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ABSTRACT  

Two sexual mixing matrices previously used in models of sexually transmitted infections (STIs) are 

intended to calculate the probability of sexual interaction between age groups and sexual behaviour 

subgroups. When these matrices are used to specify multiple criteria for how people select sexual 

partners (such as age group and sexual behaviour class) their conditional probability structure 

means they have in practice been prone to misuse. We constructed revised mixing matrices that 

incorporate a corrected conditional probability structure and then used one of them to examine the 

effect of this revision on population modelling of STIs. Using a dynamic model of HPV 

transmission as an example, we examined changes to estimates of HPV prevalence and the relative 

reduction in age-standardised HPV incidence after the commencement of publicly-funded HPV 

vaccination in Australia. When all other model specifications were left unchanged, the revised 

mixing matrix initially led to estimates of age-specific oncogenic HPV prevalence that were up to 

11% higher than our previous models. After re-calibrating the model by modifying unobservable 

parameters characterising HPV natural history, the revised mixing matrix yielded similar estimates 

to our previous models, predicting that vaccination would lead to relative HPV incidence reductions 

of 43% and 85% by 2010 and 2050 respectively, compared to 43% and 86% using the unrevised 

mixing matrix formulation. Our revised mixing matrix offers a rigorous alternative to commonly 

used mixing matrices, which can be used to reliably and explicitly accommodate conditional 

probabilities, with appropriate re-calibration of unobservable model parameters.  
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1. Introduction 

Mathematical modelling of the spread of sexually transmitted infections (STIs) requires some 

mechanism to represent the probabilities of individuals having sexual contact with particular sub-

categories of sexual partners. One such widely used mechanism is the ‘mixing matrix’ as described 

by Garnett et al [1]. The mixing matrix has been described and used in the modelling of the spread 

of HIV infection and for other infections such as gonorrhea and human papillomavirus (HPV) [1-5].  

The elements of the mixing matrix represent the probabilities that people in a given subgroup of the 

population will form sexual partnerships with people in another given population subgroup. The 

resulting expected partnerships are then modelled as a pathway for STI transmission. Following 

Garnett [1], two commonly used population subgroups for defining mixing in the population are age 

group and level (hereon ‘class’) of sexual activity (specified, for example, by the average number of 

new partners per year); although in principle other criteria could also be used to subdivide the 

population, for example needle use [6].  

Previous formulations of the mixing matrix have been specified to model more than one sub-group 

at a time by splitting individual elements in the mixing matrix into multiple factors, with one factor 

for each subgroup class (e.g. age, sexual activity)[1, 7]. However, as we describe in this paper, 

splitting the existing mixing matrix structure in this manner can lead to inconsistencies or errors 

which could potentially impact on model predictions. Mixing matrices of the type considered in this 

paper specify heterosexual partner preferences, where a mixing matrix is produced for each side of 

the partner equation (e.g. separate mixing matrices for men and women). Such mixing matrices will 

not necessarily generate partner preferences that match, so some partner preferences will be 

unrealised. To ensure that infection calculations only deal with realised partnerships, a process is 

carried out following calculation of the initial mixing matrices (‘balancing’) [8].  Errors in the 

structure of the initial mixing matrices will not be corrected by the balancing procedure, as the 

results of balancing depend on the values in the initial mixing matrices. This paper is concerned 
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with the structure of the mixing matrix before balancing is carried out and the effect this has on 

final model predictions.  

The objective of this analysis was to construct revised mixing matrices not subject to the identified 

inconsistencies or errors, and then apply one of these revised matrices to quantify the effects of the 

revision on population modelling of predicted HPV prevalence and the impact of HPV vaccination. 

We simulated HPV transmission and the effects of HPV vaccination using a previously described 

model of heterosexual HPV transmission in the Australian population [9] which had been further 

developed from an earlier model for Finland [10].  
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2. Reformulation of the mixing matrix 

2.1 General form 

In general terms, the heterosexual mixing matrix kab  represents the probability that an individual 

of sex k in population subgroup a will choose a sexual partner of sex k' in population subgroup b. 

Here a and b may each represent several different indices, corresponding to multiple criteria for 

subdividing the population into groups. For example, if the population is subdivided by age and 

sexual activity, then the mixing matrix has the form kihjm , representing the probability that 

someone of sex k in age group i and sexual activity class h (with i and h replacing index a) will 

form a partnership with someone of sex k' in age group j and sexual activity class m (with j and m 

replacing index b). Refer to Table 1 for a summary of notation used throughout this paper. 

[Table 1 about here] 

 

For a mixing matrix whose elements are factorised, the conditional probability structure of the 

matrix must represent the dependence or independence of the input parameters that will be used to 

populate the matrix. For example, in the population to be modelled, does the probability of choosing 

a partner from a particular sexual activity class depend on which partner’s age group is selected? If 

so, do the matrix element factors represent these probabilities correctly? 

Consider a matrix representing a population subdivided by age and sexual activity class. If it is 

assumed that there are no other factors affecting partner selection (such as the choice of assortative 

or proportional mixing considered in Section 2.3), then the general form of such a factorised mixing 

matrix is either 

)|()()( '''' jkjmkjkjmkkihjm GPPGP  
                               

… (1) 

selecting partner’s age then sexual activity class, or 
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)|()()( '''' mkjmkmkjmkkihjm GPPGP  
                               

… (2) 

which selects partner’s sexual activity class then partner’s age. Here, jk '  represents the event “a 

partner of sex k’ is selected from age group j”; mk '  the event “a partner of sex k’ is selected from 

sexual activity class m”; and jmkG   the event “a partner of sex k’ is selected from age group j and 

sexual activity class m”.  

Logically, equations 1 and 2 should be equal, as they represent the same probability. However, we 

have identified that this is not the case for some published factorised sexual mixing matrices. We 

examine one example in Section 2.5. Examination of the conditional probability structure of two 

published mixing matrices is the focus of the rest of Section 2 and of Section 3. 

2.2 Revision of a simple factorised mixing matrix 

van de Velde et al [7] used a mixing matrix with two factors in each matrix element, representing  

 Preference for partner’s sexual activity class, independent of partner’s age (denoted hm , 

with activity class h choosing activity class m); and  

 Preference for partner’s age, independent of partner’s sexual activity class (denoted ihj , 

with age group i and sexual activity class h choosing age group j). 

The age selection factor ihj  is populated by values that are not subdivided by partner’s sexual 

activity class [7], so  that ihj  
 is independent of a partner’s sexual activity class. However, the form 

of the sexual activity selection factor in that matrix is 
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(Here Tm(j) represents the preference-weighted number of partnerships offered by the subgroup of 

potential partners with age group j and sexual activity class m, An  is the number of age groups and 

Sn  the number of sexual activity classes.)  

This form implies that this factor is derived from values that are functions of the preferred partner’s 

age and sexual activity class. In this case the appropriate form for the mixing matrix is that of 

equation 1. However, the summations over age in the numerator and denominator of equation 3 

mean that the sexual activity preference factor hm  as defined is independent of partner’s age. 

The correct form for hm , explicitly defining preference for partner’s sexual activity as conditional 

on partner’s age, is  

)|( '' jkjmkhm GP   





Sn

m

jT

jT

1

)(

)(




,    …(4) 

as partner’s age group j has already been selected by the factor ihj .  

The mixing matrix employed by Elbasha et al [11] is of the same general form: an age selection 

factor independent of sexual activity level multiplied by a sexual activity selection factor 

independent of age. This matrix is constructed from parameters that are specified by both age and 

sexual activity level, so it should also use a conditional probability structure. As this matrix strongly 

resembles the matrix that we examine in Sections 2.5 and 2.6, the structure appropriate for this 

particular case is the structure that we develop as equation 16 in Section 3.3. 

These examples demonstrate that elements of a mixing matrix can be correctly factorised according 

to different partner preference criteria only if attention is paid to the dependence of the factors on 

each other. In general, it is safest to assume that factors are not independent and to structure the 

mixing matrix accordingly, so that the matrix form does not rely on an assumption of independence 
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which may not hold in the population to be modelled. We will now show that this limitation 

becomes more problematic for more complex factorisations of mixing matrices, and then propose a 

revised matrix definition that explicitly accommodates conditional probabilities. 

2.3 A matrix for assortative and proportional mixing 

Nold [12] introduced a mixing matrix which is a mixture of assortative and proportional mixing. In 

assortative mixing, people only choose partners from their own subgroup. In proportional mixing, 

the chance that people choose partners from any given subgroup is proportional to the total number 

of partnerships offered by members of that subgroup. 

The general mixing matrix for assortative mixing captures the probability of someone of sex k in 

subgroup i randomly choosing a partner in subgroup j in terms of the Kronecker delta ij (which has 

the value 1 when i = j and 0 otherwise), as 

ijkij   .  

The mixing matrix for proportional mixing captures the probability of someone of sex k in subgroup 

i randomly choosing a partner in subgroup j out of all n population subgroups as 




 n

h
hh

jj
n

h
h

j
kij

Nc

Nc

P

P

11



,

 

where jP  is the total number of partnerships on offer in subgroup j, jc  is the average number of 

partnerships offered by members of population subgroup j and jN  is the number of individuals in 

population subgroup j. 

Nold’s  mixing matrix [12] uses a parameter   to weight the contribution of each type of mixing, as 

follows: 
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 .         

… (5) 



 

Page 12 

Here,   is the fraction of the population who will choose a partner assortatively, while )1(   is the 

remaining fraction who will make a proportional choice. (For later notational convenience (see 

equation 16), this use of   is the opposite of that in Garnett et al. [1]) 

Since   is the fraction of the population who will choose a partner assortatively,  )1(   represents 

the fraction whose partner choices are made proportionally. 

If the mixing matrix in equation 5 represents a population stratified by age, the mixing matrix may 

be written as  

)( jkkij P    

)|()()|()( PjkPAjkA APAPAPAP   
        

… (6) 

where AA  represents the event “partner selection is made assortatively by age” and PA   represents 

the event “partner selection is made proportionally by age”. 

2.4 Combined assortative and proportional mixing  

Nold's scheme may be extended to describe a mixture of assortative and proportional mixing 

involving multiple partner selection criteria. For example, a population subdivided by age group 

and sexual activity class may for the purpose of calculating partner choice probabilities be divided 

into four groups who choose their partners: 

i. Assortatively by age and assortatively by sexual activity; 

ii. Assortatively by age and proportionally by sexual activity; 

iii. Proportionally by age and assortatively by sexual activity; 

iv. Proportionally by age and proportionally by sexual activity. 

The probability of an individual belonging to each of these groups (and thus choosing a partner in 

the specified way) is then defined using )( A , the probability of assortative mixing by age and )(S , 

the probability of assortative mixing by sexual activity class. 



 

Page 13 

The combined assortative and proportional mixing model can be extended to more than two factors, 

as done by French et al [6] who modelled HIV transmission using a mixing matrix incorporating 

age, sexual activity and needle use, resulting in eight combinations of partner choice criteria. 

2.5 A currently used mixing matrix combining assortative and proportional mixing with multiple 

selection criteria 

Garnett et al extended Nold’s scheme to model assortative and proportional mixing by both age and 

sexual activity class and also a specific pattern of mixing in which women prefer men 

approximately ten years their senior [1]. Considering only assortative and proportional mixing by 

both age and sexual activity class  and excluding women’s preference for men ten years older, the 

matrix described by Garnett et al takes the form 
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   ,         

… (7) 

where jmkP   is the number of partnerships on offer by people of sex k’ in age group j and sexual 

activity class m and kihjm  represents the probability that someone of sex k in age group i and sexual 

activity class h will form a partnership with someone of sex k' in age group j and sexual activity 

class m.  

Here the first factor represents the age mixing component and the second the sexual activity mixing 

component, i.e. a partner’s age is selected first, and then their sexual activity class.  

Note that in this form of the mixing matrix, )( A  and )(S  are assumed to be constant across the 

entire population i.e. they are independent of all parameters defining both people making a partner 

choice and people being chosen as partners. In particular, )( A  is independent of partner’s sexual 

activity class and )(S  is independent of partner’s age. 

2.6 Inconsistencies with assumptions 
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The following assumptions are implicit in Garnett’s mixing matrix shown in equation 7: 

Assumption 1:  As described earlier, the parameters )( A  and )(S  are treated as constants, 

and thus )( A  is independent of partner’s sexual activity class and )(S  is 

independent of partner’s age; 

Assumption 2:  The events AA  and AS  (partner’s age and sexual activity class chosen 

assortatively) are independent of each other – without this, factorisation is not 

possible. All mixing matrices considered from here on satisfy this 

assumption. 

Also, this mixing matrix should satisfy the following condition: 

Condition 1: The probability value kihjm  should not depend on whether it is calculated by 

specifying the partner’s age group or sexual activity class first, as in either 

case the same probability is being calculated. 

However, we found that under Assumptions 1 and 2, the mixing matrix in equation 7 cannot satisfy 

Condition 1.   

We identified this inconsistency as follows. Equation 7 can be written in a form similar to equation 

6 (where partner’s age group is selected before their sexual activity class): 

)( jmkkihjm GP   

)|()|()|()( AjAmjAAAjA SAPASPAPAP    

)|()|()|()( PjAmjAPAjA SAPASPAPAP    

)|()|()|()( AjPmjPAPjP SAPASPAPAP    

)|()|()|()( PjPmjPPPjP SAPASPAPAP  
            

… (8) 
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Here, PS  is the event “partner selection is made proportionally by sexual activity class”. (Note that 

the additive terms in the second equality correspond in order to groups i to iv in Section 2.4.) 

To check the effect of choosing sexual activity class before partner’s age group (and thus to check 

whether Condition 1 is met), we reversed the order of factors in equation 7 to obtain
 

)( jmkkihjm GP   
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)|()|()|()( AmAjmAAAmA ASPSAPSPSP    

)|()|()|()( PmAjmAPAmA ASPSAPSPSP    

)|()|()|()( AmPjmPAPmP ASPSAPSPSP    

)|()|()|()( PmPjmPPPmP ASPSAPSPSP  
            

… (9) 

A simple numerical substitution shows that equations 7 and 9 do not result in the same probability, 

and therefore cannot satisfy Condition 1 if Assumption 1 is true. For example, suppose there is a 

population with two age groups and two sexual activity groups with )( A  = 0.3, )(S  = 0.7, and 11'kP  

= 40, 12'kP  = 25, 21'kP  = 20 and 22'kP  = 15. Then by equation 7 1111k =0.56625, but by equation 9 

1111k =0.56733 – thus the two mixing matrix forms are not equivalent.  

As the mixing matrix itself represents only one step in a simulation of sexually transmitted 

infections in a population over time, it is impractical to estimate a priori the magnitude or direction 

of the effect of using differing mixing matrices. While in this example this difference between the 

two mixing matrix entries is small (with a 0.2% higher value under equation 9), in practice such a 

difference can potentially have a sizable cumulative effect after numerous iterations of the mixing 

matrix on a population over time, as required in population modelling (for example, we routinely 
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model population HPV transmission and natural history, simulating yearly iterations of sexual 

interaction and consequential HPV infection over several decades).  

The mismatch cannot be corrected by assigning to )( A  and )(S  different values depending on 

whether a partner’s age or sexual activity class is chosen first. In the example in the previous 

paragraph there are 16 matrix entries to be matched by adjusting only the two parameters )( A  and 

)(S . This is in general impossible – only two entries can be set to arbitrary values using two 

parameters. In practice, a mixing matrix can contain thousands of entries.  

Equation 7 rewritten in the form of equation 8 immediately suggests the potential for age-

dependence of )(S  (i.e. )( ASP ), whereas equation 9 suggests the opposite, that )( A  is dependent on 

sexual activity class selection. This clearly contradicts Assumption 1. Thus, Assumption 1 and 

Condition 1 cannot hold simultaneously in the mixing matrix shown in equation 7. 

3. A revised mixing matrix combining assortative and proportional mixing with multiple 

selection criteria that is consistent with Assumptions 1 and 2 and Condition 1 

We propose a revision to the mixing matrix shown in equation 7 that is consistent with Assumptions 

1 and 2 and Condition 1. 

3.1 Assumption 1 

The following mixing matrix is consistent with the requirement that constant parameters )( A  and 

)(S  are independent of partner’s age and sexual activity level (Assumption 1):  

)( jmkkihjm GP   

)|()( AAjmkAA SAGPSAP    

)|()( PAjmkPA SAGPSAP    

)|()( APjmkAP SAGPSAP    
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)|()( PPjmkPP SAGPSAP                   
… (10) 

In this form, assortative versus proportional selection by age group and sexual activity class is 

chosen before age group and sexual activity class, thus removing the population sub-group 

dependencies which cause the inconsistency between equations 7 and 9 in the unrevised mixing 

matrix. 

3.2 Assumption 2 

Under Assumption 2, the events AA  and AS  (partner age and sexual activity level chosen 

assortatively) are independent of each other. With this assumption, the terms for )( SAP   take the 

following forms:  

)()()()()( SA
AAAA SPAPSAP   

)1()()()( )()( SA
PAPA SPAPSAP    

)()( )1()()()( SA
APAP SPAPSAP   

)1)(1()()()( )()( SA
PPPP SPAPSAP          … (11) 

3.3 A revised mixing matrix  

Consider the forms of the various )|( SAGP jmk   terms in equation 10. When an individual's 

choices are assortative both by age and sexual activity, they will by definition only consider 

someone from the opposite sex in the same age group and sexual activity class. In this case, the 

probability of choosing age group j and sexual activity class m is 1 if i = j and h = m, and 0 

otherwise, i.e. 

hmijAAjmk SAGP  )|(     … (12) 
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When a person’s partner choice is assortative by age and proportional by sexual activity, they are 

open to partnerships with anyone of any sexual activity level but only within their own age group. 

The number of partnerships open to them is thus  
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and the probability of choosing a partner in age group j and sexual activity class m is therefore 
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where jmkN   is the number of people of sex k’ in age group j and sexual activity class m and jmkc   is 

the average number of partnerships offered by people in this group.  

Similarly, when choices are proportional by age and assortative by sexual activity, the available 

partnerships are within the same sexual activity class but spread across all age groups. Thus the sum 

in the denominator is over age groups rather than sexual activity classes, and so 
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    … (14) 

Finally, when an individual’s partner choice is proportional by both age and sexual activity group, 

all partnerships are included in their target population. In this case, 
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Substituting equations 11-15  into equation 10 gives the complete, revised mixing matrix: 
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     … (16) 

3.4 Differences between the unrevised and revised matrices 

If the unrevised mixing matrix (equation 7) is expanded, it almost matches the revised mixing 

matrix (equation 16). However, the following age-proportional, sexual-activity-assortative term in 

equation 7 prevents it from matching equation 16: 
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This is because the sum of partnerships over sexual activity classes does not necessarily cancel (i.e. 

the ratio of partnerships offered by each sexual activity class does not necessarily remain constant 

across age cohorts), and so this does not match the corresponding term in equation 16.  
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Therefore, equation 16 is a correction to the mixing matrix first described in equation 7. Equation 

16 is consistent with Assumptions 1 and 2, and it also meets Condition 1, as the partner’s age group 

and sexual activity class are in effect chosen simultaneously, after the method of choosing a partner 

(i.e. assortative vs. random for age and sexual activity) has been selected. 

3.5 The revised matrix applied to semi-assortative age mixing 

The unrevised mixing matrix in equation 7 has been previously extended to model ‘semi-

assortative’ mixing, in which people prefer sexual partners close to their own age.  An example is a 

population in which partners are chosen from people within one age cohort of an individual's own 

age cohort, with specified probabilities for each age cohort's choices. 

In order to explore this mixing structure using the revised mixing matrix, we adopt the following 

notation: 

 )(
,
A
xi : Probability that a person in age cohort i will prefer partners from age cohort i+x; 

 d: Maximum age cohort difference for semi-assortative mixing (as opposed to proportional 

mixing). 

The probability that someone in age cohort i chooses a partner proportionally by age is thus 





d

dx

A
xi

)(
,1  . 

In this case, the revised mixing matrix for a population with a mixture of semi-assortative and 

proportional mixing by age and assortative and proportional mixing by sexual activity class is: 
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       …(17) 

This is very similar in form to the revised mixing matrix obtained earlier (equation 16). For 

comparison, the unrevised matrix in equation 7 when modified to include semi-assortative age 

mixing takes the form: 
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  .    …(18) 

Equation 17 allows )(
,
A
xi  to be independent of partner’s sexual activity class and )(S  to be 

independent of partner’s age, while equation 18 does not. 

In the following section, we compare how the revised mixing matrix (Equation 17) and the 

unrevised mixing matrix (equation 18) affect modelled estimates in practice. 

 

4. Effect of the revised mixing matrix on a population model of HPV transmission and 

vaccination  

For an illustration of the effect of the revised mixing matrix on the findings of a specific health 

policy evaluation, we used a dynamic population model of HPV transmission and vaccination in 

Australia, which has previously been described in detail [9, 13].  

4.1 Population model structure and parameterisation 

The deterministic dynamic HPV transmission model used for the current evaluation incorporated a 

review of Australian survey data on age-specific rates of heterosexual contacts for males and 
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females [9, 13]. As previously described [9, 13], HPV natural history parameters were obtained by 

fitting the model to preliminary data on the age-specific prevalence of PCR-detected HPV DNA in 

cytologically normal non-Indigenous women, which was obtained from an Australian study of HPV 

prevalence – the “Women’s HPV Indigenous Non-indigenous Urban Rural Study” (WHINURS) 

[14].  

The dynamic HPV transmission model assumes a combination of proportional, semi-assortative and 

assortative mixing across sexual activity classes (‘low’, ‘moderate’, ‘moderately high’ and ‘high’) 

and five-year age groups. The key unknown HPV natural history parameters in males and females 

were adjusted to fit the observed HPV prevalence, including the age-specific duration of naturally 

conferred immunity, the annual rate of clearance of infection, and the per-partnership transmission 

probability of HPV in various sexual activity behavioural groups. Some a priori restrictions, which 

were in accordance with the existing epidemiological evidence, were placed on the range of 

possible parameter values and relationships between parameters [9, 13]. This “baseline” natural 

history parameter set was used in the current analysis of the impact of HPV vaccination.  

The key outcomes that we compared for different mixing matrices were predicted HPV prevalence 

and the predicted effect of HPV vaccination on HPV prevalence. 

4.2 Model results using the unrevised mixing matrix 

The original form of the mixing matrix used by this model was the unrevised form (equation 18) 

with d = 1, based on the Garnett and Anderson formulation [1]. The predicted HPV prevalence in 

Australia after calibration of the model using the unrevised mixing matrix is shown in Figure 1.  

4.3 Modelled results of HPV prevalence using the revised mixing matrix, without model 

calibration 

In order to assess the effect of the revised mixing matrix on predictions of HPV prevalence, we 

incorporated the revised mixing matrix and re-simulated HPV transmission in the population to 

predict pre-vaccination HPV prevalence in females  
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The use of the revised mixing matrix form, when other model parameters were held constant, 

resulted in a maximum absolute increase in the predicted prevalence of HPV 16 infection of 0.6% 

in the 15-19 year old age group (a relative increase of 10%), which was the age at which the peak 

prevalence of infection was predicted (Figure 1). The greatest relative change was an 11% increase 

among women aged 25-29 years. The difference in outcomes declined with age; and over age 35 

years, no substantive absolute differences in the predicted prevalence between the two simulations 

were observed. 

4.4 Modelled results of the effect of HPV vaccination using the revised mixing matrix, with 

model calibration 

We then assessed to what extent these differences in the predicted prevalence of HPV would change 

modelled predictions of the effect of HPV vaccination. To achieve this, firstly we re-calibrated the 

model with the revised mixing matrix in place by adjusting HPV natural history parameters 

(namely, rates of progression and regression of HPV infections and waning of naturally-acquired 

immunity), such that the predicted HPV prevalence was equivalent to that predicted when using the 

unrevised mixing matrix simulation. We then predicted reductions in HPV incidence following the 

introduction of HPV vaccination for HPV 16, HPV 16 and 18, and all oncogenic HPV infections, 

using previously described assumptions and methods [9], for the unrevised matrix compared to the 

revised matrix with adjusted parameters. For this model, we used similar vaccination coverage 

assumptions to those previously used [9, 13]; assuming that three-dose coverage in 12-13 year old 

girls was 78%. Australia’s national HPV vaccination program commenced in 2007, and catch-up 

was performed to end-2009 for women up to the age of 26 years.  Routine vaccination of 12-13 year 

old girls was introduced in some states in 2007, and throughout Australia in 2008. Coverage in the 

cohort of girls who were all vaccinated when aged 12-13 years in 2008 has not yet been reported. 

Coverage in the cohort of girls who were aged 12-13 years in 2007 (mostly vaccinated when aged 

13-14 years in 2008; some vaccinated when aged 12-13 years in 2007) has been reported as 73% 

[15].  
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Table 2 shows the predicted age-standardised incidence of HPV (across all ages) for females and 

males in the year 2006 (pre-vaccination) and for the years 2010, 2020 and 2050 (3, 13 and 43 years 

post-vaccination) for the revised and unrevised matrices; and Table 3 shows the equivalent relative 

reductions in incidence, referenced to the 2006 (pre-vaccination) levels. As shown in Tables 2 and 

3, after model recalibration, the mixing matrix revision did not have a substantive effect on the 

predicted HPV incidence reductions after vaccination. 

5. Discussion 

The sexual mixing matrix is a critical component of dynamic models of sexually transmitted 

diseases, allowing population models to reflect epidemiologic survey data on differential rates of 

contact between various subgroups of the population. Although splitting a mixing matrix into 

subgroup terms (such as age and sexual activity) is a useful abstraction, we have described two 

examples of such matrices (equations 3 and 7) which contained inconsistencies in their probability 

structures, and we have presented revised forms of both matrices (equations 4 and 16).  

The revised mixing matrix presented in equation 16 has general application for dynamic models of 

infection in which it is important to simulate population heterogeneity in mixing, whether through 

sexual contact or other pathways of disease transmission that can be modelled based on the 

characteristics of subgroups. The degree to which the mixing matrix revision would influence the 

findings of a specific evaluation is likely to depend on a number of factors, including the level of 

heterogeneity in subgroup mixing, the calibration procedure and calibration targets, the degree to 

which other model parameters are adjusted to account for the revision, the degree of dependence in 

conditional probabilities and the particular model output of interest.  

To assess whether the reformulation of the mixing matrix might have potential consequences for 

policy decisions based on model predictions, we tested the effects using a previously described 

model of HPV transmission and vaccination. We showed that, in the absence of changes to other 

model assumptions, revision of the mixing matrix did result in some change to the model-predicted 
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age-specific pattern of HPV infection. This finding has important implications for modelled 

evaluations in which the output of interest is related to population infection rates. 

A number of versions of the sexual mixing matrices discussed here have been used in published 

HPV cost-effectiveness studies. Of those that use the unrevised mixing matrices identified in this 

paper, some report HPV prevalence by age [7, 11, 16] and we have shown here that this can vary 

with even slight changes to the mixing matrix, and have a flow-on effect to other model estimates: 

in the example shown here, final estimates of relative vaccine effectiveness were substantially 

affected by corrections to the mixing matrix. 

An additional issue is that some groups who have used unrevised mixing matrices have estimated 

posterior natural history parameters after model fitting [7, 10, 16]. These parameters include the 

per-partner transmission probability (which may vary by sex, age and sexual activity group 

depending on model complexity) [7, 10, 16] and the rate of infection clearance (which may vary by 

sex and age) [7]. These estimates may require review, using the revised mixing matrix. This is 

important because these natural history parameters may be adopted by other  modelling groups as 

baseline parameters, as has been done in past  For example, the estimate for the probability of HPV 

transmission per sexual partnership where one partner is HPV positive (60%) used by us [9] and 

others [17] was derived from earlier population modelling using the unrevised mixing matrix [10]. 

We recently revised our own estimates for HPV natural history parameters in an updated estimate 

of the effects of HPV vaccination of females and males in Australia, accounting for the mixing 

matrix revision [13]. To identify suitable sets of HPV natural history parameters we rejected sets 

which produced age-specific prevalence estimates in females outside the 95% confidence intervals 

estimated using observed data; retained parameter sets were then used to estimate a feasible range 

for the corresponding age-specific male HPV 16 pre-vaccination prevalence for heterosexually 

transmitted HPV [13].  
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Dynamic transmission models of HPV infection have played a key role in underpinning the 

introduction of prophylactic HPV vaccination in most developed countries [18]. HPV vaccination 

of adolescent females is consistently found to be cost-effective in the large majority of modelled 

evaluations [18-20]. The determination of the cost-effectiveness of HPV vaccination is based on an 

assessment of vaccination effectiveness in increasing the average quality-adjusted life-years in the 

population; for HPV vaccination this is driven by substantial predicted reductions in the future 

burden of cervical cancer [21, 22]. A number of evaluations have also included other outcomes, 

including a predicted reduction in HPV-related anogenital cancers at other sites in both females and 

males, and a reduction in anogenital warts [23-25]. However, the predicted benefits in all these 

health outcomes are underpinned by estimates of the vaccine-associated reductions in HPV 

infections. Therefore, model-predicted relative reductions in HPV incidence after vaccination have 

critical policy implications.  

In the current study, we have shown that unobservable natural history parameters can be adjusted to 

compensate for the effects of the mixing matrix revision, and that the resulting model predicts 

similar outcomes for vaccine-associated relative reductions in incidence when compared to models 

using unrevised forms of the mixing matrix. This implies that provided that models are well-

calibrated to local infection rates, previous findings that HPV vaccination of young females is cost-

effective (in most settings) are likely to be robust to the revision presented here.  

In conclusion, we have identified an inconsistency in previously used factorised forms of sexual 

mixing matrices. These mixing matrices are an important construct in population models of the 

spread (and prevention) of sexually-transmitted infections. We have described  revised forms of 

these matrices, and shown that the revision has implications for modelled estimates of disease 

prevalence. These findings also have implications for the accurate estimation of unobservable 

natural history parameters for sexually transmitted infections, which can have a substantial 

influence on model results. However, we found that after appropriate model recalibration, important 

policy-relevant outcomes such as the predicted effect of vaccination may not be substantially 
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changed by the incorporation of the revised mixing matrix.  Our revised mixing matrix offers a 

rigorous alternative to commonly used mixing matrices that can be used to reliably and explicitly 

accommodate conditional probabilities, with appropriate re-calibration of unobservable model 

parameters. 
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Table 1. Notation. 

Partner preference: 

AA : Partner preference is made assortatively by age 

PA : Partner preference is made proportionally by age 

AS : Partner preference is made assortatively by sexual activity 

PS   : Partner preference is made proportionally by sexual activity 

jk ' : A partner of sex k’ is selected from age group j 

mk ' : A partner of sex k’ is selected from sexual activity class m 

jmkG  : A partner of sex k' is selected from age group j and sexual activity class 

m 
Population numbers for people of sex k' in age group j and sexual activity class 
m: 

jmkN  : Number of people in this group 

jmkc  : Average number of partnerships offered by people in this group 

jmkP  : Total number of partnerships offered by people in this group 

Numbers of groups: 

An : Number of age groups 

Sn : Number of sexual activity classes 

Assortative mixing proportions: 
)( A : Proportion of individuals who prefer partners assortatively by age 
)(S : Proportion of individuals who prefer partners assortatively by sexual 

activity class 
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Table 2. Predicted age-standardised HPV incidence after vaccination (using Australian 2001 
population) 
(a) Using the unrevised mixing matrix (equation 18) 
 HPV Incidence in Females HPV Incidence in Males 
Year HPV16 HPV16/18 All HPV HPV16 HPV16/18 All HPV 
2006 1.4% 1.8% 6.0% 1.4% 1.8% 6.1% 
2010 0.8% 1.0% 5.2% 1.0% 1.3% 5.3% 
2020 0.5% 0.7% 4.9% 0.8% 1.0% 5.0% 
2050 0.2% 0.3% 4.5% 0.4% 0.6% 5% 

 
(b) Using the revised mixing matrix (equation 17) with a re-calibrated model 
 HPV Incidence in Females HPV Incidence in Males 
Year HPV16 HPV16/18 All HPV HPV16 HPV16/18 All HPV 
2006 1.5% 1.9% 6.5% 1.4% 1.9% 6.4% 
2010 0.8% 1.1% 5.6% 1.0% 1.3% 5.5% 
2020 0.5% 0.7% 5.2% 0.8% 1.0% 5.1% 
2050 0.2% 0.3% 4.8% 0.5% 0.6% 5% 
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Table 3. Predicted relative reductions in age-standardised HPV incidence after vaccination 
(using Australian 2001 population) 
(a) Using the unrevised mixing matrix (equation 18) 

 
Reduction in HPV Incidence in 

Females 
Reduction in HPV Incidence in 

Males 
Year HPV16 HPV16/18 All HPV HPV16 HPV16/18 All HPV 
2010 42.5% 42.5% 12.8% 30.2% 30.2% 12.5% 
2020 63.4% 63.4% 19.0% 44.9% 44.9% 18.7% 
2050 86.0% 86.0% 25.8% 68.2% 68.2% 25.4% 

 
(b) Using the revised mixing matrix (equation 17) with a re-calibrated model 

 
Reduction in HPV Incidence in 

Females 
Reduction in HPV Incidence in 

Males 
Year HPV16 HPV16/18 All HPV HPV16 HPV16/18 All HPV 
2010 42.6% 42.6% 12.8% 32.3% 32.3% 13.0% 
2020 62.9% 62.9% 18.9% 45.9% 45.9% 19.2% 
2050 85.4% 85.4% 25.6% 68.2% 68.2% 26.0% 

 
 
 
 

 
 
 


