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Thesis Abstract 

Multi-omic data analysis has been foundational in many fields of molecular 

biology, including cancer research. Investigation of the relationship between different 

omic data types reveals patterns that cannot otherwise be found in a single data type 

alone. With recent technological advancements in mass spectrometry (MS), MS-based 

proteomics has enabled the quantification of thousands of proteins in hundreds of cell 

lines and human tissue samples. The proteome of these lines and samples have 

provided additional insights into disease biology beyond the genome and 

transcriptome. This thesis presents several machine learning-based methods that 

facilitate the integrative analysis of multi-omic data.  

First, we reviewed five existing multi-omic data integration methods and 

performed a benchmarking analysis, using a large-scale multi-omic cancer cell line 

dataset. We evaluated the performance of these machine learning methods for drug 

response prediction and cancer type classification. Our result provides 

recommendations to researchers regarding optimal machine learning method selection 

for their applications.  

Second, we generated a pan-cancer proteomic map of 949 cancer cell lines across 

40 cancer types and developed a machine learning method DeeProM to analyse the 

multi-omic information of these lines. DeeProM identifies 8,498 proteins with 

evidence of cell types, protein-protein interaction, and broad post-transcriptional 

regulation. It also discovers protein-specific biomarkers of drug response and gene 

essentiality. The predictive performance of this dataset using machine learning was 

comparable with the RNA-seq and an external proteomic dataset. Further analysis 

demonstrated that a random subset of 1,500 proteins had a limited impact on predictive 
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performance, consistent with protein networks being highly connected and co-

regulated. This pan-cancer proteomic map (ProCan-DepMapSanger) is now publicly 

available and represents a major resource for the scientific community, for biomarker 

discovery and for the study of fundamental aspects of protein regulation. 

Third, we focused on publicly available multi-omic datasets of both cancer cell 

lines and human tissue samples and developed a Transformer-based deep learning 

method, DeePathNet, which integrates human knowledge with machine intelligence. 

DeePathNet incorporates cancer pathway knowledge into its network design by 

grouping omic data. A Transformer encoder was utilised to dynamically model the 

interdependency between cancer pathways, further improving the predictive 

performance. We applied DeePathNet on three evaluation tasks, namely drug response 

prediction, cancer type classification and breast cancer subtype classification. For a 

wide range of experiments, DeePathNet achieved better predictive performance than 

other methods that do not incorporate knowledge of cancer pathways. We used 

SHapley Additive exPlanations (SHAP) and Layer-wise Relevance Propagation (LRP) 

for model explanation and identify several key omic features and pathways that were 

related to breast cancer subtype classification.  

Taken together, our analyses and methods allowed more accurate cancer 

diagnosis and prognosis.  
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Chapter 1: Introduction 

This chapter presents the background (Section 1.1), the aims (Section 1.2) and 

the outline (section 1.3) of the thesis. 

1.1 BACKGROUND 

Cancer has been one of the most richly studied diseases for decades. However, 

technological advances have only recently enabled the mass spectrometry (MS)-based 

mapping of entire proteomes of human cancers in a high-throughput manner 

(Aebersold and Mann 2003; Ong and Mann 2005; Wilhelm et al. 2014). Investigating 

protein dysregulation in cancer has a fundamental role in both understanding cancer 

mechanisms and developing new therapeutic approaches. Although the behaviour of a 

cell is largely defined by the proteins it produces, most large-scale and pan-cancer 

studies to-date (Iorio et al. 2016; Rohart, Gautier, Singh, and Cao 2017; Hoadley et al. 

2018) have focused on either a small number of proteins or completely excluded 

proteomic analyses due to inherent technical challenges. The ACRF International 

Centre for the Proteome of Human Cancer (ProCan) is located at the Children’s 

Medical Research Institute in Westmead, Australia (Tully et al. 2019). ProCan 

endeavours to create a public knowledgebase of cancer proteomes from tens of 

thousands of cancer samples using data-independent acquisition MS (DIA-MS) (Gillet 

et al. 2012).  

Multi-omic data analysis enables researchers to gain an increased understanding 

of tumour biology and the identification of more robust therapeutic targets (Rodriguez 

et al. 2021). A variety of multi-omic studies have led to the improved detection of 

intra-tumour heterogeneity, identification of novel therapeutic targets, as well as more 
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robust diagnostic, prognostic and predictive markers (Reel et al. 2021; Picard et al. 

2021; Rohart, Gautier, Singh, and Lê Cao 2017; I. Subramanian et al. 2020). Many of 

these discoveries would not have been possible by analysing any single omic data type 

alone. However, performing multi-omic analysis presents computational challenges 

due to the large amount of data generated by high-throughput instruments and the 

limitations of existing multi-omic data integration methods (Tarazona, Arzalluz-

Luque, and Conesa 2021; Cai et al. 2022). 

The bedrock of multi-omic data analysis is machine learning, based upon which 

many tools have been developed (Argelaguet et al. 2020; Mo et al. 2018; Sharifi-

Noghabi et al. 2019). Machine learning algorithms are trained to model complex 

patterns that cannot be accurately captured by traditional mathematical models in high 

dimensional data (Russell, Russell, and Norvig 2020). Publications of existing 

methods often emphasize the computational aspects of the proposed models, but lack 

a thorough introduction to the characteristics of individual omics. Recent reviews on 

multi-omic data integration focus on either biological applications or machine learning 

algorithms (Nicora et al. 2020; Picard et al. 2021; Reel et al. 2021; I. Subramanian et 

al. 2020), or both (Cai et al. 2022). 

Focusing on one of the largest ProCan datasets (ProCan-SangerDepMap) 

(Gonçalves et al. 2022) and other publicly available multi-omic information, the 

primary aim of my PhD is to perform large-scale multi-omic data analyses using novel 

machine learning methods on both cancer cell lines and human tissue samples.  

1.2 AIMS 

Aim 1 (Chapter 2): Conduct a benchmarking analysis to assess the accuracy 

and runtime efficiency of the existing machine learning methods for multi-omic data 

integration. 



 

Chapter 1: Introduction 3 

Aim 2 (Chapter 3): Perform an integrative analysis using data from a collection 

of over 1,000 cancer cell lines (Iorio et al. 2016), comprising genomic and 

transcriptomic data, proteomic data (ProCan-SangerDepMap) generated in ProCan 

(Gonçalves et al. 2022), and data from drug response and gene essentiality (Pacini et 

al. 2021).  

Aim 3 (Chapter 4): Design an explainable deep learning model that integrates 

existing cancer specific domain knowledge with quantitative multi-omic 

measurements to predict multiple cancer phenotypes, including drug response, cancer 

type and cancer subtype. 

1.3 THESIS OUTLINE 

This thesis comprises of five chapters. Chapter 2 reviews existing studies on 

multi-omic data integration by machine learning (literature review), and then 

incorporates an original benchmark analysis that summarises models’ performance 

(Aim 1). Chapter 3 describes analysis of the ProCan-SangerDepMap dataset (Aim 2) 

and the development of a novel deep learning model for proteomic biomarker 

discovery. Chapter 4 introduces the novel transformer-based deep learning model 

DeePathNet, which integrates multi-omic data with cancer pathway knowledge to 

predict several cancer phenotypes (Aim 3).  
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Chapter 2: Machine learning for multi-

omics data integration in cancer 

(Literature Review) 

Text and figures included in this chapter are adapted from the following 

publication: 

Cai, Z., Poulos, R. C., Liu, J., & Zhong, Q. (2022). Machine learning for multi-omics 

data integration in cancer. iScience, 103798. 

 

Statement of Contribution 

The PhD Candidate completed all data analyses presented in this chapter, under the 

supervision of Dr. Rebecca C Poulos and Dr. Qing Zhong. The PhD Candidate was 

also responsible for writing this chapter and the preparation of all figures. Jia Liu also 

contributed to the writing of the introduction of this work. 
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2.1 SUMMARY 

Multi-omics data analysis is an important aspect of cancer molecular biology 

studies and has led to ground-breaking discoveries. Many efforts have been made to 

develop machine learning methods that automatically integrate omics data. Here, we 

review machine learning tools categorized as either general-purpose or task-specific, 

covering both supervised and unsupervised learning for integrative analysis of multi-

omics data. We benchmark the performance of five machine learning approaches using 

data from the Cancer Cell Line Encyclopedia, reporting accuracy on cancer type 

classification and mean absolute error on drug response prediction, and evaluating 

runtime efficiency. This review provides recommendations to researchers regarding 

suitable machine learning method selection for their specific applications. It should 

also promote the development of novel machine learning methodologies for data 

integration, which will be essential for drug discovery, clinical trial design, and 

personalized treatments. 
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2.2 INTRODUCTION 

The discipline in molecular biology that aims for the collective characterization 

and quantification of the genome, transcriptome, and proteome, to influence the 

structure, function, and dynamics of a biological sample is termed omics (López de 

Maturana et al. 2019). Biotechnological advancements have enabled researchers to 

generate molecular datasets and perform individual or integrative analyses across 

various fields, such as genomics, transcriptomics, and proteomics (O’Donnell, Ross, 

and Stanton 2019). 

In human cancers, there are complex rearrangements at the genetic, 

transcriptional, and proteomic levels that drive oncogenesis. This process evolves 

through clonal selection and over time, contributing to resistance to treatment. Single-

omics datasets such as those derived from the Human Genome Project (Lander et al. 

2001) and initial genomic profiling from The Cancer Genome Atlas (TCGA) projects 

(ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium 2020), have 

failed to produce the revolution in cancer treatment that was expected for the vast 

majority of common cancer types (Tannock and Hickman 2016). Next-generation 

sequencing of tumour genomes has been able to propose targeted treatments in only a 

small percentage of patients (Bohan et al. 2020), and no improvements in outcome 

have been found in randomised trials of targeted therapies (Le Tourneau et al. 2015). 

Consequently, developing a holistic view of cancer behaviour and identification of 

new therapeutic vulnerabilities may only be possible through multi-omics analysis, 

which has become an area of increasing interest in biological research over the last 

decades (I. Subramanian et al. 2020; B. Lee et al. 2019; Sathyanarayanan et al. 2020; 

Oh et al. 2021) (Figure 1). This has been exemplified by the addition of epigenomic, 

transcriptomic, proteomic, phosphoproteomic, and metabolomic data to the TCGA for 
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many solid tumour subtypes in recent years (Clark et al. 2019; L.-B. Wang et al. 2021). 

These large-scale integrative analyses on multi-omics data from various tumour 

cohorts have shed light on the complex systemic dysregulation associated with specific 

cancer phenotypes, producing essential insights that cannot be attained by examining 

only a single omics dataset. For example, a proteogenomic analysis of colon and rectal 

cancer showed moderate correlation between messenger RNA (mRNA) expression 

and protein abundance, and identified four cancer subtypes at the proteomic level to 

enable better prioritization of mutated (affecting DNA) or dysregulated (affecting 

RNA) cancer driver genes (B. Zhang et al. 2014). Another multi-omics study in an 

ethnically diverse lung adenocarcinoma cohort used machine learning to reveal four 

subgroups defined by mRNA transcripts, proteins, phosphoproteins, and acetylated 

proteins, with multiple potential therapeutic vulnerabilities to targeted therapy as well 

as immunotherapy resistance (Gillette et al. 2020). 

 

Figure 1: Growth of publications in omics. Line charts showing the number of articles published in 

each year from 1995 to 2020 in PubMed, coloured by different omics. The y-axis is plotted in log 

scale. Search terms used are “genomics”, “epigenomics”, “transcriptomics”, “proteomics” and “multi-

omics”. 

Given the immense complexity of data integration across multiple omics, the 

computational algorithms required to tease out signals from noise become more 
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complex. Therefore, strategies are required to systematically integrate heterogeneous 

multi-omics datasets to deliver actionable results that may advance biological sciences 

and eventually translate into clinical practice. There are three common strategies for 

multi-omics data integration: early, middle, and late integration (Rappoport and 

Shamir 2018). Early integration, also known as early concatenation, is a simple 

concatenation of features from each omics layer into one single matrix. In late 

integration, modelling and analysis are performed at each omics layer separately, and 

the results are merged at the end. The difference between early, middle, and late 

integration is also summarized in Figure 2. Because both early and late integration do 

not involve additional statistical processing or modelling by machine learning, all 

methods reviewed in this article fall under middle integration, which focuses on using 

machine learning models to consolidate data without concatenating features or 

merging results. 

 

Figure 2: Illustration of early, middle and late integration for merging data matrices generated 

by different omics. In early integration, features from different data matrices are concatenated. 

Middle integration uses machine learning models to consolidate data without concatenating features or 

merging results. In late integration, each omics layer is analysed independently, and results are 

combined at the end. 
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The bedrock of multi-omics data analysis is machine learning, based upon which 

many tools have been developed (Argelaguet et al. 2020; Mo et al. 2018; Sharifi-

Noghabi et al. 2019). Machine learning algorithms are trained to model complex 

patterns that cannot be accurately captured by traditional mathematical models in high 

dimensional data (Russell, Russell, and Norvig 2020). Publications of existing 

methods often emphasize the computational aspects of the proposed models, but lack 

a thorough introduction to the characteristics of individual omics. Recent reviews on 

multi-omics data integration focus on either biological applications or machine 

learning algorithms, rather than the combination of both (Nicora et al. 2020; Picard et 

al. 2021; Reel et al. 2021; I. Subramanian et al. 2020). 

Published multi-omics data are usually stored in online portals for public access, 

serving as resources for both discovery and validation (Table 1). Among them is the 

TCGA project (Campbell et al., 2020) initiated by the National Cancer Institute in 

2006, which generated multi-omics data for more than 20,000 tumors spanning 33 

cancer types. The International Cancer Genome Consortium (ICGC) was initiated by 

multiple countries as a collaborative program, which incorporates some projects from 

TCGA and features a user-friendly online analysis interface (International Cancer 

Genome Consortium et al. 2010). The Catalog of Somatic Mutations In Cancer 

(COSMIC) (Iorio et al. 2016; Tate et al. 2019) database is led by the Wellcome Sanger 

Institute and curates multi-omics data for both cancer cell lines and tumors. The Cancer 

Dependency Map (DepMap) (Broad 2020) is a platform similar to COSMIC developed 

by the Broad Institute, which provides genome-wide CRISPR-Cas9 knockout screens 

with comprehensive multi-omics molecular characterization of cell lines and the 

corresponding drug screens. 
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Name URL 

 

Data types Notes  

TCGA  https://portal.gdc.cancer.gov/  • Genomics 

• Epigenomics 

• Transcriptomics 

 

• Tumour data 

• Large coverage of 

tumours 

ICGC  https://dcc.icgc.org/  • Genomics 

• Transcriptomics 

 

• Tumour data 

• Powerful online 

analytics tools 

CPTAC  https://cptac-data-

portal.georgetown.edu/cptacP

ublic/  

• Proteomics • Tumour data 

• The largest proteomic 

data portal 

COSMIC 

Cell 

Lines  

https://cancer.sanger.ac.uk/cel

l_lines  
• Genomics 

• Epigenomics 

• Transcriptomics 

• Drug response 

• CRISPR-Cas9 

screen 

 

• Cancer cell line data 

• Manually curated 

• Large coverage of cell 

lines 

DepMap https://depmap.org/portal/  • Genomics 

• Epigenomics 

• Transcriptomics 

• Proteomics 

• Drug response 

• CRISPR-Cas9 

screen 

 

• Cancer cell line data 

• Large coverage of 

omic types 

• Powerful online tools 

COSMIC https://cancer.sanger.ac.uk/co

smic  
• Genomics 

• Epigenomics 

• Transcriptomics 

• Tumour data 

• Manually curated 

• Focus on genomics 

• Overlap with other 

portals 

Table 1. Key portals for accessing publicly available multi-omics datasets 

The unique contribution of this review is three-fold (Figure 3). First, this review 

features a balance of both biological and technical content, so that readers from a range 

https://portal.gdc.cancer.gov/
https://dcc.icgc.org/
https://cptac-data-portal.georgetown.edu/cptacPublic/
https://cptac-data-portal.georgetown.edu/cptacPublic/
https://cptac-data-portal.georgetown.edu/cptacPublic/
https://cancer.sanger.ac.uk/cell_lines
https://cancer.sanger.ac.uk/cell_lines
https://depmap.org/portal/
https://cancer.sanger.ac.uk/cosmic
https://cancer.sanger.ac.uk/cosmic
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of backgrounds can benefit from the presented information and guidance when they 

seek multi-omics integration tools for cancer research. Other similar reviews primarily 

focus on only one of these aspects or lack comprehensiveness. Second, we propose a 

new classification that categorizes the reviewed tools into general-purpose and task-

specific. This allows researchers to quickly determine which tools are the most 

applicable for their research questions. In addition, researchers who do not have a 

strong computational background may be not aware that general-purpose methods can 

also be applied to their research projects. Third, unlike most review articles, we 

perform an independent benchmarking analysis using a publicly available dataset 

called Cancer Cell Line Encyclopedia (CCLE) (Ghandi et al. 2019; Nusinow et al. 

2020). The benchmarking exercise enables researchers to choose the most suitable 

tools for their research question and computational environment. 

 

Figure 3: Unique contribution of this review. First, we describe a balance of both biological and 

technical content covering topics from genomics to proteomics and from machine learning to multi-
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omics integration tools. Second, we propose a new classification that categorises the reviewed tools 

into two categories, namely general-purpose and task-specific, and then review these tools for four 

types of applications in biomedical sciences. Third, we provide an independent benchmarking analysis 

to compare integration methods for cancer type classification and drug response prediction. 

2.3 OMICS OVERVIEW 

Understanding the biological underpinnings of the data in each omics layer and 

the data formats is crucial to method development and fully utilizing the available tools. 

For instance, genomic and epigenomic variants influence gene regulation and the 

quantities of transcribed mRNA (Haraksingh and Snyder 2013). Splicing mechanisms 

and posttranslational modifications then impact the downstream measurements of the 

proteome. All of these mechanisms ultimately determine the cellular phenotype 

(Niklas et al. 2015). In this section, we review several common omics, describe data 

formats, and discuss corresponding analytical strategies. 

2.3.1 Genomics 

Genomics examines DNA sequences and seeks to understand the associations 

between diseases and genomic alterations (Stratton, Campbell, and Futreal 2009). 

Whole-exome sequencing (WES) and whole-genome sequencing (WGS) (Schwarze 

et al. 2018) are two popular technologies utilized in genomic studies. WES mostly 

examines the exonic (mRNA-coding) portion of the genome, whereas WGS aims to 

examine all nucleotides in the genome including the gene regulatory regions 

(Nakagawa and Fujita 2018). WES usually involves a lower cost than WGS because 

it only covers the coding regions, although key regulatory and splice-site mutations 

that are not in coding regions could be missed by WES (Y. Yang et al. 2013). Genomic 

analysis focuses on single nucleotide variants (SNVs), insertions and deletions 

(INDELs), structural variation (SV), and copy number variation (CNV). SNVs are 

variants of only a single nucleotide that occurs at a specific genomic position. INDELs 

are small genetic variations with lengths usually shorter than 10,000 nucleotides. SV 
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covers large variations in the chromosome, including deletions, duplications, 

insertions, inversions, and translocations of long nucleotide sequences. CNV is a 

particular form of SV and usually involves the amplification or deletion of a large 

region of a chromosome. The genome is the most fundamental layer of genetic 

information and is very well characterized because of the development of advanced 

sequencing technologies. Genomic analyses have revealed many significantly mutated 

genes in cancer, known as cancer driver genes, such as TP53 and KRAS (Stratton, 

Campbell, and Futreal 2009). Novel treatment strategies that have greatly improved 

outcome for subsets of cancers have been discovered by analysing mutations at the 

genomic level (Behan et al. 2019). For example, EGFR tyrosine kinase inhibitors are 

used in the treatment of EGFR-mutant non-small cell lung cancer, whereas HER2-

amplified breast cancers are treated with HER2 monoclonal antibodies (Cohen, Cross, 

and Jänne 2021). 

For computational analysis, the data matrices for SNVs, INDELs, and SVs can 

be summarized as binary values that indicate whether a gene is mutated or wild type. 

Genes are often filtered so that only those with mutations in sufficient numbers of 

samples are included to avoid a highly sparse matrix, and mutation frequencies are 

typically normalized against background mutation rates for that genomic locus (M. S. 

Lawrence et al. 2013). Filtering may also be required for specific mutation types, 

depending on the research question. For example, only missense mutations may be 

considered as mutants in certain situations. By contrast, CNV data are typically 

presented as a matrix of either counts or continuous values for each gene. The data 

matrix of CNV is sometimes in the format of log fold-change for cancer studies, 

reflecting changes of copy numbers compared with the normal ploidy. Outside of 

coding regions, genomic information can be used to understand elements of gene 
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regulation and dysregulation in cancer (Andersson and Sandelin 2020). Somatic, 

germline, and epigenetic variation affecting these regions can have profound effects 

on gene expression in cancer (Poulos and Wong 2017). Although genomic technology 

is relatively more mature than other omics, discovering causal relationships in addition 

to associations remains as one of the biggest challenges (McGuire et al. 2020). 

2.3.2 Epigenomics 

The epigenome encompasses the set of indirect chemical modifications of 

nucleotides and proteins that regulate how genes are expressed, without changing the 

actual nucleotide sequence itself (K. C. Wang and Chang 2018). The study of the 

epigenome is called epigenomics, which involves investigating DNA methylation 

(Jost and Saluz 2013) and histone modification (Seligson et al. 2005), as well as 

understanding the three-dimensional structure of DNA, which is influenced by 

topologically-associating domains (Szabo, Bantignies, and Cavalli 2019). This three-

dimensional structure is examined via sequencing technologies, such as ChiA-PET, 

3C, 4C, 5C, and Hi-C (van Berkum et al. 2010), whereas DNA methylation can be 

measured by a range of methods, such as bisulfite sequencing (Krueger et al. 2012; 

Wreczycka et al. 2017). Chromatin immunoprecipitation sequencing (ChIP-seq) 

(Valouev et al. 2008) experiments are often used for high-throughput measurement of 

histone modifications. 

Methylomics is one of the best characterized aspects of epigenomics. It focuses 

primarily on the effects of promoter DNA methylation on silencing gene expression, 

but also commonly examines the effects of gene body methylation in cancer (Wong et 

al. 2014). Studies of DNA methylation play a pivotal role in biomedical research. For 

example, the promoter hypermethylation of MLH1 was found to result in hereditary 

nonpolyposis colon cancer (Cunningham et al. 1998). The processed methylation data 
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matrix often contains continuous values ranging from 0 to 1, representing the 

proportion of cells in which the relevant nucleotide is found to be methylated. 

Methylation data usually require normalization and correction according to cancer 

types (Iorio et al. 2016). However, current high-throughput technologies for measuring 

methylomic data use probes, which may not properly cover the promoter regions of 

specific genes. This issue may be especially important if the research question is about 

one specific gene. 

2.3.3 Transcriptomics 

Genes are mostly transcribed into mRNA and introns are spliced out, leaving 

only exons in the mature mRNA, which consists of 5′ and 3' untranslated regions, 

and a protein-encoding open reading frame (Brouwer and Lenstra 2019). The result is 

a large pool of cellular mRNA used by ribosomes for translation to proteins. This 

provides an indirect indicator of the protein expression in a cell, or the activity of the 

genome at a particular point in time. Transcriptomic analyses measure the abundance 

of the complete set of mRNA transcripts of each gene, which is also referred to as the 

gene expression level. Several methods are available to quantify the transcriptome, 

with the most popular approaches being microarrays and RNA-seq (Malone and Oliver 

2011). RNA-seq is now more commonly employed than microarrays, as it provides 

better performance and data consistency (X. Xu et al. 2013). Biomarkers found at the 

transcriptomic level can be used for identifying patient subtypes (Nielsen et al. 2010) 

and developing new cancer treatments. For example, the transcriptome can be more 

predictive of anticancer drug response than genomic mutations and DNA methylation 

data (Iorio et al. 2016). 
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2.3.4 Proteomics 

mRNAs are translated to produce proteins, which are sequences of amino acids 

(Kaeberlein and Kennedy 2007). Analogous to the transcriptome, the proteome 

encompasses the entire set of expressed proteins in a cell or organism at a particular 

point in time. Proteins are the functional units that interact with other molecules like 

metabolites, lipids, or nucleotides (Spirin and Mirny 2003). For this reason, along with 

the metabolome and lipidome, the proteome is more closely related to cellular 

phenotypes than the genome or transcriptome (Crick 1970). Protein abundance often 

differs from gene expression levels because of a number of factors, including 

posttranslational modifications and protein stability or degradation (Hegde, White, and 

Debouck 2003). For example, in clear cell renal cell carcinomas, genes related to 

oxidative phosphorylation-related metabolism, protein translation processes, and some 

phospho-signaling modules were found to be dysregulated only at the protein level 

(Clark et al. 2019).  

Proteomics refers to the large-scale analysis of proteomes. Recent technological 

advances in mass spectrometry have enabled proteomics to become high-throughput 

and reproducible for large-scale cancer analyses (Tully et al. 2019; Poulos et al. 2020). 

Normalized and imputed proteomic data matrices typically contain continuous values 

that are usually in the logarithmic scale. However, the high prevalence of missing 

values of protein abundance in proteomic data presents unique analytical challenges 

(Poulos et al. 2020). The missing values need to be handled by applying domain-

specific knowledge, statistical methods, or machine learning algorithms (Poulos et al. 

2020; Välikangas, Suomi, and Elo 2018). Normalized and imputed proteomic data 

matrices typically contain continuous values that are usually in the logarithmic scale. 
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2.3.5 Single-cell sequencing 

Most omics studies are based on data generated from bulk samples. Therefore, 

the omics data are averaged measurements of multiple cells from samples. However, 

tumor samples exhibit a great degree of intertumoral and intratumoral heterogeneity, 

making analyses extremely challenging (Guo et al. 2018). The advancement of single-

cell technologies has enabled researchers to investigate omics profiles at a single-cell 

level by tagging each cell from a sample (Nam, Chaligne, and Landau 2021), although 

single-cell analyses face a number of challenges that are distinct from analyses of bulk 

samples because of the difference of data resolution. Among the different omics data 

types, single-cell RNA sequencing (scRNA-seq) is relatively more mature and has 

yielded a number of discoveries (Argelaguet et al. 2019; Yijie Zhang et al. 2021). In 

the meantime, computational tools for integrating single-cell multi-omics data have 

been emerging. For example, Seurat 4.0 is able to integrate data from multiple single-

cell technologies, including single-cell epigenomic, transcriptomic, and proteomic 

data (Hao et al. 2021). In this review, we focus on multi-omics data integration for 

bulk samples. 

2.4 MACHINE LEARNING FOR MULTI-OMICS INTEGRATION 

Having reviewed different omics, here we discuss core machine learning 

concepts that are involved in multi-omics data integration. Machine learning is the 

study of computational algorithms that make predictions and decisions based on 

experience and data, without having been explicitly programmed to do so (Koza et al. 

1996). Machine learning models are generally divided into three categories: supervised, 

unsupervised, and reinforcement learning. Supervised learning methods use label 

information from samples for model training, whereas unsupervised learning infers 

patterns directly from unlabelled data. Reinforcement learning trains an agent to 
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`choose the best next action when the environment changes. Supervised and 

unsupervised learning are commonly applied to multi-omics data integration, but to 

the best of our knowledge, there have been no attempts to use reinforcement learning 

for this type of task. 

As mentioned above, there are three approaches for multi-omics data integration: 

early, middle, and late. The most straightforward strategy is early concatenation. 

However, having a vast number of features while the number of available data points 

is low, known as the "curse of dimensionality" (Bellman 1966), is a particular 

challenge for the use of early concatenation in multi-omics integration. For example, 

with the human genome containing more than 20,000 protein-coding genes, multi-

omics datasets can easily comprise more than 50,000 features when the genome, 

transcriptome, and proteome are combined. By contrast, the number of available tumor 

samples in a dataset is often relatively small, with cancer cohorts typically comprising 

no more than a few hundred patients. Late integration only involves manual 

combination of the results from each omics layer, hence out of scope for this review. 

Therefore, we focus on middle integration that aims to overcome the challenge by 

using machine learning integration methods that are categorized either as general-

purpose or task-specific (Figure 3). General-purpose methods couple dimensionality 

reduction with different downstream algorithms for a variety of applications, whereas 

task-specific methods are end-to-end models designed for one specific task. 

In this section, we first provide a brief introduction to related machine learning 

concepts, followed by a more comprehensive review on existing general-purpose and 

task-specific methods for multi-omics data integration. 
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2.4.1 Basics of related machine learning concepts 

Unsupervised learning 

Unsupervised learning discovers patterns in multi-omics data without mapping 

the input data to output data. Most dimensionality reduction techniques are 

unsupervised methods. Principal component analysis (PCA) (Wold, Esbensen, and 

Geladi 1987) projects each data point onto a lower-dimensional space by creating 

orthogonal principal components that are eigenvectors of the data's covariance matrix. 

Factor analysis (A. P. Singh and Gordon 2008) can also be used to reduce 

dimensionality, assuming the existence of latent (unobserved) variables that are not 

limited to linear combinations of features. Factor analysis algorithms then seek such 

latent variables that can capture the common variance of the whole dataset. Joint latent 

variable models (Everett 2013) extend factor analysis by allowing more assumptions 

and configurations on the statistical models. Canonical correlation analysis (CCA) 

(Hotelling 1992) calculates how well different data matrices are correlated and derives 

a set of variables such that the correlations between data matrices are maximized. CCA 

can be applied to multi-omics data integration under the assumption that the correlation 

between different omics layers is to be maximized. Multiple kernel learning (MKL) 

(Y.-Y. Lin, Liu, and Fuh 2011) can be used with either supervised or unsupervised 

learning. Kernels allow the data to be transformed into a higher-dimensional space via 

kernel tricks (Aizerman 1964). Multiple kernels are used in MKL so that data from 

different omics layers can be appropriately modelled. 

Supervised learning 

Supervised learning is usually used to make predictions. Given the input data 

and the output labels, supervised learning finds a mapping function that maps the input 

data to the label information. Label information in cancer research can be any 

phenotype of interest. For example, cancer types can be considered as label 
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information. If the label information is discrete, then it is called classification. If the 

label is continuous, then it is regression. Linear regression and logistic regression are 

the two basic supervised learning models that only use linear predictor functions 

(Freedman 2009). Elastic net (Zou and Hastie 2005) adds both L1 (absolute-value norm) 

and L2 (Euclidean norm) regularization terms to the basic linear models. L1 

regularization encourages non-informative features to have zero coefficients, and L2 

regularization works well with correlated features by allocating roughly equivalent 

weights to strongly correlated features. Because of these characteristics, elastic net has 

been used widely in multi-omics analyses such as drug response studies (Iorio et al. 

2016), where simple markers are preferred and interpretability is important. Random 

forest (Breiman 2001) uses a set of decision trees (Rokach and Maimon 2006) to make 

predictions based on votes over all the trees in the forest. Random forest is a nonlinear 

machine learning model that captures more complexity in the data than linear and 

logistic regression. The feature importance given by random forest represents how well 

each feature performs in terms of prediction, allowing researchers to prioritize the most 

important features for their studies. Neural networks are the root of deep learning 

algorithms that have attracted increasing attention recently and shown better predictive 

power than other traditional machine learning models in research areas such as natural 

language processing, computer vision, and biomedical sciences (K. G. Kim 2016). 

Neural network models are versatile because they can be used for various purposes, 

including classification, regression, dimensionality reduction, and missing value 

imputation. Despite its superior predictive performance, deep learning is often 

criticized for its poor model interpretability. To overcome this limitation, deep learning 

algorithms that focus on model explanations have emerged in recent years (Lundberg 

and Lee 2017; Ribeiro, Singh, and Guestrin 2016; Ullah et al. 2020). 
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2.4.2 Multi-omics data integration tools and their applications 

In this section, we review machine learning tools that have been developed 

specifically for biomedical sciences and discuss how these tools are applied in three 

typical real-world applications, namely cancer type classification, drug response 

prediction, and patient stratification. Specifically, we used keywords “machine 

learning” and “multi-omics integration” to broadly search the methods using PubMed 

and Google Scholar. We then searched for existing reviews of similar topics. For each 

tool, we indicate whether it is general-purpose or task-specific, and whether it provides 

an easy-to-use interface for custom datasets (Table 2). Although no multi-omics 

dataset covers all omics layers, most integration tools are flexible enough to support 

the data analysis of any combination of available omics layers (Figure 3). 

Cancer type classification 

Knowing the cancer subtype is crucial for disease classification, assessing 

prognosis, and planning treatment. For instance, breast carcinoma can be classified 

into five transcriptome-based subtypes that lead to different treatment responses and 

outcomes (Dai et al. 2015). Non-small cell lung cancer can also now be classified into 

a large number of subtypes depending on both histological appearance (squamous 

versus adenocarcinoma) and the presence/absence of particular driver mutations 

(Thomas et al. 2015). It would also be valuable to predict the cell of origin, and 

therefore the likely therapeutic sensitivity, for cancers of unknown primary (CUP) (M. 

Y. Lu et al. 2021; Pavlidis and Pentheroudakis 2012), as treatments differ significantly 

depending on the patient’s primary cancer type. Traditional methods for classifying 

cancer types mainly involve visual inspection by trained anatomical pathologists of 

cancer sections stained by H&E or by immunohistochemistry. Machine learning tools 

that integrate multi-omics data have provided more efficient diagnoses for patients 
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with CUP, allowing the most effective treatment options to be identified (Bavafaye 

Haghighi et al. 2019). Relevant machine learning packages include the following. 

mixOmics (general-purpose) (Rohart, Gautier, Singh, and Cao 2017) is a well-

implemented package enabling a set of supervised and unsupervised machine learning 

models based on linear discriminant analysis (LDA) (R.O. Duda, P.E. Hart, and D. 

Stork 2000), PCA, and CCA. mixOmics has been used extensively in studies to 

characterize cancer subtypes. It supports three modes: single omics analysis, data 

integration across different omics layers, and data integration across different samples. 

One specific multi-omics integration method proposed in the mixOmics package is 

DIABLO (A. Singh et al. 2019). PAM50 breast cancer subtype prediction was selected 

for the classification task, and colon cancer data from TCGA were used for clustering 

comparisons. The authors tested DIABLO via two model configurations. 

DIABLO_full represents correlations across all omics layers, which are modeled via 

CCA, whereas DIABLO_null does not consider correlations between omics layers by 

simply applying LDA on the dataset as early concatenation. Notably, DIABLO_null 

performed better than DIABLO_full in both classification and clustering tasks, 

suggesting that integration may not be effective because the connection of omics layers 

actually worsens the predictive accuracy. Apart from cancer type classification, 

mixOmics has been used for tasks such as analysing the association between gut 

microbial composition and the risk of asthma in childhood (Stokholm et al. 2018). 

MOFA/MOFA2 (Multi-Omics Factor Analysis, general-purpose) (Argelaguet 

et al. 2018, 2020) seeks common factors that can explain the greatest variance of all 

data from different omics layers. MOFA (Argelaguet et al. 2018) uses factor analysis 

as the method of dimensionality reduction. It supports different data distributions and 

optimizes computational runtime for better performance in multi-omics integration. 
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Various types of regularizations are supported in MOFA for better model 

interpretability. MOFA also handles missing values automatically and supports partial 

datasets. In their study, MOFA was able to classify four subtypes of chronic 

lymphocytic leukemia (Argelaguet et al. 2018). (Alcala et al. 2019) used MOFA on 

DNA methylation and gene expression data, and identified two latent factors that were 

associated with survival in large-cell neuroendocrine carcinomas. Apart from survival 

analysis, MOFA showed satisfactory results in other tasks, such as drug response 

prediction and patient stratification (Argelaguet et al. 2018). MOFA+/MOFA2 

(Argelaguet et al. 2020) is a subsequent enhancement of MOFA that supports single-

cell datasets and GPU-accelerated model inference, which is over twenty times faster 

than the original inference algorithm in MOFA. Although MOFA2 mostly highlighted 

its usage in analyzing single-cell datasets, bulk sample analyses also benefited from 

the faster inference of MOFA2 without any loss of functionalities (Argelaguet et al. 

2020). 

sCCA (sparse CCA, general-purpose) is a variation of CCA that imposes 

additional penalties in modeling so that the number of latent variables can be kept low 

for better interpretation (Rodosthenous, Shahrezaei, and Evangelou 2020). Several 

conventional CCA methods were compared with a customized sCCA variation that 

allowed data from more than two datasets to be used at the same time. The proposed 

sCCA variation was applied to TCGA gene expression, miRNA, and methylation data, 

and yielded the highest accuracy in a task of classifying three cancer types, namely 

breast, kidney, and lung cancer (Rodosthenous, Shahrezaei, and Evangelou 2020). 

Drug response prediction 

Using multi-omics profiles to predict drug responses allows researchers to 

discover new treatment opportunities and to provide recommendations on the design 
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of early-phase clinical trials for either novel drugs or the repurposing of existing drugs 

for different cancers (Iorio et al. 2016). In this scenario, the problem can be either 

formulated as a regression task, where a model is trained to predict the half-maximal 

inhibitory concentration (IC50) value and area under the curve (AUC), or as a 

simplified classification task where the model predicts whether a given input is 

sensitive or resistant to a particular drug. Computational researchers have been 

focusing on designing machine learning models that are able to uncover explainable 

biomarkers with better prediction, facilitating personalized treatment. 
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MOLI (Multi-Omics Late Integration, task-specific) (Sharifi-Noghabi et al. 

2019) is based on deep learning and predicts drug response as a classification task. 

MOLI uses a deep neural network (Rumelhart, Hinton, and Williams 1986) as a feature 

extractor for each omics layer, and concatenates the last hidden layers with a triplet 

loss (Schroff, Kalenichenko, and Philbin 2015) at the end to train the model. Triplet 

loss facilitates training by minimizing distances between similar samples and 

maximizing distances between different samples. Despite the “late integration” in its 

name, MOLI would be better classified as middle integration because MOLI integrates 

all omics layers using machine learning instead of merging results at the end. MOLI 

used gene mutation, expression, and copy number to predict cancer drug response by 

classifying patients as responders or nonresponders to cancer drugs. Various datasets 

were utilized, including GDSC (Iorio et al. 2016), PDX (Gao et al. 2015), and TCGA 

(Ding, Zu, and Gu 2016) drug response data. The number of samples included in each 

dataset for MOLI varied depending on the drugs, ranging from 16 to 856 samples. 

MOLI was only compared with early concatenation in its related publication (Schroff, 

Kalenichenko, and Philbin 2015), without being thoroughly compared with similar 

integration tools. 

CaDRReS (Cancer Drug Response prediction using a Recommender System, 

general-purpose) (Suphavilai, Bertrand, and Nagarajan 2018) is a matrix-

factorization-based model that treats drug response prediction as a regression task. 

CaDRReS was developed based on recommender systems, where matrix factorization 

has shown excellent performance. The fundamental intuition in the recommender 

system is that if a set of users rate a set of products similarly, they are also likely to 

give similar ratings on other products (Xue et al. 2017) This idea has been transformed 

into multi-omics data integration, where the molecular profile of a gene is considered 
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to share similarities across different omics layers. CaDRReS was used to predict 

continuous drug responses IC50, using both GDSC (Iorio et al. 2016) and CCLE 

datasets (Barretina et al. 2012). CaDRReS has been benchmarked against two other 

matrix-factorization-based methods, as well as some basic models such as regularized 

linear regression (Suphavilai, Bertrand, and Nagarajan 2018). Although CaDRReS is 

a general-purpose method with dimensionality reduction, the tool does not allow 

flexible usages for purposes other than drug response prediction. 

HNMDRP (Heterogeneous Network-based Method for Drug Response 

Prediction, task-specific) (F. Zhang et al. 2018) focuses on constructing similarity 

networks among cell lines, drug structures, and drug target genes to predict drug 

responses. This method assumes that when a similar cell line is treated with a similar 

drug, then the drug response should be similar. Application of HNMDRP showed that 

protein-protein interactions and drug-target interactions were useful to improve 

prediction results, but drug chemical structure data were not widely accessible in many 

scenarios. 

pairwiseMKL (multiple pairwise kernels for drug bioactivity prediction, 

general-purpose) (Cichonska et al. 2018) is an enhanced extension to MKL. It 

improves upon both runtime and memory efficiency of MKL and enables its 

application to drug response prediction, where the term “pairwise” refers to sample 

and drug pairs. The original study showed that pairwiseMKL ran approximately six 

times faster and consumed 95% less memory than KronRLS-MKL (Nascimento, 

Prudêncio, and Costa 2016), when predicting continuous IC50 values of drugs in the 

GDSC (Iorio et al. 2016) dataset. 
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Patient stratification 

Another key task for which researchers use multi-omics data is to cluster 

tumours and identify potential new cancer subtypes to facilitate better patient 

stratification (Li and Wong 2019). These new subtypes could show different 

characteristics from existing known cancer subtypes, and new therapies may need to 

be developed for them. Computational methods for patient stratification are usually 

evaluated using simulated data, and methods that are able to clearly separate known 

phenotypes are generally considered high-performance methods (Argelaguet et al. 

2018; Shen, Olshen, and Ladanyi 2009). 

iCluster/iClusterPlus/iClusterBayes (general-purpose), are a family of 

machine learning methods based on joint latent variables. iCluster formulates the latent 

cancer subtypes as a joint variable, which results in a much smaller number of 

dimensions than early concatenation. The latent variables are modelled to capture 

common information from different omics layers. The iCluster study (Shen, Olshen, 

and Ladanyi 2009) shows that the best performance is achieved with less than ten 

dimensions in the latent variable. Based on iCluster, iClusterPlus (Mo et al. 2013) 

focuses on modeling different statistical distributions for discrete data types. 

iClusterBayes (Mo et al. 2018) is the latest version in the series and implements a fully 

Bayesian inference algorithm, which runs six times faster than iClusterPlus. Bass et al. 

used iCluster and discovered four subtypes of gastric cancer, enabling better patient 

stratification and treatment planning (Cancer Genome Atlas Research Network 2014). 

moCluster (general-purpose) (Meng et al. 2016) is also a joint latent variable-

based machine learning model, and was benchmarked against iCluster and 

iClusterPlus. The main difference between moCluster and the iCluster series is the 

method of finding latent variables. Instead of using an expectation-maximization 
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algorithm (Moon 1996), moCluster uses consensus PCA (CPCA) (Westerhuis, Kourti, 

and MacGregor 1998) to estimate the latent variables. CPCA is a variation of the 

typical PCA algorithm and allows modelling data from different groups, which can be 

naturally mapped to different omics layers. moCluster was shown to run 100 to 1,000 

times faster than iCluster/iClusterPlus on a simulated dataset with better clustering 

performance (Meng et al. 2016). On a multi-omics dataset for the NCI-60 cancer cell 

lines (Gholami et al. 2013), moCluster was able to separate melanoma cell lines from 

the remaining cell lines, whereas iClusterPlus could not. 

SNF (Similarity Network Fusion, task-specific) (B. Wang et al. 2014) is a 

network-based machine learning model developed for patient stratification as well as 

survival analysis. SNF focuses on patient similarity networks and uses a specific 

network fusion algorithm to iteratively update similarity networks for each omics layer, 

with information from other omics layers so that the similarity networks become more 

consistent. The fused network contains information from all omics layers, thus 

enabling multi-omics data integration. SNF is similar to HNMDRP, as both methods 

are based on similarity networks (Heckerman 1990). However, SNF only uses 

molecular profile information, whereas HNMDRP requires drug chemical structure 

data and drug target information. Despite the similarity between the two methods, no 

comparison was made for these two methods. SNF revealed two clusters in pancreatic 

ductal adenocarcinoma using epigenomics and transcriptomics data, demonstrating 

potential personalized treatment opportunities (Cancer Genome Atlas Research 

Network. and Cancer Genome Atlas Research Network 2017). 

NEMO (NEighborhood based Multi-Omics clustering, task-specific) 

(Rappoport and Shamir 2019) provides enhancements for other similarity-based 

methods, including SNF and HNMDRP. NEMO optimized the similarity inference 
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algorithms to enable faster runtime and added support for partial datasets (i.e., datasets 

in which a sample may not have the same coverage across all the omics). In the study, 

gene expression, DNA methylation, and miRNA expression data from ten cancer types 

in the TCGA dataset (Ding, Zu, and Gu 2016) were included as the input. NEMO was 

able to identify patient subgroups that showed significant difference in terms of 

survival, and achieved superior performance compared with another nine clustering 

algorithms (Rappoport and Shamir 2019). NEMO not only achieved comparable 

performance to several other multi-omics integration methods, but its interface is also 

more user-friendly. Evaluated on ten different cancer datasets, NEMO runs 

approximately 400 times faster than iClusterBayes and 20% faster than SNF (B. Wang 

et al. 2014). 

2.5 BENCHMARKING 

Previous sections about various omics data, fundamental machine learning 

concepts, and integration tools provide basic knowledge for researchers to perform 

their multi-omics data integration analysis. To facilitate the decision on which machine 

learning tools are suitable for specific applications, we performed a comparative 

analysis for two baseline methods (early concatenation and PCA) and five multi-omics 

data integration tools (MOFA2 v1.1, DIABLO v6.17.15, iClusterPlus v1.22.0, 

iClusterBayes v1.22.0, and moCluster v1.20.0) by using a common CCLE dataset. 

These five methods were selected from Table 2 because they satisfied the following 

criteria. First, the method provides a software package that allows users to apply the 

analysis to custom datasets. Second, the method has at least 10 citations. Third, the 

method was published within the past five years (Figure 4A). Because patient 

stratification aims at discovering new molecular subtypes, which are defined a priori, 
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we only included cancer type classification and drug response prediction as the two 

specific applications (Figure 4B). 

 

Figure 4: Details of the benchmarking analysis. A, The process of determining the scope of the 

benchmarking analysis. B, An overview of the steps included in the benchmarking analysis. 

CCLE multi-omics data were retrieved from the DepMap portal (version 20Q2), 

which consists of information from four omics layers (Ghandi et al. 2019; Nusinow et 

al. 2020), including WES mutation, CNV, gene expression (RNA), and protein 

abundance. To compare the five general-purpose tools with each other on an equal 

footing and report both prediction accuracy and runtime efficiency, we selected 

random forest as the downstream algorithm, because general-purpose tools do not 

directly predict drug responses and cancer types (Figure 4B). Specifically, random 

forests with 500 trees were fitted using five-fold cross-validation, which was repeated 

100 times by the Monte Carlo method to obtain a robust evaluation. Source code for 

this benchmarking analysis is provided in GitHub https://github.com/CMRI-

ProCan/MODIBenchmark. 

https://github.com/CMRI-ProCan/MODIBenchmark
https://github.com/CMRI-ProCan/MODIBenchmark
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2.5.1 Cancer type classification 

In the CCLE dataset, the number of features for WES mutation, CNV, gene 

expression (RNA), and protein abundance are 1,585, 18,466, 18,812, and 17,551, 

respectively (Figure 4B). The WES data were sequenced with 76-bp pair-end reads 

by Illumina HiSeq 2000 or Illumina GAIIX. The tool Picard was used to process the 

data, and mutation calling was done by MuTect. The copy number information was 

derived from WES data by ABSOLUTE. The methylation data were generated using 

reduced representation bisulfite sequencing and aligned by Bismark. For RNA-seq 

data, STAR was used for alignment and the read counts were normalized to transcripts 

per million bases. The protein data were generated by TMT10plex (Ghandi et al. 2019; 

Nusinow et al. 2020). No additional feature selection was performed to ensure 

unbiased downstream analysis. Only cell lines measured with all four omics layers 

were considered, because not all methods support partial datasets. A total of 217 cell 

lines from nine different cancer types were included in this benchmark comparison 

and CCLE metadata were used as the ground truth. Accuracy is chosen to be the 

evaluation metric, which is defined as the number of samples that are correctly 

predicted divided by the total number of samples. 

DIABLO showed the highest accuracy in cancer type classification, with an 

average of 78.7% (Figure 5A). DIABLO is the only supervised integration tool, which 

uses tissue types as label information. Notably, iCluster series, moCluster, and 

MOFA2 did not perform better than PCA, which was not specifically developed for 

biomedical applications. MOFA2 and iClusterBayes had lower accuracy than early 

concatenation, suggesting no real improvement was gained from the statistical 

integration. In summary, our benchmarking study indicates that DIABLO is the most 

appropriate tool when label information such as tissue type is available, and general 
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dimensionality reduction methods are most appropriate for cancer type prediction 

when unsupervised integration is intended. 

 

Figure 5: Benchmarking of machine learning-based integration tools using the CCLE multi-

omics data. A. Accuracy of each method for cancer type prediction, showing standard errors of the 

mean derived from 100 runs of five-fold cross-validation, totalling 500 experiments (* signifies p-

value < 0.05 and *** signifies p-value < 0.001 by an unpaired two-tailed Student’s t-test). B. MAE 

comparison for drug response prediction across 1,448 drugs, error bars representing standard errors of 

the mean (*** signifies p-value < 0.001 and n.s. stands for not significant by an unpaired two-tailed 

Student’s t-test). C. Runtime comparison. PCA is omitted as the runtime was negligible compared 

with the five multi-omics integration methods. D. A summary of the benchmarking study, derived 

from the results of cancer type prediction, drug response prediction (MAE between the measured 

AUC and predicted AUC), runtime comparison and the number of citations since publication. The 

number of citations for PCA was set to the maximum for better visualisation and because of its 

widespread use. The inverse of the runtime and drug response prediction MAE values are plotted so 

that higher values indicate better performance in all dimensions, and all values are plotted in the range 

of 0 to 1 in the radar plot. 

2.5.2 Drug response prediction 

For drug response prediction, we used the PRISM repurposing secondary 

screening dataset as the target, covering 1,448 drugs across 248 cell lines (Corsello et 

al. 2020). The area under the curve (AUC) of plasma concentration of a drug versus 

time after dosage (Scheff et al. 2011) was used as the drug response measurement. 

Mean absolute error (MAE) between the measured AUC and predicted AUC was 
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chosen as the evaluation metric, where MAE measures the arithmetic average of the 

absolute errors across all the samples. 

The performance difference between models was relatively small for drug 

response prediction when compared with cancer type prediction (Figure 5B). Early 

concatenation yielded the best MAE of 0.1239, followed by moCluster with an MAE 

of 0.1252. This is similar to a previous study (A. Singh et al. 2019), where early 

concatenation also outperformed DIABLO. No evident difference was observed 

between DIABLO, PCA, MOFA2, and iClusterPlus. iClusterBayes produced the worst 

prediction, with an average MAE of 0.1309 and 0.1311, respectively. Therefore, for 

drug response prediction, early concatenation should be prioritized if computational 

resources suffice. 

2.5.3 Runtime comparison 

Finally, we reported runtime for modelling CCLE data with the two baseline 

methods and the five integration tools. Early concatenation was not included because 

it does not involve modelling. The computation was completed on a CPU of Intel® 

Core™ i9-9880H @ 2.30GH and with default settings. 

We set five sample sizes (20%/40%/60%/80%/100% of the data) and compared 

the time consumed to run each of the methods (Figure 5C). PCA took less than one 

second even for the full dataset. Among the five multi-omics integration tools, 

DIABLO, and moCluster took the least runtime across all sizes with a linear runtime 

complexity. Although iClusterBayes also has a linear runtime complexity, it 

consistently ran slower than other tools for all sizes. MOFA2 has better scalability than 

iClusterBayes with a logarithmic runtime complexity. For sizes from 20% to 60%, 

iClusterPlus took less time than iClusterBayes and MOFA2, with a similar runtime 

compared to moCluster and DIABLO. However, the runtime of iClusterPlus surged 



 

Chapter 2: Machine learning for multi-omics data integration in cancer (Literature Review) 36 

dramatically from 10 minutes to 78 minutes when the number of samples was 

increased from 60% to 80%. Thus, iClusterPlus indicates a nonlinear growth, and is 

suboptimal for large datasets. 

2.5.4 Recommendation 

No single best method across all aspects can be found when analysing the CCLE 

multi-omics dataset (Figure 5D). PCA was robust and scalable among unsupervised 

methods when compared with MOFA2, iCluster series, and moCluster. In terms of 

average ranking, moCluster showed satisfactory performance across all three types of 

comparisons. It was ranked as the fourth for cancer type prediction and the second for 

drug response prediction with a linear runtime complexity. 

2.6 CONCLUSIONS 

We comprehensively reviewed current machine learning tools for the integration 

of multi-omics data across various research tasks in the field of cancer research. Multi-

omics data analysis is key to understanding the complex dysregulation that is 

associated with different cancer phenotypes. Despite the exponential growth of the 

number of multi-omics experiments and the amount of data available for analysis, 

limited efforts have been made to develop machine learning tools that automatically 

integrate these multi-omics datasets. Existing reviews on this topic have 

predominantly focused on computational approaches, leaving a gap in the literature 

for a review of multi-omics technologies and data formats. All tools reviewed in this 

article can only be used via a command-line interface, which is not user friendly for 

non-computational researchers. Therefore, future tools with a graphical user interface 

will facilitate wider adoption in cancer research. More importantly, here we only 

reviewed methods that support custom datasets, and we conducted an independent 

benchmarking with a range of evaluations, including cancer type prediction, drug 



 

Chapter 2: Machine learning for multi-omics data integration in cancer (Literature Review) 37 

response prediction, and runtime efficiency. We concluded that many multi-omics data 

integration tools did not show significantly enhanced performance than PCA on a 

common dataset. 

One challenge for multi-omics data integration is to account for the 

inconsistency between data generated from multiple sites. A meta-analysis across 12 

laboratories has shown that consistency for copy number and transcriptomic data is 

relatively high, whereas methylation and proteomic data only showed moderate to low 

consistency (Jaiswal et al. 2021). Other attempts at the genomics and proteomics levels 

have been made to partially mitigate this inconsistency (Collins et al. 2017; Zhong et 

al. 2018). We expect future machine learning approaches can resolve issues such as 

batch effects and normalization within the integration analysis. 

Certain omics data types are not covered in detail in this review because 

significant challenges regarding data integration are yet to be addressed. For example, 

metabolomic data record the levels of small molecules that are involved in cell 

metabolism, and metabolomics has shown a significant impact on cancer research to 

date (L.-B. Wang et al. 2021). However, metabolomic data are not stored in a gene-

level format, making it difficult for machine learning to integrate metabolomic data 

with other omics data. Another challenge for most machine learning tools is to 

incorporate biological knowledge into modelling approaches. Gene regulation is a 

fundamental biological mechanism that describes a hidden link between layers of 

multi-omics data, but this association is often inappropriately modelled. Most 

statistical methods focus on explaining the greatest amount of variation in a dataset by 

using a small number of surrogate variables. This approach can miss the detail of true 

biological relationships. We thus hypothesize that dynamical modelling of the 

regulation between genes and subsequent omics layers might be a promising direction 
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for the future development of machine learning-based multi-omics data integration 

tools. Causal models are likely to be applied to modelling gene regulations. 
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Chapter 3: Pan-cancer proteomic map of 

949 human cell lines 

Text and figures included in this chapter are adapted from the following 

publication: 

Gonçalves, E.*, Poulos, R. C.*, Cai, Z.* [* joint first authors], Barthorpe, S., Manda, 

S. S., Lucas, N., ... & Reddel, R. R. (2022). Pan-cancer proteomic map of 949 human 

cell lines. Cancer cell, 40(8), 835-849. 
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3.1 SUMMARY 

The proteome provides unique insights into disease biology beyond the genome 

and transcriptome. Lack of large proteomic datasets has restricted identification of new 

cancer biomarkers. Here, proteomes of 949 cancer cell lines across 28 tissue types are 

analyzed by mass spectrometry. Deploying a workflow to quantify 8,498 proteins, 

these data capture evidence of cell type and post-transcriptional modifications. 

Integrating multi-omics, drug response and CRISPR-Cas9 gene essentiality screens 

with a deep learning-based pipeline reveals thousands of protein biomarkers of cancer 

vulnerabilities that are not significant at the transcript level. The power of the proteome 

to predict drug response is very similar to that of the transcriptome. Further, random 

downsampling to only 1,500 proteins has limited impact on predictive power, 

consistent with protein networks being highly connected and co-regulated. This pan-

cancer proteomic map (ProCan-DepMapSanger) is a comprehensive resource 

available at https://cellmodelpassports.sanger.ac.uk. 

3.2 INTRODUCTION 

Precision medicine relies on the identification of specific molecular alterations 

that can stratify patients and guide the choice of effective therapeutic options. Cancer 

vulnerabilities, such as synthetic lethalities, can be systematically studied using 

functional genetic and small molecule screens. To circumvent the limitations of using 

patient tissue samples for this type of approach, biomarkers of cancer vulnerabilities 

have been analysed using cancer cell lines, together with deep molecular 

characterization, functional genetic and pharmacological screens (Iorio et al. 2016; 

Tsherniak et al. 2017; Ghandi et al. 2019; Behan et al. 2019; Frejno et al. 2020). The 

direct measurement of proteins provides insights into the dynamic molecular 

behaviour of cells and can improve our understanding of genotype-to-phenotype 

https://cellmodelpassports.sanger.ac.uk/
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relationships (Y. Liu, Beyer, and Aebersold 2016). Despite the development of 

precision oncology therapeutics, the complexity of cancer and the inability of 

genomics to accurately predict the proteome indicate that genomics alone is often 

insufficient to inform and guide the clinical care of many patients. Measurement of the 

proteome has the potential to expand our understanding of cancer phenotypes and to 

improve diagnosis and treatment choices. 

Technological and methodological advances have enabled the standardized 

quantification of thousands of proteins across dozens to hundreds of cell lines 

(Gholami et al. 2013; R. T. Lawrence et al. 2015; Coscia et al. 2016; Roumeliotis et 

al. 2017; Nusinow et al. 2020) and the profiling of clinical samples derived from 

minute tissue biopsies (B. Zhang et al. 2014; Edwards et al. 2015; Pozniak et al. 2016; 

H. Zhang et al. 2016; Mertins et al. 2016; Frejno et al. 2017; Vasaikar et al. 2019; 

Clark et al. 2019; Tully 2020). Using a data-independent acquisition (DIA)-mass 

spectrometry (MS) approach (Gillet et al. 2012; Guo et al. 2015; Ludwig et al. 2018; 

Lucas et al. 2019), together with a sample processing workflow with novel data 

processing methods, it is now possible for proteomes to be acquired reproducibly at 

scale (Tully et al. 2019; Poulos et al. 2020). The generation and distribution of large-

scale proteomic datasets have the potential to drive new computational approaches, 

including deep learning-based algorithms, to investigate the impact of molecular 

changes on cancer vulnerabilities. This will enable proteomics to contribute important 

clinical advances for cancer therapeutic applications. 

Cell lines have been invaluable models for our understanding of cellular 

processes and the molecular drivers of carcinogenesis (Garnett et al. 2012; Iorio et al. 

2016; Barretina et al. 2012; Tsherniak et al. 2017; Meyers et al. 2017; Behan et al. 

2019; Ghandi et al. 2019; Picco et al. 2019), and for identifying cancer cell 
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vulnerabilities to both genetic (McDonald et al. 2017; Tsherniak et al. 2017; Hart et 

al. 2015; Meyers et al. 2017; Behan et al. 2019) and pharmacological (Garnett et al. 

2012; Iorio et al. 2016; Corsello et al. 2020; Barretina et al. 2012; Seashore-Ludlow et 

al. 2015; Rees et al. 2016) perturbations. However, proteomic quantifications for 

cancer cell lines are either limited in the range of cancer types or number of samples 

analysed, or are largely unavailable (Nusinow et al. 2020; Tsherniak et al. 2017; 

Ghandi et al. 2019) . Consequently, little is known about the contribution of the 

proteome to cancer vulnerabilities or how the cancer proteome is regulated in diverse 

tissues and genetic contexts. 

This study reports a pan-cancer cell line proteomic map quantifying 8,498 

proteins across 949 cell lines. The generation and analysis of this rich resource 

involved the development of a workflow with rapid sample processing and minimal 

complexity, followed by the application of a deep neural network-based computational 

pipeline to uncover cancer targets. Integration of our proteomic data (referred to as the 

ProCan-DepMapSanger dataset) with existing molecular and phenotypic datasets from 

the Cancer Dependency Map (Boehm et al. 2021), showed that protein networks are 

more strongly co-regulated than are transcriptomics and functional genomics. Our 

approach identified biomarkers of well-established cancer vulnerabilities and, more 

important, highlighted those that cannot be identified with genomics or transcriptomics 

alone. The proteome measured in our study had an equivalent performance to the total 

measured transcriptome in predicting cancer phenotypes. Furthermore, random 

subsets of 1,500 proteins downsampled from the complete dataset achieved 88% of 

the power to predict drug responses. These results have broad implications for the 

design of future studies, ranging from basic research to clinical applications. 
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3.3 RESULTS 

3.3.1 A resource of 949 cancer cell line proteomes 

To construct a pan-cancer proteomic map, proteomes of 949 human cancer cell 

lines from 28 tissues and more than 40 genetically and histologically diverse cancer 

types were quantified (Figures 1A and S1A, Table S1). The proteome for each cell 

line was acquired by DIA-MS from six replicates using a workflow that enables high 

throughput and minimal instrument downtime (see STAR Methods, Figure S1B). The 

resulting dataset was derived from 6,864 DIA-MS runs acquired over 10,000 MS h 

(Table S1), including peptide preparations derived from the human embryonic kidney 

cell line HEK293T that were used throughout all data acquisition periods and 

instruments for quality control. These data, together with the spectral library, were 

deposited in the Proteomics Identification Database (Perez-Riverol et al. 2019) with 

dataset identifier PXD030304. Raw DIA-MS data were processed with DIA-NN 

(Demichev et al. 2020), using retention time-dependent normalization and with a 

spectral library generated by DIA-NN. For full details of data processing steps and 

parameters, see STAR Methods and Table S1. MaxLFQ (Cox et al. 2014) was then 

used to quantify a total of 8,498 proteins (Table S2, Figure S1C), with a median of 

5,237 proteins (min-max range: 2,523–6,251) quantified per cell line (Table S1, 

Figure 1A). The ProCan-DepMapSanger dataset significantly expands the existing 

molecular characterizations of this broad range of cancer cell line models (Figure 1B). 

Pharmacological screens of anti-cancer drugs tested against this cell line panel were 

also expanded in this study, increasing the number of unique drugs tested by 48% over 

our prior work (n = 625 drugs and investigational compounds; Figure 1C), with a total 

of 578,238 half-maximal inhibitory concentrations (IC50) experimentally measured. 
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High correlations were observed between replicates of each cell line, yielding a 

sample-wise median Pearson’s correlation coefficient (Pearson’s r) of 0.92 (Figures 

1D and S1A). Correlations between unmatched samples from the same instrument or 

batch were similar to random (median Pearson’s r = 0.75, Figure 1D). Although 

integration of outputs from different proteomics platforms is acknowledged to be an 

unsolved challenge, we have compared our data with previously published proteomic 

datasets comprising smaller subsets of the same cell lines (R. T. Lawrence et al. 2015; 

Roumeliotis et al. 2017; Guo et al. 2019; Nusinow et al. 2020; Frejno et al. 2020) and 

have shown comparable levels of correlation among all datasets (Figure S1D). 

Nonlinear dimensionality reduction using Uniform Manifold Approximation and 

Projection (UMAP) (McInnes, Healy, and Melville 2018) showed no evidence of 

instrument or batch effects (Figure S1E). Proteins that were detected had higher mean 

RNA expression across the cell line panel than proteins that were not detected in this 

study (p < 0.0001 by the Mann-Whitney U test) (Figure S1F), suggesting some bias 

toward abundant proteins. Overall, this study generated a high-quality and biologically 

reproducible pan-cancer proteome map of human cancer cell lines. 

 

Figure 1. A pan-cancer proteomic map of 949 human cancer cell lines. A, Methodology overview 

for pan-cancer characterization of 949 human cell lines using a DIA-MS workflow. B, Proteomic 

measurements were integrated with independent molecular and phenotypic datasets spanning 1,303 
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cancer cell lines as part of the Cell Model Passports Database. Data include proteomics (ProCan-

DepMapSanger) presented here, transcriptomics, drug response (Sanger), mutation, copy number, 

methylation, drug response (CTD2), CRISPR-Cas9 gene essentiality (Broad&Sanger), drug response 

(PRISM), and proteomics (CCLE). Each grey slice denotes a unique cell line, and the total number of 

cell lines per dataset is indicated. The proteomic data (ProCan-DepMapSanger) generated in this study 

are shown in orange, as well as the expanded drug response (Sanger) dataset. C, Number of drugs 

included in the drug response (Sanger) screen, with the orange bar highlighting the additional number 

of unique drugs presented in this study compared to previous studies. Drugs are grouped by the 

pathway of their canonical targets. D, Pearson’s correlations of the proteomes for each set of six 

technical replicates, as well as each cancer type, tissue type, batch and instrument. Random indicates 

the correlation between random unmatched sets of replicates. Median Pearson’s r for each group is 

reported. Box-and-whisker plots indicate interquartile range (IQR) with a line at the median. Whiskers 

represent the minimum and maximum values at 1.5 x IQRs. See also Figure S1, Table S1 and Table 

S2. 

3.3.2 Proteomic profiles reveal cell type of origin 

Next, we defined a stringent set of protein quantifications that were supported 

by measuring more than one peptide (n = 6,692 human proteins) (Table S2). 

Visualization of these protein intensities via UMAP showed groupings by cell type of 

origin, such as distinct clusters of hematopoietic and lymphoid cells and skin cells 

(Figure 2A). Hematopoietic and lymphoid cells appeared to exhibit further subgroups, 

and we found that this cell type could be segregated into different cell lineages (Figure 

2B). This high-level dimensionality reduction suggested a profile of protein expression 

that relates to cell type of origin. To investigate this further, a set of 279 proteins that 

are enriched in certain cell types was selected (Table S3). These cell type-enriched 

proteins were defined as any protein quantified in 50% or more of cell lines from no 

more than two tissue types and 35% or less of cell lines from all remaining tissues, 

considering only tissues represented by at least 10 cell lines (Figure 2C). Cell lines 

from hematopoietic and lymphoid, peripheral nervous system, and skin cell types 

showed the greatest numbers of these proteins (Figure 2D). Proteins encoded by genes 

representing gene ontology terms for lymphocyte activation, neuron projection, and 

pigmentation were identified in each of these cell types, respectively. Further, the cell 

type-enriched proteins had a higher correlation between the transcriptome and 

proteome than did other proteins, suggesting that these represent cell type-specific 
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processes that are more highly conserved between transcription and translation 

(Figure 2E). Overall, this analysis demonstrates a general alignment of the proteomic 

data with cell lineage, revealing patterns of protein expression that are consistent with 

some cancer cell types of origin. 

 

Figure 2. Distinct proteomic profiles according to cell type. A, Proteomic data dimensionality 

reduction by UMAP, with cell lines colored by tissue. B, UMAP of hematopoietic and lymphoid cell 

lines colored by cell lineage. C, Heatmap of the frequency of cell type-enriched proteins observed 

within each tissue. Tissues and proteins are clustered on the vertical and horizontal axes, respectively. 

D, Number of cell type-enriched proteins identified in each tissue type represented by more than 10 

cell lines. E, Median RNA-protein correlation of cell type-enriched proteins against all other proteins 

with more than 10 observations in that tissue type. Only tissues with at least 5 cell type-specific 

proteins are shown. See also Table S3. 

3.3.3 Post-transcriptional regulation in diverse cancer cell types 

We next sought to identify the key drivers of the distinct protein expression 

patterns observed across the cell line panel and to investigate how these integrate with 

other molecular and phenotypic measurements. Multi-omics factor analysis (MOFA) 

(Argelaguet et al. 2018, 2020) was used to integrate the proteomic measurements with 

a range of molecular (promoter methylation, gene expression and protein abundance) 
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and phenotypic (drug response) datasets available for most cancer cell lines (Table S4 

and Figure 3A). MOFA uses a Bayesian group factor analysis framework to enable 

unsupervised integration of datasets to infer a set of factors (latent variables) that 

account for biological and technical variability in the data (Argelaguet et al. 2018, 

2020). Epithelial-to-mesenchymal transition (EMT) canonical markers, vimentin and 

E-cadherin, and EMT gene set enrichment analysis enrichment scores (A. 

Subramanian et al. 2005; Liberzon et al. 2011) were found to be associated with the 

first two factors (F1 and F2) corresponding with large portions of the variability across 

all datasets (Figure 3A). Technical aspects like cell line media and growth conditions 

explained little or no variability, while cell size and growth rate were moderately 

related with some factors (Figure S2A). Cancer cell lines from the same tissue of 

origin showed gradients of EMT markers (Figure 3B), which may indicate that the 

cell lines were established from cancers derived from different epithelial or 

mesenchymal lineages, or that the cancers had undergone EMT. EMT markers are 

known to be associated with different stages of cancer progression including initiation, 

metastasis, and the development of therapy resistance (Brabletz et al. 2018). We 

observed that some factors capture tissue-specific processes, with their loadings being 

enriched toward the cell type-enriched proteins defined earlier (Figure 3A). For 

example, a MOFA analysis highlighted an association between factor 12 and skin-

derived cell lines (Figure S2B), which in this study are primarily from melanomas. 

Factor 12 also related to phenotypic measurements that are typical of melanomas, 

correlating with CRISPR-Cas9 gene essentiality scores for BRAF (Figure 3C) and 

with its inhibitor, dabrafenib (Figure 3D), both of which are strongly associated with 

cell lines harbouring BRAF mutations that are very common in cutaneous melanomas. 

While EMT markers were largely concordant between transcriptomics and proteomics, 
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more broadly, a modest and variable association was observed between protein and 

transcript measurements (median protein-wise Pearson’s r = 0.42, Figure S2C). This 

is consistent with the expectation that proteomic data capture variability explained by 

post-transcriptional regulation and the proteostasis network. Focusing on the impact 

of genomic alterations on proteomic profiles, gene copy number was more weakly 

correlated with protein levels than with gene expression, indicating attenuation of copy 

number effects between the transcriptome and the proteome (Figures 3E and Table 

S4). This was particularly evident among subunits of protein complexes such as those 

involved in ribosomes (Figure S2D), which can co-regulate their abundance post-

transcriptionally to maintain complex stability and stoichiometry (Gonçalves et al. 

2017; Roumeliotis et al. 2017; Ryan et al. 2017; Sousa et al. 2019). Proteins involved 

in protein synthesis and degradation had some of the strongest post-transcriptional 

regulation, with several proteasome and ribosome subunits showing strong attenuation 

(Figure S2D). Together, this reflects an active proteostasis network, revealed 

primarily via direct measurement of the proteome (Gumeni et al. 2017).  

Using somatic mutation data to stratify the full set of protein quantifications 

according to mutation status (Table S4) revealed 478 proteins with significant 

differential protein intensities between cell lines that were wild type versus those that 

had protein-coding mutations (false discovery rate [FDR]-adjusted p value < 0.05) 

(Figure 3F). When mutations were present in the gene encoding a given protein, the 

majority of proteins had decreased abundance (n = 354 proteins). In contrast, mutations 

in some genes, such as TP53, were associated with significantly higher protein 

intensities than wild-type cell lines (TP53: FDR-adjusted p value < 0.0001). This is 

consistent with the known increase in stability of many mutant P53 proteins, which 
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results from a decreased rate of proteasome-mediated degradation (Vijayakumaran et 

al. 2015).  

These results indicate that, while variability in protein expression is associated 

with other molecular and phenotypic layers, there is only partial correlation between 

transcript and protein abundance, consistent with the effects of post-transcriptional 

regulation. Thus, the ProCan-DepMapSanger dataset captures additional protein-

specific information that can augment our understanding of the impact of genomic 

alterations affecting, among others, well-established cancer genes. 

 

Figure 3. Post-transcriptional regulatory mechanisms of cancer cell lines. A, Identification of 

shared variability (factors) from MOFA across multiple molecular and phenotypic cancer cell line 

datasets. Hematopoietic and lymphoid cells are grouped and trained separately from the other cell 

lines. The upper two heatmaps (blue) report the portion of variance explained by each factor 

(columns) in each dataset. The central (yellow) heatmap reports Pearson’s r between each learned 

factor and various molecular characteristics of the cancer cell lines. The lower heatmap shows GSEA 

enrichment scores of each factor to cell type-specific proteins. B, Separation of cancer cell lines by 

MOFA Factors 1 and 2, colored by tissue of origin (left) and by EMT canonical marker VIM protein 

intensities (right). C, Scatter plot with linear regression between MOFA Factor 12 and BRAF 
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CRISPR-Cas9 gene essentiality scores. Skin cancer cell lines are highlighted in red, and BRAF mutant 

cell lines are marked with a cross. D, Similar to C, but instead the vertical axis indicates the 

dabrafenib drug response (IC50) measurements. E, Pearson’s r between gene absolute copy number 

profiles with transcriptomics (horizontal axis) and with protein intensities from the ProCan-

DepMapSanger dataset (vertical axis). Representative CORUM protein complexes with the highest 

differences between the Pearson’s r are shown, and the top 15 most attenuated proteins from these 

complexes are labeled. N indicates the number of proteins in each protein complex. Box-and-whisker 

plots represent the Pearson’s r distributions of proteins involved in each highlighted gene ontology 

term compared to all proteins (gray). F, Volcano plot showing differential protein intensities between 

cell lines that are wild-type versus mutant for each protein in the ProCan-DepMapSanger dataset that 

is mutated in at least 1% of the cohort. The top 10 proteins by p-value are annotated. The horizontal 

axis shows the -log10 of the empirical Bayes moderated t-test p-value, and proteins with FDR < 5% are 

colored in red. G, Recall of protein-protein interactions (PPIs), i.e. ability to detect known PPIs, from 

resources CORUM, STRING, BioGRID and HuRI. All possible protein pairwise correlations 

(Pearson’s p-value) were ranked, using proteomics, transcriptomics and CRISPR-Cas9 gene 

essentiality. The merged score was defined as the product of the p-values of the different correlations. 

In C, D and E, Box-and-whisker plots indicate interquartile range (IQR) with a line at the median. 

Whiskers represent the minimum and maximum values at 1.5 x IQRs. See also Figure S2 and Table 

S4. 

3.3.4 Co-regulatory protein networks of cancer cells 

Having observed post-transcriptional co-regulation of protein complex 

abundance (Figure 3E), we next investigated whether the abundance of co-regulated 

proteins could be used to predict putative protein-protein interactions (PPIs). We 

assessed all possible pairwise protein correlations (n = 16,580,952) and, as a 

comparator, used corresponding gene expression and CRISPR-Cas9 gene essentiality 

profiles, where available. As expected, paralogs and protein complex subunits had 

some of the strongest correlations (Table S4; absolute Pearson’s r > 0.5 and FDR 

adjusted p value < 0.05). We systematically assessed this enrichment using multiple 

resources for protein interactions: protein complex interactions from the 

Comprehensive Resource of Mammalian Protein Complexes (CORUM) (Ruepp et al. 

2010); functional interactions from the Search Tool for the Retrieval of Interacting 

Genes/Proteins (STRING) database (Szklarczyk et al. 2017); physical protein 

interactions from the Biological General Repository for Interaction Datasets 

(BioGRID) (Chatr-Aryamontri et al. 2015); and the Human Protein Interactome (HuRI) 

(Luck et al. 2020). For all resources, proteomic measurements had greater ability to 

detect known PPIs (area under the recall curve [AUC] = 0.55–0.80) than 
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transcriptomics (AUC = 0.53–0.72) and CRISPR-Cas9 gene essentiality (AUC = 0.51–

0.63) (Figure 3G), indicating that PPIs and co-regulation are best captured by 

proteomics. 

The correlation p value score (Fisher’s combined probability test) for BioGRID 

and HuRI databases was improved slightly by merging different datasets (AUC = 

0.54–0.82), suggesting that different types of interactions are captured across multi-

omic layers. Proteins with higher numbers of positive protein-protein correlations were 

more essential for cancer cell survival, as observed in the CRISPR-Cas9 gene 

essentiality dataset (Figure S2E). This is likely linked to their increased transcript and 

protein expression levels, and the number of pathways in which they are involved. 

Paralogs were an exception, as they had largely non-essential profiles independent of 

their gene expression (Figure S2F), consistent with their functional redundancy 

attenuating the impact of loss (Dandage and Landry 2019). 

Considering the high correlations that were observed with known interactions, 

these pairwise protein correlations could be used to identify novel putative PPIs, such 

as between protein subunits. Consistent with this, we identified 1,182 putative PPIs 

with a Pearson’s r greater than 0.8 that are not reported in any of the protein network 

resources analysed here. For example, there were strong correlations between protein 

profiles for EEF2-EIF3I, RPSA-SERBP1 and CCT6A-EEF2 (Table S4). These 

proteins are not reported to interact directly but are also closely related in the high 

confidence STRING protein interaction network (Szklarczyk et al. 2017). Overall, this 

analysis highlights the ability for protein measurements to detect known interactions, 

and suggests the utility of this dataset for predicting co-regulated interactions. 
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3.3.5 Identifying biomarkers of cancer vulnerabilities 

Next, we considered the application of proteomics to identify biomarkers by 

harnessing drug (Garnett et al. 2012; Iorio et al. 2016; Picco et al. 2019; Gonçalves et 

al. 2020) and CRISPR-Cas9 gene essentiality (Behan et al. 2019; Meyers et al. 2017; 

Pacini et al. 2021) screens. The previous Sanger pharmacological screens were 

expanded to include a total of 578,238 IC50 values (Figure 1B). These included a total 

of 625 unique anti-cancer drugs (48% increase in unique drugs over previously 

published datasets (Iorio et al. 2016; Picco et al. 2019; Gonçalves et al. 2020)) that 

were screened across 947 of the 949 cancer cell lines, including U.S. Food and Drug 

Administration-approved drugs, drugs in clinical development, and investigational 

compounds. To identify protein biomarkers predictive of cancer cell line response to 

these drugs or CRISPR-Cas9 gene essentialities (n = 17,486), we applied linear 

regression to test all pairwise associations between proteins, drug sensitivity, and 

CRISPR-Cas9 gene dependencies, while considering potentially confounding effects, 

such as cell line growth rate, culture media, and the average replicate correlation (see 

STAR Methods for more details) (Figure 4A, Table S5). Among the strongest 

significant associations (FDR < 5%), we observed that 57 drugs were associated with 

the protein abundance of their canonical target(s), including negative associations 

between EGFR protein abundance and its inhibitor gefitinib, and MET protein 

abundance and its inhibitor drug response (Figure 4A). We observed a significant 

negative association between ERBB2 (also known as HER2) and lapatinib, a tyrosine 

kinase inhibitor that targets EGFR and HER2 (Figure 4A). This association has been 

observed in proteomic studies using other preclinical models (breast cancer patient-

derived xenografts) (Huang et al. 2017) and in human cancers, with lapatinib already 

an approved drug used in the treatment of HER2-positive breast cancers (Z.-Q. Xu et 

al. 2017). For another 132 drugs, significant associations were identified with proteins 
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functionally related with their targets (i.e., one step away in the STRING PPI network). 

The majority of the significant drug-protein target associations showed a negative 

effect size (Figure 4A), indicating greater sensitivity of a cell line to a drug when the 

target of the drug is more abundant. Last, the identification of associations with 

reported gene copy number alterations, such as amplification of MET and ERBB2, are 

also observed at the protein level (Figure 4B). Non-self interactions were also 

observed, such as PPA1-PPA2 paralog synthetic-lethal interaction, where cell lines 

with lower PPA2 abundance are more sensitive to PPA1 knockout (Figure S3A). 

 

Figure 4. Biomarkers for cancer vulnerabilities. A, Significant linear regression associations (FDR 

< 5%) between protein measurements and drug responses (left panel) and protein measurements and 

CRISPR-Cas9 gene essentiality scores (right panel). Each association is represented using the linear 

regression effect size (beta) and its statistical significance (log-ratio test), and colored according to the 

distance between the target of the drug or CRISPR-Cas9 and the associated protein in a protein-

protein interaction network assembled from STRING. T denotes the associated protein is either a 

canonical target of the drug or the CRISPR-Cas9 reagents; numbers represent the minimal number of 

interactions separating the drug or CRISPR-Cas9 targets to the associated proteins; and the symbol ‘-’ 

denotes associations for which no path was found. Representative examples are labeled. B, 
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Representative top-ranked CRISPR-Cas9-protein and drug-protein associations. Upper panel shows 

ERBB2 protein intensities associated with CRISPR-Cas9 gene essentiality, where cell lines with 

ERBB2 amplifications are highlighted in orange. Lower panel shows the association between 

AZD6094 MET inhibitor and MET protein intensities, where MET amplified cell lines are highlighted 

in orange. Box-and-whisker plots indicate interquartile range (IQR) with a line at the median. 

Whiskers represent the minimum and maximum values at 1.5 x IQRs. C, Overview of the DeeProM 

workflow: (i) deep learning models of DeepOmicNet were trained to predict drug responses and 

CRISPR-Cas9 gene essentialities, prioritizing those that are best predicted by proteomic profiles; and 

(ii) Fisher-Pearson coefficient of skewness was calculated to identify drug responses and CRISPR-

Cas9 gene essentialities that selectively occur in subsets of cancer cell lines. The selected candidates 

from (i) and (ii) are illustrated by the gray box. (iii) Linear regression models were fitted to identify 

significant associations between protein biomarkers, drug responses and CRISPR-Cas9 gene 

essentialities. (iv) Filtering algorithms were applied to further identify tissue-specific cancer 

vulnerabilities. See also Figure S3 and Table S5. 

To identify biomarker associations that are unique to the proteome and could not 

be predicted by gene expression measurements alone, we developed a deep learning-

based computational pipeline called Deep Proteomic Marker (DeeProM) (Figure 4C). 

DeeProM is powered by DeepOmicNet (see Figure S3B and STAR Methods for more 

details), a deep neural network architecture designed to prioritize drug responses and 

CRISPR-Cas9 gene essentialities that are highly predictive and specific to subsets of 

cancer cell lines. In addition, DeeProM incorporates results from linear models 

described above to highlight biomarkers that are only evident at the proteomic level. 

As a benchmark, we found that the accuracy of DeepOmicNet, evaluated using 

Pearson’s r between the observed and predicted IC50 values, consistently outperformed 

other machine learning approaches such as elastic net and Random Forest, across a 

range of multi-omic datasets used in previous studies (Iorio et al. 2016) (Figure S3C). 

DeeProM assessed all possible drug-protein (n = 4,218,788) and CRISPR-protein (n = 

86,584,537) associations to identify cancer vulnerabilities that are simultaneously well 

predicted and selective in subsets of cell lines (Figure 5A). These two selection criteria 

yielded 67 drug responses and 62 gene essentialities, with a total of 7,698 drug-protein 

and 5,823 CRISPR-Cas9-protein associations, that had significantly improved 

predictions when compared to models that considered gene expression measurements 

alone (Figure 4C and Table S5). 
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Promising targeted therapeutics are often developed for specific cancer types and 

can display tissue-specific responses. For this reason, DeeProM was used to 

interrogate associations at the tissue type level by applying a filtering strategy (Figure 

4C and STAR Methods). Using the DeeProM workflow, we identified 1,538 tissue 

type-level CRISPR-Cas9-protein associations (Table S5). Among the strongest was 

the dependency on FOXA1 transcription factor knockout and protein levels of basigin 

(BSG; also known as CD147), a plasma membrane protein expressed in breast cancer 

cells (Figures 5B and 5C). This association was not observed at the gene expression 

level (Figure S3D). FOXA1-BSG association occurred in luminal (luminal A and B) 

and HER2-positive (non-basal) breast cancer cell lines, in which BSG protein 

abundance is low relative to basal cell lines (Figure 5C). BSG has been implicated in 

breast cancer progression (Landras et al. 2019), and is a marker of the aggressive basal-

like and triple-negative subtypes, as well as being associated with poor overall survival 

within these patients (M. Liu et al. 2018). These data support a model where BSG 

protein expression is associated with basal-like breast cancer cells, whereas luminal 

and HER2-positive breast cancer cells with low BSG expression have an increased 

dependency on estrogen receptor-driven FOXA1 transcriptional activity. Further work 

that expands the number of samples, and confirmatory studies, would be required to 

validate this observation. 

DeeProM also identified 108 tissue type level drug-protein associations (Table 

S5). Filtering by the effect size, the strongest association identified was between 

sensitivity to Aurora kinase B/C selective inhibitor GSK1070916 and the protein 

abundance of peptidyl-prolyl cis-trans isomerase H (PPIH) in cell lines derived from 

bone (Figure 5D). This association was significant at the protein level, but was not 

significant in the transcriptome (Figure S4A). The association was further supported 
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by examination of the Cancer Cell Line Encyclopedia (CCLE) proteomic dataset 

(Figures S4B and S4C) (Nusinow et al. 2020) , the PRISM drug response dataset 

(Figure S4D) (Corsello et al. 2020), and using an independent screening of 

GSK1070916 in the Sanger drug sensitivity dataset (Figures S4E and S4F), in which 

there is a suggestive association that does not reach statistical significance due to the 

smaller sample size. Furthermore, there was a strong association between PPIH protein 

levels and Alisertib, a second Aurora kinase inhibitor (Figures 5E, S4G and S4H). 

PPIH and Aurora kinase A are both regulated by the p53-p21-DREAM-CDE/CHR 

signalling pathway (Fischer et al. 2016), supporting the identified link between Aurora 

kinase inhibitor sensitivity and PPIH protein levels. Elucidating the precise mechanism 

underlying this association will require further research. 

Taken together, these results demonstrate the added value of proteomic 

measurements for the discovery of cancer biomarkers. We identified both established 

and potential cancer related biomarkers, including protein biomarkers for selective 

cancer vulnerabilities that were not found using gene expression measurements alone. 
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Figure 5. Protein biomarkers identified by DeeProM. A, Predictive performance and selectivity of 

all drug responses (left) and CRISPR-Cas9 gene essentialities (right) across 947 and 534 cancer cell 

lines, respectively. Data points toward the top left corner of each plot indicate drug responses or gene 

essentialities that are both selective and well predicted. Top selective drugs and CRISPR-Cas9 gene 

essentialities are labeled. B, Top significant protein associations with FOXA1 CRISPR-Cas9 gene 

essentiality scores, each bar representing the statistical significance of the linear regression, and below 

the effect size (beta). The minimal distance of PPIs in the STRING network between FOXA1 and 

each protein is annotated in each respective bar and color coded according to the description in Figure 

4A. C, Association between FOXA1 CRISPR-Cas9 gene essentiality scores and BSG protein 

intensities. Breast cancer cell lines are highlighted and sub-classified using the PAM50 gene 

expression signature (Parker et al. 2009). Box-and-whisker plots indicate the PAM50 subtypes of 

breast cancers. Pearson’s r (r), p-value (p), and number of observations/cell lines (N) within each 

PAM50 type is provided; for “Normal” subtype no correlation was performed considering N is 1. 

These plots indicate interquartile range (IQR) with a line at the median. Whiskers represent the 

minimum and maximum values at 1.5 x IQRs. D-E, Representative examples of tissue-specific 

associations between drug responses and protein markers for cell lines derived from bone (green; all 

other cell lines are shown in gray). The number of cell lines and Pearson’s r from the highlighted 

tissue type are annotated at the top right and bottom left corners, respectively. The dashed line 

represents the maximum concentration used in the drug response screens. D, The GSK1070916-PPIH 

association in bone supported by the ProCan-DepMapSanger proteomic dataset. E, Similar to D, 

instead showing data for the drug Alisertib. See also Figure S3, Figure S4 and Table S5. 

3.3.6 Predictive power of protein sub-networks on cancer cell phenotypes 

We have established the utility of proteomics to identify specific biomarkers for 

cancer vulnerabilities. Using an independent cell line proteomic dataset from the 

CCLE (Nusinow et al. 2020), we observed comparable performance to the ProCan-

DepMapSanger dataset when predicting three independent drug response datasets 
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(Figures 6A and S5A) and CRISPR-Cas9 gene essentiality profiles (Figures 6B and 

S5B). We next compared the predictive power of proteomic and transcriptomic data 

for modelling drug responses and CRISPR-Cas9 gene essentialities. The predictive 

power of our models was highly similar when trained using either the ProCan-

DepMapSanger or the transcriptomics dataset (Figure 6C). This was recapitulated by 

machine learning methods such as elastic net and Random Forest (Figure 6D). 

Notably, the predictive performance of protein measurements and transcript 

measurements were highly similar, and protein measurements alone outperformed the 

corresponding overlapping subset of the transcriptome (p value < 0.0001, two-tailed 

paired Student t test) (Figure S5C). Proteomic measurements further showed overall 

stronger protein pairwise correlations than transcriptomics or CRISPR-Cas9 gene 

essentialities (Figure 6E). Taking these observations together, this demonstrates that 

proteomics and transcriptomics share comparable predictive power and suggests that 

proteomics may provide additional relevant information that is not captured by 

transcriptomics. 
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Figure 6. Evaluation of predictive power of DeepOmicNet for multi-omic datasets. A-B, 

Distribution of the predictive power (mean Pearson’s r between predicted and observed IC50 values) 

of DeepOmicNet, comparing ProCan-DepMapSanger to an independent proteomic dataset (CCLE), 

using cell lines in common between the two datasets. Plots show prediction of A, drug responses (N 

represents the total number of drugs tested; n = 290 cell lines) and B, CRISPR-Cas9 gene 

essentialities (n = 234 cell lines). C, Two-dimensional density plots showing the predictive power of 

DeepOmicNet in predicting drug responses (left) and CRISPR-Cas9 gene essentiality profiles (right) 

using protein (horizontal axis) and transcript (vertical axis) measurements. Each data point denotes the 

Pearson’s r between predicted and observed measurements for each drug or CRISPR-Cas9 gene 

essentialities. D, Similar to A, distribution of the predictive power of three machine learning models 

using either proteomic or transcriptomic measurements to train and predict drug responses (Sanger 

dataset). E, Cumulative distribution function of the Pearson’s r of all pairwise protein-protein 

correlations compared with transcriptomics and CRISPR-Cas9 gene essentiality measurements. See 

also Figure S5. 

To determine how predictive power is influenced by the number of proteins used 

in the modelling, a random downsampling analysis was performed to predict drug 

responses, with a decrease of 500 proteins in each step (see STAR Methods). This 

showed that a randomly selected subset of 1,500 proteins was able to provide 88% of 

the predictive power of the full dataset (mean Pearson’s r = 0.43 at n = 1,500 proteins 

versus mean Pearson’s r = 0.49 at n = 8,498 proteins) (Figure 7A). This implies that a 

random fraction of quantifiable proteins is sufficient to represent fundamental 

elements of the proteome involved in mediating key cellular phenotypes. We propose 

this is in part because proteins are organized into complexes and pathways with 

connected and co-regulated subunits (Figure 7B). 

To investigate protein networks, DeeProM analyses of drug-protein and 

CRISPR-Cas9-protein associations were examined in the context of protein networks 

(Figures 7C and 7D). The strongest overall associations were observed between the 

drug and CRISPR-Cas9 targets and their protein intensities (Figures 7C and 7D). 

Additionally, CRISPR-Cas9-protein associations showed that proteins closer in the 

PPI network to the targeted proteins had stronger associations than those further apart 

(Figure 7D). This enrichment for targets and functionally closer proteins remains even 

when the contribution of transcriptomic measurements is removed for the drug-protein 

and CRISPR-Cas9-protein associations (Figures S5D and S5E). However, many 
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seemingly functionally distant proteins (more than two steps away from the 

perturbation target in PPIs) also exhibit significant drug-protein and CRISPR-Cas9-

protein associations (Figures 7C and 7D). 

We next explored the relationship between predictive performance and sub-

networks comprising proteins of differing frequencies in the full dataset, defining 

categories of proteins as those found in 90% or more (category A; n = 2,944 proteins), 

20%–90% (category B; n = 3,939) or less than 20% (category C; n = 1,615) of the cell 

lines, respectively (Figure S5F). Downsampling these protein sets at random, with a 

decrease of 250 proteins in each step (see STAR Methods), showed that proteins that 

are frequently observed in the dataset (category A), provided the highest predictive 

performance (e.g., mean Pearson’s r = 0.463 for 1,500 proteins, or r = 0.435 for 250 

proteins) when compared against less frequently observed proteins (category B, mean 

r = 0.441; and category C, mean r = 0.432, for 1,500 proteins) (Figure 7E). Category 

A proteins had a significantly higher degree of connectivity (mean of 8 degrees) than 

category B and C proteins (mean of 2 degrees and 1 degree, respectively) in the 

STRING protein interaction network (Szklarczyk et al. 2017) (Figure 7F). It is 

possible that category A proteins, as a consequence of being more frequently observed, 

are better studied and therefore have greater annotation in the STRING database. 

However, together these results suggest that the quantification of small subsets of 

commonly expressed proteins within highly interconnected networks can be used for 

predictive modelling of cellular phenotypes. 
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Figure 7. Proteomic support for a network pleiotropy model. A, Comparison of the predictive 

power of DeepOmicNet trained with randomly downsampled sets of proteins. The dots indicate the 

means and vertical lines represent 95% confidence intervals derived from 10 iterations of random 

downsampling. The red point represents the full predictive power using all of 8,498 quantified 

proteins. B, Schematic diagram depicting protein network pleiotropy with widespread protein 

associations with responses to either drugs or CRISPR-Cas9, and demonstrating the strongly co-

regulated nature of protein networks. Nodes represent proteins that could be either quantified or are 

undetected, where ‘T’ represents a protein target of a drug or CRISPR-Cas9 gene essentialities. Edges 

showcase putative interactions, with high correlation coefficients between proteins depicted by thicker 

edges. Orange arrows represent the variability explained by that protein for the cancer cell line’s 

response to a drug or CRISPR-Cas9 gene perturbation. The size of the arrow is proportional to the 

variance explained. C-D, Quantile-quantile plots of protein associations with C, drug responses and 

D, CRISPR-Cas9 gene essentiality profiles. Protein associations are grouped and colored by their 

distances from the drugs or CRISPR-Cas9 targets using the STRING protein interaction network, 

where ‘-’ and the blue circles denote associations for which no link in the protein network could be 

found between the protein and the drug or CRISPR target. P-values were calculated in likelihood ratio 

tests on all parameters of the linear regression models. Annotation is as described in Figure 4A. For 

each group the p-value distribution inflation factor lambda, ‘λ’, using the median method (Aulchenko 

et al. 2007). E, Comparison of the predictive power of DeepOmicNet models trained with subsets of 

Category A, B and C proteins (per Figure S5F) comprising randomly downsampled sets of proteins. 

The dots indicate the means and vertical lines represent 95% confidence intervals derived from 10 

iterations of random samplings. F, The STRING protein interaction network diagram (left), with 

proteins colored according to Category. The bar chart (right) shows the network connectivity for these 

proteins, where degree represents the number of other proteins connected to a given protein according 
to the STRING PPI network. *** denotes significant at P < 0.001 by unpaired t-test. Error bars 

represent 95% confidence intervals. See also Figure S5. 

3.4 DISCUSSION 

The ProCan-DepMapSanger data resource is a large pan-cancer proteomic map 

that provides multiple insights beyond existing molecular datasets. This map quantifies 

8,498 proteins across 949 human cancer cell lines, representing 28 tissues and more 

than 40 histologically diverse cancer types and a wide range of genotypes, significantly 
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expanding the molecular characterization of cancer models as part of a Cancer 

Dependency Map (Boehm et al. 2021). All data are publicly available along with other 

molecular and phenotypic datasets at http://cellmodelpassports.sanger.ac.uk (van der 

Meer et al. 2019). This proteomic dataset is a high-quality resource for mechanistic 

investigation of network organization and regulatory principles of the proteome, as 

well as for translational discoveries. 

This study demonstrated protein expression patterns reflecting cell lineage and, 

potentially, EMT. The data also revealed widespread protein regulatory events, such 

as post-transcriptional attenuation of gene copy number effects. ProCan-

DepMapSanger allowed the comprehensive characterization of protein expression 

patterns that could not be captured by the transcriptome, exposing the benefits of 

directly measuring protein abundance. Furthermore, we developed a deep learning-

based pipeline DeeProM, with a deep neural network architecture, which consistently 

outperformed other machine learning approaches. DeeProM enabled the full 

integration of proteomic data with drug responses and CRISPR-Cas9 gene essentiality 

screens to build a comprehensive map of protein-specific biomarkers of cancer 

vulnerabilities that are essential for cancer cell survival and growth. Notably, this 

demonstrates that proteomic data spanning a broad range of cancer cell types and 

molecular backgrounds has significant utility for predicting cancer cell vulnerabilities. 

The proteomic workflow used in this study was devised to be clinically relevant, 

so that our methods could be readily applied for use in human cancer tissue samples. 

To do so, we used shortened preparation times, low peptide loads, and a short liquid 

chromatography (LC)/MS run time, enabling the analysis of large numbers of very 

small cancer samples, with high throughput and minimal instrument downtime. This 

will facilitate future validation of proteomic predictions from cell line data in clinical 

http://cellmodelpassports.sanger.ac.uk/
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sample cohorts for which outcome of treatment is documented and proteomic data are 

obtained. The CCLE proteomic dataset was generated using higher peptide loads and 

longer LC/MS run time to measure more proteins (12,755 proteins). Despite the 

different depths of protein coverage, the CCLE and ProCan-DepMapSanger proteomic 

datasets had equivalent power for predicting cancer dependencies. Similarly, the 

ProCan-DepMapSanger proteomic dataset had similar predictive power to cancer cell 

line transcriptomic data. Taken together, this demonstrates that a high-throughput 

sample workflow, as used in this study, produces data with power to inform predictions 

of cancer dependencies and indicates the potential of proteomics for clinical 

applications using small biopsies of human cancer tissue in diverse molecular contexts. 

Subsequent application of this proteomics sample workflow, and integration of this 

cell line dataset with proteomic data from cancer tissue samples, is likely to provide 

numerous potential clinical applications, such as the proteomic molecular 

identification and stratification of cancer subtypes. 

Measuring even a fraction of the proteome, as small as 1,500 randomly selected 

proteins, provided power to predict drug responses that were similar to the full 

proteome that we report. This suggests that random subsets of protein data comprising 

a relatively small number of proteins would be sufficient to represent many 

fundamental cellular processes. This is consistent with an omnigenic model (Boyle, Li, 

and Pritchard 2017), whereby large numbers of genes are related to many different 

disease traits in an interconnected manner. This is related to the proteostasis network 

model of sustaining proteome balance via coordinated protein synthesis, folding, 

conformation and degradation (Gumeni et al. 2017). In the context of the cancer 

proteome, we propose that pleiotropic networks of highly connected and co-regulated 

proteins contribute toward establishing cellular phenotypes. This includes a small 
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number of core protein modules that are proximal to the phenotype and have the 

strongest effect, and a much larger set of more distal proteins that together explain a 

significant portion of total variation. 

In conclusion, this dataset represents a major resource for the scientific 

community, for biomarker discovery and for the study of fundamental aspects of 

protein regulation that are not evident from existing molecular datasets. This will 

enable the identification of targets (including cell surface proteins) and treatments for 

validation in cancer tissue cohorts, with applications in precision oncology. 

3.5 STAR METHODS 

3.5.1 EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Cell lines 

Cell line authentication. The 949 human cancer cell lines used in this study 

have been obtained from public repositories and private collections and are cultured in 

DMEM/F12 or RPMI 1640 (Table S1). More detailed information about each cell line 

can be found at the Cell Model Passports portal 

(https://cellmodelpassports.sanger.ac.uk/) (van der Meer et al. 2019). All cell line 

stocks were tested for mycoplasma contamination prior to banking using both a 

polymerase chain reaction (EZ-PCR Mycoplasma Detection Kit, Biological 

Industries) and a biochemical test (MycoAlert, Lonza). Cultures testing positive using 

either method were removed from the collection. 

To prevent cross-contamination or misidentification, all banked cryovials of cell 

lines were analysed using a panel of 94 single nucleotide polymorphisms (SNPs) 

(Garnett et al. 2012) (Fluidigm, 96.96 Dynamic Array IFC). The data obtained were 

compared against a set of reference SNP profiles that have been authenticated by short 

tandem repeat (STR) back to a published reference (typically the supplying 

https://cellmodelpassports.sanger.ac.uk/
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repository). Where a published reference STR profile is not available, the reference 

SNP profile is required to be unique within the collection/dataset. A minimum of 75% 

of SNPs is required to match the reference profile for a sample to be positively 

authenticated. Additionally, one of the replicate cell pellets generated from each cell 

line for this study underwent authentication via STR profiling at CellBank Australia 

(Westmead, Australia). To do so, STR loci were amplified using the PowerPlex® 

16HS System (Promega) and the data were analysed using GeneMapper™ ID software 

(ThermoFisher). Only cell lines that passed this quality control metric were retained 

for analysis (n = 949). 

Cell culture and harvesting 

For each cell line, distinct cell pellets from a single cell culture were produced 

as technical replicates. Cells were cultured to semi-confluence at 37°C and 5% CO2 

in the appropriate medium and then harvested. Suspension cells were centrifuged at 

200 g for 5 min at 4°C and the supernatant was removed. The cells were then washed 

twice by resuspension in ice-cold Dulbecco's phosphate buffered saline containing no 

calcium or magnesium (DPBS) and centrifugation at 200 g for 5 min at 4°C. For 

adherent cells, the culture medium was removed before washing with ice-cold DPBS 

and the cells were removed by mechanical scraping into fresh ice-cold DPBS. The 

harvested cells were then centrifuged as before, washed twice in ice-cold DPBS, 

transferred to 1.5 mL centrifuge tubes (Protein LoBind Tubes, Eppendorf) and 

centrifuged at 600 g for 5 min at 4°C. The DPBS was removed and the tubes containing 

the cell pellets were snap frozen on dry ice, then stored at −80°C. 



 

Chapter 3: Pan-cancer proteomic map of 949 human cell lines 66 

3.5.2 Method details 

Cell lysis and digestion 

Three cell pellets were analysed for each of the 949 cell lines. The cell pellets 

were processed using Accelerated Barocycler Lysis and Extraction (ABLE) protocol 

with minor modifications (Lucas et al. 2019). In brief, all cell pellets were centrifuged 

to remove residual DPBS, then resuspended in a volume of 1% (w/v) sodium 

deoxycholate (SDC) that was appropriate for the cell count (between 50 and 400 μL). 

To this, 1 unit of benzonase was added to digest the DNA/RNA in the samples for 5 

min at 37°C and mixed with shaking at 1000 rpm. After incubation, a 50 μL aliquot 

was taken and further processed, with peptide digestion carried out as previously 

published (Lucas et al. 2019). 

Data independent acquisition (DIA)-MS 

We used a workflow that enables high throughput and minimal instrument 

downtime; 2 μg of peptide was loaded for each replicate with 90-min acquisitions. 

Three technical replicates of peptide preparations were generated. Each replicate was 

injected on two of six different SCIEX™ 6600 TripleTOF® mass spectrometers 

coupled to Eksigent nanoLC 425 high-performance liquid chromatography (HPLC) 

systems, housed in a single laboratory, ProCan in Westmead, Australia (Figure S1B). 

In each case, an Eksigent nanoLC 425 HPLC system (Sciex) operating in microflow 

mode was coupled online to a 6600 TripleTOF® system (Sciex) run in sequential 

windowed acquisition of all theoretical fragment ion spectra (SWATH™) mode using 

100 variable isolation windows (Table S1). The parameters were set as follows: lower 

m/z limit 350; upper m/z limit 1250; window overlap (Da) 1.0; collision energy spread 

was set at 5 for the smaller windows, then 8 for larger windows; and 10 for the largest 

windows. MS/MS spectra were collected in the range of m/z 100 to 2000 for 30 ms in 

high resolution mode and the resulting total cycle time was 3.2 s. 
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The peptide digests (2 μg) were spiked with retention time standards and injected 

onto a C18 trap column (SGE TRAPCOL C18 G203 300 μm × 100 mm) and desalted 

for 5 min at 10 μL/min with solvent A (0.1% [v/v] formic acid). The trap column was 

switched in-line with a reversed-phase capillary column (SGE C18 G203 250 mm × 

300 μm ID 3 μm 200 Å), maintained at a temperature of 40°C. The flow rate was 5 

μL/min. The gradient started at 2% solvent B (99.9% [v/v] acetonitrile, 0.1% [v/v] 

formic acid) and increased to 10% over 5 min. This was followed by an increase of 

solvent B to 25% over 60 min, then a further increase to 40% for 5 min. The column 

was washed with a 4 min linear gradient to 95% solvent B held for 5 min, followed by 

a 9 min column equilibration step with 98% solvent A. The TripleTOF® 6600 system 

was equipped with a DuoSpray source and 50 μm internal diameter electrode and 

controlled by Analyst 1.7.1 software. The following parameters were used: 5500 V ion 

spray voltage; 25 nitrogen curtain gas; 100°C TEM, 20 source gas 1, 20 source gas 2. 

Spectral library and DIA-MS data processing 

An in silico spectral library was created using DIA-NN (version 1.8) (Demichev 

et al. 2020) for the canonical human proteome (Uniprot Release, 2021_03; 20,612 

sequences), along with retention time peptides and commonly occurring microbial and 

viral sequences. DIA-MS data in wiff file format were collected for 6,981 MS runs 

(Table S1), and all of these MS runs were used to create a spectral library in DIA-NN 

(Demichev et al. 2020). To reduce the search space, the library was confined to 

precursors identified in the in silico library only. The following settings were used for 

library generation. Precursor mass ranges were set between 400 and 1250 m/z and 

fragment mass ranges were set between 100 and 2000 m/z. Mass accuracies of 40 ppm 

were set for both MS1 and MS2, with the scan window set to 9. Precursors of charges 

2-4 and of length between 7 and 30 were retained. Only Carbamidomethylation at 
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Cysteine residues was allowed as a fixed modification. Interfering precursor peaks 

were removed, the robust LC (high accuracy) quantification strategy was used, and 

precursors were filtered at a q-value of 0.01. Protein grouping was done at the 

canonical protein sequence level rather than gene level. The final spectral library 

contained a total of 12,487 proteins and 144,578 precursors. DIA-NN (version 1.8) 

(Demichev et al. 2020) was used to process the MS data using this spectral library, 

implemented using RT-dependent normalization. See Table S1 for the full code and 

parameters used to run DIA-NN. All MS runs, as well as the FASTA and spectral 

library files, have been deposited in the Proteomics Identification Database (PRIDE) 

(Perez-Riverol et al. 2019) with identifier PXD030304. 

DIA-NN output data were filtered to retain only precursors from proteotypic 

peptides with Global.Q.Value ≤ 0.01. These precursors were then used for protein 

quantification by maxLFQ (Cox et al. 2014), implemented using the DiaNN R Package 

(https://github.com/vdemichev/diann-rpackage) and with default parameters. Data 

were then log2 - transformed. 117 files were discarded from downstream analyses 

(Table S1), as follows: one MS run recorded no peptides, six replicates of SW900 

were removed because the cell line failed STR profiling; 32 files from the earliest pilot 

batch were removed, as these were repeated later in the experiment; 39 files that 

quantified fewer than 2,000 proteins were removed; 39 files were removed because 

they had a poor correlation across replicates. Cell lines with a poor replicate correlation 

were identified using two methods. First, the minimum correlation between replicates 

was calculated for each cell line. The 10% of cell lines with the lowest correlation 

across the cohort were then examined to identify whether any MS run had a correlation 

with an MS run from another cell line that was above the 75% percentile of correlations 

(n = 11 cell lines). MS runs were then discarded for each cell line if manual 
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examination of replicate correlations indicated that a sample mix up could have 

occurred (n = 21 MS runs discarded). Second, any cell line was selected that had a 

minimum correlation in at least one replicate of < 0.8 or a coefficient of variation, from 

proteins observed in > 80% of the cohort, across replicates of > 30% (n = 9 cell lines). 

These MS runs were then also manually examined for each cell line and MS runs that 

were discordant with the remainder of replicates were removed (n = 18 MS runs 

discarded). The final dataset, termed ProCan-DepMapSanger, was derived from 6,864 

mass spectrometry runs covering 949 cell lines (Table S1) and quantifying a total of 

8,498 proteins (Table S2). A filtering was applied to identify protein quantifications 

derived from more than one supporting peptide (n = 6,692 human proteins; Table S2. 

MS runs across replicates of each cell line were combined by calculating the geometric 

mean. Protein quantifications and number of peptides identified per protein in each 

MS run are available in figshare https://doi.org/10.6084/m9.figshare.19345397. 

Assembly of multi-omics cell line datasets 

Drug response measurements were assembled from multiple studies (Garnett et 

al. 2012; Iorio et al. 2016; Picco et al. 2019; Gonçalves et al. 2020) and 204 new 

compounds were screened and dose-response curves fitted as previously described in 

detail (Iorio et al. 2016; Vis et al. 2016). A total of 625 unique drugs were included in 

our drug response dataset. All data and respective details can be accessed at 

www.cancerRxgene.org (W. Yang et al. 2013). Cell line growth rates were represented 

as the ratio between the mean of the untreated negative controls measured at day one 

(time of drug treatment) and the mean of the dimethyl sulfoxide (DMSO) treated 

negative controls at day four (72 h post drug treatment). Data acquisition and 

processing was performed as previously described (https://www.cancerrxgene.org/) to 

systematically fit drug response curves and derive half-maximal inhibitory 

https://doi.org/10.6084/m9.figshare.19345397
http://www.cancerrxgene.org/
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concentration (IC50) measurements for each drug across the cell lines measured 

(Garnett et al. 2012; W. Yang et al. 2013; Iorio et al. 2016; Picco et al. 2019; Gonçalves 

et al. 2020). The dataset comprises two different screening approaches (W. Yang et al. 

2013), and for drugs screened with both modalities, these were kept as separate entries 

for the downstream analyses by constructing a unique identifier (drug_id) with the 

pattern of <drug_code>_<drug_name>_<GDSC_version>, resulting in 819 drug_ids. 

A threshold of a minimum of 300 cell lines was applied to exclude drugs that were 

screened without enough cell lines for DeeProM analysis, resulting in a total of 710 

drug_ids. The natural log of the raw IC50 was used for all computations. 

RNA sequencing (RNA-seq) transcriptomics and Infinium 

HumanMethylation450 methylation measurements for the same set of cancer cell lines 

were assembled from previous analyses, for which the acquisition and processing are 

described in detail (Garcia-Alonso et al. 2018; Iorio et al. 2016). Mutation and copy-

number calls were inferred from whole-exome sequencing and Affymetrix SNP6 

arrays, respectively, as described previously (Iorio et al. 2016). 

Genome-wide essentiality measurements for 17,486 genes were assembled for 

534 cancer cell lines that overlap with those analyzed in the ProCan-DepMapSanger 

dataset, using CRISPR-Cas9 screens (Pacini et al. 2021). This is an integrated 

CRISPR-Cas9 dataset derived from two projects (Behan et al. 2019; Meyers et al. 

2017) that removes library biases and represents gene essentiality as log2 fold-changes 

corrected for copy number bias (Iorio et al. 2018). 

Dimensionality reduction and visualization 

Uniform Manifold Approximation and Projection (UMAP) (McInnes, Healy, 

and Melville 2018) was calculated using Python package umap-learn (v.0.4.2) with the 

default setting of 15 nearest neighbours and the first 50 principal components derived 
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from the protein matrix. Missing values were replaced with a value representing the 

first percentile of the input data matrix to calculate the principal components with the 

Python package scikit-learn (v.0.22.1) (Pedregosa et al. 2012). The first two 

dimensions were used for visualization. 

Multi-omics factor analysis 

Multi-omics decomposition by factor analysis was performed using the mofapy2 

Python module (v0.5.6) (Argelaguet et al. 2018, 2020). Datasets with continuous 

measurements were selected for this analysis, i.e., drug responses, methylation, 

proteomics, and transcriptomics. For proteomic measurements, we used both the 

ProCan-DepMapSanger dataset and an independently acquired dataset (Nusinow et al. 

2020) measuring an overlapping set of 290 cancer cell lines. Considering the strong 

separation of hematopoietic and lymphoid cell lines from the rest of the cell lines 

(Figure 2A), these were treated as a separate group in the analysis. Different numbers 

of factors were tested and n = 15 was chosen as it represented a trade-off between the 

total variance explained and the correlation between factors. Higher numbers of factors 

increased the correlation between factors and only marginally increased the variance 

explained, indicating that some factors were unnecessary. For the ProCan-

DepMapSanger dataset, the mean sample intensity was regressed out prior to the factor 

analysis, thereby avoiding it being captured by any factor and artifactually increasing 

the total variance explained. Mofapy2 was run with convergence mode set to ‘slow’. 

Scale views and groups were set to ‘True’ to have a unit variance. 

Pairwise protein-protein correlations 

We considered proteins with corresponding data also measured in the 

transcriptomics and CRISPR-Cas9 datasets (n = 6,347). For all pairwise protein 

combinations, we calculated Pearson’s r correlations between their protein, gene 
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expression and essentiality measurements. A minimum of 15 complete observations 

was required to calculate the correlation, yielding 16,580,952 pairwise combinations. 

Protein-protein correlations were annotated using multiple sources of protein 

interactions: Comprehensive Resource of Mammalian Protein Complexes (CORUM) 

(Ruepp et al. 2010); Search Tool for the Retrieval of Interacting Genes/Proteins 

(STRING) (Szklarczyk et al. 2017); Biological General Repository for Interaction 

Datasets (BioGRID) (Chatr-Aryamontri et al. 2015) ; and Human Protein Interactome 

(HuRI) (Luck et al. 2020). For BioGRID, only physical interactions between proteins 

from humans were considered. For STRING, the most stringent threshold of the 

confidence score was chosen, and only interactions with a score ≥  900 were 

considered. The average path length of the STRING PPI networks was 3.9. Protein-

protein Pearson’s correlations were then used to estimate the capacity to recover 

interactions from the different resources by ranking in ascending order all correlations 

according to their p value (x axis) and drawing the cumulative distribution curve of the 

interactions found in the resource (y axis). The area under the recall curve (AUC) was 

estimated using the corresponding function from the Python package scikit-learn 

(v0.24.2) (Pedregosa et al. 2012). 

DeeProM (Deep Proteomic Marker) – Overview 

We developed a multistep computational workflow, Deep Proteomic Marker 

(DeeProM), to identify protein biomarkers of cancer vulnerabilities. The analysis steps 

in DeeProM are fourfold. First, it prioritizes drug responses and CRISPR-Cas9 gene 

essentialities that can be confidently predicted using proteomic profiles. Second, it 

prioritizes strong drug responses and gene essentialities that are specific to small 

subsets of cancer cell lines. Third, it prioritizes protein biomarkers that show 



 

Chapter 3: Pan-cancer proteomic map of 949 human cell lines 73 

significant associations with drug responses or gene essentialities. Fourth, it prioritizes 

protein biomarkers that are present in specific tissues.  

DeeProM - DeepOmicNet model 

DeeProM is powered by a deep neural network architecture, DeepOmicNet, to 

predict drug responses and CRISPR-Cas9 gene essentialities. DeepOmicNet ranks 

drugs and gene essentialities based on predicted cellular responses using the ProCan-

DepMapSanger dataset as the input. Both the proteomic and the drug response datasets 

contain missing values, while the gene essentiality dataset provides a complete data 

matrix. DeepOmicNet models these missing values accordingly. Multilayer perceptron 

(MLP) is a classic neural network architecture that has been used by default for deep 

learning in numerous biomedical studies (Z. Zhang et al. 2019). To enhance the 

predictive performance of MLP with proteomic data, we modified its network 

architecture and developed DeepOmicNet with the following three major 

improvements: 

Grouped bottleneck. DeepOmicNet uses grouped bottlenecks to avoid fully 

connected layers, which involves a large number of parameters being optimized. 

Compared with a fully-connected layer, breaking the connections into smaller groups 

allows the network to be more memory efficient, thus enabling wider or deeper layers. 

A weight matrix 𝑊 ∈  𝑅(𝑘 𝑥 𝑘)  containing 𝑘2 parameters with grouped bottlenecks 

can not only reduce the number of parameters, but also provide better predictive 

performance. Instead of connecting all pairs of neurons, neurons can be broken into 

groups, and only neurons within the same group are connected between layers (Figure 

S3B). The group size g can be set as any number that is divisible by the hidden layer 

width k. When 𝑔 = 𝑘, all neurons are treated as one group, which reduces to a normal 

fully-connected layer. Multiple configurations were tested and the optimal group size 
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g was set to 2. The number of parameters for one layer with grouped bottlenecks is 

significantly reduced from 𝑘2to 
𝑘

2
× 22 = 2𝑘. The number of parameters with grouped 

bottlenecks is calculated as 𝑘/𝑔 × 𝑔2 = 𝑔 × 𝑘 , thus the run-time complexity is 

decreased from quadratic to linear.  

Skip connections. The complete network architecture is visualized in Figure 

S3B. Neurons between every two consecutive layers are connected in MLP, which is 

computationally intensive and suboptimal for model training. To mitigate this 

problem, DeepOmicNet utilizes skip connections (He et al. 2016) to connect alternate 

layers. Let 𝑥 ∈ 𝑅𝑘 be the vector of the 𝑖th hidden layer of a real coordinate space of 

dimension k (corresponds to the number of neurons in a layer, also known as the layer 

width), the value of xi is calculated with skip connections as: 

𝑥𝑖 = 𝑓( 𝑊𝑖−1 𝑥𝑖−1 + 𝑏𝑖−1 + 𝑥𝑖−2) 

where f is the activation function, 𝑊𝑖−1 ∈ 𝑅(𝑘𝑥𝑘)is the weight matrix, 𝑏𝑖−1 ∈ 𝑅𝑘 

is the bias vector and 𝑥𝑖−2 ∈ 𝑅𝑘is the hidden layer ahead of the hidden layer 𝑥𝑖−1. The 

value of the hidden layer i-2 is fed into the hidden layer i by skipping the hidden layer 

i-1, resulting in skip connections (Figure S3B). Each hidden layer is set with the same 

width k, which is a hyperparameter for model tuning, and usually is chosen to be 

slightly smaller than the input feature dimension. In DeepOmicNet, a sigmoid function 

was chosen to be the activation function f, because it outperformed the rectified linear 

activation function and the hyperbolic tangent function.  

Loss function. DeepOmicNet is trained with mini-batches using a customized 

mean squared error (MSE) as the loss function. DeepOmicNet is applied to predict 

both drug responses and CRISPR-Cas9 gene essentialities. For the cell line m, the loss 

for the target variable n is defined as: 
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𝐿𝑚,𝑛 = {
(𝑦𝑚,𝑛 − �̂�𝑚,𝑛)2 𝑖𝑓 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑖𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑓𝑜𝑟 𝑛 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where ym,n is the ground truth label of the target n (either drug response or gene 

essentiality) and �̂�𝑚,𝑛 is the predicted value of the target n. The label ym,n is missing if 

a particular cell line m was not screened with drug n.  

In addition to the three major improvements, other characteristics of 

DeepOmicNet include the following: 

Missing values. One specific challenge of DIA-MS based proteomics is the 

missing values in the data matrix (Webb-Robertson et al. 2015; Poulos et al. 2020). 

Imputation is widely used but often leads to distortion to some extent (Runmin Wei et 

al. 2018). For DeepOmicNet, missing values were replaced by zeros, thus allowing the 

neural network to ignore the weight update for these inputs. 

Hyperparameter tuning. Hyperparameters including model width, depth, 

learning rate and batch size were tuned to achieve the highest predictive performance. 

Pearson’s r between true and predicted values is used as the evaluation metric. 

Hyperparameters that resulted in the highest performance in five-fold cross-validation 

of the 80% training data were chosen for the final evaluation on the 20% independent 

test set. The chosen hyperparameters can be found in the configuration files in the 

source code (see Data and code availability). 

Thresholding. The thresholds are set to Pearson’s r > 0.4 and Pearson’s r > 0.3 

to prioritize highly predictive drug responses and CRISPR-Cas9 gene essentialities, 

respectively. This yielded 67 drug responses and 62 gene essentialities. 

DeeProM - Prioritising selective associations 

DeeProM prioritizes drug responses and CRISPR-Cas9 gene essentialities that 

are likely to be non-toxic to normal cells. Since the cell lines used in this study were 
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derived from cancer (the majority) or viral transformation, we approximated this task 

by finding drug responses and gene essentialities that were selective for only a small 

fraction of the cell lines, which indicates that the drug response or gene essentiality is 

less likely to be toxic to normal cells. Ranking of strongly selective drug responses 

and gene essentialities was performed using Python package scipy (v1.5.2) skew 

function, which calculates the Fisher-Pearson’s coefficient of skewness. Skewness 

values of −1 and −2 were used for drug responses and gene essentialities, respectively. 

DeeProM - Linear regression models 

Associations between protein and phenotypic measurements, drug responses and 

gene essentialities were performed using linear regression models (sklearn v0.24.2 

class LinearRegression). Several technical and biological covariates were added to the 

model to remove potentially spurious associations. First, we built the following 

technical covariates into the model: (i) the growth rate of the cell lines; (ii) cell culture 

medium, D/F12 (DMEM/F12: 10% FBS, 1% PenStrep) or R (RPMI 1640: 10% FBS, 

1% PenStrep, 4.5 mg/mL Glucose, 1 mM Sodium Pyruvate); (iii) cell line growth 

properties (i.e., adherent, semi-adherent or suspension), ploidy, and if they are 

hematopoietic and lymphoid cell lines; (iv) sample mean protein replicates Pearson’s 

correlation; (v) for the CRISPR-Cas9 gene essentiality only, we considered the 

institute of origin of the CRISPR-Cas9 screen, i.e., Wellcome Sanger or Broad Institute; 

and (vi) for the drug response models only, we considered the cell line mean IC50 

across all drugs. Discrete covariates were represented as dummy binary variables. 

Second, to identify associations that were exclusively found at the protein level, we 

added the following gene expression covariates to the model: (i) the first ten gene 

expression principal components using the Python package scikit-learn (v0.24.2) 

(Pedregosa et al. 2012) ; and (ii) the corresponding transcript level of the protein being 
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tested. Formally, we fit the following linear regression model for each drug 

response/gene essentiality–protein pair: 

𝑑 =  𝑀𝛽0  + 𝐸 𝛽1  + 𝑒 𝛽2  + 𝑝 𝛽3  + 𝜀 

where, d represents a n x 1 vector of the drug response IC50 (n = 710 drugs) for 

947 cell lines or CRISPR-Cas9 gene essentiality log2 fold changes (n = 17,486 genes) 

for 534 cell lines; M is the n x k matrix of covariates (k = 11 covariates); E is a n x m 

matrix containing the first (m = 10) principal components of the gene expression 

dataset; e is a vector of size n x 1 containing the transcriptomics measurements of the 

corresponding protein p; p is a vector of size n x 1 containing the protein 

measurements; and 𝜀 is the error vector of size n x 1. For each protein, cell lines with 

missing values were dropped from the modelling. For drug response, missing values 

were replaced by the drug mean IC50. The number of cell lines with complete 

information per fit was provided. The model was fitted by minimizing the residual sum 

of squares to estimate the parameters 𝛽𝑛 of each variable. In total, there were 710 x 

6,692 = 4,751,320 drug-protein pairs and 17,486 x 6,692 = 117,016,312 possible 

CRISPR-Cas9 gene essentiality-protein pairs, however, both drug response and 

CRISPR-Cas9 data covered various subsets of cell lines. We required a minimum 

number of 60 cell lines to test the association. As a result, a total of 4,218,788 drug-

protein and 86,584,537 CRISPR-Cas9-protein tests were performed. 

Statistical assessment of the improvement of adding protein measurements to the 

linear regression was performed using a likelihood ratio test between the full mode 

and the null model, which excludes the protein measurement and its parameter 𝛽2. 

Likelihood ratio test’s p-value was estimated using a chi-square distribution with one 

degree of freedom. Adjustment for multiple testing was performed per drug or 

CRISPR-Cas9 gene essentiality using the Benjamini-Hochberg procedure to control 
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the false discovery rate (FDR). Associations with FDR < 0.1 for models with 

covariates, or FDR < 0.001 for models that do not use covariates, were considered as 

significant associations. 

Statistical assessment of the improvement of adding protein measurements to the 

linear regression was performed using a likelihood ratio test between the full model 

and the null model, which excludes the protein measurement and its parameter 𝛽2. 

Likelihood ratio test’s p-value was estimated using a chi-square distribution with one 

degree of freedom. Adjustment for multiple testing was performed per drug or 

CRISPR-Cas9 gene essentiality using the Benjamini-Hochberg procedure to control 

the false discovery rate (FDR). Associations with FDR < 0.1 for models with 

covariates, or FDR < 0.001 for models that do not use covariates, were considered as 

significant associations. 

DeeProM - Tissue type level filtering 

To investigate drug-protein and CRISPR-Cas9-protein associations for a given 

tissue type, we used metrics derived from DeepOmicNet, Fisher Pearson’s coefficient 

of skewness and linear regression to prioritize drug responses and CRISPR-Cas9 gene 

essentialities according to the thresholds described above. The overlap of these three 

methods was used as the final result, which included 7,698 drug-protein and 5,823 

CRISPR-Cas9-protein associations. Finally, we applied additional filters to further 

prioritize associations that are unique to certain tissue types, yielding the final list of 

108 drug-protein associations for 18 drugs and 1,538 CRISPR-Cas9-protein 

associations for 38 genes (Figure 4C). The filtering steps are described below: 

Step 1. Tissue types with < 20 protein measurements were filtered out. 

Step 2. For each significant association identified from 7,698 drug-protein and 

5,823 CRISPR-Cas9-protein associations, Pearson’s r was calculated. Using protein 
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data, the significance level was set to 0.1 and Pearson’s r was defined as r(target, 

protein)
tissue for a target-protein association in a given tissue type. Here, protein indicates 

a protein of interest, target indicates either a drug response or CRISPR-Cas9 gene 

essentiality and tissue refers to the tissue type under investigation. We then calculated 

the Pearson’s r for the gene that encodes each protein, and we defined this value as 

r(target, RNA)
tissue. To prioritize associations that were uniquely identified at the protein 

level, the difference d for a given tissue type between target-protein and target-RNA 

associations was set to be larger than 0.15, where d = |r(target, protein)
tissue |-|r(target, RNA)

tissue 

|. This prioritizes associations that have either strong positive or strong negative 

correlations at the protein level but have weak correlations around zero at the RNA 

level. Rare cases where r(target, protein)
tissue and r(target, RNA)

tissue have opposite signs and d 

is close to 0 were not considered.  

Step 3. For drug-protein associations, a large value of d alone is insufficient to 

select candidate associations, because a drug may be entirely ineffective for all the cell 

lines in a particular tissue type. Therefore, we applied an additional filter to ensure that 

a drug is effective on the cell lines for which the protein abundance is high. That is, 

for a drug-protein association to be included for a given tissue type, the median IC50 

of the 20% of cell lines with the highest corresponding protein abundance must be 

lower than the maximal concentration for that drug.  

Step 4. The remaining associations were ranked in descending order according 

to d. 

Comparing DeepOmicNet and other models 

DeepOmicNet was compared against traditional machine learning models, 

including elastic net and Random Forest. A total of 947 cell lines were randomly 

separated into a training set comprising 80% of the cell lines, and a test set with the 
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remaining cell lines for unbiased evaluation. Grid search was used to find the best 

hyperparameters for elastic net and Random Forest in the training set by cross-

validation. Hyperparameter tuning for DeepOmicNet was performed manually due to 

the limit of a graphics processing unit (GPU) memory. For each model, missing values 

were imputed using the method that gave the best prediction based on cross-validation. 

Specifically, four imputation methods were considered, including imputation by 

minimum, first percentile of the whole input matrix, mean and zero. Based on the 

predictive performance of models in cross-validation, imputation by one percentile of 

the whole matrix was chosen for the elastic net and Random Forest, and imputation by 

zero was used for DeepOmicNet. This strategy yielded the best prediction accuracy in 

comparison with other imputation and normalization methods, such as imputation with 

k-nearest-neighbor, mean values of proteins and zeros. A cut-off was set at a minimum 

of 300 screened cell lines for the drug response dataset to filter out drugs without 

sufficient data. A simplified version of DeepOmicNet without grouped bottlenecks 

was used for omics data other than proteomic data due to the large input dimension. 

The Python package scikit-learn (v.0.22.1) (Pedregosa et al. 2012) was used to train 

elastic net and Random Forest models. DeepOmicNet was implemented and trained 

using PyTorch (v.1.4.0) (Paszke et al. 2019). 

Machine learning for lethality prediction 

Due to the limit of GPU memory, elastic net, Random Forest and DeepOmicNet 

were applied only to transcriptomic and proteomic data to predict CRISPR-Cas9 gene 

essentialities. The same computational strategy for drug response prediction was used 

to predict CRISPR-Cas9 gene essentialities. 
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Predictive power comparison with CCLE 

The predictive power of machine learning models for two proteomic datasets 

(ProCan-DepMapSanger and the Cancer Cell Line Encyclopedia (CCLE) (Nusinow et 

al. 2020)) were compared independently on three drug response datasets (Sanger, 

CTD2 and PRISM) and the CRISPR-Cas9 gene essentiality dataset (Behan et al. 2019; 

Meyers et al. 2017; Pacini et al. 2021). The analysis was performed using the 290 

overlapping cell lines to ensure a fair comparison. The proteomic (Nusinow et al. 2020) 

and drug response (CTD2 and PRISM) (Corsello et al. 2020; Seashore-Ludlow et al. 

2015; Rees et al. 2016) datasets were retrieved from the DepMap portal 

(https://depmap.org/portal/). DeepOmicNet was used to compare the predictive power 

of models for CRISPR-Cas9 gene essentialities, and Random Forest was used for drug 

response prediction due to the limited number of cell lines for certain drugs. AUC 

instead of IC50 was used for the drug response (PRISM) dataset due to a large 

proportion of drugs having no IC50 values provided. 

Downsampling for drug response prediction 

For downsampling analysis, the full set of 8,498 proteins were randomly 

downsampled using a step decrease of 500 proteins (Figure 7A). Each step was 

repeated ten times and for each iteration, results from five-fold cross-validations and 

an unbiased test were included in evaluating predictive power. Therefore, each 

downsampling step used ten different random subsets of proteins for six distinct 

experiments (the five-fold cross-validation and one unbiased test). The predictive 

power of each DeepOmicNet model was evaluated for each protein set and each 

iteration, with confidence intervals summarizing the results across the ten iterations. 

This random downsampling procedure was also performed with step sizes of 250 

proteins for proteins in Categories A, B and C (Figure 7E). 
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3.5.3 Quantification and statistical analysis 

DIA-NN (version 1.8) (Demichev et al. 2020) was used to build the peptide 

spectral library and process raw MS data. MaxLFQ (Cox et al. 2014) was used to 

quantify relative protein intensities. Sigmoid drug response curves were fitted to 

estimate IC50s (Vis et al. 2016). Associations between pairs of continuous variables 

were tested by Peason’s correlation coefficient r. Statistical tests were adjusted for 

multiple hypotheses correction using the Benjamini-Hochberg False Discovery Rate 

(FDR), and statistical significance was considered when FDR < 5%, except when 

otherwise specified (such as when multiple thresholds were compared). Quantification 

methods and statistical analyses for the proteomics, drug response and multi-omics 

datasets are described in the respective sections of the STAR Methods. Unless 

otherwise stated, relevant statistical parameters are reported in the legend of each 

figure. 

3.6 DATA AND CODE AVAILABILITY 

All the source codes are available at the GitHub repository: 

https://github.com/EmanuelGoncalves/cancer_proteomics  

  

https://github.com/EmanuelGoncalves/cancer_proteomics
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4.1 ABSTRACT 

Multi-omics data analysis powered by machine learning has significantly 

improved cancer diagnosis and prognosis. However, traditional machine learning 

methods only consider omics measurements, failing to integrate domain knowledge 

such as biological networks that link different omic layers via regulatory pathways. 

We develop a Transformer-based deep learning model DeePathNet, integrating cancer 

pathway information, to analyse multi-omics data with model explanation. 

DeePathNet robustly outperforms traditional methods for the prediction of drug 

response as well as cancer type and subtype using a variety of large datasets including 

GDSC, CCLE, TCGA and CPTAC. Combining biomedical knowledge and the power 

of deep learning, DeePathNet enables reliable biomarker discovery at the pathway 

level, paving the road to data-driven cancer research and precision medicine. 
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4.2 INTRODUCTION 

Multi-omic analysis of diverse data types enables researchers to gain insights 

into tumour biology and to identify new and robust therapeutic targets (Mani et al. 

2022). One major goal of multi-omic analysis by machine learning is to predict the 

cancer treatment strategies that are best suited to individuals in the context of precision 

medicine. A variety of multi-omic studies have led to the improved detection of intra-

tumour heterogeneity, identification of novel therapeutic targets, as well as more 

robust diagnostic and predictive markers (Reel et al. 2021; Picard et al. 2021; Rohart, 

Gautier, Singh, and Lê Cao 2017; I. Subramanian et al. 2020). Many of these 

discoveries would not have been possible by analysing any single omic data type alone. 

However, performing multi-omic analysis presents computational challenges due to 

the large number of data generated by high-throughput instruments and the limitations 

of existing multi-omic data integrative methods (Tarazona, Arzalluz-Luque, and 

Conesa 2021; Cai et al. 2022). 

To address this, a plethora of machine learning methods have been developed 

for integrating large-scale multi-omic data (Cai et al. 2022; Reel et al. 2021; Picard et 

al. 2021; Rohart, Gautier, Singh, and Lê Cao 2017; Meng et al. 2016; Shen, Olshen, 

and Ladanyi 2009; Mo et al. 2018; A. Singh et al. 2019). For example, moCluster 

(Meng et al. 2016) integrates multi-omic data based on joint latent variable models, 

showing performance superior to previous methods such as iCluster (Shen, Olshen, 

and Ladanyi 2009) and iCluster Bayes (Mo et al. 2018). Likewise, mixOmics (A. 

Singh et al. 2019) provides various options for multi-omic data integration, aiming to 

find common information between different omic data types. These models solely take 

omic measurements as the input and do not consider existing biomedical knowledge 

that links different omic data types together, such as the regulatory networks. 
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Regulatory networks exist in cells to control the expression levels of different gene 

products, through collections of functionally interacting protein or RNA 

macromolecules (Karlebach and Shamir 2008). However, models that incorporate 

existing biomedical knowledge in addition to computational inference have the 

potential to better capture the interactions that drive biomarker associations, and to 

increase the predictive power and modelling capacity of these algorithms (Cai et al. 

2022).  

Several studies have attempted to incorporate existing biomedical knowledge 

into multi-omic models using deep learning (Kang, Ko, and Mersha 2022). DCell (Ma 

et al. 2018) and DrugCell (Kuenzi et al. 2020) combine the neural network architecture 

with known gene ontology information, but they only support the use of gene deletions 

or mutation as the input. EMOGI (Schulte-Sasse et al. 2021) was designed based on 

graph neural networks (Wu et al. 2021) and integrates protein-protein interaction (PPI) 

networks with multi-omic data to predict cancer genes, but its network architecture 

cannot be easily generalised to other tasks. Besides, gene ontology information and 

PPI networks used in these models do not precisely reflect cancer-specific information. 

Therefore, integrating cancer pathways (Kuenzi and Ideker 2020) into multi-omic data 

analysis by deep learning for general tasks, such as drug response prediction and 

cancer type or subtype classification, remains an open research topic.  

To address this gap, we developed DeePathNet, a Transformer-based (Vaswani 

et al. 2017) explainable deep learning method that inputs multi-omic data alongside 

knowledge of cancer pathways. The Transformer is used primarily in the fields of 

natural language processing and computer vision, by adopting the mechanism of self-

attention (Vaswani et al. 2017). In molecular biology, the Transformer-based model 

AlphaFold has successfully predicted protein structures based on amino acid 
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sequences (Jumper et al. 2021). However, the Transformer has not yet been 

incorporated into multi-omic cancer data analysis. Here, we apply DeePathNet by 

using a Transformer module to integrate several large-scale multi-omic datasets with 

cancer pathways, allowing more complex patterns to be learned. By comprehensively 

evaluating multiple datasets with three prediction tasks and a range of metrics, we 

demonstrate that the predictive power of DeePathNet is superior to that of traditional 

machine learning methods.  

4.3 RESULTS 

4.3.1 Overview of DeePathNet 

DeePathNet was developed to model biological pathways using a Transformer-

based deep learning architecture with both multi-omic data and cancer pathway 

information as the input (Fig. 1a). The performance of DeePathNet was evaluated on 

drug response prediction, and cancer type and subtype classification.  

DeePathNet consists of three major steps. It starts with a pathway encoder to 

summarise features from an arbitrary number of omic data types into cancer pathways 

(Step 1; Fig. 1b), and then uses a Transformer encoder to model the interactions 

between these pathways (Step 2). This is followed by a multi-layer perceptron (MLP) 

that can be adapted to different prediction tasks (Step 3).  

In Step 1, the neural network architecture is constructed based on the 

LCPathways dataset (Kuenzi and Ideker 2020), which contains 241 literature-curated 

pathways encompassing 3,164 cancer genes. The LCPathways dataset was selected 

since it is one of the most recent and comprehensive pathway databases that are 

specifically curated for cancer research. As such, it is particularly suitable for the 

applications of DeePathNet. The pathway encoder then uses a fully connected layer to 

project the multi-omic data (Omics 1–m) from genes (Gene 1–n) onto a 512-dimension 
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pathway vector that represents one of the cancer pathways (Pathway 1–p; 

Supplementary Fig. 1a, see Methods). With this architecture, the pathway encoder 

allows DeePathNet to capture interactions across different omic data types.  

In Step 2, an enhanced version of the Transformer module is developed to 

encode the interactions between cancer pathways (Supplementary Fig. 1b, see 

Methods). First, a dropout layer is used to train only half of the pathways at each 

iteration, which prevents the model from focusing on specific pathways that may not 

generalise well to a test dataset. Then, two blocks of the original Transformer module 

(Vaswani et al. 2017) are used, which contains a list of recurring layers with each layer 

comprising a sequence of layer normalisation, multi-head self-attention, and a MLP. 

The Transformer also enables dynamic modelling of the complex relationship between 

cancer pathways, thus avoiding the generation of fixed weights for the different input, 

as is the case in traditional machine learning.  

In Step 3, a MLP is used to map the encoded pathway vectors to output neurons, 

which allows the knowledge learned by the Transformer module to be adapted to 

general prediction tasks. 
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Fig. 1 | Overview of DeePathNet.  a, DeePathNet has its network architecture built using the 

LCPathway dataset and takes multi-omic data as the input to model pathway interactions and predict 

drug responses or classify cancer types and subtypes. b, DeePathNet architecture supports any number 

of omic data types as the input. Step 1: DeePathNet encodes multi-omic information into an arbitrary 

number of cancer pathways. Step 2: DeePathNet uses a Transformer encoder to learn the interactions 

between these pathways. Step 3: The encoded pathway vector is passed into a MLP for the prediction. 

Circles represent neurons in a neural network. Arrows represent the direction of information flow. 

4.3.2 DeePathNet predicts drug response 

We first assessed the predictive performance of DeePathNet on a regression task 

by benchmarking it against random forest (Ho 2002), elastic net (Zou and Hastie 

2005), principal component analysis (PCA), mixOmics(Rohart, Gautier, Singh, and Lê 

Cao 2017) and moCluster (Meng et al. 2016) to predict the responses of anti-cancer 

drugs to cancer cell lines. These six methods were evaluated using data from the Cell 

Lines Project (CLP) (Iorio et al. 2016) and the Cancer Cell Line Encyclopedia (CCLE) 

(Ghandi et al. 2019), the two largest publicly available multi-omic cancer cell line 

datasets (Supplementary Table 1, see Methods). Gene mutation, copy number 
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variation (CNV) and gene expression data from the two datasets were used as the input. 

For drug response data, we retrieved the half-maximal inhibitory concentration (IC50) 

from the Genomics of Drug Sensitivity in Cancer (GDSC) (Iorio et al. 2016) database. 

For each method, six experimental setups were assessed, comprising two datasets and 

three evaluation metrics, namely coefficient of determination (R2), mean absolute error 

(MAE) and Pearson correlation coefficient (Pearson’s r) between predicted and actual 

IC50 values. 

In DeePathNet, 241 pathway encoders were constructed (Supplementary Fig. 

1a) to summarise the omic data into pathway vectors defined by the LCPathways 

(Kuenzi and Ideker 2020). These vectors were then fed into the Transformer module 

to model the interactions between cancer pathways (Supplementary Fig. 1b). Default 

hyperparameters were used for all six methods (see Methods). Omic data were 

combined using early integration (Cai et al. 2022) for random forest and elastic net. 

Middle integration (Cai et al. 2022) was used for PCA, moCluster and mixOmics. PCA 

and moCluster were coupled with random forest for predictions (Cai et al. 2022) (see 

Methods).  

To quantitatively and reliably compare the six methods, five-fold cross-

validation was repeated five times at random, yielding 25 error measures for each of 

the R2, MAE and Pearson’s r metrics. The mean and 95% confidence interval (CI) of 

the evaluation metrics was reported, serving as an estimate of the generalisation error. 

We observed that DeePathNet had significant and consistently better performance in 

drug response prediction than the other five methods that do not incorporate cancer 

pathway information (Fig. 2a-f, p-value < 0.0001, two-tail paired Student’s t-test, 

Supplementary Table 2). By ranking the methods according to the mean measures 

for each setup, we found that random forest was the second-best performing method 
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(Fig. 2g). To investigate whether drug responses that had relatively lower predictive 

accuracy by DeePathNet were also challenging for other methods, the correlations 

between DeePathNet and the other five methods were calculated. We found that the 

predictive performance of the paired methods was highly concordant (Pearson’s r > 

0.9), with DeePathNet consistently outperforming the other five methods 

(Supplementary Fig. 2). 
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Fig. 2 | Performance evaluation of drug response prediction by cross-validation. a-f, Bar plots 

showing predictive performances across six experimental setups on the CLP and CCLE datasets by 

three evaluation metrics: R2, MAE (inverted on the horizontal axis), and Pearson’s r. A higher value 

represents better performance. Error bars are derived from cross-validation, representing 95% 

confidence intervals of the mean. **** indicates p-value < 0.0001 by two-tail paired Student’s t-test, 

only showing significance between the first- and second-best performing methods. g, Radar plot 

showing the ranks of each model across the six experimental setups. A larger enclosed area represents 

better performance. a-g, The six methods are colour coded as in g. 

To evaluate the generalisation error using an independent test set, we trained 

DeePathNet on the CLP dataset (Supplementary Table 1) and tested the final model 

by predicting drug responses in the CCLE dataset (Supplementary Table 1). Cancer 

pathway information was integrated in the same way as described above and random 

forest was trained as a baseline model. The test performance for all 549 GDSC anti-

cancer drugs was summarised for both DeePathNet and random forest. DeePathNet 

achieved a statistically significant higher predictive performance than random forest 

across all three metrics (Fig. 3a, p-value < 0.0001, two-tail paired Student’s t-test, 

Supplementary Table 3). 

 

Fig. 3 | Generalisation error of DeePathNet and random forest for drug response prediction. a, 

Violin plots showing predictive performances of DeePathNet and random forest using CLP as the 

training set and evaluated on the independent CCLE test set across the 549 GDSC drugs.The vertical 

axis is inverted for MAE. **** indicates p-value < 0.0001 by two-tail paired Student’s t-test. b, Violin 

and swarm plots showing the performance difference in R2 (upper), MAE (middle) and Pearson’s r 

(lower) between DeePathNet and random forest for each drug. A drug is more accurately predicted by 

DeePathNet when it exhibits a positive value for the R2 or Pearson’s r difference, or a negative value 

of the MAE difference (the horizontal axis is inverted for MAE). The numbers of drugs that are more 
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accurately predicted by DeePathNet or random forest are annotated on the upper right and left of the 

plot, respectively. The name of the drug that achieved the largest improvement with DeePathNet is 

annotated for each metric. c and d, Similar to a and b, but using CLP+ as the training set and CCLE+ 

as the independent test set. 

To compare the predictive performance of DeePathNet with random forest for 

each drug, the difference of R2 between DeePathNet and random forest was measured. 

Here, 92% (505/549) of drugs had positive values, indicating superior predictive 

performance from DeePathNet over random forest. Similarly, 94% (516/549) drugs 

and 76% (415/549) of drugs exhibited improved results by MAE and Pearson’s r, 

respectively (Fig. 3b). This demonstrates that DeePathNet consistently achieved better 

predictive performance than random forest for most anti-cancer drugs. The drug that 

obtained the largest R2 improvement by DeePathNet was KIN001-260 (Fig. 3b), 

which was poorly predicted by random forest and caused the long tail in the 

distribution of values (Fig. 3a). Drugs that had the largest improvement in MAE and 

Pearson’s r with DeePathNet were thapsigargin and taselisib (Fig. 3b). 

Next, we extended our analysis by including two proteomic cell line datasets 

from ProCan-DepMapSanger(Gonçalves et al. 2022) and CCLE (Nusinow et al. 2020). 

ProCan-DepMapSanger is a recently published pan-cancer proteomic dataset of 949 

human cell lines generated by our team, supplementing the CLP with proteomic 

information. DeePathNet and random forest were trained on the combined CLP and 

ProCan-DepMapSanger datasets (CLP+; Supplementary Table 1), with the final 

model tested on the expanded CCLE dataset that includes additional proteomic 

measurements (CCLE+; Supplementary Table 1). Pathway information was 

integrated in DeePathNet as described above. DeePathNet yielded significantly higher 

test performance than random forest across all three metrics when predicting the 549 

GDSC anti-cancer drugs (Fig. 3c, Supplementary Table 3). Analysing the predictive 

performance for each drug, DeePathNet also provided significant improvement for the 
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majority of anti-cancer drugs compared with random forest (Fig. 3d). The drugs that 

had the largest improvement by DeePathNet were AZD4877, thapsigargin and 

BPTES, measured by the differences of R2, MAE and Pearson’s r, respectively (Fig. 

3d).  

To investigate which types of drugs were most accurately predicted by 

DeePathNet, we grouped the 549 drugs by their canonical target cellular pathways. 

Drugs targeting ABL signalling and ERK MAPK signalling pathway had the highest 

mean Pearson’s r between predicted and actual IC50 values (Supplementary Fig. 3a). 

The top 20 most accurately predicted drugs and their pathways are reported in 

Supplementary Fig. 3b. 

Taking these observations together, we demonstrated DeePathNet increased 

predictive performance through several benchmarking analyses in predicting 

responses to several drugs targeting various signalling pathways.  

4.3.3 DeePathNet classifies cancer types  

To evaluate DeePathNet on a classification task, we used publicly available data 

from The Cancer Genome Atlas (TCGA) (Alexandrov et al. 2020) to classify primary 

cancer types. Gene mutation, CNV and gene expression features were used as the omic 

data input to train DeePathNet models to classify each of the 6,356 samples into one 

of 23 cancer types (see Methods).  A total of seven metrics were used across the 

analysis to ensure reliable evaluation. The metrics are accuracy, macro-average F1-

score, precision, recall (sensitivity), area under the receiver operating characteristic 

curve (AUROC), area under the precision-recall curve (AUPRC) and stability (see 

Methods). LCPathways was integrated in the same way as described for the drug 

response prediction. For benchmarking, elastic net was replaced with k-nearest 

neighbours (k-NN) (Fix and Hodges 1989) because elastic net does not support 
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classification. For all six methods, feature integration and hyperparameter settings 

were identical to the drug response prediction. 

In the absence of an independent dataset comprising the 23 cancer types, cross-

validation was performed for the six methods on the TCGA dataset, and the mean and 

95% CI of the evaluation metrics were reported as an estimate of the generalisation 

error. DeePathNet consistently outperformed the other five machine learning methods 

by accuracy, macro-average F1-score (Fig. 4a, Supplementary Table 4). In contrast, 

other methods such as mixOmics only performed well in one metric, indicating that 

these methods may be suitable for certain scenarios but can not generalise well across 

datasets (Fig. 4a). Assessing the performance of each method using a set of four 

metrics including accuracy, macro-average F1-score, AUROC and stability, showed 

that DeePathNet was consistently top ranked, followed by random forest (Fig. 4b, 

Supplementary Table 4).  

To further investigate DeePathNet’s performance for each cancer type, the 

predicted and actual cancer type for each sample was visualised using a confusion 

matrix, with the number of samples, precision and recall annotated (Fig. 4c). 

DeePathNet achieved a recall of over 0.95 for most cancer types, with acute myeloid 

leukemia (LAML), pancreatic adenocarcinoma (PRAD), and thyroid carcinoma 

(THCA) as the top three most accurately classified cancer types. Rectum 

adenocarcinoma (READ) was the cancer type with the lowest recall, having 46% of 

the samples incorrectly classified as colon adenocarcinoma (COAD). The latter 

outcome is unsurprising because the colon and rectum are adjacent tissue types that 

share highly similar features, with these two cancer types often grouped together 

(Cancer Genome Atlas Network 2012) and are treated with similar chemotherapeutic 

regimens (Cancer Genome Atlas Network 2012). The cancer type exhibiting the 
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second-lowest recall was stomach adenocarcinomas (STAD), with 19% of STAD 

samples incorrectly classified as esophageal carcinoma (ESCA). This can be explained 

by their similar histopathology and the anatomical proximity of STAD and ESCA 

(Akiyama et al. 1997). Next, AUROC and AUPRC were examined for each cancer 

type, both displaying high performances for all cancer types, with the exception of 

AUPRC for READ, due to the tissue proximity of READ to COAD. (Supplementary 

Fig. 4a and Supplementary Fig. 4b). 
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Fig. 4 | Performance evaluation of cancer type classification. a, Model comparison using cross-

validation on the TCGA dataset. The x-axis represents macro-average F1-score, and the y-axis denotes 

accuracy. b, Radar chart showing the model ranks across the set of four metrics. A larger enclosed 

area indicates better predictive performance. c, Confusion matrix for the classification of 23 cancer 

types. Columns denote predicted labels, and rows represent actual labels. The percentage shown 

represents the proportion of predictions made for the corresponding cancer type, with each row 

summing to 1. The diagonal represents correct predictions for each cancer type, with the percentage 

indicating the recall. Bar plots show precision (horizontal axis), recall (vertical axis, leftmost) and 

number of samples (vertical axis, rightmost) per cancer type. 
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4.3.4 DeePathNet classifies breast cancer subtypes 

Gene mutation, CNV and gene expression features were used to train 

DeePathNet models for the classification of five breast cancer subtypes (Luminal A, 

Luminal B, HER2+, Basal, Normal-like) according to the Prediction Analysis of 

Microarray 50 (PAM50) (Parker et al. 2009). A total of 974 breast cancer samples 

from the TCGA dataset were used for training, and a breast cancer cohort of 122 

samples from Clinical Proteomic Tumor Analysis Consortium (CPTAC) was included 

as an independent dataset to evaluate the generalisation error.  

Cross-validation for all six methods was first performed on the TCGA dataset, 

reporting the mean and 95% CI of the evaluation metrics as an estimate of the 

generalisation error. DeePathNet provided a substantial improvement over the other 

methods in terms of accuracy and macro average F1-score (Fig. 5a, Supplementary 

Table 5). The performance gain in AUROC was relatively minor but statistically 

significant (Student’s t-test p-value < 5 × 10−4 ) (Supplementary Table 5). The 

methods were then ranked according to the same set of four metrics as in cancer type 

classification. DeePathNet achieved the best performance in all four metrics, with 

random forest ranked as the second best overall (Fig. 5b). Other methods showed 

inconsistent performance rankings across different metrics, demonstrating the 

necessity of using multiple evaluation metrics for a comprehensive evaluation.  

To evaluate the generalisation error, a DeePathNet model was trained on the 

TCGA breast cancer cohort, with the final model tested on the independent CPTAC 

breast cancer cohort. Benchmarked against random forest, DeePathNet yielded a much 

lower generalisation error on the independent test set (Fig. 5c, Supplementary Table 

6). Next, the generalisation error of DeePathNet was assessed for each subtype by a 

confusion matrix. DeePathNet achieved the highest precision and recall in classifying 



  

Chapter 4: Transformer-based deep learning integrates multi-omic data with regulatory pathways in cancer 100 

the Basal subtype (96.6%, Fig. 5d), with most tumours in this subtype being high-

grade with a poor prognosis (Dai et al. 2015). The most difficult subtype to classify 

was Normal-like, where three out of the five Normal-like samples were incorrectly 

classified as Luminal A (Fig. 5d). Luminal A and Normal-like subtypes are 

traditionally difficult to distinguish as they share the same immunohistochemistry 

markers (Dai et al. 2015). The Normal-like subtype is less frequently used in clinics 

(Raj-Kumar et al. 2019). Further analyses by AUROC (Supplementary Fig. 5a) and 

AUPRC (Supplementary Fig. 5b) demonstrated DeePathNet’s high predictive 

performance for each subtype. 

 

Fig. 5 | Performance evaluation of breast cancer subtype classification. a, Model evaluation by 

cross-validation. The x-axis represents macro-average F1-score, and the y-axis represents accuracy. b, 

Radar chart showing the model ranks across the set of four metrics. A larger enclosed area represents 

better classification performance. c, Performance metrics showing generalisation errors for 

DeePathNet and random forest when using CPTAC data as the independent test set. d, Confusion 

matrix showing generalisation errors when using CPTAC data as the independent test set. Statistics 

are annotated in the same way as described in Fig. 4c.  
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4.3.5 DeePathNet provides model explanation 

The DeePathNet model is explainable at both omic and pathway levels by using 

feature importance derived from SHapley Additive exPlanations (SHAP) (Lundberg 

and Lee 2017) and Layer-wise Relevance Propagation (LRP) (Bach et al. 2015). SHAP 

attributes the prediction to all features and assigns each feature an importance value, 

while LRP assumes that the classifier can be decomposed into several layers of 

computation, with these layers being parts of the feature extraction. Thus, both SHAP 

and LRP are post-hoc model explanation approaches that establish relationships 

between feature values and the predictions after DeePathNet is trained. Breast cancer 

subtype classification was used to demonstrate model explanation.  

To explain the model at the omic level, SHAP was used to calculate feature 

importance. Specifically, feature importance was computed and visualised for the top 

five genes as stack bar plots comprising each omic data type for each breast subtype 

(Fig. 6a). DeePathNet was able to identify known biomarker genes as top features, 

such as ESR1, ERBB2 and KRT17, whose gene expression is routinely used to 

determine the PAM50 subtypes in the clinic(Parker et al. 2009) (Fig. 6a). Most genes 

had their high feature importance attributable to transcriptomic data (Fig. 6a), 

consistent with the fact that PAM50 classifications are RNA-based subtypes(Parker et 

al. 2009).  

To explain the models at the pathway level, LRP was used to calculate feature 

importance. Since the cancer pathways are represented as an encoded vector that 

summarises multi-omic information, feature importance of a cancer pathway is 

computed for all omic data types jointly. For each cancer subtype, the top five 

pathways with the highest feature importance values were ranked (Fig. 6b). 

DeePathNet identified the FOXM1 transcription factor network as the most important 
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pathway for predicting all PAM50 subtypes (Fig. 6b). FOXM1 shows distinct patterns 

of expression in different breast cancer subtypes and is seen as a promising candidate 

target in breast cancer treatment (X.-F. Lu et al. 2018). FOXM1 is also an adverse 

prognostic factor of survival in Luminal A and B subtypes (J.-J. Lee et al. 2016). The 

ARF6 pathway was shown to be overexpressed in triple negative breast cancer and to 

be associated with breast cancer invasion and metastasis (Marchesin et al. 2015). 

Similarly, Notch Signalling pathways are involved in cell proliferation, apoptosis, 

hypoxia and epithelial to mesenchymal transition and were found to be over-expressed 

in HER2+ positive and triple-negative breast cancer (Acar et al. 2016). 

Taken together, these findings suggest that DeePathNet provides reliable model 

explanation with a strong biological basis by providing feature importance at both the 

omic and pathway level. 

 

Fig. 6 | DeePathNet model explanation by omic level and pathway level feature importance. a, 

Stacked bar plots showing the omic level feature importance of the top five genes for each omic data 

type (indicated by grey, yellow and blue colour). b, Bar plots showing the DeePathNet pathway level 

feature importance of the top five pathways. 
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4.4 DISCUSSION 

DeePathNet is a Transformer-based deep learning model that overcomes the 

limitation of existing machine learning approaches that do not consider known 

cancer biology. DeePathNet integrates multi-omic data with cancer pathway 

knowledge to accurately predict drug responses and classify cancer types and 

subtypes. The self-attention mechanism of the Transformer module dynamically 

models the interdependency between pathways, thus capturing regulatory effects 

across different biological processes and the effects of dysregulation.  

The predictive performance of DeePathNet was evaluated by one regression and 

two classification tasks. The evaluation was conducted on a larger scale than 

previous similar studies (Meng et al. 2016; A. Singh et al. 2019), using multiple big 

datasets and a range of metrics with both cross-validation and independent testing. 

Incorporating cancer pathway information, DeePathNet outperformed other machine 

learning methods that only use omic data as input features. A low generalisation 

error when validating DeePathNet models on independent datasets suggests that 

DeePathNet work well even when different experimental protocols were 

implemented between these independent datasets. DeePathNet provides model 

explanations at the pathway level, which has not yet been accomplished by other 

multi-omic integration tools for the prediction of drug response and classification of 

cancer type and subtype. DeePathNet was able to highlight known biomarkers when 

predicting breast cancer subtypes, including ESR1, ERBB2 and the FOXM1 network 

pathways. This suggests that other top-ranked genes and pathways may provide 

novel insights into cancer biology and drug discovery. 

Despite these comprehensive evaluations, this study only concentrated on a 

limited number of omic data types because large-scale studies of some omic data 
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types are still in their infancy (Satpathy et al. 2021; Nusinow et al. 2020; Yiqun 

Zhang et al. 2022). As large proteomic and metabolomic datasets become 

increasingly available, the predictive power of DeePathNet can improve further, 

because deep learning is likely to obtain performance boost with increased amount of 

data (Esteva et al. 2019).  

In conclusion, DeePathNet combines multi-omics, deep learning and existing 

biological knowledge to predict cancer phenotypes accurately with a model 

explanation. The application of DeePathNet may lead to more accurate diagnosis and 

prognosis, and will facilitate researchers to understand unknown cancer mechanisms 

and prioritise putative drug targets.  

4.5 METHODS 

Multi-omic and drug response data collection. For drug response prediction, 

multi-omic data were retrieved from 941 CLP (Iorio et al. 2016) and 696 CCLE cell 

lines (Ghandi et al. 2019). In total, 19,099 gene mutation, 19,116 CNV and 15,320 

gene expression features are in the CLP, and 18,103 gene mutation, 27,562 CNV and 

19,177 gene expression features are in the CCLE.  

For drug response prediction analysis with proteomic data, the ProCan-

DepMapSanger dataset(Gonçalves et al. 2022) was added to the CLP ( CLP + 

ProCan-DepMapSanger = CLP+) and the CCLE’s proteomic dataset(Nusinow et al. 

2020) was also used (CCLE + CCLE proteomic data = CCLE+). The ProCan-

DepMapSanger and CCLE proteomic datasets contain 8,498 and 12,755 protein 

features, respectively. The combined datasets have 910 and 292 cell lines for CLP+ 

and CCLE+, respectively. No additional processing was performed on both the omics 

and drug response datasets (Supplementary Table 1). 

For cancer type and subtype classification, multi-omic data from TCGA cohorts 

were retrieved using TCGA-assembler 2 (L. Wei et al. 2018). In total, 6,356 samples 

were collected, containing 31,949 features from gene mutation, 23,529 features from 

CNV and 20,435 features from gene expression. In addition, multi-omic data from 

122 breast cancer samples were retrieved from a CPTAC breast cancer cohort (Krug 
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et al. 2020), containing 11,877 features from gene mutation, 23,692 features from 

CNV and 23,121 features from gene expression. For breast cancer subtype 

classification, the PAM50 classification (Luminal A, Luminal B, HER2+, Basal and 

Normal-like) was retrieved from the TCGA and CPTAC datasets (Supplementary 

Table 1). 

 

Overview of DeePathNet. DeePathNet has a pathway encoder (Step 1), a 

Transformer encoder (Step 2) and a MLP (Step 3).  

In Step 1, DeePathNet encodes multi-omic information into cancer pathways, 

defined by the 241 cancer pathways in LCpathways (Kuenzi and Ideker 2020). Let 

𝑔𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 ∈ {0,1} represent the mutation, 𝑔𝐶𝑁𝑉 ∈ ℝ the CNV, 𝑔𝑅𝑁𝐴 ∈ ℝ the gene 

expression, and 𝑔𝑝𝑟𝑜𝑡 ∈ ℝ the protein intensity of a gene 𝑔. Then the vector that 

contains omic features for a pathway that contains 𝑛 genes with four omic data types, 

is defined as:  

𝒂𝑜𝑚𝑖𝑐𝑠 =  ൣ𝑔𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛
1 , 𝑔𝐶𝑁𝑉

1 , 𝑔𝑅𝑁𝐴
1 , 𝑔𝑝𝑟𝑜𝑡

1 , … , 𝑔𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛
𝑛 , 𝑔𝐶𝑁𝑉

𝑛 , 𝑔𝑅𝑁𝐴
𝑛 , 𝑔𝑝𝑟𝑜𝑡

𝑛 ൧  

Next, the vector 𝒂𝑜𝑚𝑖𝑐𝑠 is encoded into the pathway vector 𝒂𝑒𝑛𝑐𝑜𝑑𝑒𝑑  via a MLP. 

Here, the notation is converted into the matrix form to include the number of 

samples. Thus, for 𝑁 samples, the total features from the four omic data types for a 

pathway can be represented as a matrix 𝐴𝑜𝑚𝑖𝑐𝑠 of dimension 𝑁 × 4𝑛. DeePathNet 

then uses a fully connected layer to encode these omic features into an encoded 

pathway matrix 𝐴𝑒𝑛𝑐𝑜𝑑𝑒𝑑 , calculated as: 

𝐴𝑒𝑛𝑐𝑜𝑑𝑒𝑑 = 𝐴𝑜𝑚𝑖𝑐𝑠𝑊𝑇 + 𝐵 

where 𝑊 and 𝐵 represent the learnable weights matrix and bias term in the fully 

connected layer. The dimension of the weight matrix 𝑊 is set as 512 × 4𝑛. The 

dimension of both bias B and 𝐴𝑒𝑛𝑐𝑜𝑑𝑒𝑑  is 𝑁 × 512. In total, 241 cancer pathways 

were used and 241 matrices 𝐴𝑒𝑛𝑐𝑜𝑑𝑒𝑑
1 , 𝐴𝑒𝑛𝑐𝑜𝑑𝑒𝑑

2 , … , 𝐴𝑒𝑛𝑐𝑜𝑑𝑒𝑑
241  are combined as a 

tensor 𝑨𝑒𝑛𝑐𝑜𝑑𝑒𝑑 with a dimensionality of 𝑁 × 512 × 241. 𝑨𝑒𝑛𝑐𝑜𝑑𝑒𝑑 is used as the 

input into the Transformer encoder (Supplementary Fig. 1).  

In Step 2, DeePathNet uses a Transformer encoder to learn the interdependence 

between regulatory pathways in cancer. In contrast to the general attention 

mechanism that models the interdependence between the input and target, self-
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attention is used by the Transformer module to model interdependence within the 

input (T. Lin et al. 2021) (i.e., features from the multi-omic data). The Transformer 

encoder starts with a dropout layer with a probability of 0.5 on the 241 cancer 

pathways, ensuring that on average half of the pathways are dropped out during 

training to prevent potential overfitting. The set of selected pathways is sampled 

independently for each training batch, allowing different pathways to be used. The 

Transformer block was configured the same way as the original version (Vaswani et 

al. 2017), denoted as 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 below. Since the Transformer encoder contains 

recurrent layers, we use a superscript with parenthesis to represent the 𝑨𝑒𝑛𝑐𝑜𝑑𝑒𝑑 at 

different layers, where 𝑨𝑒𝑛𝑐𝑜𝑑𝑒𝑑
(0)

 represents the data before entering the first layer. 

After the first layer of the Transformer block, 𝑨𝑒𝑛𝑐𝑜𝑑𝑒𝑑
(0)

 becomes 𝑨𝑒𝑛𝑐𝑜𝑑𝑒𝑑
(1)

 as 

follows: 

𝑨𝑒𝑛𝑐𝑜𝑑𝑒𝑑
(1)

= 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟ቀ𝑨𝑒𝑛𝑐𝑜𝑑𝑒𝑑
(0)

ቁ 

DeePathNet contains two layers of Transformer block, therefore: 

𝑨𝑒𝑛𝑐𝑜𝑑𝑒𝑑
(2)

= 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟ቀ𝑨𝑒𝑛𝑐𝑜𝑑𝑒𝑑
(1)

ቁ 

Finally, in Step 3, DeePathNet uses a MLP to map 𝑨𝑒𝑛𝑐𝑜𝑑𝑒𝑑
(2)

 to the final 

prediction. The output dimension of a MLP depends on the prediction task. For drug 

response prediction, the number of output dimensions is equal to the number of 

drugs, and for cancer type and subtype classification, the number of output 

dimensions is equal to the number of cancer types and subtypes. 

 

Model training.  All methods were trained with default hyperparameters for both 

regression and classification tasks. The default hyperparameters of DeePathNet and 

optimiser used can be found in the GitHub repository. Default hyperparameters were 

used for random forest, elastic net, PCA (top 200 PCs) and k-NN (k = 5) and details 

can be found in the official API of scikit-learn (v1.0.2). Default hyperparameters 

were also set for mixOmics and moCluster, and details can be found in their original 

publications. To train DeePathNet for regression, mean squared error (MSE) loss was 

computed between the predicted and actual IC50. For classification, we computed the 

cross-entropy (CE) loss to train DeePathNet. 
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Evaluation metrics. For regression, R2, MAE and Pearson’s r were used to evaluate 

the performance and they are defined as follows: 

𝑅2 = 1 −
σ (𝑦𝑖 − �̂�𝑖)

2
𝑖

σ (𝑦𝑖 − 𝑦ത)2
𝑖

 

𝑀𝐴𝐸 =
σ ȁ(𝑦𝑖 − �̂�𝑖)ȁ𝑛

𝑖=1

𝑛
 

𝑃𝑒𝑎𝑟𝑠𝑜𝑛′𝑠 𝑟 =
σ (𝑦𝑖 − 𝑦ത)(�̂�𝑖 − �̂�ത)𝑛

𝑖=1

ඥσ (𝑦𝑖 − 𝑦ത)2𝑛
𝑖=1

ටσ ൫�̂�𝑖 − �̂�ത൯
2𝑛

𝑖=1

 

For a given drug, 𝑦𝑖 represents the actual IC50 of cell line 𝑖, �̂�𝑖 represents the 

predicted IC50 value of cell line 𝑖, 𝑦ത represents the mean value of all actual IC50 

values, �̂�ത represents the mean value of all predicted IC50 values, and n represents the 

total number of cell lines. For classification, multiple metrics were used to evaluate 

the predictive performance of DeePathNet and other models, including accuracy, 

macro-average F1-score, precision, recall, AUROC, AUPRC and stability. Let TP, 

TN, FP, FN represent true positive, true negative, false positive and false negative 

prediction. Accuracy is defined as 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
. Precision is defined as 

𝑇𝑃

𝑇𝑃+𝐹𝑃
. 

Recall is defined as 
𝑇𝑃

𝑇𝑃+𝐹𝑁
,. Then the F1-score is calculated as the harmonic mean of 

the precision and recall and defined as 
2∙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
. The macro-average F1-score 

is calculated by computing the arithmetic mean of F1-scores from all the cancer types 

or subtypes. The ROC curve is created by plotting the recall and false positive rate 

(
𝐹𝑃

𝐹𝑃+𝑇𝑁
) at various thresholds. AUROC is calculated as the area under the ROC 

curve. The precision and recall (PR) curve is created by plotting the precision and 

recall at various thresholds, and the AUPRC is calculated as the area under the PR 

curve. The stability is measured by the standard deviation. 
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Chapter 5: Discussions and Conclusions 

Some text included in this chapter is adapted from the following publications: 

Poulos, R. C., Cai, Z., Robinson, P. J., Reddel, R. R., & Zhong, Q. (2022). 

Opportunities for pharmacoproteomics in biomarker discovery. Proteomics, 2200031 

 

5.1 SUMMARY OF THE RESEARCH PRESENTED IN THIS THESIS 

Multi-omic data analysis has transformed cancer diagnosis, prognosis, and 

therapeutical development in a variety of ways. However, large-scale multi-omic 

analysis, especially when including proteomic data, is still in its infancy. Both multi-

omic data and related machine learning tools are crucially needed to further improve 

our understanding of the mechanism of cancer. This thesis presents analyses of both 

cancer cell lines and human tumour tissue samples using multi-omic data combined 

with novel machine learning approaches. The overarching aim of this thesis has been 

to develop methods to integrate proteomic data with other omic data types, and to 

implement these methods to achieve better predictions of various cancer phenotypes. 

Chapter 2 presents both a comprehensive review and a benchmarking analysis 

of current machine learning tools for the integration of multi-omic data. The review 

and analysis are based on several key tasks in cancer research, including cancer type 

prediction and drug response prediction. Multi-omic data analysis is key to 

understanding the nature and result of complex dysregulation events that are associated 

with different cancer phenotypes. Despite exponential growth in the number of multi-

omic experiments being performed in the research community, and therefore in the 

amount of data available to researchers, limited efforts have been made to develop 
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machine learning tools that automatically integrate these multi-omic datasets. This 

chapter further incorporates a benchmarking analysis, comparing several recently 

published machine learning-based multi-omic data integration tools. The results of this 

benchmarking study allow researchers to select the most appropriate tools for their 

applications. 

Chapter 3 introduces a large pan-cancer proteomic map and the use of a novel 

neural network to gain insight into cancer phenotype beyond what could be obtained 

from existing molecular datasets. Specifically, this map quantifies 8,498 proteins 

across 949 human cancer cell lines, representing 28 tissues and more than 40 

histologically diverse cancer types and a wide range of genotypes. To analyse these 

data, a deep learning-based pipeline was designed to find biomarkers of drug response 

and gene essentiality. Further, a random downsampling analysis was conducted that 

reveals highly connected and co-regulated protein networks.  

Chapter 4 presents DeePathNet, a machine learning algorithm that combines 

multi-omic, deep learning and existing biological knowledge to predict cancer 

phenotypes accurately with a model explanation. Through the analysis of biological 

datasets, the application of DeePathNet is shown to predict cancer type, subtype and 

drug response accurately with meaningful model explanations. This approach may 

lead to more accurate diagnosis and prognosis, and will facilitate researchers to 

understand unknown cancer mechanisms and prioritise putative drug targets. 
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5.2 NEW RESEARCH QUESTIONS ARISING FROM THE FINDINGS 

PRESENTED IN THIS THESIS 

 

5.2.1 Arising from Chapter 2: How do sample size and number of omic data 

types affect predictive performance of multi-omic integration tools? 

In the benchmarking analysis, we only estimated the run-time of the multi-omic 

integration but didn’t evaluate the predictive performance when varying sample sizes. 

Machine learning methods benefit greatly from a large amount of data to avoid 

overfitting (Zhou et al. 2017), and complex models such as deep learning require more 

data than basic machine learning methods such as a logistic regression. However, the 

sample size is usually small when training machine learning models in multi-omic data 

analysis. To evaluate which multi-omic integration methods can work well with small 

cohorts, our future work will involve assessing the performance of a range of machine 

learning methods with varying numbers of samples, on the tasks of drug response 

prediction and cancer type classification.  

A second question arising from this work is whether adding more omic data 

types of the same samples will lead to improved prediction. In multi-omic data analysis, 

the total number of features is significantly larger than the number of samples, known 

as the curse of dimensionality (Mirza et al. 2019). It has been shown that more omic 

data types may not necessarily improve predictive performance  (T. Wang et al. 2021). 

This result is expected because by introducing more features, it further worsens the 

curse of dimensionality. What remains to be investigated is the trade-off between 

information gained from the extra omic data types and the increased feature space.  
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5.2.2 Arising from Chapter 3: Can DeeProM trained with cancer cell lines data 

be validated in tumour tissues data? 

In Chapter 3, we developed DeeProM to predict drug response using the 

proteomic data (ProCan-SangerDepMap) of 949 human cancer cell lines. A follow-up 

project could be investigating the applicability of DeeProM in other model systems, 

such as organoids and patient-derived xenografts (PDXs) rather than human cancer 

tissues. This is because we can test multiple drugs simultaneously on the same cell line, 

but it is intractable for human tissue samples.  

Compared to cell line models, pharmacogenomic biomarker studies have been 

performed at a smaller scale in organoids (van de Wetering et al. 2015; Pauli et al. 

2017) and PDXs (Woo et al. 2019; Conte et al. 2019). Organoids, which contain more 

than one cell type and are capable of mimicking tissue organisation, and tumoroids, 

which are a three-dimensional cell culture, offer an effective way to additionally model 

organ structure and function and are now possible at large scale (Durens et al. 2020; 

Daniszewski et al. 2018). PDXs are derived from human tissue excised from a patient's 

tumour and transplanted into an immunodeficient mouse. All of these pre-clinical 

models bear many resemblances to their tissues of origin, but they are unable to 

sufficiently represent all elements of a human tissue sample (Salvadores, Fuster-

Tormo, and Supek 2020; Goodspeed et al. 2016; Mirabelli, Coppola, and Salvatore 

2019; J. Kim, Koo, and Knoblich 2020; Jung, Seol, and Chang 2018; Trastulla et al. 

2022). For example, none of the model systems incorporate a fully functioning 

immune system. Cell lines lack the complexity of other pre-clinical models including 

three-dimensional structure. In general, organoids and PDXs more closely resemble 

their human tissue counterparts than cell lines, but they are more costly to establish 

and maintain. In the case of PDX samples, an additional challenge is to differentiate 

human from mouse proteins, which share considerable sequence homology.  



  

Chapter 5: Discussions and Conclusions 112 

Therefore, to test the applicability of DeeProM beyond cell line models, future 

works can start with organoids and PDXs samples, but ultimately human tumour 

tissues should be investigated due to their unique characteristics that pre-clinical 

models do not provide.  

5.2.3 Arising from Chapter 4: Does the choice of human knowledge database 

affect the predictive performance of multi-omic integrative models? 

In Chapter 4, we developed DeePathNet as a novel tool to incorporate human 

knowledge into multi-omic data integration. One highlight of DeePathNet is that the 

model utilises cancer specific pathways as the input of human knowledge. However, 

whether DeePathNet can utilise databases in different structures such as GeneOntology 

(GO) (Ashburner et al. 2000; Gene Ontology Consortium 2021) and STRING 

(Szklarczyk et al. 2021) has yet to be investigated.  

The architecture of DeePathNet would need to be modified to utilise GO and 

STRING, and each database would confer different challenges. To use GO with 

DeePathNet, one open question would be how to handle the hierarchies between 

different GO entities. GO has been utilised in other deep learning methods with 

multiple layers of neurons with predefined connections between neurons (Elmarakeby 

et al. 2021). However, DeePathNet does not support using hierarchies in the pathway 

dataset due to technical constraints from the transformer module. To overcome this 

limitation, the pathway encoder and transformer module would need to be redesigned 

to reflect the hierarchy of information in the GO database.  

To use DeePathNet with STRING, modifications to DeePathNet are also 

required because STRING contains graphs that are connected at a very large scale and 

does not have any sub-groups. DeePathNet requires omic-level features to be grouped 

into middle level sub-groups such as cancer pathways. Since the STRING database is 
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essentially a computational graph, the most appropriate method is to utilise graph 

neural networks (Wu et al. 2021) to perform data integration. Graph transformer 

network (GTN) (Yun et al. 2022) has been proposed recently and is an appropriate 

model to utilise in this scenario. DeePathNet could be modified with a variation of 

using GTN to support the use of human knowledge in the form of graphs. 

 

5.3 NEW TECHNOLOGIES AND FUTURE DIRECTIONS 

 

5.3.1 Single-cell omic approaches create additional opportunities for machine 

learning 

Although omic studies in cancer research primarily focus on data obtained from 

bulk samples, recent advancements in single-cell technology has enabled researchers 

to analyse tumour samples at higher resolutions (Peng et al. 2020). Since each cell is 

a sample by itself, large-scale single-cell datasets will provide more data, allowing 

machine learning to train complex models that are currently impossible with bulk data 

due to the limited numbers of samples. More importantly, intra-tumour heterogeneity, 

meaning a tumour may contain different sub-populations that contain different 

molecular profiles and phenotypes, plays a key role in developing cancer therapies 

(Marusyk, Almendro, and Polyak 2012). Single-cell omic measurements enables us to 

study the relationship and interactions between different cells within the tumour 

(Tellez-Gabriel et al. 2016), Machine learning approaches are expected to further 

facilitate the single-cell data analysis. 

5.3.2 Few-shot deep learning in biomedical research 

New technologies are currently emerging in the field of deep learning that can 

enable models to be well trained with only small datasets. This is called few-shot 
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learning (FSL) (Y. Wang et al. 2021). FSL can quickly generalise to new tasks 

comprising only a few samples with supervised information by utilising past 

knowledge. In biomedical research, FSL has been applied to text analysing tasks 

(Hofer et al. 2018) and histopathological images (Medela et al. 2019). It is anticipated 

that FSL may also be applied to omic dataset successfully. In cancer, this may enable 

the use of deep learning to study cohorts where it can be difficult to obtain large sample 

sizes, such as paediatric cancers or rare adult cancer types. Apart from FSL, data 

synthesis algorithms using generative models such as variational autoencoder (Ruoqi 

Wei and Mahmood 2021) may also play a key role in overcoming the shortage of data, 

specifically when analysing rare cancer types. 

5.3.3 More accessible computational power for small labs to use deep learning 

Many deep learning models, especially complex ones, require the usage of at 

least one high-end GPU to accelerate computation. However, powerful GPUs are not 

equipped in standard office desktop or laptop computers. Therefore, small labs who 

do not have access to such powerful computational resources may not be able to benefit 

from the latest tools. However, products such as Google Colab are now being 

developed, allowing more deep learning platforms with free GPU usage to become 

available for individual researchers. This will enable a wider adoption of deep learning 

methods in cancer research, with the potential to facilitate the discoveries that can lead 

to new cancer treatments. 

5.3.4 Explainable machine learning to aid biological discovery 

As the availability of multi-omic data expands, more complex machine learning 

models, the application of increasingly complex machine learning models, including 

advanced deep learning architectures, has the potential to revolutionise cancer 

diagnosis and prognostic predictions. However, the interpretability of such data 
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presents a substantial challenge. Therefore, the role of explainable machine learning 

becomes instrumental (Mathews 2019; Lötsch, Kringel, and Ultsch 2021). We 

envisage a future where machine learning systems not only predict outcomes with high 

precision but also provide interpretable reasoning behind these predictions, thereby 

promoting trust in their utility. The development of such machine learning models 

would enable researchers to explain intricate biological pathways and mechanisms 

underlying cancer pathogenesis, progression, and response to therapy. 

 



  

Bibliography 116 

Bibliography 

Acar, Ahmet, Bruno M. Simões, Robert B. Clarke, and Keith Brennan. 2016. “A 

Role for Notch Signalling in Breast Cancer and Endocrine Resistance.” Stem 

Cells International 2016 (January): 2498764. 

Aebersold, Ruedi, and Matthias Mann. 2003. “Mass Spectrometry-Based 

Proteomics.” Nature 422 (6928): 198–207. 

Aizerman, M. A. 1964. “Theoretical Foundations of the Potential Function Method 

in Pattern Recognition Learning.” Automation and Remote Control 25: 821–

37. 

Akiyama, H., M. Tsurumaru, H. Udagawa, and Y. Kajiyama. 1997. “Esophageal 

Cancer.” Current Problems in Surgery 34 (10): 765–834. 

Alcala, N., N. Leblay, A. A. G. Gabriel, L. Mangiante, D. Hervas, T. Giffon, A. S. 

Sertier, et al. 2019. “Integrative and Comparative Genomic Analyses Identify 

Clinically Relevant Pulmonary Carcinoid Groups and Unveil the Supra-

Carcinoids.” Nature Communications 10 (1): 3407. 

Alexandrov, Ludmil B., Jaegil Kim, Nicholas J. Haradhvala, Mi Ni Huang, Alvin 

Wei Tian Ng, Yang Wu, Arnoud Boot, et al. 2020. “The Repertoire of 

Mutational Signatures in Human Cancer.” Nature 578 (7793): 94–101. 

Andersson, Robin, and Albin Sandelin. 2020. “Determinants of Enhancer and 

Promoter Activities of Regulatory Elements.” Nature Reviews. Genetics 21 

(2): 71–87. 

Argelaguet, Ricard, Damien Arnol, Danila Bredikhin, Yonatan Deloro, Britta Velten, 

John C. Marioni, and Oliver Stegle. 2020. “MOFA+: A Statistical Framework 

for Comprehensive Integration of Multi-Modal Single-Cell Data.” Genome 

Biology 21 (1): 111. 

Argelaguet, Ricard, Stephen J. Clark, Hisham Mohammed, L. Carine Stapel, Christel 

Krueger, Chantriolnt-Andreas Kapourani, Ivan Imaz-Rosshandler, et al. 2019. 

“Multi-Omics Profiling of Mouse Gastrulation at Single-Cell Resolution.” 

Nature 576 (7787): 487–91. 

Argelaguet, Ricard, Britta Velten, Damien Arnol, Sascha Dietrich, Thorsten Zenz, 

John C. Marioni, Florian Buettner, Wolfgang Huber, and Oliver Stegle. 2018. 

“Multi-Omics Factor Analysis-a Framework for Unsupervised Integration of 

Multi-Omics Data Sets.” Molecular Systems Biology 14 (6): e8124. 

Ashburner, M., C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P. 

Davis, et al. 2000. “Gene Ontology: Tool for the Unification of Biology. The 

Gene Ontology Consortium.” Nature Genetics 25 (1): 25–29. 

Aulchenko, Yurii S., Stephan Ripke, Aaron Isaacs, and Cornelia M. van Duijn. 2007. 

“GenABEL: An R Library for Genome-Wide Association Analysis.” 

Bioinformatics  23 (10): 1294–96. 

Bach, Sebastian, Alexander Binder, Grégoire Montavon, Frederick Klauschen, 

Klaus-Robert Müller, and Wojciech Samek. 2015. “On Pixel-Wise 

Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance 

Propagation.” PloS One 10 (7): e0130140. 

Barretina, Jordi, Giordano Caponigro, Nicolas Stransky, Kavitha Venkatesan, Adam 

A. Margolin, Sungjoon Kim, Christopher J. Wilson, et al. 2012. “The Cancer 

Cell Line Encyclopedia Enables Predictive Modelling of Anticancer Drug 

Sensitivity.” Nature 483 (7391): 603–7. 



  

Bibliography 117 

Bavafaye Haghighi, Elham, Michael Knudsen, Britt Elmedal Laursen, and Søren 

Besenbacher. 2019. “Hierarchical Classification of Cancers of Unknown 

Primary Using Multi-Omics Data.” Cancer Informatics 18 (August): 

1176935119872163. 

Behan, Fiona M., Francesco Iorio, Gabriele Picco, Emanuel Gonçalves, Charlotte M. 

Beaver, Giorgia Migliardi, Rita Santos, et al. 2019. “Prioritization of Cancer 

Therapeutic Targets Using CRISPR-Cas9 Screens.” Nature 568 (7753): 511–

16. 

Bellman, R. 1966. “Dynamic Programming.” Science 153 (3731): 34–37. 

Berkum, Nynke L. van, Erez Lieberman-Aiden, Louise Williams, Maxim Imakaev, 

Andreas Gnirke, Leonid A. Mirny, Job Dekker, and Eric S. Lander. 2010. 

“Hi-C: A Method to Study the Three-Dimensional Architecture of Genomes.” 

Journal of Visualized Experiments: JoVE 39 (39): e1869. 

Boehm, Jesse S., Mathew J. Garnett, David J. Adams, Hayley E. Francies, Todd R. 

Golub, William C. Hahn, Francesco Iorio, James M. McFarland, Leopold 

Parts, and Francisca Vazquez. 2021. “Cancer Research Needs a Better Map.” 

Nature 589 (7843): 514–16. 

Bohan, Sandy S., Jason K. Sicklick, Shumei Kato, Ryosuke Okamura, Vincent A. 

Miller, Brian Leyland-Jones, Scott M. Lippman, and Razelle Kurzrock. 2020. 

“Attrition of Patients on a Precision Oncology Trial: Analysis of the I-

PREDICT Experience.” The Oncologist 25 (11): e1803–6. 

Boyle, Evan A., Yang I. Li, and Jonathan K. Pritchard. 2017. “An Expanded View of 

Complex Traits: From Polygenic to Omnigenic.” Cell 169 (7): 1177–86. 

Brabletz, Thomas, Raghu Kalluri, M. Angela Nieto, and Robert A. Weinberg. 2018. 

“EMT in Cancer.” Nature Reviews. Cancer 18 (2): 128–34. 

Breiman, Leo. 2001. “Random Forests.” Machine Learning 45 (1): 5–32. 

Broad. 2020. “DepMap.” 2020. 

Brouwer, Ineke, and Tineke L. Lenstra. 2019. “Visualizing Transcription: Key to 

Understanding Gene Expression Dynamics.” Current Opinion in Chemical 

Biology 51 (August): 122–29. 

Cai, Zhaoxiang, Rebecca C. Poulos, Jia Liu, and Qing Zhong. 2022. “Machine 

Learning for Multi-Omics Data Integration in Cancer.” IScience 25 (2): 

103798. 

Cancer Genome Atlas Network. 2012. “Comprehensive Molecular Characterization 

of Human Colon and Rectal Cancer.” Nature 487 (7407): 330–37. 

Cancer Genome Atlas Research Network. 2014. “Comprehensive Molecular 

Characterization of Gastric Adenocarcinoma.” Nature 513 (7517): 202–9. 

Cancer Genome Atlas Research Network., and Cancer Genome Atlas Research 

Network. 2017. “Integrated Genomic Characterization of Pancreatic Ductal 

Adenocarcinoma.” Cancer Cell 32 (2): 185-203.e13. 

Chatr-Aryamontri, Andrew, Bobby-Joe Breitkreutz, Rose Oughtred, Lorrie Boucher, 

Sven Heinicke, Daici Chen, Chris Stark, et al. 2015. “The BioGRID 

Interaction Database: 2015 Update.” Nucleic Acids Research 43 (Database 

issue): D470-8. 

Cichonska, Anna, Tapio Pahikkala, Sandor Szedmak, Heli Julkunen, Antti Airola, 

Markus Heinonen, Tero Aittokallio, and Juho Rousu. 2018. “Learning with 

Multiple Pairwise Kernels for Drug Bioactivity Prediction.” Bioinformatics  

34 (13): i509–18. 

Clark, David J., Saravana M. Dhanasekaran, Francesca Petralia, Jianbo Pan, Xiaoyu 

Song, Yingwei Hu, Felipe da Veiga Leprevost, et al. 2019. “Integrated 



  

Bibliography 118 

Proteogenomic Characterization of Clear Cell Renal Cell Carcinoma.” Cell 

179 (4): 964-983.e31. 

Cohen, Philip, Darren Cross, and Pasi A. Jänne. 2021. “Kinase Drug Discovery 20 

Years after Imatinib: Progress and Future Directions.” Nature Reviews. Drug 

Discovery 20 (7): 551–69. 

Collins, Ben C., Christie L. Hunter, Yansheng Liu, Birgit Schilling, George 

Rosenberger, Samuel L. Bader, Daniel W. Chan, et al. 2017. “Multi-

Laboratory Assessment of Reproducibility, Qualitative and Quantitative 

Performance of SWATH-Mass Spectrometry.” Nature Communications 8 

(1): 291. 

Conte, Nathalie, Jeremy C. Mason, Csaba Halmagyi, Steven Neuhauser, Abayomi 

Mosaku, Galabina Yordanova, Aikaterini Chatzipli, et al. 2019. “PDX 

Finder: A Portal for Patient-Derived Tumor Xenograft Model Discovery.” 

Nucleic Acids Research 47 (D1): D1073–79. 

Corsello, Steven M., Rohith T. Nagari, Ryan D. Spangler, Jordan Rossen, Mustafa 

Kocak, Jordan G. Bryan, Ranad Humeidi, et al. 2020. “Discovering the Anti-

Cancer Potential of Non-Oncology Drugs by Systematic Viability Profiling.” 

Nature Cancer 1 (2): 235–48. 

Coscia, F., K. M. Watters, M. Curtis, M. A. Eckert, C. Y. Chiang, S. Tyanova, A. 

Montag, R. R. Lastra, E. Lengyel, and M. Mann. 2016. “Integrative 

Proteomic Profiling of Ovarian Cancer Cell Lines Reveals Precursor Cell 

Associated Proteins and Functional Status.” Nature Communications 7 (1): 

12645. 

Cox, Jürgen, Marco Y. Hein, Christian A. Luber, Igor Paron, Nagarjuna Nagaraj, and 

Matthias Mann. 2014. “Accurate Proteome-Wide Label-Free Quantification 

by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed 

MaxLFQ.” Molecular & Cellular Proteomics: MCP 13 (9): 2513–26. 

Crick, F. 1970. “Central Dogma of Molecular Biology.” Nature 227 (5258): 561–63. 

Cunningham, Julie M., Eric R. Christensen, David J. Tester, Cheong-Yong Kim, 

Patrick C. Roche, Lawrence J. Burgart, and Stephen N. Thibodeau. 1998. 

“Hypermethylation of the HMLH1 Promoter in Colon Cancer with 

Microsatellite Instability.” Cancer Research 58 (15): 3455–60. 

Dai, Xiaofeng, Ting Li, Zhonghu Bai, Yankun Yang, Xiuxia Liu, Jinling Zhan, and 

Bozhi Shi. 2015. “Breast Cancer Intrinsic Subtype Classification, Clinical 

Use and Future Trends.” American Journal of Cancer Research 5 (10): 2929–

43. 

Dandage, Rohan, and Christian R. Landry. 2019. “Paralog Dependency Indirectly 

Affects the Robustness of Human Cells.” Molecular Systems Biology 15 (9): 

e8871. 

Daniszewski, Maciej, Duncan E. Crombie, Rachael Henderson, Helena H. Liang, 

Raymond C. B. Wong, Alex W. Hewitt, and Alice Pébay. 2018. “Automated 

Cell Culture Systems and Their Applications to Human Pluripotent Stem Cell 

Studies.” SLAS Technology 23 (4): 315–25. 

Demichev, Vadim, Christoph B. Messner, Spyros I. Vernardis, Kathryn S. Lilley, 

and Markus Ralser. 2020. “DIA-NN: Neural Networks and Interference 

Correction Enable Deep Proteome Coverage in High Throughput.” Nature 

Methods 17 (1): 41–44. 

Ding, Zijian, Songpeng Zu, and Jin Gu. 2016. “Evaluating the Molecule-Based 

Prediction of Clinical Drug Responses in Cancer.” Bioinformatics  32 (19): 

2891–95. 



  

Bibliography 119 

Durens, Madel, Jonathan Nestor, Madeline Williams, Kevin Herold, Robert F. 

Niescier, Jason W. Lunden, Andre W. Phillips, Yu-Chih Lin, Derek M. 

Dykxhoorn, and Michael W. Nestor. 2020. “High-Throughput Screening of 

Human Induced Pluripotent Stem Cell-Derived Brain Organoids.” Journal of 

Neuroscience Methods 335 (108627): 108627. 

Edwards, Nathan J., Mauricio Oberti, Ratna R. Thangudu, Shuang Cai, Peter B. 

McGarvey, Shine Jacob, Subha Madhavan, and Karen A. Ketchum. 2015. 

“The CPTAC Data Portal: A Resource for Cancer Proteomics Research.” 

Journal of Proteome Research 14 (6): 2707–13. 

Elmarakeby, Haitham A., Justin Hwang, Rand Arafeh, Jett Crowdis, Sydney Gang, 

David Liu, Saud H. AlDubayan, et al. 2021. “Biologically Informed Deep 

Neural Network for Prostate Cancer Discovery.” Nature 598 (7880): 348–52. 

Esteva, Andre, Alexandre Robicquet, Bharath Ramsundar, Volodymyr Kuleshov, 

Mark DePristo, Katherine Chou, Claire Cui, Greg Corrado, Sebastian Thrun, 

and Jeff Dean. 2019. “A Guide to Deep Learning in Healthcare.” Nature 

Medicine 25 (1): 24–29. 

Everett, B. 2013. An Introduction to Latent Variable Models. Springer Science & 

Business Media. 

Fischer, Martin, Marianne Quaas, Lydia Steiner, and Kurt Engeland. 2016. “The 

P53-P21-DREAM-CDE/CHR Pathway Regulates G2/M Cell Cycle Genes.” 

Nucleic Acids Research 44 (1): 164–74. 

Fix, Evelyn, and Joseph Lawson Hodges. 1989. “Discriminatory Analysis. 

Nonparametric Discrimination: Consistency Properties.” Revue 

Internationale de Statistique [International Statistical Review] 57 (3): 238. 

Freedman, David A. 2009. Statistical Models: Theory and Practice. 2nd ed. 

Cambridge University Press. 

Frejno, Martin, Chen Meng, Benjamin Ruprecht, Thomas Oellerich, Sebastian 

Scheich, Karin Kleigrewe, Enken Drecoll, et al. 2020. “Proteome Activity 

Landscapes of Tumor Cell Lines Determine Drug Responses.” Nature 

Communications 11 (1): 3639. 

Frejno, Martin, Riccardo Zenezini Chiozzi, Mathias Wilhelm, Heiner Koch, 

Runsheng Zheng, Susan Klaeger, Benjamin Ruprecht, et al. 2017. 

“Pharmacoproteomic Characterisation of Human Colon and Rectal Cancer.” 

Molecular Systems Biology 13 (11): 951. 

Gao, Hui, Joshua M. Korn, Stéphane Ferretti, John E. Monahan, Youzhen Wang, 

Mallika Singh, Chao Zhang, et al. 2015. “High-Throughput Screening Using 

Patient-Derived Tumor Xenografts to Predict Clinical Trial Drug Response.” 

Nature Medicine 21 (11): 1318–25. 

Garcia-Alonso, Luz, Francesco Iorio, Angela Matchan, Nuno Fonseca, Patricia 

Jaaks, Gareth Peat, Miguel Pignatelli, et al. 2018. “Transcription Factor 

Activities Enhance Markers of Drug Sensitivity in Cancer.” Cancer Research 

78 (3): 769–80. 

Garnett, Mathew J., Elena J. Edelman, Sonja J. Heidorn, Chris D. Greenman, 

Anahita Dastur, King Wai Lau, Patricia Greninger, et al. 2012. “Systematic 

Identification of Genomic Markers of Drug Sensitivity in Cancer Cells.” 

Nature 483 (7391): 570–75. 

Gene Ontology Consortium. 2021. “The Gene Ontology Resource: Enriching a GOld 

Mine.” Nucleic Acids Research 49 (D1): D325–34. 

Ghandi, Mahmoud, Franklin W. Huang, Judit Jané-Valbuena, Gregory V. Kryukov, 

Christopher C. Lo, E. Robert McDonald 3rd, Jordi Barretina, et al. 2019. 



  

Bibliography 120 

“Next-Generation Characterization of the Cancer Cell Line Encyclopedia.” 

Nature 569 (7757): 503–8. 

Gholami, Amin Moghaddas, Hannes Hahne, Zhixiang Wu, Florian Johann Auer, 

Chen Meng, Mathias Wilhelm, and Bernhard Kuster. 2013. “Global Proteome 

Analysis of the NCI-60 Cell Line Panel.” Cell Reports 4 (3): 609–20. 

Gillet, Ludovic C., Pedro Navarro, Stephen Tate, Hannes Röst, Nathalie Selevsek, 

Lukas Reiter, Ron Bonner, and Ruedi Aebersold. 2012. “Targeted Data 

Extraction of the MS/MS Spectra Generated by Data-Independent 

Acquisition: A New Concept for Consistent and Accurate Proteome 

Analysis.” Molecular & Cellular Proteomics: MCP 11 (6): O111.016717. 

Gillette, Michael A., Shankha Satpathy, Song Cao, Saravana M. Dhanasekaran, 

Suhas V. Vasaikar, Karsten Krug, Francesca Petralia, et al. 2020. 

“Proteogenomic Characterization Reveals Therapeutic Vulnerabilities in 

Lung Adenocarcinoma.” Cell 182 (1): 200-225.e35. 

Gonçalves, Emanuel, Athanassios Fragoulis, Luz Garcia-Alonso, Thorsten Cramer, 

Julio Saez-Rodriguez, and Pedro Beltrao. 2017. “Widespread Post-

Transcriptional Attenuation of Genomic Copy-Number Variation in Cancer.” 

Cell Systems 5 (4): 386-398.e4. 

Gonçalves, Emanuel, Rebecca C. Poulos, Zhaoxiang Cai, Syd Barthorpe, Srikanth S. 

Manda, Natasha Lucas, Alexandra Beck, et al. 2022. “Pan-Cancer Proteomic 

Map of 949 Human Cell Lines.” Cancer Cell 40 (8): 835-849.e8. 

Gonçalves, Emanuel, Aldo Segura-Cabrera, Clare Pacini, Gabriele Picco, Fiona M. 

Behan, Patricia Jaaks, Elizabeth A. Coker, et al. 2020. “Drug Mechanism-of-

Action Discovery through the Integration of Pharmacological and CRISPR 

Screens.” Molecular Systems Biology 16 (7): e9405. 

Goodspeed, Andrew, Laura M. Heiser, Joe W. Gray, and James C. Costello. 2016. 

“Tumor-Derived Cell Lines as Molecular Models of Cancer 

Pharmacogenomics.” Molecular Cancer Research: MCR 14 (1): 3–13. 

Gumeni, Sentiljana, Zoi Evangelakou, Vassilis Gorgoulis, and Ioannis Trougakos. 

2017. “Proteome Stability as a Key Factor of Genome Integrity.” 

International Journal of Molecular Sciences 18 (10): 2036. 

Guo, Tiannan, Petri Kouvonen, Ching Chiek Koh, Ludovic C. Gillet, Witold E. 

Wolski, Hannes L. Röst, George Rosenberger, et al. 2015. “Rapid Mass 

Spectrometric Conversion of Tissue Biopsy Samples into Permanent 

Quantitative Digital Proteome Maps.” Nature Medicine 21 (4): 407–13. 

Guo, Tiannan, Li Li, Qing Zhong, Niels J. Rupp, Konstantina Charmpi, Christine E. 

Wong, Ulrich Wagner, et al. 2018. “Multi-Region Proteome Analysis 

Quantifies Spatial Heterogeneity of Prostate Tissue Biomarkers.” Life Science 

Alliance 1 (2). https://doi.org/10.26508/lsa.201800042. 

Guo, Tiannan, Augustin Luna, Vinodh N. Rajapakse, Ching Chiek Koh, Zhicheng 

Wu, Wei Liu, Yaoting Sun, et al. 2019. “Quantitative Proteome Landscape of 

the NCI-60 Cancer Cell Lines.” IScience 21 (November): 664–80. 

Hao, Yuhan, Stephanie Hao, Erica Andersen-Nissen, William M. Mauck 3rd, Shiwei 

Zheng, Andrew Butler, Maddie J. Lee, et al. 2021. “Integrated Analysis of 

Multimodal Single-Cell Data.” Cell 184 (13): 3573-3587.e29. 

Haraksingh, Rajini R., and Michael P. Snyder. 2013. “Impacts of Variation in the 

Human Genome on Gene Regulation.” Journal of Molecular Biology, 

Understanding Molecular Effects of Naturally Occurring Genetic 

Differences, 425 (21): 3970–77. 



  

Bibliography 121 

Hart, Traver, Megha Chandrashekhar, Michael Aregger, Zachary Steinhart, Kevin R. 

Brown, Graham MacLeod, Monika Mis, et al. 2015. “High-Resolution 

CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer 

Liabilities.” Cell 163 (6): 1515–26. 

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. “Deep Residual 

Learning for Image Recognition.” In 2016 IEEE Conference on Computer 

Vision and Pattern Recognition (CVPR), 770–78. IEEE. 

Heckerman, David. 1990. “Probabilistic Similarity Networks.” Networks. An 

International Journal 20 (5): 607–36. 

Hegde, Priti S., Ian R. White, and Christine Debouck. 2003. “Interplay of 

Transcriptomics and Proteomics.” Current Opinion in Biotechnology 14 (6): 

647–51. 

Ho, Tin Kam. 2002. “Random Decision Forests.” In Proceedings of 3rd 

International Conference on Document Analysis and Recognition. IEEE 

Comput. Soc. Press. https://doi.org/10.1109/icdar.1995.598994. 

Hoadley, Katherine A., Christina Yau, Toshinori Hinoue, Denise M. Wolf, 

Alexander J. Lazar, Esther Drill, Ronglai Shen, et al. 2018. “Cell-of-Origin 

Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 

Types of Cancer.” Cell 173 (2): 291-304.e6. 

Hofer, Maximilian, Andrey Kormilitzin, Paul Goldberg, and Alejo Nevado-Holgado. 

2018. “Few-Shot Learning for Named Entity Recognition in Medical Text.” 

ArXiv [Cs.CL]. arXiv. http://arxiv.org/abs/1811.05468. 

Hotelling, Harold. 1992. “Relations Between Two Sets of Variates.” In 

Breakthroughs in Statistics: Methodology and Distribution, edited by Samuel 

Kotz and Norman L. Johnson, 162–90. New York, NY: Springer New York. 

Huang, Kuan-Lin, Shunqiang Li, Philipp Mertins, Song Cao, Harsha P. 

Gunawardena, Kelly V. Ruggles, D. R. Mani, et al. 2017. “Proteogenomic 

Integration Reveals Therapeutic Targets in Breast Cancer Xenografts.” 

Nature Communications 8 (1): 14864. 

ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. 2020. “Pan-

Cancer Analysis of Whole Genomes.” Nature 578 (7793): 82–93. 

International Cancer Genome Consortium, Thomas J. Hudson, Warwick Anderson, 

Axel Artez, Anna D. Barker, Cindy Bell, Rosa R. Bernabé, et al. 2010. 

“International Network of Cancer Genome Projects.” Nature 464 (7291): 

993–98. 

Iorio, Francesco, Fiona M. Behan, Emanuel Gonçalves, Shriram G. Bhosle, Elisabeth 

Chen, Rebecca Shepherd, Charlotte Beaver, et al. 2018. “Unsupervised 

Correction of Gene-Independent Cell Responses to CRISPR-Cas9 

Targeting.” BMC Genomics 19 (1): 604. 

Iorio, Francesco, Theo A. Knijnenburg, Daniel J. Vis, Graham R. Bignell, Michael P. 

Menden, Michael Schubert, Nanne Aben, et al. 2016. “A Landscape of 

Pharmacogenomic Interactions in Cancer.” Cell 166 (3): 740–54. 

Jaiswal, Alok, Prson Gautam, Elina A. Pietilä, Sanna Timonen, Nora Nordström, 

Yevhen Akimov, Nina Sipari, et al. 2021. “Multi-Modal Meta-Analysis of 

Cancer Cell Line Omics Profiles Identifies ECHDC1 as a Novel Breast 

Tumor Suppressor.” Molecular Systems Biology 17 (3): e9526. 

Jost, J., and H. Saluz. 2013. DNA Methylation: Molecular Biology and Biological 

Significance. Vol. 64. Birkhäuser. 



  

Bibliography 122 

Jumper, John, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf 

Ronneberger, Kathryn Tunyasuvunakool, et al. 2021. “Highly Accurate 

Protein Structure Prediction with AlphaFold.” Nature 596 (7873): 583–89. 

Jung, Jaeyun, Hyang Sook Seol, and Suhwan Chang. 2018. “The Generation and 

Application of Patient-Derived Xenograft Model for Cancer Research.” 

Cancer Research and Treatment: Official Journal of Korean Cancer 

Association 50 (1): 1–10. 

Kaeberlein, Matt, and Brian K. Kennedy. 2007. “Protein Translation, 2007.” Aging 

Cell 6 (6): 731–34. 

Kang, Mingon, Euiseong Ko, and Tesfaye B. Mersha. 2022. “A Roadmap for Multi-

Omics Data Integration Using Deep Learning.” Briefings in Bioinformatics 

23 (1). https://doi.org/10.1093/bib/bbab454. 

Karlebach, Guy, and Ron Shamir. 2008. “Modelling and Analysis of Gene 

Regulatory Networks.” Nature Reviews. Molecular Cell Biology 9 (10): 770–

80. 

Kim, Jihoon, Bon-Kyoung Koo, and Juergen A. Knoblich. 2020. “Human Organoids: 

Model Systems for Human Biology and Medicine.” Nature Reviews. 

Molecular Cell Biology 21 (10): 571–84. 

Kim, Kwang Gi. 2016. “Book Review: Deep Learning.” Healthcare Informatics 

Research 22 (4): 351. 

Koza, John R., Forrest H. Bennett, David Andre, and Martin A. Keane. 1996. 

“Automated Design of Both the Topology and Sizing of Analog Electrical 

Circuits Using Genetic Programming.” In Artificial Intelligence in Design 

’96, edited by John S. Gero and Fay Sudweeks, 151–70. Dordrecht: Springer 

Netherlands. 

Krueger, Felix, Benjamin Kreck, Andre Franke, and Simon R. Andrews. 2012. 

“DNA Methylome Analysis Using Short Bisulfite Sequencing Data.” Nature 

Methods 9 (2): 145–51. 

Krug, Karsten, Eric J. Jaehnig, Shankha Satpathy, Lili Blumenberg, Alla Karpova, 

Meenakshi Anurag, George Miles, et al. 2020. “Proteogenomic Landscape of 

Breast Cancer Tumorigenesis and Targeted Therapy.” Cell 183 (5): 1436-

1456.e31. 

Kuenzi, Brent M., and Trey Ideker. 2020. “A Census of Pathway Maps in Cancer 

Systems Biology.” Nature Reviews. Cancer 20 (4): 233–46. 

Kuenzi, Brent M., Jisoo Park, Samson H. Fong, Kyle S. Sanchez, John Lee, Jason F. 

Kreisberg, Jianzhu Ma, and Trey Ideker. 2020. “Predicting Drug Response 

and Synergy Using a Deep Learning Model of Human Cancer Cells.” Cancer 

Cell 38 (5): 672-684.e6. 

Lander, E. S., L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody, J. Baldwin, K. 

Devon, et al. 2001. “Initial Sequencing and Analysis of the Human Genome.” 

Nature 409 (6822): 860–921. 

Landras, Alexandra, Coralie Reger de Moura, Fanelie Jouenne, Celeste Lebbe, 

Suzanne Menashi, and Samia Mourah. 2019. “CD147 Is a Promising Target 

of Tumor Progression and a Prognostic Biomarker.” Cancers 11 (11): 1803. 

Lawrence, Michael S., Petar Stojanov, Paz Polak, Gregory V. Kryukov, Kristian 

Cibulskis, Andrey Sivachenko, Scott L. Carter, et al. 2013. “Mutational 

Heterogeneity in Cancer and the Search for New Cancer-Associated Genes.” 

Nature 499 (7457): 214–18. 

Lawrence, Robert T., Elizabeth M. Perez, Daniel Hernández, Chris P. Miller, Kelsey 

M. Haas, Hanna Y. Irie, Su-In Lee, C. Anthony Blau, and Judit Villén. 2015. 



  

Bibliography 123 

“The Proteomic Landscape of Triple-Negative Breast Cancer.” Cell Reports 

11 (4): 630–44. 

Le Tourneau, Christophe, Jean-Pierre Delord, Anthony Gonçalves, Céline Gavoille, 

Coraline Dubot, Nicolas Isambert, Mario Campone, et al. 2015. “Molecularly 

Targeted Therapy Based on Tumour Molecular Profiling versus Conventional 

Therapy for Advanced Cancer (SHIVA): A Multicentre, Open-Label, Proof-

of-Concept, Randomised, Controlled Phase 2 Trial.” The Lancet Oncology 16 

(13): 1324–34. 

Lee, Bohyun, Shuo Zhang, Aleksandar Poleksic, and Lei Xie. 2019. “Heterogeneous 

Multi-Layered Network Model for Omics Data Integration and Analysis.” 

Frontiers in Genetics 10: 1381. 

Lee, Jeong-Ju, Hee Jin Lee, Byung-Ho Son, Sung-Bae Kim, Jin-Hee Ahn, Seung Do 

Ahn, Eun Yoon Cho, and Gyungyub Gong. 2016. “Expression of FOXM1 

and Related Proteins in Breast Cancer Molecular Subtypes.” International 

Journal of Experimental Pathology 97 (2): 170–77. 

Li, Xiangtao, and Ka-Chun Wong. 2019. “Evolutionary Multiobjective Clustering 

and Its Applications to Patient Stratification.” IEEE Transactions on 

Cybernetics 49 (5): 1680–93. 

Liberzon, Arthur, Aravind Subramanian, Reid Pinchback, Helga Thorvaldsdóttir, 

Pablo Tamayo, and Jill P. Mesirov. 2011. “Molecular Signatures Database 

(MSigDB) 3.0.” Bioinformatics (Oxford, England) 27 (12): 1739–40. 

Lin, Tianyang, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. 2021. “A Survey of 

Transformers.” ArXiv [Cs.LG]. arXiv. http://arxiv.org/abs/2106.04554. 

Lin, Yen-Yu, Tyng-Luh Liu, and Chiou-Shann Fuh. 2011. “Multiple Kernel 

Learning for Dimensionality Reduction.” IEEE Transactions on Pattern 

Analysis and Machine Intelligence 33 (6): 1147–60. 

Liu, Ming, Julia Y. S. Tsang, Michelle Lee, Yun-Bi Ni, Siu-Ki Chan, Sai-Yin 

Cheung, Jintao Hu, Hong Hu, and Gary M. K. Tse. 2018. “CD147 Expression 

Is Associated with Poor Overall Survival in Chemotherapy Treated Triple-

Negative Breast Cancer.” Journal of Clinical Pathology 71 (11): 1007–14. 

Liu, Yansheng, Andreas Beyer, and Ruedi Aebersold. 2016. “On the Dependency of 

Cellular Protein Levels on MRNA Abundance.” Cell 165 (3): 535–50. 

López de Maturana, Evangelina, Lola Alonso, Pablo Alarcón, Isabel Adoración 

Martín-Antoniano, Silvia Pineda, Lucas Piorno, M. Luz Calle, and Núria 

Malats. 2019. “Challenges in the Integration of Omics and Non-Omics Data.” 

Genes 10 (3): 238. 

Lötsch, Jörn, Dario Kringel, and Alfred Ultsch. 2021. “Explainable Artificial 

Intelligence (XAI) in Biomedicine: Making AI Decisions Trustworthy for 

Physicians and Patients.” BioMedInformatics 2 (1): 1–17. 

Lu, Ming Y., Tiffany Y. Chen, Drew F. K. Williamson, Melissa Zhao, Maha Shady, 

Jana Lipkova, and Faisal Mahmood. 2021. “AI-Based Pathology Predicts 

Origins for Cancers of Unknown Primary.” Nature 594 (7861): 106–10. 

Lu, Xiao-Feng, De Zeng, Wei-Quan Liang, Chun-Fa Chen, Shu-Ming Sun, and Hao-

Yu Lin. 2018. “FoxM1 Is a Promising Candidate Target in the Treatment of 

Breast Cancer.” Oncotarget 9 (1): 842–52. 

Lucas, Natasha, Andrew B. Robinson, Maiken Marcker Espersen, Sadia Mahboob, 

Dylan Xavier, Jing Xue, Rosemary L. Balleine, Anna deFazio, Peter G. 

Hains, and Phillip J. Robinson. 2019. “Accelerated Barocycler Lysis and 

Extraction Sample Preparation for Clinical Proteomics by Mass 

Spectrometry.” Journal of Proteome Research 18 (1): 399–405. 



  

Bibliography 124 

Luck, Katja, Dae-Kyum Kim, Luke Lambourne, Kerstin Spirohn, Bridget E. Begg, 

Wenting Bian, Ruth Brignall, et al. 2020. “A Reference Map of the Human 

Binary Protein Interactome.” Nature 580 (7803): 402–8. 

Ludwig, Christina, Ludovic Gillet, George Rosenberger, Sabine Amon, Ben C. 

Collins, and Ruedi Aebersold. 2018. “Data-Independent Acquisition-Based 

SWATH-MS for Quantitative Proteomics: A Tutorial.” Molecular Systems 

Biology 14 (8): e8126. 

Lundberg, Scott M., and Su-In Lee. 2017. “A Unified Approach to Interpreting 

Model Predictions.” In Advances in Neural Information Processing Systems 

30, edited by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. 

Vishwanathan, and R. Garnett, 4765–74. Curran Associates, Inc. 

Ma, Jianzhu, Michael Ku Yu, Samson Fong, Keiichiro Ono, Eric Sage, Barry 

Demchak, Roded Sharan, and Trey Ideker. 2018. “Using Deep Learning to 

Model the Hierarchical Structure and Function of a Cell.” Nature Methods 15 

(4): 290–98. 

Malone, John H., and Brian Oliver. 2011. “Microarrays, Deep Sequencing and the 

True Measure of the Transcriptome.” BMC Biology 9 (1): 34. 

Mani, D. R., Karsten Krug, Bing Zhang, Shankha Satpathy, Karl R. Clauser, Li Ding, 

Matthew Ellis, Michael A. Gillette, and Steven A. Carr. 2022. “Cancer 

Proteogenomics: Current Impact and Future Prospects.” Nature Reviews. 

Cancer 22 (5): 298–313. 

Marchesin, Valentina, Antonio Castro-Castro, Catalina Lodillinsky, Alessia 

Castagnino, Joanna Cyrta, Hélène Bonsang-Kitzis, Laetitia Fuhrmann, et al. 

2015. “ARF6-JIP3/4 Regulate Endosomal Tubules for MT1-MMP 

Exocytosis in Cancer Invasion.” The Journal of Cell Biology 211 (2): 339–58. 

Marusyk, Andriy, Vanessa Almendro, and Kornelia Polyak. 2012. “Intra-Tumour 

Heterogeneity: A Looking Glass for Cancer?” Nature Reviews. Cancer 12 

(5): 323–34. 

Mathews, Sherin Mary. 2019. “Explainable Artificial Intelligence Applications in 

NLP, Biomedical, and Malware Classification: A Literature Review.” In 

Intelligent Computing, 1269–92. Springer International Publishing. 

McDonald, E. Robert, 3rd, Antoine de Weck, Michael R. Schlabach, Eric Billy, 

Konstantinos J. Mavrakis, Gregory R. Hoffman, Dhiren Belur, et al. 2017. 

“Project DRIVE: A Compendium of Cancer Dependencies and Synthetic 

Lethal Relationships Uncovered by Large-Scale, Deep RNAi Screening.” 

Cell 170 (3): 577-592.e10. 

McGuire, Amy L., Stacey Gabriel, Sarah A. Tishkoff, Ambroise Wonkam, Aravinda 

Chakravarti, Eileen E. M. Furlong, Barbara Treutlein, et al. 2020. “The Road 

Ahead in Genetics and Genomics.” Nature Reviews. Genetics 21 (10): 581–

96. 

McInnes, Leland, John Healy, and James Melville. 2018. “UMAP: Uniform 

Manifold Approximation and Projection for Dimension Reduction.” ArXiv 

[Stat.ML]. arXiv. http://arxiv.org/abs/1802.03426. 

Medela, Alfonso, Artzai Picon, Cristina L. Saratxaga, Oihana Belar, Virginia 

Cabezon, Riccardo Cicchi, Roberto Bilbao, and Ben Glover. 2019. “Few Shot 

Learning in Histopathological Images:Reducing the Need of Labeled Data on 

Biological Datasets.” In 2019 IEEE 16th International Symposium on 

Biomedical Imaging (ISBI 2019). IEEE. 

https://doi.org/10.1109/isbi.2019.8759182. 



  

Bibliography 125 

Meer, Dieudonne van der, Syd Barthorpe, Wanjuan Yang, Howard Lightfoot, Caitlin 

Hall, James Gilbert, Hayley E. Francies, and Mathew J. Garnett. 2019. “Cell 

Model Passports-a Hub for Clinical, Genetic and Functional Datasets of 

Preclinical Cancer Models.” Nucleic Acids Research 47 (D1): D923–29. 

Meng, Chen, Dominic Helm, Martin Frejno, and Bernhard Kuster. 2016. 

“MoCluster: Identifying Joint Patterns Across Multiple Omics Data Sets.” 

Journal of Proteome Research 15 (3): 755–65. 

Mertins, Philipp, NCI CPTAC, D. R. Mani, Kelly V. Ruggles, Michael A. Gillette, 

Karl R. Clauser, Pei Wang, et al. 2016. “Proteogenomics Connects Somatic 

Mutations to Signalling in Breast Cancer.” Nature 534 (7605): 55–62. 

Meyers, Robin M., Jordan G. Bryan, James M. McFarland, Barbara A. Weir, Ann E. 

Sizemore, Han Xu, Neekesh V. Dharia, et al. 2017. “Computational 

Correction of Copy Number Effect Improves Specificity of CRISPR-Cas9 

Essentiality Screens in Cancer Cells.” Nature Genetics 49 (12): 1779–84. 

Mirabelli, Peppino, Luigi Coppola, and Marco Salvatore. 2019. “Cancer Cell Lines 

Are Useful Model Systems for Medical Research.” Cancers 11 (8): 1098. 

Mirza, Bilal, Wei Wang, Jie Wang, Howard Choi, Neo Christopher Chung, and 

Peipei Ping. 2019. “Machine Learning and Integrative Analysis of 

Biomedical Big Data.” Genes 10 (2). https://doi.org/10.3390/genes10020087. 

Mo, Qianxing, Ronglai Shen, Cui Guo, Marina Vannucci, Keith S. Chan, and Susan 

G. Hilsenbeck. 2018. “A Fully Bayesian Latent Variable Model for 

Integrative Clustering Analysis of Multi-Type Omics Data.” Biostatistics  19 

(1): 71–86. 

Mo, Qianxing, Sijian Wang, Venkatraman E. Seshan, Adam B. Olshen, Nikolaus 

Schultz, Chris Sander, R. Scott Powers, Marc Ladanyi, and Ronglai Shen. 

2013. “Pattern Discovery and Cancer Gene Identification in Integrated 

Cancer Genomic Data.” Proceedings of the National Academy of Sciences of 

the United States of America 110 (11): 4245–50. 

Moon, T. K. 1996. “The Expectation-Maximization Algorithm.” IEEE Signal 

Processing Magazine 13 (6): 47–60. 

Nakagawa, Hidewaki, and Masashi Fujita. 2018. “Whole Genome Sequencing 

Analysis for Cancer Genomics and Precision Medicine.” Cancer Science 109 

(3): 513–22. 

Nam, Anna S., Ronan Chaligne, and Dan A. Landau. 2021. “Integrating Genetic and 

Non-Genetic Determinants of Cancer Evolution by Single-Cell Multi-

Omics.” Nature Reviews. Genetics 22 (1): 3–18. 

Nascimento, André C. A., Ricardo B. C. Prudêncio, and Ivan G. Costa. 2016. “A 

Multiple Kernel Learning Algorithm for Drug-Target Interaction Prediction.” 

BMC Bioinformatics 17 (January): 46. 

Nicora, Giovanna, Francesca Vitali, Arianna Dagliati, Nophar Geifman, and 

Riccardo Bellazzi. 2020. “Integrated Multi-Omics Analyses in Oncology: A 

Review of Machine Learning Methods and Tools.” Frontiers in Oncology 10 

(June): 1030. 

Nielsen, Torsten O., Joel S. Parker, Samuel Leung, David Voduc, Mark Ebbert, 

Tammi Vickery, Sherri R. Davies, et al. 2010. “A Comparison of PAM50 

Intrinsic Subtyping with Immunohistochemistry and Clinical Prognostic 

Factors in Tamoxifen-Treated Estrogen Receptor-Positive Breast Cancer.” 

Clinical Cancer Research: An Official Journal of the American Association 

for Cancer Research 16 (21): 5222–32. 



  

Bibliography 126 

Niklas, Karl J., Sarah E. Bondos, A. Keith Dunker, and Stuart A. Newman. 2015. 

“Rethinking Gene Regulatory Networks in Light of Alternative Splicing, 

Intrinsically Disordered Protein Domains, and Post-Translational 

Modifications.” Frontiers in Cell and Developmental Biology 3 (February): 8. 

Nusinow, David P., John Szpyt, Mahmoud Ghandi, Christopher M. Rose, E. Robert 

McDonald 3rd, Marian Kalocsay, Judit Jané-Valbuena, et al. 2020. 

“Quantitative Proteomics of the Cancer Cell Line Encyclopedia.” Cell 180 

(2): 387-402.e16. 

O’Donnell, Shane Thomas, R. Paul Ross, and Catherine Stanton. 2019. “The 

Progress of Multi-Omics Technologies: Determining Function in Lactic Acid 

Bacteria Using a Systems Level Approach.” Frontiers in Microbiology 10: 

3084. 

Oh, Minsik, Sungjoon Park, Sun Kim, and Heejoon Chae. 2021. “Machine Learning-

Based Analysis of Multi-Omics Data on the Cloud for Investigating Gene 

Regulations.” Briefings in Bioinformatics 22 (1): 66–76. 

Ong, Shao-En, and Matthias Mann. 2005. “Mass Spectrometry–Based Proteomics 

Turns Quantitative.” Nature Chemical Biology 1 (5): 252–62. 

Pacini, Clare, Joshua M. Dempster, Isabella Boyle, Emanuel Gonçalves, Hanna 

Najgebauer, Emre Karakoc, Dieudonne van der Meer, et al. 2021. “Integrated 

Cross-Study Datasets of Genetic Dependencies in Cancer.” Nature 

Communications 12 (1): 1661. 

Parker, Joel S., Michael Mullins, Maggie C. U. Cheang, Samuel Leung, David 

Voduc, Tammi Vickery, Sherri Davies, et al. 2009. “Supervised Risk 

Predictor of Breast Cancer Based on Intrinsic Subtypes.” Journal of Clinical 

Oncology: Official Journal of the American Society of Clinical Oncology 27 

(8): 1160–67. 

Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory 

Chanan, Trevor Killeen, et al. 2019. “PyTorch: An Imperative Style, High-

Performance Deep Learning Library.” In Advances in Neural Information 

Processing Systems 32, edited by H. Wallach, H. Larochelle, A. Beygelzimer, 

F. D\textquotesingle Alché-Buc, E. Fox, and R. Garnett, 8026–37. Curran 

Associates, Inc. 

Pauli, Chantal, Benjamin D. Hopkins, Davide Prandi, Reid Shaw, Tarcisio Fedrizzi, 

Andrea Sboner, Verena Sailer, et al. 2017. “Personalized in Vitro and in Vivo 

Cancer Models to Guide Precision Medicine.” Cancer Discovery 7 (5): 462–

77. 

Pavlidis, Nicholas, and George Pentheroudakis. 2012. “Cancer of Unknown Primary 

Site.” The Lancet 379 (9824): 1428–35. 

Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand 

Thirion, Olivier Grisel, Mathieu Blondel, et al. 2012. “Scikit-Learn: Machine 

Learning in Python.” ArXiv [Cs.LG]. arXiv. http://arxiv.org/abs/1201.0490. 

Peng, Anghui, Xiying Mao, Jiawei Zhong, Shuxin Fan, and Youjin Hu. 2020. 

“Single-Cell Multi-Omics and Its Prospective Application in Cancer 

Biology.” Proteomics 20 (13): e1900271. 

Perez-Riverol, Yasset, Attila Csordas, Jingwen Bai, Manuel Bernal-Llinares, Suresh 

Hewapathirana, Deepti J. Kundu, Avinash Inuganti, et al. 2019. “The PRIDE 

Database and Related Tools and Resources in 2019: Improving Support for 

Quantification Data.” Nucleic Acids Research 47 (D1): D442–50. 

Picard, Milan, Marie-Pier Scott-Boyer, Antoine Bodein, Olivier Périn, and Arnaud 

Droit. 2021. “Integration Strategies of Multi-Omics Data for Machine 



  

Bibliography 127 

Learning Analysis.” Computational and Structural Biotechnology Journal 19 

(June): 3735–46. 

Picco, Gabriele, Elisabeth D. Chen, Luz Garcia Alonso, Fiona M. Behan, Emanuel 

Gonçalves, Graham Bignell, Angela Matchan, et al. 2019. “Functional 

Linkage of Gene Fusions to Cancer Cell Fitness Assessed by 

Pharmacological and CRISPR-Cas9 Screening.” Nature Communications 10 

(1): 2198. 

Poulos, Rebecca C., Peter G. Hains, Rohan Shah, Natasha Lucas, Dylan Xavier, 

Srikanth S. Manda, Asim Anees, et al. 2020. “Strategies to Enable Large-

Scale Proteomics for Reproducible Research.” Nature Communications 11 

(1): 3793. 

Poulos, Rebecca C., and Jason W. H. Wong. 2017. “Cis-Regulatory Driver 

Mutations in Cancer Genomes.” In ELS, 1–10. John Wiley & Sons, Ltd. 

Pozniak, Yair, Nora Balint-Lahat, Jan Daniel Rudolph, Cecilia Lindskog, Rotem 

Katzir, Camilla Avivi, Fredrik Pontén, Eytan Ruppin, Iris Barshack, and 

Tamar Geiger. 2016. “System-Wide Clinical Proteomics of Breast Cancer 

Reveals Global Remodeling of Tissue Homeostasis.” Cell Systems 2 (3): 

172–84. 

Raj-Kumar, Praveen-Kumar, Jianfang Liu, Jeffrey A. Hooke, Albert J. Kovatich, 

Leonid Kvecher, Craig D. Shriver, and Hai Hu. 2019. “PCA-PAM50 

Improves Consistency between Breast Cancer Intrinsic and Clinical 

Subtyping Reclassifying a Subset of Luminal A Tumors as Luminal B.” 

Scientific Reports 9 (1): 7956. 

Rappoport, Nimrod, and Ron Shamir. 2018. “Multi-Omic and Multi-View Clustering 

Algorithms: Review and Cancer Benchmark.” Nucleic Acids Research 46 

(20): 10546–62. 

———. 2019. “NEMO: Cancer Subtyping by Integration of Partial Multi-Omic 

Data.” Bioinformatics  35 (18): 3348–56. 

Reel, Parminder S., Smarti Reel, Ewan Pearson, Emanuele Trucco, and Emily 

Jefferson. 2021. “Using Machine Learning Approaches for Multi-Omics Data 

Analysis: A Review.” Biotechnology Advances 49 (July): 107739. 

Rees, Matthew G., Brinton Seashore-Ludlow, Jaime H. Cheah, Drew J. Adams, 

Edmund V. Price, Shubhroz Gill, Sarah Javaid, et al. 2016. “Correlating 

Chemical Sensitivity and Basal Gene Expression Reveals Mechanism of 

Action.” Nature Chemical Biology 12 (2): 109–16. 

Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. 2016. “‘Why Should I 

Trust You?’: Explaining the Predictions of Any Classifier.” ArXiv [Cs.LG]. 

arXiv. http://arxiv.org/abs/1602.04938. 

R.O. Duda, P.E. Hart, and D. Stork. 2000. Pattern Classification. Wiley. 

Rodosthenous, Theodoulos, Vahid Shahrezaei, and Marina Evangelou. 2020. 

“Integrating Multi-OMICS Data through Sparse Canonical Correlation 

Analysis for the Prediction of Complex Traits: A Comparison Study.” Edited 

by Jonathan Wren. Bioinformatics  36 (17): 4616–25. 

Rodriguez, Henry, Jean Claude Zenklusen, Louis M. Staudt, James H. Doroshow, 

and Douglas R. Lowy. 2021. “The next Horizon in Precision Oncology: 

Proteogenomics to Inform Cancer Diagnosis and Treatment.” Cell 184 (7): 

1661–70. 

Rohart, Florian, Benoît Gautier, Amrit Singh, and Kim-Anh Lê Cao. 2017. 

“MixOmics: An R Package for ‘omics Feature Selection and Multiple Data 

Integration.” PLoS Computational Biology 13 (11): e1005752. 



  

Bibliography 128 

Rohart, Florian, Benoît Gautier, Amrit Singh, and Kim-Anh Lê Cao. 2017. 

“MixOmics: An R Package for ’omics Feature Selection and Multiple Data 

Integration.” PLoS Computational Biology 13 (11): e1005752. 

Rokach, Lior, and Oded Maimon. 2006. “Decision Trees.” In Data Mining and 

Knowledge Discovery Handbook, 165–92. New York: Springer-Verlag. 

Roumeliotis, Theodoros I., Steven P. Williams, Emanuel Gonçalves, Clara Alsinet, 

Martin Del Castillo Velasco-Herrera, Nanne Aben, Fatemeh Zamanzad 

Ghavidel, et al. 2017. “Genomic Determinants of Protein Abundance 

Variation in Colorectal Cancer Cells.” Cell Reports 20 (9): 2201–14. 

Ruepp, Andreas, Brigitte Waegele, Martin Lechner, Barbara Brauner, Irmtraud 

Dunger-Kaltenbach, Gisela Fobo, Goar Frishman, Corinna Montrone, and H-

Werner Mewes. 2010. “CORUM: The Comprehensive Resource of 

Mammalian Protein Complexes--2009.” Nucleic Acids Research 38 

(Database issue): D497-501. 

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. 1986. “Learning 

Representations by Back-Propagating Errors.” Nature 323 (6088): 533–36. 

Russell, Stuart Jonathan, Stuart Russell, and Peter Norvig. 2020. Artificial 

Intelligence: A Modern Approach. 4th ed. Pearson. 

Ryan, Colm J., Susan Kennedy, Ilirjana Bajrami, David Matallanas, and Christopher 

J. Lord. 2017. “A Compendium of Co-Regulated Protein Complexes in 

Breast Cancer Reveals Collateral Loss Events.” Cell Systems 5 (4): 399-

409.e5. 

Salvadores, Marina, Francisco Fuster-Tormo, and Fran Supek. 2020. “Matching Cell 

Lines with Cancer Type and Subtype of Origin via Mutational, Epigenomic, 

and Transcriptomic Patterns.” Science Advances 6 (27). 

https://doi.org/10.1126/sciadv.aba1862. 

Sathyanarayanan, Anita, Rohit Gupta, Erik W. Thompson, Dale R. Nyholt, Denis C. 

Bauer, and Shivashankar H. Nagaraj. 2020. “A Comparative Study of Multi-

Omics Integration Tools for Cancer Driver Gene Identification and Tumour 

Subtyping.” Briefings in Bioinformatics 21 (6): 1920–36. 

Satpathy, Shankha, Karsten Krug, Pierre M. Jean Beltran, Sara R. Savage, Francesca 

Petralia, Chandan Kumar-Sinha, Yongchao Dou, et al. 2021. “A 

Proteogenomic Portrait of Lung Squamous Cell Carcinoma.” Cell 184 (16): 

4348-4371.e40. 

Scheff, Jeremy D., Richard R. Almon, Debra C. Dubois, William J. Jusko, and 

Ioannis P. Androulakis. 2011. “Assessment of Pharmacologic Area under the 

Curve When Baselines Are Variable.” Pharmaceutical Research 28 (5): 

1081–89. 

Schroff, Florian, Dmitry Kalenichenko, and James Philbin. 2015. “FaceNet: A 

Unified Embedding for Face Recognition and Clustering.” In 2015 IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR), 815–23. 

IEEE. 

Schulte-Sasse, Roman, Stefan Budach, Denes Hnisz, and Annalisa Marsico. 2021. 

“Integration of Multiomics Data with Graph Convolutional Networks to 

Identify New Cancer Genes and Their Associated Molecular Mechanisms.” 

Nature Machine Intelligence 3 (6): 513–26. 

Schwarze, Katharina, James Buchanan, Jenny C. Taylor, and Sarah Wordsworth. 

2018. “Are Whole-Exome and Whole-Genome Sequencing Approaches Cost-

Effective? A Systematic Review of the Literature.” Genetics in Medicine: 



  

Bibliography 129 

Official Journal of the American College of Medical Genetics 20 (10): 1122–

30. 

Seashore-Ludlow, Brinton, Matthew G. Rees, Jaime H. Cheah, Murat Cokol, 

Edmund V. Price, Matthew E. Coletti, Victor Jones, et al. 2015. “Harnessing 

Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset.” Cancer 

Discovery 5 (11): 1210–23. 

Seligson, David B., Steve Horvath, Tao Shi, Hong Yu, Sheila Tze, Michael 

Grunstein, and Siavash K. Kurdistani. 2005. “Global Histone Modification 

Patterns Predict Risk of Prostate Cancer Recurrence.” Nature 435 (7046): 

1262–66. 

Sharifi-Noghabi, Hossein, Olga Zolotareva, Colin C. Collins, and Martin Ester. 2019. 

“MOLI: Multi-Omics Late Integration with Deep Neural Networks for Drug 

Response Prediction.” Bioinformatics  35 (14): i501–9. 

Shen, Ronglai, Adam B. Olshen, and Marc Ladanyi. 2009. “Integrative Clustering of 

Multiple Genomic Data Types Using a Joint Latent Variable Model with 

Application to Breast and Lung Cancer Subtype Analysis.” Bioinformatics  

25 (22): 2906–12. 

Singh, Ajit P., and Geoffrey J. Gordon. 2008. “A Unified View of Matrix 

Factorization Models.” In Machine Learning and Knowledge Discovery in 

Databases, edited by Walter Daelemans, Bart Goethals, and Katharina Morik, 

5212:358–73. Lecture Notes in Computer Science. Berlin, Heidelberg: 

Springer Berlin Heidelberg. 

Singh, Amrit, Casey P. Shannon, Benoît Gautier, Florian Rohart, Michaël Vacher, 

Scott J. Tebbutt, and Kim-Anh Lê Cao. 2019. “DIABLO: An Integrative 

Approach for Identifying Key Molecular Drivers from Multi-Omics Assays.” 

Bioinformatics  35 (17): 3055–62. 

Sousa, Abel, Emanuel Gonçalves, Bogdan Mirauta, David Ochoa, Oliver Stegle, and 

Pedro Beltrao. 2019. “Multi-Omics Characterization of Interaction-Mediated 

Control of Human Protein Abundance Levels.” Molecular & Cellular 

Proteomics: MCP 18 (8 suppl 1): S114–25. 

Spirin, Victor, and Leonid A. Mirny. 2003. “Protein Complexes and Functional 

Modules in Molecular Networks.” Proceedings of the National Academy of 

Sciences of the United States of America 100 (21): 12123–28. 

Stokholm, Jakob, Martin J. Blaser, Jonathan Thorsen, Morten A. Rasmussen, 

Johannes Waage, Rebecca K. Vinding, Ann-Marie M. Schoos, et al. 2018. 

“Maturation of the Gut Microbiome and Risk of Asthma in Childhood.” 

Nature Communications 9 (1): 141. 

Stratton, Michael R., Peter J. Campbell, and P. Andrew Futreal. 2009. “The Cancer 

Genome.” Nature 458 (7239): 719–24. 

Subramanian, Aravind, Pablo Tamayo, Vamsi K. Mootha, Sayan Mukherjee, 

Benjamin L. Ebert, Michael A. Gillette, Amanda Paulovich, et al. 2005. 

“Gene Set Enrichment Analysis: A Knowledge-Based Approach for 

Interpreting Genome-Wide Expression Profiles.” Proceedings of the National 

Academy of Sciences of the United States of America 102 (43): 15545–50. 

Subramanian, Indhupriya, Srikant Verma, Shiva Kumar, Abhay Jere, and Krishanpal 

Anamika. 2020. “Multi-Omics Data Integration, Interpretation, and Its 

Application.” Bioinformatics and Biology Insights 14 (January): 

1177932219899051. 



  

Bibliography 130 

Suphavilai, Chayaporn, Denis Bertrand, and Niranjan Nagarajan. 2018. “Predicting 

Cancer Drug Response Using a Recommender System.” Bioinformatics  34 

(22): 3907–14. 

Szabo, Quentin, Frédéric Bantignies, and Giacomo Cavalli. 2019. “Principles of 

Genome Folding into Topologically Associating Domains.” Science 

Advances 5 (4): eaaw1668. 

Szklarczyk, Damian, Annika L. Gable, Katerina C. Nastou, David Lyon, Rebecca 

Kirsch, Sampo Pyysalo, Nadezhda T. Doncheva, et al. 2021. “The STRING 

Database in 2021: Customizable Protein-Protein Networks, and Functional 

Characterization of User-Uploaded Gene/Measurement Sets.” Nucleic Acids 

Research 49 (D1): D605–12. 

Szklarczyk, Damian, John H. Morris, Helen Cook, Michael Kuhn, Stefan Wyder, 

Milan Simonovic, Alberto Santos, et al. 2017. “The STRING Database in 

2017: Quality-Controlled Protein–Protein Association Networks, Made 

Broadly Accessible.” Nucleic Acids Research 45 (D1): D362–68. 

Tannock, Ian F., and John A. Hickman. 2016. “Limits to Personalized Cancer 

Medicine.” The New England Journal of Medicine 375 (13): 1289–94. 

Tarazona, Sonia, Angeles Arzalluz-Luque, and Ana Conesa. 2021. “Undisclosed, 

Unmet and Neglected Challenges in Multi-Omics Studies.” Nature 

Computational Science 1 (6): 395–402. 

Tate, John G., Sally Bamford, Harry C. Jubb, Zbyslaw Sondka, David M. Beare, 

Nidhi Bindal, Harry Boutselakis, et al. 2019. “COSMIC: The Catalogue Of 

Somatic Mutations In Cancer.” Nucleic Acids Research 47 (D1): D941–47. 

Tellez-Gabriel, Marta, Benjamin Ory, Francois Lamoureux, Marie-Francoise 

Heymann, and Dominique Heymann. 2016. “Tumour Heterogeneity: The 

Key Advantages of Single-Cell Analysis.” International Journal of 

Molecular Sciences 17 (12). https://doi.org/10.3390/ijms17122142. 

Thomas, Anish, Stephen V. Liu, Deepa S. Subramaniam, and Giuseppe Giaccone. 

2015. “Refining the Treatment of NSCLC According to Histological and 

Molecular Subtypes.” Nature Reviews. Clinical Oncology 12 (9): 511–26. 

Trastulla, Lucia, Javad Noorbakhsh, Francisca Vazquez, James McFarland, and 

Francesco Iorio. 2022. “Computational Estimation of Quality and Clinical 

Relevance of Cancer Cell Lines.” Molecular Systems Biology 18 (7): e11017. 

Tsherniak, Aviad, Francisca Vazquez, Phil G. Montgomery, Barbara A. Weir, 

Gregory Kryukov, Glenn S. Cowley, Stanley Gill, et al. 2017. “Defining a 

Cancer Dependency Map.” Cell 170 (3): 564-576.e16. 

Tully, Brett. 2020. “Toffee - a Highly Efficient, Lossless File Format for DIA-MS.” 

Scientific Reports 10 (1): 8939. 

Tully, Brett, Rosemary L. Balleine, Peter G. Hains, Qing Zhong, Roger R. Reddel, 

and Phillip J. Robinson. 2019. “Addressing the Challenges of High-

Throughput Cancer Tissue Proteomics for Clinical Application: ProCan.” 

Proteomics 19 (21–22): e1900109. 

Ullah, Hsan, Andre Rios, Vaibhav Gala, and Susan Mckeever. 2020. “Explaining 

Deep Learning Models for Structured Data Using Layer-Wise Relevance 

Propagation.” ArXiv [Cs.LG]. arXiv. http://arxiv.org/abs/2011.13429. 

Välikangas, Tommi, Tomi Suomi, and Laura L. Elo. 2018. “A Comprehensive 

Evaluation of Popular Proteomics Software Workflows for Label-Free 

Proteome Quantification and Imputation.” Briefings in Bioinformatics 19 (6): 

1344–55. 



  

Bibliography 131 

Valouev, Anton, David S. Johnson, Andreas Sundquist, Catherine Medina, Elizabeth 

Anton, Serafim Batzoglou, Richard M. Myers, and Arend Sidow. 2008. 

“Genome-Wide Analysis of Transcription Factor Binding Sites Based on 

ChIP-Seq Data.” Nature Methods 5 (9): 829–34. 

Vasaikar, Suhas, Chen Huang, Xiaojing Wang, Vladislav A. Petyuk, Sara R. Savage, 

Bo Wen, Yongchao Dou, et al. 2019. “Proteogenomic Analysis of Human 

Colon Cancer Reveals New Therapeutic Opportunities.” Cell 177 (4): 1035-

1049.e19. 

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan 

N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. “Attention Is All You 

Need.” Advances in Neural Information Processing Systems 30. 

https://proceedings.neurips.cc/paper/7181-attention-is-all-you-need. 

Vijayakumaran, Reshma, Kah Hin Tan, Panimaya Jeffreena Miranda, Sue Haupt, and 

Ygal Haupt. 2015. “Regulation of Mutant P53 Protein Expression.” Frontiers 

in Oncology 5 (December): 284. 

Vis, Daniel J., Lorenzo Bombardelli, Howard Lightfoot, Francesco Iorio, Mathew J. 

Garnett, and Lodewyk Fa Wessels. 2016. “Multilevel Models Improve 

Precision and Speed of IC50 Estimates.” Pharmacogenomics 17 (7): 691–

700. 

Wang, Bo, Aziz M. Mezlini, Feyyaz Demir, Marc Fiume, Zhuowen Tu, Michael 

Brudno, Benjamin Haibe-Kains, and Anna Goldenberg. 2014. “Similarity 

Network Fusion for Aggregating Data Types on a Genomic Scale.” Nature 

Methods 11 (3): 333–37. 

Wang, Kevin C., and Howard Y. Chang. 2018. “Epigenomics: Technologies and 

Applications.” Circulation Research 122 (9): 1191–99. 

Wang, Liang-Bo, Alla Karpova, Marina A. Gritsenko, Jennifer E. Kyle, Song Cao, 

Yize Li, Dmitry Rykunov, et al. 2021. “Proteogenomic and Metabolomic 

Characterization of Human Glioblastoma.” Cancer Cell 39 (4): 509-528.e20. 

Wang, Tongxin, Wei Shao, Zhi Huang, Haixu Tang, Jie Zhang, Zhengming Ding, 

and Kun Huang. 2021. “MOGONET Integrates Multi-Omics Data Using 

Graph Convolutional Networks Allowing Patient Classification and 

Biomarker Identification.” Nature Communications 12 (1): 3445. 

Wang, Yaqing, Quanming Yao, James T. Kwok, and Lionel M. Ni. 2021. 

“Generalizing from a Few Examples.” ACM Computing Surveys 53 (3): 1–34. 

Webb-Robertson, Bobbie-Jo M., Holli K. Wiberg, Melissa M. Matzke, Joseph N. 

Brown, Jing Wang, Jason E. McDermott, Richard D. Smith, et al. 2015. 

“Review, Evaluation, and Discussion of the Challenges of Missing Value 

Imputation for Mass Spectrometry-Based Label-Free Global Proteomics.” 

Journal of Proteome Research 14 (5): 1993–2001. 

Wei, Lin, Zhilin Jin, Shengjie Yang, Yanxun Xu, Yitan Zhu, and Yuan Ji. 2018. 

“TCGA-Assembler 2: Software Pipeline for Retrieval and Processing of 

TCGA/CPTAC Data.” Bioinformatics  34 (9): 1615–17. 

Wei, Runmin, Jingye Wang, Mingming Su, Erik Jia, Shaoqiu Chen, Tianlu Chen, 

and Yan Ni. 2018. “Missing Value Imputation Approach for Mass 

Spectrometry-Based Metabolomics Data.” Scientific Reports 8 (1): 663. 

Wei, Ruoqi, and Ausif Mahmood. 2021. “Recent Advances in Variational 

Autoencoders with Representation Learning for Biomedical Informatics: A 

Survey.” IEEE Access: Practical Innovations, Open Solutions 9: 4939–56. 



  

Bibliography 132 

Westerhuis, Johan A., Theodora Kourti, and John F. MacGregor. 1998. “Analysis of 

Multiblock and Hierarchical PCA and PLS Models.” Journal of 

Chemometrics 12 (5): 301–21. 

Wetering, Marc van de, Hayley E. Francies, Joshua M. Francis, Gergana Bounova, 

Francesco Iorio, Apollo Pronk, Winan van Houdt, et al. 2015. “Prospective 

Derivation of a Living Organoid Biobank of Colorectal Cancer Patients.” Cell 

161 (4): 933–45. 

Wilhelm, Mathias, Judith Schlegl, Hannes Hahne, Amin Moghaddas Gholami, 

Marcus Lieberenz, Mikhail M. Savitski, Emanuel Ziegler, et al. 2014. “Mass-

Spectrometry-Based Draft of the Human Proteome.” Nature 509 (7502): 

582–87. 

Wold, Svante, Kim Esbensen, and Paul Geladi. 1987. “Principal Component 

Analysis.” Chemometrics and Intelligent Laboratory Systems 2 (1–3): 37–52. 

Wong, C. C. Y., E. L. Meaburn, A. Ronald, T. S. Price, A. R. Jeffries, L. C. 

Schalkwyk, R. Plomin, and J. Mill. 2014. “Methylomic Analysis of 

Monozygotic Twins Discordant for Autism Spectrum Disorder and Related 

Behavioural Traits.” Molecular Psychiatry 19 (4): 495–503. 

Woo, Xing Yi, Anuj Srivastava, Joel H. Graber, Vinod Yadav, Vishal Kumar 

Sarsani, Al Simons, Glen Beane, et al. 2019. “Genomic Data Analysis 

Workflows for Tumors from Patient-Derived Xenografts (PDXs): Challenges 

and Guidelines.” BMC Medical Genomics 12 (1): 92. 

Wreczycka, Katarzyna, Alexander Gosdschan, Dilmurat Yusuf, Björn Grüning, 

Yassen Assenov, and Altuna Akalin. 2017. “Strategies for Analyzing 

Bisulfite Sequencing Data.” Journal of Biotechnology 261 (November): 105–

15. 

Wu, Zonghan, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and 

Philip S. Yu. 2021. “A Comprehensive Survey on Graph Neural Networks.” 

IEEE Transactions on Neural Networks and Learning Systems 32 (1): 4–24. 

Xu, Xiao, Yuanhao Zhang, Jennie Williams, Eric Antoniou, W. Richard McCombie, 

Song Wu, Wei Zhu, Nicholas O. Davidson, Paula Denoya, and Ellen Li. 

2013. “Parallel Comparison of Illumina RNA-Seq and Affymetrix Microarray 

Platforms on Transcriptomic Profiles Generated from 5-Aza-Deoxy-Cytidine 

Treated HT-29 Colon Cancer Cells and Simulated Datasets.” BMC 

Bioinformatics 14 Suppl 9 (9): S1. 

Xu, Zhi-Qiao, Yan Zhang, Ning Li, Pei-Jie Liu, Ling Gao, Xin Gao, and Xiao-Jing 

Tie. 2017. “Efficacy and Safety of Lapatinib and Trastuzumab for HER2-

Positive Breast Cancer: A Systematic Review and Meta-Analysis of 

Randomised Controlled Trials.” BMJ Open 7 (3): e013053. 

Xue, Hong-Jian, Xinyu Dai, Jianbing Zhang, Shujian Huang, and Jiajun Chen. 2017. 

“Deep Matrix Factorization Models for Recommender Systems.” In 

Proceedings of the Twenty-Sixth International Joint Conference on Artificial 

Intelligence, 17:3203–9. California: International Joint Conferences on 

Artificial Intelligence Organization. 

Yang, Wanjuan, Jorge Soares, Patricia Greninger, Elena J. Edelman, Howard 

Lightfoot, Simon Forbes, Nidhi Bindal, et al. 2013. “Genomics of Drug 

Sensitivity in Cancer (GDSC): A Resource for Therapeutic Biomarker 

Discovery in Cancer Cells.” Nucleic Acids Research 41 (Database issue): 

D955-61. 

Yang, Yaping, Donna M. Muzny, Jeffrey G. Reid, Matthew N. Bainbridge, Alecia 

Willis, Patricia A. Ward, Alicia Braxton, et al. 2013. “Clinical Whole-Exome 



  

Bibliography 133 

Sequencing for the Diagnosis of Mendelian Disorders.” The New England 

Journal of Medicine 369 (16): 1502–11. 

Yun, Seongjun, Minbyul Jeong, Sungdong Yoo, Seunghun Lee, Sean S. Yi, Raehyun 

Kim, Jaewoo Kang, and Hyunwoo J. Kim. 2022. “Graph Transformer 

Networks: Learning Meta-Path Graphs to Improve GNNs.” Neural Networks: 

The Official Journal of the International Neural Network Society 153 

(September): 104–19. 

Zhang, Bing, Jing Wang, Xiaojing Wang, Jing Zhu, Qi Liu, Zhiao Shi, Matthew C. 

Chambers, et al. 2014. “Proteogenomic Characterization of Human Colon 

and Rectal Cancer.” Nature 513 (7518): 382–87. 

Zhang, Fei, Minghui Wang, Jianing Xi, Jianghong Yang, and Ao Li. 2018. “A Novel 

Heterogeneous Network-Based Method for Drug Response Prediction in 

Cancer Cell Lines.” Scientific Reports 8 (1): 3355. 

Zhang, Hui, Tao Liu, Zhen Zhang, Samuel H. Payne, Bai Zhang, Jason E. 

McDermott, Jian-Ying Zhou, et al. 2016. “Integrated Proteogenomic 

Characterization of Human High-Grade Serous Ovarian Cancer.” Cell 166 

(3): 755–65. 

Zhang, Yijie, Dan Wang, Miao Peng, Le Tang, Jiawei Ouyang, Fang Xiong, Can 

Guo, et al. 2021. “Single‐cell RNA Sequencing in Cancer Research.” 

Journal of Experimental & Clinical Cancer Research: CR 40 (1): 81. 

Zhang, Yiqun, Fengju Chen, Darshan S. Chandrashekar, Sooryanarayana 

Varambally, and Chad J. Creighton. 2022. “Proteogenomic Characterization 

of 2002 Human Cancers Reveals Pan-Cancer Molecular Subtypes and 

Associated Pathways.” Nature Communications 13 (1): 2669. 

Zhang, Zhiqiang, Yi Zhao, Xiangke Liao, Wenqiang Shi, Kenli Li, Quan Zou, and 

Shaoliang Peng. 2019. “Deep Learning in Omics: A Survey and Guideline.” 

Briefings in Functional Genomics 18 (1): 41–57. 

Zhong, Qing, Ulrich Wagner, Henriette Kurt, Francesca Molinari, Gieri Cathomas, 

Paul Komminoth, Jasmin Barman-Aksözen, et al. 2018. “Multi-Laboratory 

Proficiency Testing of Clinical Cancer Genomic Profiling by next-Generation 

Sequencing.” Pathology, Research and Practice 214 (7): 957–63. 

Zhou, Lina, Shimei Pan, Jianwu Wang, and Athanasios V. Vasilakos. 2017. 

“Machine Learning on Big Data: Opportunities and Challenges.” 

Neurocomputing 237 (May): 350–61. 

Zou, Hui, and Trevor Hastie. 2005. “Regularization and Variable Selection via the 

Elastic Net.” Journal of the Royal Statistical Society. Series B, Statistical 

Methodology 67 (2): 301–20. 

 

 



 
 

 

 
134 

Appendices  

Appendix A – Supplementary Data relating to Chapter 3 

 

Figure S1. A pan-cancer proteomic map of 949 human cancer cell lines by Data Independent 

Acquisition Mass Spectrometry (DIA-MS), Related to Figure 1. A, Mean Pearson’s r for replicates 

of each cancer cell line, coloured by tissue of origin. B, Timeline of MS data acquisition across mass 

spectrometers, coloured according to processing batches (P02 - P06). C, Frequency of proteins 

identified across the 949 cancer cell lines. D, Upper panel, correlation by Pearson’s r of ProCan-

DepMapSanger dataset against independent proteomic datasets that comprise subsets of the same cell 

lines. Box-and-whisker plots indicate interquartile range (IQR) with a line at the median. Whiskers 

represent the minimum and maximum values at 1.5 x IQRs. Lower panel, heatmap and dendrogram 

(average method with euclidean metric) of the mean pairwise correlations between the same cell lines 

in different studies. E, Uniform Manifold Approximation and Projection (UMAP) dimensionality 

reduction of cell line proteomes coloured by processing batches (left) and mass spectrometer (right). 

F, Distribution of mean RNA-seq expression for genes corresponding to proteins that were detected 

(blue) or undetected (orange) in the ProCan-DepMapSanger dataset. Significance is indicated by 

Mann-Whitney U test. 
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Figure S2. Multi-Omics Factor Analysis (MOFA) and post-transcriptional regulation, Related 

to Figure 3. A, Similar to Figure 3A, MOFA factors across molecular and phenotypic cancer cell line 

datasets, including ProCan-DepMapSanger. Hematopoietic and lymphoid cells are grouped and 

trained separately from the other cell lines corresponding to each factor (column). The upper two 

heatmaps (blue) report the portion of variance explained by each factor (columns) in each dataset. The 

lower heatmap reports Pearson’s r between each learned factor and various molecular characteristics 

of the cancer cell lines. B, Gene Set Enrichment Analysis (GSEA) demonstrating enrichment of skin 

cell type-enriched proteins in MOFA Factor 12. C, Per-gene Pearson’s r between protein and RNA 

expression for all proteins quantified. Mean correlation (r = 0.42) is indicated by a dashed line. The 

locations of several cancer-related genes are shown. D, Enrichment analysis of proteins that were 

highly attenuated (n = 1,215), as determined by correlations between protein and copy number, and 

gene expression and copy number, in terms of Pearson’s r. The top most significantly enriched sets are 

annotated. E, F, Proteins were grouped by their number of significant positive correlations by 

Pearson’s r for putative protein interactions (FDR < 5%, r > 0.5). For each protein, the respective 

mean scaled CRISPR-Cas9 gene essentiality fold-change (FC) and gene expression (RNA-seq voom) 

measurement are calculated. Box-and-whisker plots indicate interquartile range (IQR) with a line at 

the median. Whiskers represent the minimum and maximum values at 1.5 x IQRs. E, The distribution 
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across all proteins is represented and F, proteins are subgrouped into paralog, singleton and 

unclassified, as previously determined (Dandage and Landry 2019).  
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Figure S3. Drug-protein and CRISPR-Cas9-protein associations and Deep Proteomic Marker 

(DeeProM) analysis pipeline, Related to Figure 4 and Figure 5. A, Synthetic lethal association 

between PPA2 and PPA1. Left panel, scatter plot between protein intensities of PPA1 and PPA2 

CRISPR-Cas9 gene essentiality scores. Right panel, scatter plot between protein intensities of PPA2 

and CRISPR-Cas9 gene essentiality scores of PPA1. Cell lines are coloured by tissue types. B, Neural 

network architecture of DeepOmicNet. In addition to the basic multilayer perceptron (MLP) 

architecture, skip connections with grouped bottlenecks were added to provide a deeper and wider 

network. Blue circles represent input neurons, green represents hidden layer neurons and yellow 

represents output neurons. C, Comparison of observed drug responses and predicted drug responses 

by DeeProM, elastic net and Random Forest. WES, mutation data from whole exome sequencing; 

Copy number, copy number profiles; Tissue, categorical variable representing the cell line’s tissue of 

origin; Methylation, promoter region methylation level; Transcriptome, RNA-seq data; Proteome, the 

ProCan-DepMapSanger dataset. Box-and-whisker plots indicate interquartile range (IQR) with a line 

at the median. Whiskers represent the minimum and maximum values at 1.5 x IQRs. D, Scatter plot 

between FOXA1 CRISPR-Cas9 gene essentiality scores and BSG gene expression measurements. 

Data points are coloured according to tissue type.   
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Figure S4. Tissue-level protein biomarkers for GSK1070916 across datasets, Related to Figure 

5. A-C, E-G  Scatter plots show the relationship between the drug and the protein biomarker, using 

either protein abundance or underlying RNA expression in cell lines from bone (green; all other cell 

lines are shown in gray). The number of cell lines and Pearson’s r from the highlighted tissue type are 

annotated at the top right and bottom left corners, respectively. The dashed line represents the 

maximum concentration used in the drug response screens. In A, B, F and G, Box-and-whisker plots 

summarize the information from the scatter plots of protein (left) and RNA (right). The protein 
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intensity is divided into five equally spaced quantiles from low to high, and the corresponding IC50 

values in the natural logarithmic scale are shown for each quantile. The first row of plots shows the 

relationship for all cell lines, and non-hematopoietic cell lines are shown in the second row. The 

relationship for only cell lines from bone is shown in the third row. Box-and-whisker plots indicate 

interquartile range (IQR) with a line at the median. Whiskers represent the minimum and maximum 

values at 1.5 x IQRs. A, The association between PPIH gene expression and GSK1070916 drug 

response in cell lines from bone. B, Similar to A, instead using CCLE gene expression data. C, 

Similar to A, instead using the CCLE proteomic dataset. D, The association between PPIH protein 

abundance and response to GSK1070916 using the CCLE proteomic dataset and PRISM drug 

response data, with the figure obtained from the DepMap Portal. E, Similar to Figure 5D, instead 

using the GDSC2 drug response dataset. F, Similar to E, instead using gene expression data. G, The 

association between PPIH gene expression and Alisertib drug response from GDSC data in cell lines 

from bone. H, Similar to D, instead showing response to Alisertib. 
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Figure S5. Predictive power benchmarks and comparisons, Related to Figure 6 and Figure 7. A, 

Comparison of DeepOmicNet mean predictive power across three independent drug response datasets, 

trained using the ProCan-DepMapSanger and the CCLE proteomic dataset. B, Similar to A, models 

trained to predict CRISPR-Cas9 gene essentiality profiles. C, Comparison of the predictive power of 

the DeepOmicNet model trained using the ProCan-DepMapSanger dataset and RNA expression data, 

both for all genes or for only genes that have their corresponding proteins quantified (overlapping 

genes). **** p-value < 0.0001, ** p-value < 0.01. Significance is by two-tailed paired Student’s t-test. 

Box-and-whisker plots indicate interquartile range (IQR) with a line at the median. Whiskers represent 

the minimum and maximum values at 1.5 x IQRs. D, Drug responses (drug-protein) and E, CRISPR-

Cas9 gene essentiality (CRISPR-Cas9-protein) associations, identified with linear regression models 

without taking gene expression as covariates. See Figure 7C-D for a general description of the plot. 

F, Histogram showing the distribution of the frequency of proteins detected in each of the cell lines in 

the cohort, with Category A, B and C proteins indicated. The dashed vertical lines indicate the 

frequency thresholds for defining the categories.  

 

Please see the soft copy contents accompanying this thesis for a copy of Table S1-

S5. 
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Appendix B – Supplementary Data relating to Chapter 4 

 

Supplementary Figure 1 | Details of pathway encoder and Transformer encoder. a, Detailed 

illustration of the pathway encoder. A fully connected layer encodes multi-omic data from genes into 

a pathway vector. b, Detailed illustration of the Transformer encoder. Pathway vectors are first fed 

into a dropout layer, followed by a recurrent sequence (grey box) of layer normalisation, multi-head 

self-attention and multi-layer perceptron (MLP). The components in the grey box recur twice in 

DeePathNet. Arrows represent the direction of information flow and  represents matrix addition. 
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Supplementary Figure 2 | Consistency of drug response predictions from different machine 

learning models. a, Scatter plots showing R2 of drugs from DeePathNet (vertical axis) against each of 

the remaining five machine learning models (horizontal axis) evaluated on the CLP dataset. The 

diagonal red line indicates equal performance between the two models. Points above the red line 

represent drugs that are more accurately predicted by DeePathNet. Pearson’s r (R) and p-value (p) are 

annotated. b, Similar to a, but evaluated on the CCLE dataset. 
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Supplementary Figure 3 | Analysis of performance of drug response prediction by target 

pathways. a, A violin plot showing the predictive performance grouped by drug canonical target 

pathways, ranked by the mean Pearson’s r of the group. b, Top 20 drugs ranked by Pearson’s r. Drugs 

are coloured by their canonical target pathways. 
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Supplementary Figure 4 | ROC curves and precision-recall curves for TCGA cancer type 

classification. a, ROC curves for DeePathNet classification of TCGA cancer types. Mean AUROC 

and standard error of the mean are annotated. b, Precision-recall curves for DeePathNet classification 

of TCGA cancer types. Mean AUPRC and standard error of the mean are annotated. Full terms of the 

abbreviations in a and b are listed in Fig. 4c. 
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Supplementary Figure 5 | ROC curves and precision-recall curves for breast cancer subtype 

classification. a, ROC curves for DeePathNet classification of breast cancer subtypes using TCGA as 

the training data and CPTAC as the test data. b, Similar to a, but showing AUPRC.  
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Data sets Number of features 

(n = sample size) Gene mutation CNV Gene expression Protein 

Drug response prediction (n = 549 GDSC drugs) 

CLP (n = 941) 19,099 19,116 15,320 - 

CLP+ (n = 910) 19,099 19,116 15,320 8,498 

CCLE (n = 696) 18,103 27,562 19,117 - 

CCLE+ (n = 292) 18,103 27,562 19,117 12,755 

 

Cancer type classification 

TCGA (n = 6,356) 31,949 23,529 20,435 - 

 

Breast cancer subtype classification 

TCGA (n = 974) 31,949 23,529 20,435 - 

CPTAC (n = 122) 11,877 23,692 23,121 - 

Supplementary Table 1. Overview of datasets used in this study. CLP+ = CLP + ProCan-

DepMapSanger and CCLE+= CCLE + CCLE proteomic dataset. 
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 R2 mean ± 95%CI 

MAE mean ± 

95%CI 

Pearson's r mean ± 

95%CI 

CLP 

DeePathNet 0.222±0.0020 0.947±0.0021 0.475±00.0053 

Random forest (RF) 0.214±0.0018 0.964±0.0021 0.469±0.0054 

Elastic net 0.200±0.0020 0.965±0.0023 0.452±0.0051 

moCluster+RF 0.155±0.0015 1.009±0.0022 0.413±0.0057 

PCA+RF 0.138±0.0014 1.021±0.0022 0.403±0.0058 

mixOmics 0.097±0.0009 1.047±0.0019 0.342±0.0061 

 

CCLE 

DeePathNet 0.242±0.0020 0.934±0.0020 0.496±0.0052 

Random forest (RF) 0.197±0.0018 0.977±0.0022 0.452±0.0055 

Elastic net 0.163±0.0019 0.991±0.0025 0.427±0.0053 

PCA+RF 0.135±0.0014 1.024±0.0023 0.404±0.0059 

moCluster+RF 0.107±0.0012 1.042±0.0023 0.363±0.0060 

mixOmics -0.006±0.0006 1.110±0.0016 0.110±0.0066 

Supplementary Table 2. Benchmarking six methods to predict drug responses by reporting mean 

cross-validation performance with 95% confidence interval (CI). 
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 R2 mean ± 95%CI 

MAE mean ± 

95%CI 

Pearson's r mean ± 

95%CI 

CLP > CCLE 

DeePathNet 0.208±0.0118 0.933±0.0274 0.476±0.0119 

Random forest 0.027±0.0200 1.07±0.0315 0.390±0.0143 

 

CLP+ > CCLE+ 

DeePathNet 0.233±0.0126 0.899±0.0262 0.532±0.0139 

Random forest -0.106±0.0441 1.107±0.0330 0.388±0.0183 

Supplementary Table 3. Comparing two methods by evaluating mean generalisation errors with 95% 

CI of drug response prediction. 
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Accuracy mean 

± 95%CI  

Macro-average 

F1-score mean 

± 95%CI 

AUROC mean 

± 95%CI  

Stability  

 

 

DeePathNet 0.963±0.0015 0.935±0.0030 0.998±0.0001 0.004 

Random forest (RF) 0.951±0.0018 0.895±0.0038 0.997±0.0003 0.005 

k-NN 0.940±0.0018 0.894±0.0045 0.982±0.0016 0.007 

PCA+RF 0.937±0.0023 0.885±0.0039 0.996±0.0003 0.005 

moCluster 0.866±0.0031 0.734±0.0034 0.987±0.0010 0.006 

mixOmics+RF 0.764±0.0040 0.881±0.0091 0.919±0.0041 0.015 

Supplementary Table 4. Benchmarking six methods to predict cancer types by reporting cross-

validation performance. 
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Accuracy mean 

± 95%CI 

  

Macro-average 

F1-score mean 

± 95%CI 

AUROC mean 

± 95%CI 

  

Stability  

 

 

DeePathNet 0.902±0.0081 0.868±0.0115 0.980±0.0030 0.019 

Random forest (RF) 0.844±0.0095 0.672±0.0178 0.969±0.0038 0.026 

k-NN 0.816±0.0097 0.697±0.0200 0.897±0.0094 0.033 

PCA+RF 0.696±0.0109 0.429±0.0111 0.880±0.0094 0.027 

mixOmics 0.749±0.0525 0.676±0.0369 0.731±0.0169 0.090 

moCluster+RF 0.751±0.0090 0.492±0.0152 0.917±0.0051 0.025 

Supplementary Table 5. Benchmarking six methods to predict breast cancer subtypes by reporting 

cross-validation performance.  
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Accuracy  

  

Macro-average  

F1-score  

AUROC  

  

 

 

DeePathNet 0.902 0.798 0.971  

Random forest 0.295 0.263 0.694  

Supplementary Table 6. Comparing two methods by evaluating generalisation errors of breast cancer 

subtype prediction.  
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