lemma (4.2). Let C be a unitary fusion category, then

∑

x⃗n

Na(x⃗n)
∏

j≤n

dxj
= daD2(n−1), (4.88)

where D =
√∑

a d
2
a is the total quantum dimension of C.

Proof. We proceed inductively.

When n = 1, Na(x) = δx=a = Na
1,x, and Eq. (4.88) reduces to da = da.

Assume Eq. (4.88) holds for the fusion of n objects. Recall that or any fusion category, we have

dadb =
∑

c

Na
bcdc, (4.89)

and this holds for any cyclic permutation of the indices on Na
bc. We now obtain

∑

x⃗n+1

Na(x⃗n+1)
∏

j≤n+1

dxj =
∑

x⃗n,yn−1

Nyn−1(x⃗n)
∏

j≤n

dxj

∑

xn+1

Na
yn−1,xn+1

dxn+1 (4.90)

= D2(n−1)
∑

xn+1,yn−1

Na
yn−1,xn+1

dyn−1
dxn+1

(4.91)

= D2(n−1)da
∑

yn−1

d2yn−1
(4.92)

= daD2n, (4.93)

where in the second line we used the induction assumption (Eq. (4.88)), and in the third line we used

Eq. (4.89).
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Lemma (4.3). Let C a unitary fusion category. For the fusion of n objects x⃗ = (x1, x2, . . . , xn), with

n > 1, we have

∑

x⃗n

Na(x⃗n)

∏
j≤n dxj

D2(n−1)
log

∏

k≤n

dxk
= nda

∑

x

d2x log dx
D2

. (4.94)

Proof. We prove the claim inductively. The base case is when n = 2.

∑

x1,x2

Na
x1,x2

dx1
dx2

D2
(log dx1

+ log dx2
) =

∑

x1,x2

Na
x1,x2

dx1
dx2

D2
log dx1

+
∑

x1,x2

Na
x1,x2

dx1
dx2

D2
log dx2

(4.95)

= da
∑

x1

d2x1

D2
log dx1

+ da
∑

x2

d2x2

D2
log dx2

(4.96)

= 2da
∑

x

d2x log dx
D2

. (4.97)

Assume Eq. (4.94) holds for n-tuples, then

∑

x⃗n,xn+1

Na(x⃗n+1)

∏
j≤n+1 dxj

D2n
log

∏

k≤n+1

dxk
=

∑

x⃗n
yn−1,xn+1

Nyn−1
(x⃗n)N

a
yn−1,xn+1

∏
j≤n dxj

D2n
dxn+1

log


∏

k≤n

dxk
dn+1




(4.98)

=
∑

x⃗n
yn−1,xn+1

Nyn−1
(x⃗n)

∏
j≤n dxj

D2n
Na

yn−1,xn+1
dxn+1


log

∏

k≤n

dxk
+ log dxn+1


 (4.99)

= n
∑

x

d2x log dx
D2

∑

yn−1,xn+1

Na
yn−1,xn+1

dyn−1
dxn+1

D2
+

∑

yn−1,xn+1

Na
yn−1,xn+1

dyn−1
dxn+1

log dxn+1

D2

(4.100)

= nda
∑

x

d2x log dx
D2

∑

xn+1

d2xn+1

D2
+ da

∑

xn+1

d2xn+1
log dxn+1

D2
(4.101)

= (n+ 1)da
∑

x

d2x log dx
D2

. (4.102)

Lemma (4.B). Let C a unitary fusion category. Given a fixed fusion outcome a on n simple objects,
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the probability of the tree

x1 x2 x3 x4 xn−1 xn

a

y1

y2

yn−2

µ1

µ2

µ3

µn−2

, (4.103)

in the ground state of a topological loop-gas (Levin-Wen or Walker-Wang) model is

Pr[x⃗, y⃗, µ⃗|a] =
∏

j≤n Pr[xj ]

Pr[a]
∏

k≤n dxk

da (4.104)

=

∏
j≤n dxj

daD2(n−1)
. (4.105)

Proof. Given a pair of objects a, b, the probability that they fuse to c is given by [166,196]

Pr[a⊗ b→ c] =
N c

abdc
dadb

, (4.106)

so the probability that x1 ⊗ x2 ⊗ . . .⊗ xn → a is

Pr[x1 ⊗ x2 ⊗ x3 ⊗ . . .⊗ xn → a] =
∑

y⃗

Pr[x1 ⊗ x2 → y1] Pr[y1 ⊗ x3 → y2] · · ·Pr[yn−2 ⊗ xn → a]

(4.107)

=
Na(x⃗)∏
j≤n dxj

da, (4.108)

where

Na(x⃗) :=
∑

y⃗

Ny1
x1x2

Ny2
y1x3

. . . Na
yn−2xn

(4.109)

=
∑

y⃗

Na(x⃗, y⃗). (4.110)
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The probability of a configuration is

Pr[x⃗, y⃗|a] = Pr[x1 ⊗ x2 ⊗ x3 ⊗ . . .⊗ xn → a]

∏
j≤n Pr[xj ]

Pr[a]
(4.111)

=
Na(x⃗, y⃗)da∏

k≤n dxk

∏
j≤n Pr[xj ]

Pr[a]
, (4.112)

where Pr[xi] = d2xi
/D2. For a fixed x⃗ and y⃗, all (allowed) µ⃗ are equally likely, and there are Na(x⃗, y⃗)

such configurations, so

Pr[x⃗, y⃗, µ⃗|a] =
∏

j≤n Pr[xj ]

Pr[a]
∏

k≤n dxk

da (4.113)

=

∏
j≤n dxj

daD2(n−1)
. (4.114)

Lemma 4.2 can be used to show these are properly normalized.

Theorem (4.3). For a Walker-Wang model defined by a unitary premodular category of one of the

following types:

1. C = A⊠ B, where A is symmetric and B is modular [166],

2. C pointed,

3. rk(C) < 6 and multiplicity free,

4. rk(C) = rk(Z2(C)) + 1 and dx = DZ2(C), where x is the additional object,

then Eq. (4.43) holds. As a consequence, the topological entanglement entropy (defined using the

regions in Fig. 4.3) in the bulk is given by

δ = logD2
Z2(C). (4.115)

As special cases, this includes

δmodular = 0 (4.116)

δsymmetric = logD2 (4.117)

Proof.
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4.B.1 Case 1

Using the premodular trap (Proposition 4.A.1), we have the matrix elements of S†cSc

[
S†cSc

]
(a,α),(b,β)

=

√
dc
dadb

∑

x∈Z2(C),µ

√
dx

µ

µ
x bā

α

β

c̄

a

b̄

. (4.118)

If C is symmetric, Z2(C) = C, and

[
S†cSc

]
(a,α),(b,β)

= δc=1dadb. (4.119)

This matrix is rank 1, with eigenvalue D2. If C is modular, Z2(C) = Vec, and

[
S†cSc

]
(a,α),(b,β)

= δa=bδα=βδā⊗a=cdc. (4.120)

For fixed c, this matrix is rank
∑

cN
c
ā,a, with all eigenvalues equal to dc.

4.B.2 Case 2

If C is pointed (every simple object has dimension 1), then Sc = 0 unless c = 1. In this case, the

fusion rules are given by a finite Abelian group A [169,192], and Z2(C) = A′ has fusion rules given by

a subgroup. From Lemmas 2.4 and 2.13 of Ref. [174], along with symmetries of the S1 matrix proven

in Ref. [12] we know that

[
S†1S1

]
ab

=
∑

c∈Z2(C)
N c

ab̄dc, (4.121)

so

[
S†1S1

]
ab

= 1 ⇐⇒ a ∈ bA′. (4.122)
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Therefore, [S†1S1] is a block matrix, with [A : A′] = |A|/|A′| blocks, labeled by the cosets of A′, each

full of ones. Therefore, there are [A : A′] eigenvalues, identically D2
Z2(C). The entropy is given by

δ = logD2
Z2(C). (4.123)

4.B.3 Case 3

Case 3 is proven explicitly in the Mathematica file provided with the chapter Ref. [197]. Classification

of the fusion rings for ranks 2-5 can be found in Ref. [195,198–201], along with Ref. [202]. Additionally,

all multiplicity free fusion rings for ranks 1-6 can be found at Ref. [203]. From this, explicit F and

R data can be found. The list of categories, along with their properties, is included beginning on

Page 165.

4.B.4 Case 4

It is straightforward to check that if a or b are in Z2(C), then

[
S†cSc

]
(a,α),(b,β)

= δc=1dadbδa∈Z2(C)δb∈Z2(C), (4.124)

so S†cSc has the form

[S†cSc] =




Z2(C)

Z2(C) dadbδc=1 0

0 Xc


 = U




Z2(C)

Z2(C)

D2
Z2(C)δc=1 0 · · ·

0 0 · · ·
...

...
. . .

0

0 X̃c



U†. (4.125)

From the top left block, we have an eigenvector of S†1S1 with entries va = δa∈Z2(C)da with eigenvalue

D2
Z2(C). From Lemmas 2.4 and 2.13 of Ref. [174], along with symmetries of the S1 matrix proven in

Ref. [12] we know that

[
S†1S1

]
ab

=
∑

c∈Z2(C)
N c

ab̄dc. (4.126)
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The vector with entries wa = da is also an eigenvector with the same eigenvalue:

∑

b∈C

∑

c∈Z2(C)
N c

ab̄dcdb =
∑

c∈Z2(C)
dad

2
c (4.127)

= D2
Z2(C)da, (4.128)

so we have an orthogonal vector w − v with eigenvalue D2
Z2(C).

If rk(C) = rk(Z2(C)) + 1 and the additional object has dx = DZ2(C), then all other eigenvalues

must be 0 since TrS†1S1 = 2D2
Z2(C) and D

2 = D2
Z2(C) + d2x. The entropy of the Walker-Wang model in

the bulk is

δ = logD2
Z2(C). (4.129)

4.B.5 Small category data

Data for small categories. “Valid” indicates that the pentagon, hexagon, and ribbon equations, along

with unitarity, are true. “TY” indicates that the category has the property defined in Case 4 of

Thm. 4.3.

Full data, including explicit F and R symbols is provided in the attached Mathematica files, also

available at Ref. [197]. Note that these may take a very long time to check. This is due to the

complicated algebraic integers occurring, and Mathematica needing to simplify using the functions

“Simplify” and “RootReduce”.

Categories are named FRa,b
c;x according to their fusion ring FRa,b

c from Ref. [203], along with their

categorification ID x. Highlighted categories do not fall within any of the other cases in Thm. 4.3.



Cat. ID Rank D2 Valid rk(Z2(C)) Premodular? Pointed? TY? TEE logD2
Z2(C) Conjecture true?

FR2,0
1;0 2 2 3 2 Symm. 3 log 2 log 2 3

FR2,0
1;1 2 2 3 1 Mod. 3 3 0 0 3

FR2,0
1;2 2 2 3 2 Symm. 3 log 2 log 2 3

FR2,0
1;3 2 2 3 1 Mod. 3 3 0 0 3

FR2,0
2;0 2 1

2

�p
5 + 5

�
3 1 Mod. 0 0 3

FR2,0
2;1 2 1

2

�p
5 + 5

�
3 1 Mod. 0 0 3

FR3,0
1;0 3 4 3 1 Mod. 0 0 3

FR3,0
1;1 3 4 3 1 Mod. 0 0 3

FR3,0
1;2 3 4 3 1 Mod. 0 0 3

FR3,0
1;3 3 4 3 1 Mod. 0 0 3

FR3,0
1;4 3 4 3 1 Mod. 0 0 3

FR3,0
1;5 3 4 3 1 Mod. 0 0 3

FR3,0
1;6 3 4 3 1 Mod. 0 0 3

FR3,0
1;7 3 4 3 1 Mod. 0 0 3

FR3,0
2;0 3 6 3 3 Symm. log 6 log 6 3

FR3,0
2;1 3 6 3 2 3 log 2 log 2 3

FR3,0
2;2 3 6 3 2 3 log 2 log 2 3

FR3,0
3;0 3 ⇠ 9.30 3 1 Mod. 0 0 3

FR3,0
3;1 3 ⇠ 9.30 3 1 Mod. 0 0 3

FR3,2
1;0 3 3 3 3 Symm. 3 log 3 log 3 3

FR3,2
1;1 3 3 3 1 Mod. 3 0 0 3

FR3,2
1;2 3 3 3 1 Mod. 3 0 0 3



Cat. ID Rank D2 Valid rk(Z2(C)) Premodular? Pointed? TY? TEE logD2
Z2(C) Conjecture true?

FR4,0
1;0 4 4 3 4 Symm. 3 log 4 log 4 3

FR4,0
1;1 4 4 3 1 Mod. 3 0 0 3

FR4,0
1;2 4 4 3 4 Symm. 3 log 4 log 4 3

FR4,0
1;3 4 4 3 1 Mod. 3 0 0 3

FR4,0
1;4 4 4 3 2 3 3 log 2 log 2 3

FR4,0
1;5 4 4 3 2 3 3 log 2 log 2 3

FR4,0
1;6 4 4 3 2 3 3 log 2 log 2 3

FR4,0
1;7 4 4 3 2 3 3 log 2 log 2 3

FR4,0
1;8 4 4 3 4 Symm. 3 log 4 log 4 3

FR4,0
1;9 4 4 3 1 Mod. 3 0 0 3

FR4,0
1;10 4 4 3 4 Symm. 3 log 4 log 4 3

FR4,0
1;11 4 4 3 1 Mod. 3 0 0 3

FR4,0
1;12 4 4 3 2 3 3 log 2 log 2 3

FR4,0
1;13 4 4 3 2 3 3 log 2 log 2 3

FR4,0
1;14 4 4 3 2 3 3 log 2 log 2 3

FR4,0
1;15 4 4 3 2 3 3 log 2 log 2 3

FR4,0
1;16 4 4 3 1 Mod. 3 0 0 3

FR4,0
1;17 4 4 3 2 3 3 log 2 log 2 3

FR4,0
1;18 4 4 3 1 Mod. 3 0 0 3

FR4,0
1;19 4 4 3 2 3 3 log 2 log 2 3

FR4,0
1;20 4 4 3 1 Mod. 3 0 0 3

FR4,0
1;21 4 4 3 1 Mod. 3 0 0 3

FR4,0
1;22 4 4 3 1 Mod. 3 0 0 3

FR4,0
1;23 4 4 3 1 Mod. 3 0 0 3

FR4,0
1;24 4 4 3 1 Mod. 3 0 0 3

FR4,0
1;25 4 4 3 2 3 3 log 2 log 2 3

FR4,0
1;26 4 4 3 1 Mod. 3 0 0 3

FR4,0
1;27 4 4 3 2 3 3 log 2 log 2 3

FR4,0
1;28 4 4 3 1 Mod. 3 0 0 3

FR4,0
1;29 4 4 3 1 Mod. 3 0 0 3

FR4,0
1;30 4 4 3 1 Mod. 3 0 0 3

FR4,0
1;31 4 4 3 1 Mod. 3 0 0 3

FR4,0
2;0 4

p
5 + 5 3 2 3 log 2 log 2 3

FR4,0
2;1 4

p
5 + 5 3 1 Mod. 0 0 3

FR4,0
2;2 4

p
5 + 5 3 2 3 log 2 log 2 3

FR4,0
2;3 4

p
5 + 5 3 1 Mod. 0 0 3

FR4,0
2;4 4

p
5 + 5 3 2 3 log 2 log 2 3

FR4,0
2;5 4

p
5 + 5 3 1 Mod. 0 0 3

FR4,0
2;6 4

p
5 + 5 3 2 3 log 2 log 2 3

FR4,0
2;7 4

p
5 + 5 3 1 Mod. 0 0 3

FR4,0
3;0 4 10 3 4 Symm. log 10 log 10 3

FR4,0
3;1 4 10 3 2 3 log 2 log 2 3

FR4,0
3;2 4 10 3 2 3 log 2 log 2 3

FR4,0
3;3 4 10 3 2 3 log 2 log 2 3

FR4,0
3;4 4 10 3 2 3 log 2 log 2 3

FR4,0
4;0 4 4

p
2 + 8 3 2 3 log 2 log 2 3

FR4,0
4;1 4 4

p
2 + 8 3 2 3 log 2 log 2 3

FR4,0
5;0 4 1

2

�
5
p
5 + 15

�
3 1 Mod. 0 0 3

FR4,0
5;1 4 1

2

�
5
p
5 + 15

�
3 1 Mod. 0 0 3

FR4,0
5;2 4 1

2

�
5
p
5 + 15

�
3 1 Mod. 0 0 3

FR4,0
5;3 4 1

2

�
5
p
5 + 15

�
3 1 Mod. 0 0 3

FR4,0
6;0 4 ⇠ 19.24 3 1 Mod. 0 0 3

FR4,0
6;1 4 ⇠ 19.24 3 1 Mod. 0 0 3

FR4,2
1;0 4 4 3 4 Symm. 3 log 4 log 4 3

FR4,2
1;1 4 4 3 1 Mod. 3 0 0 3

FR4,2
1;2 4 4 3 2 3 3 log 2 log 2 3

FR4,2
1;3 4 4 3 1 Mod. 3 0 0 3

FR4,2
1;4 4 4 3 4 Symm. 3 log 4 log 4 3

FR4,2
1;5 4 4 3 1 Mod. 3 0 0 3

FR4,2
1;6 4 4 3 2 3 3 log 2 log 2 3

FR4,2
1;7 4 4 3 1 Mod. 3 0 0 3



Cat. ID Rank D2 Valid rk(Z2(C)) Premodular? Pointed? TY? TEE logD2
Z2(C) Conjecture true?

FR5,0
1;0 5 8 3 2 3 log 2 log 2 3

FR5,0
1;1 5 8 3 5 Symm. log 8 log 8 3

FR5,0
1;2 5 8 3 2 3 log 2 log 2 3

FR5,0
1;3 5 8 3 5 Symm. log 8 log 8 3

FR5,0
1;4 5 8 3 2 3 log 2 log 2 3

FR5,0
1;5 5 8 3 4 3 3 log 4 log 4 3

FR5,0
1;6 5 8 3 2 3 log 2 log 2 3

FR5,0
1;7 5 8 3 4 3 3 log 4 log 4 3

FR5,0
1;8 5 8 3 2 3 log 2 log 2 3

FR5,0
1;9 5 8 3 4 3 3 log 4 log 4 3

FR5,0
1;10 5 8 3 2 3 log 2 log 2 3

FR5,0
1;11 5 8 3 4 3 3 log 4 log 4 3

FR5,0
1;12 5 8 3 2 3 log 2 log 2 3

FR5,0
1;13 5 8 3 5 Symm. log 8 log 8 3

FR5,0
1;14 5 8 3 2 3 log 2 log 2 3

FR5,0
1;15 5 8 3 5 Symm. log 8 log 8 3

FR5,0
1;16 5 8 3 2 3 log 2 log 2 3

FR5,0
1;17 5 8 3 5 Symm. log 8 log 8 3

FR5,0
1;18 5 8 3 2 3 log 2 log 2 3

FR5,0
1;19 5 8 3 2 3 log 2 log 2 3

FR5,0
1;20 5 8 3 4 3 3 log 4 log 4 3

FR5,0
1;21 5 8 3 2 3 log 2 log 2 3

FR5,0
1;22 5 8 3 2 3 log 2 log 2 3

FR5,0
1;23 5 8 3 4 3 3 log 4 log 4 3

FR5,0
1;24 5 8 3 2 3 log 2 log 2 3

FR5,0
1;25 5 8 3 2 3 log 2 log 2 3

FR5,0
1;26 5 8 3 5 Symm. log 8 log 8 3

FR5,0
1;27 5 8 3 2 3 log 2 log 2 3

FR5,0
1;28 5 8 3 2 3 log 2 log 2 3

FR5,0
1;29 5 8 3 2 3 log 2 log 2 3

FR5,0
1;30 5 8 3 2 3 log 2 log 2 3

FR5,0
1;31 5 8 3 2 3 log 2 log 2 3

FR5,0
1;32 5 8 3 2 3 log 2 log 2 3

FR5,0
1;33 5 8 3 2 3 log 2 log 2 3

FR5,0
1;34 5 8 3 2 3 log 2 log 2 3

FR5,0
1;35 5 8 3 2 3 log 2 log 2 3

FR5,0
1;36 5 8 3 2 3 log 2 log 2 3

FR5,0
1;37 5 8 3 2 3 log 2 log 2 3

FR5,0
1;38 5 8 3 2 3 log 2 log 2 3

FR5,0
1;39 5 8 3 2 3 log 2 log 2 3

FR5,0
1;40 5 8 3 2 3 log 2 log 2 3

FR5,0
1;41 5 8 3 2 3 log 2 log 2 3

FR5,0
1;42 5 8 3 2 3 log 2 log 2 3

FR5,0
1;43 5 8 3 2 3 log 2 log 2 3

FR5,0
1;44 5 8 3 2 3 log 2 log 2 3

FR5,0
1;45 5 8 3 2 3 log 2 log 2 3

FR5,0
1;46 5 8 3 2 3 log 2 log 2 3

FR5,0
1;47 5 8 3 2 3 log 2 log 2 3

FR5,0
1;48 5 8 3 2 3 log 2 log 2 3

FR5,0
1;49 5 8 3 2 3 log 2 log 2 3

FR5,0
1;50 5 8 3 2 3 log 2 log 2 3

FR5,0
1;51 5 8 3 2 3 log 2 log 2 3

FR5,0
1;52 5 8 3 2 3 log 2 log 2 3

FR5,0
1;53 5 8 3 5 Symm. log 8 log 8 3

FR5,0
1;54 5 8 3 4 3 3 log 4 log 4 3

FR5,0
1;55 5 8 3 4 3 3 log 4 log 4 3

FR5,0
1;56 5 8 3 5 Symm. log 8 log 8 3

FR5,0
1;57 5 8 3 2 3 log 2 log 2 3

FR5,0
1;58 5 8 3 2 3 log 2 log 2 3

FR5,0
1;59 5 8 3 2 3 log 2 log 2 3

FR5,0
1;60 5 8 3 2 3 log 2 log 2 3

FR5,0
1;61 5 8 3 2 3 log 2 log 2 3

FR5,0
1;62 5 8 3 2 3 log 2 log 2 3

FR5,0
1;63 5 8 3 2 3 log 2 log 2 3

FR5,0
3;0 5 12 3 1 Mod. 0 0 3

FR5,0
3;1 5 12 3 1 Mod. 0 0 3

FR5,0
3;2 5 12 3 1 Mod. 0 0 3

FR5,0
3;3 5 12 3 1 Mod. 0 0 3

FR5,0
3;4 5 12 3 1 Mod. 0 0 3

FR5,0
3;5 5 12 3 1 Mod. 0 0 3

FR5,0
3;6 5 12 3 1 Mod. 0 0 3

FR5,0
3;7 5 12 3 1 Mod. 0 0 3

FR5,0
4;0 5 14 3 5 Symm. log 14 log 14 3

FR5,0
4;1 5 14 3 2 3 log 2 log 2 3

FR5,0
4;2 5 14 3 2 3 log 2 log 2 3

FR5,0
4;3 5 14 3 2 3 log 2 log 2 3

FR5,0
4;4 5 14 3 2 3 log 2 log 2 3

FR5,0
4;5 5 14 3 2 3 log 2 log 2 3

FR5,0
4;6 5 14 3 2 3 log 2 log 2 3

FR5,0
6;0 5 24 3 5 Symm. log 24 log 24 3

FR5,0
6;1 5 24 3 3 3 log 6 log 6 3

FR5,0
6;2 5 24 3 5 Symm. log 24 log 24 3

FR5,0
6;3 5 24 3 3 3 log 6 log 6 3

FR5,0
7;0 5 5

p
5 + 15 3 2 3 log 2 log 2 3

FR5,0
7;1 5 5

p
5 + 15 3 2 3 log 2 log 2 3

FR5,0
10;0 5 ⇠ 34.65 3 1 Mod. 0 0 3

FR5,0
10;1 5 ⇠ 34.65 3 1 Mod. 0 0 3

FR5,4
1;0 5 5 3 5 Symm. 3 log 5 log 5 3

FR5,4
1;1 5 5 3 1 Mod. 3 0 0 3

FR5,4
1;2 5 5 3 1 Mod. 3 0 0 3

FR5,4
1;3 5 5 3 1 Mod. 3 0 0 3

FR5,4
1;4 5 5 3 1 Mod. 3 0 0 3



Chapter 5

Outlook

Over the next century, two of the greatest challenges that humanity will face are climate change and

the antibiotics crisis [204]. Studying many-body quantum systems has the potential to alleviate and

even solve both of these problems. For example, understanding mechanisms which allow for super

conductivity at low temperatures could help with with engineering new materials that operate at higher

temperatures. The ability to design and fabricate high temperature superconductors could drastically

change the energy consumption and production around the world [5]. Similarly, understanding the

subatomic physical interactions that take place when drugs interact with living cells could also allow

for more precise drug design [205, 206]. Beyond these two major challenges, many-body physics is

important for a myriad of fundamental research areas [16].

A vast majority of quantum many-body models are currently insoluble. The Hilbert space dimen-

sion of these models grows exponentially with system size, leaving the calculations necessary to solve

them intractable. There are, however, classes of models for which a tractable method of extracting a

solution is known. These models are called exactly soluble models. Exactly soluble many-body models

are important precisely because they are soluble. Furthermore, such models remain of interest even

when their exact solubility comes at the expense of the accuracy of the model’s description of a known

physical system [16]. The underlying message of this thesis is exactly this: the insight gained from

exactly soluble models reaches far beyond the scope of the specific physical system that those models

purport to describe. Through these simplistic and tractable models we are able to gain a physical

intuition that informs our understanding of universal phenomena and provide a scope with which we

can probe new physics.

This thesis considers two distinct classes of exactly soluble, quantum many-body systems to differ-
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ent ends. In the first part of this thesis, we uncover a class of models which were previously unknown

to be exactly soluble and provide a solution method as well as a criteria for the recognition of this

class. In the second part of the thesis, we study the entanglement structure of another class of models,

such a calculation is made possible due to the fact that this class of model is exactly soluble.

New solution methods are of great interest within the field of quantum many-body physics. Ar-

guably, the novelty of a solution method can be just as important as the existence of the solution itself.

Often, new methods are discovered through their application to a specific model. In many cases, the

newly developed solution method can then be modified and applied more broadly, to a larger class

of system. As such, a new solution method can expand the class of models which are known to be

exactly solvable. To this day, the discovery of the free-fermion solution for the one-dimensional Ising

model [24,28] is lauded as a wonderful piece of ingenuity and informs our understanding of free-fermion

models at large.

The standard approach to finding a free-fermion solution to a many-body spin model is the blind

application of Jordan-Wigner, followed by the identification of symmetries such that the Hamiltonian

terms are reduced to quadratic order. The success of such an approach has largely been down to

luck and intuition. The introduction of a recognition scheme [22] for many-body spin models that

admit a generalized Jordan-Wigner type free-fermion solution was therefore significant because such

a characterization reduces the guesswork for solving free-fermion models. However, not all models

that admit a free-fermion solution do so via a generator-to-generator mapping. Examples of such

models are few and far between in the literature, however, in Ref. [23], Paul Fendley solved a one-

dimensional many-body spin model that was previously considered to be interacting, by identifying

the free-fermion modes and single particle energies. The solution method is elegant and simple; the

modes are defined by sets of Hamiltonian terms which mutually commute and single-particle energies

are given by reciprocals of roots of a polynomial. The obvious questions that followed were, ‘why

does this solution work?’ and ‘when can this solution method be applied more broadly to many-body

models?’ In Chapters 2 and 3 we answer these by identifying the graph theoretic invariants that allow

for such an elegant and simple solution to work.

Graph theory has been utilized throughout the literature of quantum many-body physics, and

indeed mathematical physics at large. Notwithstanding, the application of graph theory in Chapters 2

and 3 is unique: the graphs are defined in an unusual way, being dependent on a particular Pauli

basis. In many cases, (hyper)graphs are used with vertices defined by Hilbert spaces and hyperedges
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defined by the support of the Hamiltonian terms (in a basis independent way)1 [207]; such hypergraphs

have an equivalent graph representation2 where the vertices are identified with the basis-independent

Hamiltonian terms and adjacency determined by overlap in support of those terms [208]. As in

Chapters 2 and 3, many-body models have been classified via a forbidden subgraph characterization

before [209]. However, beyond the definition of the graphs used here, there also is an inherent novelty

in the work presented as the solutions themselves are constructed using the graphical features; indeed,

it would be difficult to imagine identifying the symmetries that are identified in either chapter, but

perhaps more explicitly so those in Chapter 3, without doing so directly by their graphical structures.

Furthermore, there is scope for this to continue. It would be completely unsurprising to discover an

entirely new class of exactly soluble models that can be identified and then solved by graphical means.

In Chapter 2, we develop a general construction for finding and solving quantum lattice models

with a free-fermion structure in one spatial dimension, using exactly the method introduced by Paul

Fendley in Ref. [23]. Surprisingly, the results in Chapter 2 are neither contained within, nor do they

completely contain, the traditional qubit-to-fermion maps given by Ref. [22],. This means that not all

models which admit a free-fermion solution via a generalized Jordan-Wigner map can be solved using

the methods developed in this chapter.

This disunity between the two classes of free-fermion model is rectified in Chapter 3. Here, the

construction is expanded from one-dimensional systems to arbitrary spatial dimension. This expansion

of Fendley’s method requires the identification of a new set of ‘local’ symmetries and the modification

of the solution method. The expansion also unifies the new framework with those of more traditional

methods (Jordan-Wigner). The new classification for models which admit a free-fermion solution

is a much larger class of graphs, meaning that the class of exactly soluble models has been greatly

expanded.

As discussed in Chapter 3, the recognition condition is not conclusive, as it is not a necessary and

sufficient condition. Indeed, it is known that there are free-fermion models beyond this set of results.

Thus, one obvious avenue for further work would be to understand how these models might fit within

the framework, and attempt to find a more complete set of conditions for free-fermion solubility, which

includes those models which are non-generic. Another avenue that presents itself as interesting for

further research is the inverse problem of finding fermion-to-qubit maps; in particular, finding compact

qubit encodings for (interacting) fermon Hamiltonians. With the arrival of programmable quantum

computers seemingly becoming closer with every passing day, it seems reasonable that we might want

1A hypergraph is a graph where the edges can connect more than two vertices
2This is actually the line graph of the corresponding hypergraph
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to understand systems of interacting fermions. Simulating such systems would be made simpler if

there was an effective description of the interacting fermionic system in terms of fewer spins.

In Chapter 4, we investigated the entanglment properties of a class of models which describe

topologically ordered phases in two and three spatial dimensions. This family of models were never

intended to describe any known physical system; rather, they are interesting because they can be

solved exactly. Furthermore, this family of models capture the long-wavelength physics of topological

states of matter that are known to exist in certain laboratory settings. Thus, the models provide

a framework in which to study the physical properties of their ‘more realistic’ cousins, including

properties of their anyonic excitations and their long-range entanglement.

It is precisely this last property that we have investigated in Chapter 4, where the topological

entanglement entropy was calculated for two- and three-dimensional loop-gas models in the bulk and

in the boundary. We show that the correction to the area law of entanglement is only present in

the locality of the model where anyons are supported. Furthermore, we show how the magnitude of

the correction is dependent on the properties of the anyon model that is present. This work is an

extension of previous results which calculate the entanglement properties of Walker-Wang models in

the bulk [156, 165, 166]. This extension to the understanding of topological entanglement entropy is

made possible by the introduction of new diagnostics specifically for identifying topological order at

the boundary of three-dimensional systems [167].

The consequences of the results derived in this chapter extend far beyond limited reach of the

Walker-Wang and Levin-Wen exactly soluble models discussed. Such a understanding of the entan-

glement structure of topological systems can be applied more generally, which may be of particular

interest to physical systems that can be fabricated in a lab for the purpose of developing the building

blocks of topological quantum computing.
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[20] R. Orús. Tensor networks for complex quantum systems. Nat. Rev. Phys., 1(9):538–550, August

2019.

[21] D. A. R. Sakthivadivel. Magnetisation and mean field theory in the ising model. SciPost Phys.,

January 2022.

[22] A. Chapman and S. T. Flammia. Characterization of solvable spin models via graph invariants.

Quantum, 4:278, June 2020.

[23] P. Fendley. Free fermions in disguise. J. Phys. A, 52(33):335002, July 2019.

[24] E. Lieb, T. Schultz, and D. Mattis. Two soluble models of an antiferromagnetic chain. Ann.

Phys., 16(3):407 – 466, 1961.

[25] K. Walker and Z. Wang. (3+1)-TQFTs and topological insulators. Front. Phys., 7:150, 2012.
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